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Abstract: Let F be �eld of characteristic di�erent from 2. In this paper
we give a new proof of Milnor's conjecture on the graded ring associated to
the powers of the fundamental ideal of the Witt ring of quadratic forms over
F, �rst proven by Orlov, Vishik and Voevodsky. Our approach also relies
on Voevodsky's a�rmation of Milnor's conjecture on the mod 2 Galois co-
homology of �elds of characteristic di�erent from 2, but, besides this fact,
we only use some elementary homological algebra in the abelian category
of Zariski sheaves on the category of smooth k-varieties, involving classical
results on sheaves of Witt groups, Rost's cycle modules and sheaves of 0-
equidimensional cycles.
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1 Introduction
Let F be �eld of characteristic 6= 2. In this paper we give a new proof
of Milnor's conjecture identifying the mod 2 Milnor K-theory of F to the
graded ring associated to the �ltration of the Witt ring W (F ) of anisotropic
quadratic forms over F by the powers of its fundamental ideal [15]. This
result was �rst obtained by Orlov, Vishik and Voevodsky in [23] where they
proved more. This also appears in [11, Remark 3.3]. In both cases however,
sophisticated technics and results from Voevodsky's proof of Milnor conjec-
ture on the mod 2 Galois cohomology of �elds [32, 33] are used, such as
triangles involving the Rost motives, the Milnor operations Qi.

Our approach uses Voevodsky's a�rmation of Milnor's conjecture on the
mod 2 Galois cohomology of �elds, but, however, it is quite di�erent in spirit
from the previous ones. Fix a perfect base �eld k, let Smk denote the cate-gory of smooth k-schemes and let Abk denote the abelian category of sheavesof abelian groups in the Zariski topology on Smk. Besides Voevodsky's resultwe will only use some elementary homological algebra in the abelian category
Abk involving sheaves of Witt groups, Rost's cycle modules [24] and sheaves
of 0-equidimensional cycles [28]. It is also rather di�erent from our original
proof announced in [16]. There we were using the Adams spectral sequence
based on mod 2 motivic cohomology and the computation by Voevodsky of
the whole corresponding Steenrod algebra. In the approach taken here we
don't use these anymore. We will explain the relationship between these two
approaches in [19].

Let us denote by W (F ) the Witt ring of anisotropic quadratic forms over
F [14, 25]. The kernel of the mod 2 rank homomorphism W (F ) ! Z=2 is
denoted by I(F ) and called the fundamental ideal of W (F ). For each integer
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n, the n-th power of I(F ) is denoted by In(F ).
For any unit u 2 F�, the symbol < u > will denote the class in W (F ) of

the quadratic form of rank one u:X2 and the symbol << u >> will denote
the class of the P�ster form 1+ < �u >= 1� < u >2 W (F ), indeed an
element in I(F ). The following Steinberg relation:

<< u >> : << 1� u >>= 0 (1)
which holds in I2(F ) for u 2 F� � f1g, is a reformulation of the well-known
relation < u > + < 1� u >= 1+ < u:(1� u) > (see [25] for instance). One
also has the following equality for any pair (u; v) 2 (F�)2

<< u >> + << v >> � << u:v >>=<< u >><< v >>2 I2(F )
which shows that u 7!<< u >> induces a group homomorphism

F�=(F�)2 ! I(F )=I2(F ) (2)
The Milnor K-theory KM� (F ) of the �eld F introduced in [15] is the

quotient of the tensor algebra TensZF� on the abelian group of units F�
by the two sided ideal generated by tensors of the form u 
 (1 � u), for
u 2 F� � f1g. The mod 2 Milnor K-theory of F is the quotient

k�(F ) := KM� (F )=2
As observed in [15] the above computations give a canonical graded ring
homomorphism extending (2)

sF : k�(F )! �nIn(F )=In+1(F )
which we call the Milnor homomorphism and which was shown in loc. cit.to
be surjective in any degree and an isomorphism in degrees � 2. The Milnor
conjecture on the Witt ring stated as question 4.3 on page 332 in loc. cit., is
the content of the following statement:
Theorem 1.1 For any �eld F of characteristic not 2 and any integer n the
Milnor homomorphism

sn(F ) : kn(F )! In(F )=In+1(F )
is an isomorphism.
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Remark 1.2 The powers of the fundamental ideal of F form altogether a
commutative graded ring denoted by I�(F ), in fact a graded W (F )-algebra
because I0(F ) = W (F ). We have a canonical morphism of graded W (F )-
algebras TensW (F )(I(F ))! I�(F ) where the left hand side denotes the ten-
sor algebra over W (F ) of the W (F )-module I(F ). The relation (1) above,
which holds in I2(F ), shows that this morphism factors trough the quo-
tient algebra KW� (F ) := TensW (F )(I(F ))= << u >> 
 << 1 � u >> by
the two-sided ideal generated by the tensors << u >> 
 << 1 � u >>2
I(F )
W (F ) I(F ). It is quite natural to call KW� (F ) the Witt K-theory of F .
In [17] we have proven that the induced morphism of W (F )-algebras

KW� (F )! I�(F )
is an isomorphism. This is in fact a reformulation of the main result of [2],
which relies on Voevodsky's results and on Theorem 1.1. Observe conversely
that Theorem 1.1 can be recovered from the isomorphism KW� (F ) �= I�(F )
by tensorization by Z=2 over W (F ).

