Exercise sheet 2

Exercise 1.

Denote by $\mathcal{F} \subset Set$ the full subcategory of finite sets. Show that a functor $F : \mathcal{F} \to Set$ which takes finite limits to finite limits is pro-representable. Let $S \in Set$ be a set; how would you define its profinite completion \hat{S} ?

Denote by $\mathcal{FGr} \subset \mathcal{Gr}$ the full subcategory of the category of groups consisting of finite groups. Show that a functor $F : \mathcal{FGr} \to Set$ which takes finite limits to finite limits is pro-representable. Let $G \in \mathcal{Gr}$ be a group ; how would you define its profinite completion \hat{G} ?

Give an example!

Exercise 2.

Let $(\mathcal{C}, \mathcal{T})$ be a site endowed with a Grothendieck topology. Let P be a presheaf of sets on \mathcal{C} . Let \mathcal{C}/P be the category whose objects are pairs (C, x) with C an object of \mathcal{C} and $x \in P(X)$ and whose morphisms $(C, x) \to (D, y)$ are morphisms $\phi : C \to D$ in \mathcal{C} such that $P(\phi)(y) = x$. We have the obvious (forgetful) functor $(\mathcal{C}/P)^{op} \to Pshv(\mathcal{C}), (C, x) \mapsto C$ (by which we mean $C \in PShv(\mathcal{C})$ is the presheaf $Hom_{\mathcal{C}}(-, C)$ represented by C). Show that the obvious morphism:

 $colim_{(C,x)\in\mathcal{C}/P}C \to P$

is an isomorphism.

Exercise 3.

Let $(\mathcal{C}, \mathcal{T})$ be a site endowed with a Grothendieck topology. Let $f : F \to G$ be a morphism in $Shv_{\mathcal{T}}(\mathcal{C})$.

Show that :

 $(f \text{ is an epimorphism}) \ll (f \text{ is an effective epimorphism}) \ll (f \text{ is a universal effective epimorphism})$

[Hint: consider the diagram $F \times_G F \Rightarrow F \to G$ also in the category of presheaves and use a remark of the lecture concerning monomorphisms of presheaves...]