We already mentioned that the surjectivity of the Milnor morphism holds,
so that the main point of Theorem 1.1 is the injectivity. Our proof will consist
in constructing inductively a left inverse to sn(F ), the so-called n-th invariant
of quadratic forms

en(F ) : In(F )=In+1(F )! kn(F )
The statement in the Theorem corresponding to a �xed integer n will be
called in the sequel the Milnor conjecture on the Witt ring of F in weight n.

Denote by H�(F ;Z=2(n)) the mod 2 motivic cohomology groups of F in
weight n as de�ned by Suslin-Voevodsky in [27]. These groups H�(F ;Z=2(�))
altogether form a bigraded commutative ring. We have the particular ele-
ment � := �1 2 �2(F ) = H0(F ;Z=2(1)).

Our main result is:
Theorem 1.3 Let k be a perfect �eld a characteristic 6= 2 and let N > 0 be
an integer. Assume that the following assumptions hold:

H1(N) : Milnor's conjecture on the Witt ring of k holds in weights � N .
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H2(N-1) : For any �nite type �eld extension F jk and for any integer
1 � n � N � 1, the cup product by �

Hn�1(F ;Z=2(n� 1)) � [! Hn�1(F ;Z=2(n))
is onto.

Then Milnor's conjecture on the Witt ring holds for any �eld extension
F jk in weights � N .

Proof that Theorem 1.3 ) Theorem 1.1. The group H i(F ;Z=2(n))
is the group of sections on F of the i-th cohomology sheaf Hi(Z=2(n)) of an
explicit chain complex1 Z=2(n) in Abk, the mod 2 motivic complex in weight
n de�ned in [27]. The ring structure is induced by explicit morphisms of
complexes Z=2(n)
Z=2(m)! Z=2(n+m) by loc. cit.. The cup product by
� is thus induced by a morphism of the form

�[ : Z=2(n� 1)! Z=2(n) (3)
Voevodsky's main theorem [32, 33] implies the Beilinson-Lichtenbaum

conjecture on mod 2 motivic cohomology, which identi�es, for i 2 f0; : : : ; ng,
the sheaf Hi(Z=2(n)) to the sheaf associated in the Zariski topology to the
presheaf X 7! H iet(X;�
n2 ), see [27, 32]. This identi�cation being com-
patible to the cup-product and because the cup-product by � 2 �2(F ) =
H0et(Spec(k);�2) in �etale cohomology induces isomorphisms H iet(X;�
n2 ) �=
H iet(X;�
(n+1)2 ), this implies that the morphism (3) induces isomorphisms on
cohomology sheaves of degrees � n� 1, for any n. This establishes a fortiori
H2(N-1) for any N .

Now choose for the �eld k a prime �eld of characteristic 6= 2. The Milnor
conjecture on the Witt ring holds for k by [15], which proves H1(N) for any
N . Theorem 1.3 now implies Milnor's conjecture on the Witt ring of �eld
extensions F jk in any weight, establishing Theorem 1.1.�
Remark 1.4 It is possible to prove Theorem 1.3 without H1(N) but thiswould make the exposition more complicated.

1for us \chain complex" means that the di�erential is of degree �1
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Remark 1.5 Our method clearly emphasizes that Voevodsky's proof of Mil-
nor's conjecture on mod 2 Galois cohomology in weights � N �1 implies the
Milnor conjecture on the Witt ring in weights � N .

In the rest of the paper, we will concentrate on the proof of Theorem 1.3.
We now �x once for all a perfect �eld k of characteristic 6= 2. Let us describe
our strategy. Recall that we denote by Abk the abelian category of sheaves
of abelian groups in the Zariski topology on the category Smk of smooth
k-schemes. We denote by

KMn 2 Abk
the sheaf of unrami�ed Milnor K-theory in weight n constructed in [13, 24].
Its �ber on a �eld F jk is KMn (F ); see section 2.2 for a recollection. We will
denote by

kn := KMn =2
the cokernel in Abk of the multiplication by 2 on KMn . We will denote by

W 2 Abk
the associated sheaf to the presheaf of Witt groups on Smk: X 7! W (X)
constructed in [14] for instance.

We will then show how the �ltration of the Witt ring W (F ) =W(F ) of
each �eld extension F jk by the powers of their fundamental ideal naturally
arises from a decreasing �ltration by sub-sheaves

� � � � In � � � � �W
For each n, we set in := In=In+1 2 Abk. The Milnor homomorphism for
�elds then arises for each n from an epimorphism of sheaves:

sn : kn ! in
called the Milnor morphism in weight n whose kernel is denoted by jn.

Our strategy to prove Theorem 1.3 can now be decomposed as follows.
First by induction we may assume the Milnor conjecture on the Witt

ring is proven for all �elds F jk in weights � N � 1, so that jn = 0 for
0 � n � N � 1. Then:
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(1)UsingH1(N) andH2(N-1) prove the vanishing of the groups ExtiAbk(kn; jN)for 0 � n � N � 1 and i 2 f0; 1; 2g.
(2) Using elementary homological algebra in Abk, deduce the Milnor con-

jecture on the Witt ring in weight N for all �eld extensions F jk from (1).
Proof of step (1) will be given in section 3.3 below in a more general

form; see Theorem 3.10. The idea is to use two types of information about the
Suslin-Voevodsky motivic complexes Z=2(n). The �rst one is the vanishing
for n > 0 of the groups of morphisms in the derived category of Abk of theform

HomD(Abk)(Z=2(n);M [�])
for some type of sheaves M , like jN , which are birational invariant. This is
done by adapting a simple geometric argument due to Voevodsky [31]. The
second type of information concerns the cohomology sheaves Hi(Z=2(n)).
These vanish for i > n, for i = n we have the Suslin-Voevodsky isomor-
phism2: kn �= Hn(Z=2(n)) and hypothesisH2(N-1) provides an epimorphismkn�1 ! Hn�1(Z=2(n)) for n < N . The vanishing in step (1) is then deduced
from these facts combined to the universal coe�cient spectral sequence (see
Lemma 3.9):
Ep;q2 = ExtpAbk(Hq(Z=2(n));M)) HomD(Abk)(Z=2(n);M [p� q]) �
Proof of step (2) will be given in section 3.4. Here is a sketch. Assume

the Milnor conjecture on the Witt ring in weights � N � 1 for �elds F jk and
the vanishing in (1) are both established.

For each integer n, set Wn := W=In+1. The sheaf WN�1 thus admitsa �ltration with associated subquotients of the form In=In+1 = in, for some0 � n � N � 1. The Milnor conjecture on the Witt ring in weights � N � 1
gives isomorphisms kn �= in, and one deduces from the long exact sequence
of Ext groups and (1) the vanishing

ExtiAbk(WN�1; jN) = 0
for i 2 f0; 1; 2g. Using the short exact sequence

0! jN ! kN ! iN ! 0 (4)
2see [33, 7] and section A.3
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one deduces that the morphism Ext1Abk(WN�1;kN)! Ext1Abk(WN�1; iN) isan isomorphism. There exists thus a commutative diagram
0 ! kN ! �N ! WN�1 ! 0

# # #
0 ! iN ! WN ! WN�1 ! 0

(5)

with exact horizontal rows where the bottom horizontal row is the obvious
one and where the left vertical map is the Milnor epimorphism. Next we
show that the canonical epimorphism

W!WN
canonically lifts trough the epimorphism �N !WN to a morphism

W! �N
This is one of the main argument: it uses the fact that the presentation of the
Witt ring (or rather sheaf) uses units as generators and \open subschemes of
product of Gm as relations"; taking into account the inductive assumption
that jN�1 = 0 which implies jN is a birational invariant sheaf, the existence
of the lifting follows easily (see section 3.4).

To �nish the proof one observes that the composition IN �W! �N !WN�1 is trivial by construction, and that the induced morphism
IN ! kN = (Ker : �N !WN�1)

induces a left inverse to the Milnor morphism in weight N
eN : IN=IN+1 ! kN �

Remark 1.6 Let Fk be the category of �nite type �eld extensions F jk. It istempting to work in the abelian category of functors from Fk to the categoryof abelian groups implicitly considered by Serre in [9], instead of the more
elaborated category Abk. If one could prove an analogue of the step (1) (or
Theorem 3.10) there, then our strategy could be simpli�ed further.
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Notations. For a scheme X and an integer i 2 N, we will denote by X(i)
the set of points of codimension i of the scheme X.

Given x 2 X 2 Smk, we will denote by OX;x the local ring of X at x. For
a given presheaf of sets M on Smk we will denote by M(OX;x), or simply by
Mx, the �ber of M at x 2 X, in the Zariski topology. Important examples
for us will be that of a �nite type �eld extension F jk 2 Fk, considered as thelocal ring of the generic points of its models in Smk or that of a geometric
discrete valuation ring. Such a discrete valuation ring Ov is one with �eld of
fractions F of �nite type over k and which is isomorphic to the local ring of
some X 2 Smk at some point x of codimension 1. The associated valuation
v on F will be called a geometric discrete valuation on F ; its residue �eld
will be denoted by �(v).

2 The Milnor morphism as a morphism of
sheaves

2.1 Unrami�ed Witt groups and related sub-sheaves
De�nition 2.1 A sheaf of sets M on Smk in the Zariski topology is said
to be 0-pure if for any irreducible X 2 Smk with �eld of functions F the
canonical map

M(X)!M(F )
is injective and induces a bijection

M(X) = \y2X(1)M(OX;y) �M(F )
Let us denote by W : Smk ! Ab;X 7! W (X) the presheaf of Witt

groups on Smk; see [14] for instance, or [22] for a quick recollection. We
will denote byW the associated sheaf in the Zariski topology. The following
result is a reformulation of some results of [22]:
Theorem 2.2 (Ojanguren-Panin) The sheaf W is 0-pure.

Proof. Fix an irreducible X 2 Smk with �eld of functions F . Clearly,
because W is a sheaf in the Zariski topology, the morphism

W(X)! �x2XW(OX;x)
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is injective. Now by loc. cit. for each x 2 X the morphism
W(OX;x) = W (OX;x)! W (F ) =W(F )

is injective. This implies that the canonical morphism
W(X)!W(F )

is injective. Now again because W is a sheaf in the Zariski topology, the
previous injection identi�es W(X) with \x2XW(OX;x) = \x2XW (OX;x) �
W (F ). By Theorem A of loc. cit., for each point x 2 X one has W (OX;x) =
\yW (OX;y) where y runs over the set of all prime ideal in OX;x of height one,that is to say points y 2 X(1) whose closure contains x. It follows then that

W(X) = \x2XW (OX;x) = \y2X(1)W (OX;y) � W (F )
which establishes the Theorem.�

Let n 2 N be an integer. For any irreducible X 2 Smk with function �eld
F we set

In(X) = In(F ) \W(X) � W (F )
We extend the de�nition to any X 2 Smk by setting

In(X) := �x2X(0)In(Xx) � �x2X(0)W(Xx) =W(X)
where Xx � X denotes the irreducible component containing x 2 X(0).
Theorem 2.3 Given any morphism f : X ! Y in Smk and any n 2 N the
morphism

W(f) :W(Y )!W(X)
maps the subgroup In(Y ) � W(Y ) into In(X) � W(X). Thus the cor-
respondence X 7! In(X) admits a unique structure of presheaf of abelian
groups, denoted by In, such that the inclusions In(X) � W(X) de�ne a
monomorphism of presheaves In �W. Moreover, In is a 0-pure sheaf.

Proof. By Lemma A.1 of the Appendix below, it is su�cient to prove
that for any geometric discrete valuation v on a �nite type �eld extension
F jk, the morphism

�v : W (Ov) =W(Ov)!W(�(v)) = W (�(v)
10



maps In(Ov) = In(F ) \W (Ov) into In(�(v)). Let Ohv denote the henseliza-
tion of Ov, F hv its fraction �eld. By naturality we have the following com-
mutative diagram of Witt rings

W (Ov) ! W (Ohv )# #
W (�(v) = W (�(v))

and In(Ov) clearly maps to In(Ohv ) := In(F hv ) \W (Ohv ) � W (F hv ). Lemma2.4 (4) below implies the result.�

Lemma 2.4 Let v be a discrete valuation on a �eld F , with residue �eld
�(v) of characteristic not 2, and let � be a uniformizing element for v. Then

1) The ring homomorphism W (Ov)! W (F ) is injective and the diagram
0 ! W (Ov) ! W (F ) @�v! W (�(v)) ! 0 is a short exact sequence, where @�vis the residue morphism of [15, 25].

2) For each n > 0 the residue morphism @�v : W (F )!W (�(v)) maps
In(F ) onto In�1(�(v)).

3) Let Ohv denote the henselization of Ov, F hv its fraction �eld. Then
the ring homomorphism � : W (Ohv ) ! W (�(v)) is an isomorphism and the
canonical W (Ohv )-algebra homomorphism

W (Ohv )[T ]=(T 2 � 1)! W (F hv ) ; T 7!< � >
an isomorphism (Springer).

4) For each n > 0 the intersection In(F hv ) \W (Ohv ) is equal to the n-th
power In(Ohv ) of I(Ohv ) and the exact sequence of 1) induces an exact sequence

0! In(Ohv )! In(F hv ) @�v! In�1(�(v))! 0
Proof. Statement 1) is proven in [25, Theorems 2.1, 2.2]. It follows from

the proof of [15] Corollary 5.2 that the residue morphism maps In(F ) into
In�1(�(v)). The surjectivity is easy.

11



The �rst isomorphism in statement 3) is loc. cit. Theorem 2.4 and the
second one is Corollary 2.6, due to Springer.

The last statement is proven in loc. cit. x5 in the case of complete discrete
valuation rings but using 1), 2) and 3) the proof carries over to our case: one
proceeds as in loc. cit., proof of Corollary 5.2, establishing inductively that
In(F hv ) = ��1(In(�(v)))� << � >> :��1(In�1(�(v))).�

Remark 2.5 Let A be a regular local ring A in which 2 is invertible with
fraction �eld F . Assume that W (A) ! W (F ) is injective (for instance if
it contains a �eld of characteristic 6= 2 by [22]). We don't know in general
whether or not for any n 2 N the group

In(A) := In(F ) \W (A) � W (A)
is always the n-th power of the ideal I(A) := I(F ) \ W (A), though the
previous Lemma establishes it for an henselian discrete valuation ring.

2.2 Unrami�ed Milnor K-theory and Rost's cycle mod-
ules

Let n be an integer. For any �eld F and any n-tuple (u1; : : : ; un) 2 (F�)n
of units we will denote by fu1g : : : fung 2 KMn (F ) its image through the
obvious map (F�)n ! KMn (F ). Recall from [15] that for any discrete valu-
ation v on the �eld F , with residue �eld �(v) there exists one and only one
homomorphism:

@v : KMn (F )! KMn�1(�(v)) (6)
satisfying

@v(f�g:fu2g : : : fung) = fu2g : : : fung
if v(�) = 1 and v(ui) = 0 for each i � 2. For u 2 O�v the notation u 2 �(v)
means the image of u in �(v)�. This homomorphism is called the residue
homomorphism associated to v.

For any smooth k-variety X, we let KMn (X) denote the kernel, intro-
duced in [13], of all the residue homomorphisms associated to points in X of
codimension 1:

KMn (X) := Ker� �x2X(0) KMn (�(x))
P @x! �y2X(1)KMn�1(�(y)) �
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The correspondence X 7! KMn (X) is turned into a Zariski sheaf on Smkby Rost in [24]. This sheaf will be denoted by KMn and called the sheaf of
unrami�ed Milnor K-theory in weight n.

More generally, let us recall briey the notion of cycle module over k from
[24]. We just remind that a cycle moduleM� is a triple (M�; ��; @v) consistingof a functor

M� : Fk ! Ab�
with Ab� being the category of graded abelian groups, a transfer morphism
'� : M�(F )!M�(E) of degree 0 for each �nite extension E � F in Fk anda residue morphism @v : M�(F )! M�(�(v)) of degree �1 for any geometric
discrete valuation v on F jk 2 Fk. These data satisfy some axioms which we
will not recall here; see loc. cit. p. 329 and p. 337.

The Milnor K-theory groups KM� , endowed with the transfers morphisms
of Kato [12], and the above residue morphisms, form the fundamental exam-
ple of cycle module, as it follows from [15, 5, 12, 24]. The mod m Milnor
K-theory groups KM� =m also form a cycle module for any integer m. In
fact, the category of cycle modules, with the obvious notion of morphisms, is
abelian: the kernel and cokernel of a morphism are performed termwise on
each F jk 2 Fk, and the axioms of [24, p. 329 and p. 337] follow formally.
In the sequel, we will simply denote by k� the cycle module of mod 2 Milnor
K-theory.

Given a cycle module M� and X 2 Smk we will denote by A0(X;M�) thegroup of unrami�ed sections of M0 on X, by which we mean3 the kernel of
the sum of residue morphism at point of codimension 1:

�x2X(0)M0(�(x))
P @x! �y2X(1)M�1(�(y))

In [24, x12] these groups are turned canonically into a Zariski sheaf on Smkwhich we denote by M0. A sheaf of abelian groups in the Zariski topology
on Smk will be said to come from a cycle module, or to have a cycle module
structure, if it is isomorphic to a sheaf of the form M0. It is easy to check
that such sheaves are 0-pure in the sense of De�nition 2.1.

3Here we slightly di�er from [24] where Rost considers rather the direct sum�n2ZA0(X;M�(n)), see below.
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Remark 2.6 By D�eglise [7] the sheaf M0 admits a canonical structure of
homotopy invariant sheaf with transfers in the sense of Voevodsky [28], and
these two notions of homotopy invariant sheaves with transfers and of cycle
modules are essentially the same.
Lemma 2.7 For any (termwise) short exact sequence 0 ! M 0� ! M� !
M"� ! 0 of cycle modules, the diagram

0!M00 !M0 !M"0 ! 0
is a short exact sequence of sheaves in the Zariski topology.

Proof. We will freely use the notations from [24]. For any Y 2 Smk, orany localization Y of a smooth k-scheme, and any cycle module N� is de�neda cochain complex C�(Y ;N�), see loc. cit.p. 355 and p. 359. A short exact
sequence of cycle modules 0 ! M 0� ! M� ! M 00� ! 0 then induces a short
exact sequence of cochain complexes

0! C�(Y ;M 0�)! C�(Y ;M�)! C�(Y ;M 00� )! 0
and a corresponding long exact sequence of associated cohomology groups.
But Theorem (6.1) of loc. cit.establishes that for any x 2 X 2 Smk and
any cycle module N�, the cochain complex C�(Spec(OX;x);N�) has trivialcohomology in > 0 degrees. The short exact sequence
0! C�(Spec(OX;x);M 0�)! C�(Spec(OX;x);M�)! C�(Spec(OX;x);M 00� )! 0
thus produces a short exact sequence
0! A0(Spec(OX;x);M 0�)! A0(Spec(OX;x);M�)! A0(Spec(OX;x);M 00� )! 0
in other words, of the form 0!M00(OX;x)!M0(OX;x)!M000(OX;x)! 0,
which gives the result.�

For any cycle module M� and any integer n 2 Z, we denote by M�(n) thecycle module obtained in the obvious way by setting (M�(n))m =Mm+n andendowed with the corresponding shifted data. For instance, for each n 2 N
we have KMn = KM� (n)0 and we de�ne the sheaf of unrami�ed mod 2 Milnor
K-theory in weight n as

kn := k�(n)0 = KMn =2
More generally for a cycle module M� we will simply set Mn :=M�(n)0.
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De�nition 2.8 Let n 2 Z be an integer. We will say that a cycle module M�
is of weights � n if and only if for any F jk 2 Fk the group Mi(F ) vanishes
for i < �n.

Observe that if M� is in weights � n, M�(m) is in weights � n+m. Also
M� is in weights � n if and only if for any F jk 2 Fk, M�n�1(F ) = 0. In that
case the sheaves M�m all vanish for m � n+1. The cycle modules KM� and
k� are in weights � 0.
Lemma 2.9 Let X 2 Smk and let Z � X be closed subscheme everywhere
of codimension � n, then for any sheaf M coming from a cycle module of
weights � n� 1 the groups

H�(X; (X � Z);M)
vanish for any �.

Proof. This follows from the results of [24]: for any cycle module
N� one can compute H�(X;X � Z;N0) as the cohomology of the complex
C�(X;N�)=C�(X � Z;N�) which is of the form

�x2X(0)=x�ZN0(�(x))! � � � ! �x2X(i)=x�ZN�i(�(x))! : : :
Now because the codimension of Z is � n, that complex is trivial up to codi-
mension n. But if N� is of weights � n� 1, it is trivial from there as well, so
it vanishes.�

We will also need the following lemma whose �rst part is proven in [24, 12]
and whose second part is due to Bass and Tate [5, Prop. 4.5 b)].

Lemma 2.10 Let v be a geometric discrete valuation on a �nite type �eld
F jk. Then:

1) The diagram 0 ! KMn (Ov) ! KMn (F ) @v! KMn�1(�(v)) ! 0 is a short
exact sequence. Moreover, given a uniformizing element � 2 Ov the following
diagram is commutative

KMn (Ov) � KMn (F )�v # # @v(f�g [ (�))
KMn (�(v)) = KMn (�(v))
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2) For any unit u 2 O�v the symbol fug 2 KM1 (F ) lies in KM1 (Ov) and
moreover the group KMn (Ov) is generated by symbols of the form

fu1g : : : fung
with the ui's in O�v .

2.3 Shea�fying the Milnor homomorphism
For each integer n 2 N and any �eld F jk 2 Fk we set

in(F ) := In(F )=In+1(F )
We denote by i�(F ) the corresponding graded abelian group.
Theorem 2.11 There exists one and only one structure of cycle module on
the correspondence

Fk ! Ab�;F 7! i�(F )
such that the Milnor homomorphisms

s�(F ) : k�(F )! i�(F )
altogether de�ne a morphism of cycle modules, an epimorphism indeed.

Proof. We will show below that the transfers morphisms
'� : k�(F )! k�(E)

for �nite extensions E � F in Fk and the residue morphisms
@v : k�(F )! k��1(�(v))

for geometric discrete valuations v on F jk 2 Fk, descend to morphisms on i�.Endowed with these induced morphism, i� becomes a cycle module becausethe axioms are automatic consequences of the corresponding ones for mod
2-Milnor K-theory. Moreover, by construction, the Milnor homomorphism
preserves the cycle module structures, de�ning an epimorphism of cycle mod-
ules of the form k� ! i�. The uniqueness of the structure is clear.
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To prove our claim for the residue morphisms, let v be any geometric
discrete valuation on F jk 2 Fk, and � be a uniformizing element for v. Let
us denote by

@�v : in(F )!in�1(�(v))
the homomorphism induced by the one on In(F ) given in Lemma 2.4 2)
above. Clearly from the explicit description of residues in Milnor K-theory
and in Witt theory [15, 25] the diagram

kn(F ) @v! kn�1(�)
# #

in(F ) @�v! in�1(�)
is commutative. This also shows that @�v doesn't depend on �.

Let E � F be any �nite extension of �elds and n be an integer. As-
sume �rst this extension is purely unseparable. Then in that case, be-
cause the characteristic p is odd, one has < xp >=< x > in W (F ) and
fxpg = fxg 2 k1(F ); for any x 2 F , some power xpn is an E. Thus the
extension of scalars W (E) ! W (F ) and k�(E) ! k�(F ) are both epimor-
phisms. But the same formula shows that the Frobenius induces the identity
morphism W (E) = W (E); as some iterated of the Frobenius on F maps to
E � F the factorization of the identity as W (E) ! W (F ) ! W (E) this
shows the extension of scalars is in fact an isomorphism. The degree [F : E],
being a power of p, is odd so that the standard property of the transfer
morphism implies it is a monomorphism on mod 2 Milnor K-theory, showing
that k�(E)! k�(F ) is an isomorphism as well. This clearly imply our claim
on the transfers in that case.

Assume now the extension E � F is separable. Let t : F ! E denote
the trace morphism and t� : W (F ) ! W (E), q 7! t � q the corresponding
Scharlau transfer [25, x2.5]. By Arason [1, Satz 3.3] t� maps In(F ) into In(E)and thus induces a natural morphism t� : in(F )! in(E).To check that the diagram

kn(F ) '�! kn(E)
# #

in(F ) t�! in(E)
(7)
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is commutative one proceeds as follows. Let E � E 0 be a separable algebraic
extension of odd degree, and F 0 := E 0 
E F , a �nite separable algebra over
E 0. Clearly the square above maps by extension of scalars to the correspond-
ing one involving E 0 and F 0. But E ! E 0 and F ! F 0 being of odd degree,
the extension morphisms in(E)! in(E 0) is a monomorphism: this is proven
after the proof of [1, Satz 3.3]. Thus to prove the commutativity of our
square (7) it su�ces to prove it for the one obtained by extending the scalars
to E 0. If we choose for E � E 0 separable algebraic extension such that the
absolute Galois group of E 0 is a 2-Sylow of that of E, we may assume further
that E 0 ! F 0 admits a �nite increasing �ltration E 0 � E 01 � � � � � E 0r = F 0
by quadratic extensions. Thus we reduced our claim to the commutativity
of (7) in case E � F is a quadratic extension. By [5, Corollary 5.3 p. 29],
k�(F ) is generated as a module over k�(E) by k�1(F ). So it su�ces (by the
projection formula both for '� and t�) to prove it for n = 1, which is an easy
computation (use for instance [25, Lemma 5.8]).�

For each n 2 N, in denotes the associated sheaf to the cycle module i�(n).The Milnor morphism of cycle modules
s� : k� ! i�

being an epimorphism it de�nes for each n 2 N an epimorphism of sheaves
in the Zariski topology

sn : kn ! in
by Lemma 2.7. This morphism is called the Milnor morphism in weight n.

2.4 The isomorphism In=In+1 = in

The following result justi�es a posteriori our quick de�nition of in in the
introduction as In=In+1.
Theorem 2.12 Let n � 0 be an integer.

1) The canonical transformation between functors on Fk: In(F )! in(F )
arises from a unique morphism of sheaves In ! in.
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2) The kernel of this morphism is the subsheaf In+1 � In.
3) This morphism is an epimorphism (in the Zariski topology) and thus

induces a canonical isomorphism In=In+1 �= in.
Proof. 1) We use Lemma A.2. The �rst property follows easily from the

fact that the morphisms
In(F )! in(F )

commute to residue morphisms (see the proof of Theorem 2.11). The second
property means that for any geometric discrete valuation v on F jk 2 Fk thefollowing diagram commutes

In(Ov) ! in(Ov)
# #

In(�(v)) ! in(�(v))
This follows again from Lemma 2.4 by mapping Ov to Ohv . This de�nes themorphism In ! in for each n.

2) It is su�cient to prove that for each x 2 X 2 Smk the diagram
0! In+1(OX;x)! In(OX;x)! in(OX;x) (8)

is an exact sequence.
Choose for each point y of codimension 1 in Spec(OX;x) a uniformiz-

ing element �y of the associated discrete valuation. From the fact that
W(OX;x) = W (OX;x) is the kernel of all the residue morphisms @�yy , from
Theorem 2.2 and from Lemma 2.4 one constructs the commutative diagram
in which F is the fraction �eld of OX;x and the right horizontal maps are
residues:

0 ! In+1(OX;x) ! In+1(F ) ! �y2Spec(OX;x)(1)In(�(y))# # #
0 ! In(OX;x) ! In(F ) ! �y2Spec(OX;x)(1)In�1(�(y))# # #
0 ! in(OX;x) ! in(F ) ! �y2Spec(OX;x)(1)in�1(�(y))# # #

0 0 0
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The horizontal rows and the last two vertical rows being each exact sequences,
the claim follows.

3) We want now to establish the surjectivity of the right homomorphism
in (8). Assume �rst that k is in�nite. By [8, Proposition 4.3], the group
KMn (OX;x) is generated by symbols fu1g : : : fung with the ui's units in OX;x.Thus so is the (quotient) group in(OX;x). Now we conclude because these
symbols fu1g : : : fung in in(OX;x) are clearly in the image of In(OX;x) !in(OX;x) which is thus onto.

Assume now that k is �nite. Let k � K be an algebraic extension with
K in�nite, perfect and of odd degree. By Lemma 2.14 below we see that the
cokernel of In(OX;x) ! in(OX;x) injects into the cokernel of In(OX;xjK) !
in(OX;xjK), which is zero by what we have seen above. The theorem is now
proven in any case.�
Remark 2.13 It is possible to give a more elementary and more natural
proof of the previous Theorem which doesn't use the result of [8] quoted
above. It relies on the work [26] and on [24]: for any irreducible X 2 Smkwith function �eld F and any n 2 N one constructs as in [26] an explicit and
canonical complex C�(X; In) of the form (see also [4]):
In(F )! �y2Spec(OX;x)(1)In�1(�(y); �y)! �z2Spec(OX;x)(2)In�2(�(z); �2(�z))! : : :
in which �y means the tangent vector space a point y 2 X, the dual of the
�(y)-vector space my=(my)2. The technic from Rost [24] shows that this
complex gives for a smooth local ring OX;x a resolution of In(OX;x). This
complex can be shown to extends on the right the horizontal lines of the
diagram above used in the proof of part 2); from this it is quite easy to prove
the surjectivity of In(OX;x)! in(OX;x).

The following Lemma is directly inspired by [3, 22].
Lemma 2.14 Let k � L be a �nite extension and x 2 X 2 Smk. Let F be
the fraction �eld of OX;x.

1) For each n 2 N the Scharlau transfer s� : W (F 
k L) ! W (F ) with
respect to a non-zero k-linear map s : L! k [25, x2.5] maps W (OX;x
kL) �
W (F 
k L) to W (OX;x) � W (F ) and maps In(F 
k L) to In(F ).
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Thus it induces a natural morphism
In(OX;x 
k L) ! In(OX;x)

jj jj
W (OX;x 
k L) \ In(F 
k L) ! W (OX;x) \ In(F )

2) For any non-trivial s the natural morphism of 1) is compatible to the
morphism

in(OX;x 
k L)! in(OX;x)
induced by the transfer in(F 
k L)! in(F ) of the cycle module structure on
i� (see 2.11).

3) If [L : k] is odd, the morphism In(OX;x) ! in(OX;x) is a direct sum-
mand of the morphism In(OX;x)! in(OX;x).

Proof. The fact that the Scharlau transfer maps W (OX;x 
k L) �
W (F 
k L) to W (OX;x) � W (F ) follows from [22, x2 & x3]. The fact that
the Scharlau transfer (for any choice of s) maps In(F ) into In(E) is [1, Satz
3.3]. This proves 1).

By the previous result of Arason, the induced transfer t� : in(F )! in(E)doesn't depend on the choice of s. Choosing for s the trace morphism we
thus get the transfer for the cycle module structure, see the proof of Theorem
2.11 above. This proves 2).

If [L : k] is odd, choose for s the morphism of [25, Lemma 5.8 p. 49]. By
loc. cit. the composition In(OX;x) ! In(OX;x 
k L) ! In(OX;x) is multipli-cation by the class s�(1) = 1. The same holds for in by [1]. The Lemma is
proven.�

3 Proof of the main Theorem
3.1 Some A1-homological algebra
For any chain complex C� in Abk, any sheafM 2 Abk, and any integer n 2 Zwe denote by

HomD(Abk)(C�;M [n])
the group of morphisms in the derived category D(Abk) of the abelian cate-
gory Abk from C� to the n-th shift M [n] of M . That group can be computed
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as follows: choose an injective resolution M ! I� of M in Abk of the form
M ! I0 ! I�1 ! I�2 ! I�3 ! : : : . Then HomD(Abk)(C�;M [n]) is the
group of morphisms of chain complexes C� ! I�[n] modulo the subgroup of
those which are homotopic to zero.

For technical purpose, we slightly extend the notion of smooth k-scheme.
Let us denote by Sm0k the full subcategory of that of all k-schemes consistingof k-schemes which are possibly in�nite disjoint union of smooth k-schemes.
Any such X 2 Sm0k can be written as q�X� with each X� irreducible and in
Smk; the X�'s are called the irreducible components of X. The associated
free sheaf of abelian groups on X is the sheaf Z(X) = ��Z(X�) 2 Abk.

A morphism of sheaves of abelian groups of the form
f : Z(X)! Z(Y )

with X and Y in Sm0k, is said to be elementary if for any irreducible compo-
nent X� of X the restriction of that morphism to the summand Z(X�) canbe written as a �nite sum

�in�;i : f�;i
with n�;i 2 Z and with each f�;i corresponding to a morphism of k-schemes
X� ! Y . An elementary resolution of a sheaf M is a resolution R� ! M
whose terms Rn, n 2 N are free sheaves on smooth k-schemes (possibly in
Sm0k) and whose boundaries are elementary morphisms.
Lemma 3.1 For any M 2 Abk, there exists an elementary resolution of the
form

Z(X�) := � � � ! Z(Xn)! � � � ! Z(X0)!M ! 0
Proof. Let Pk be the abelian category of presheaves of abelian groups

on Smk. Then for any X 2 Smk, Z(X) is just the associated sheaf to the
presheaf Z(X) 2 Pk which maps Y to the free abelian group on the set
Homk(Y;X). These Z(X) are projective generators in Pk. One can thus
�nd a resolution R0� ! M in Pk with R0n = 0 for n < 0, and such that R0n a
direct sum of sheaves of the form Z(X) with X 2 Smk. Then the shea��ca-
tion of that resolution gives a resolution inAbk with the required properties.�
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De�nition 3.2 A sheaf M 2 Abk is said to be Zariski strictly A1-invariant
if for any X 2 Smk the natural homomorphism

H�(X;M)! H�(X � A1;M)
is an isomorphism.

By [24, x9], any sheaf arising from a cycle module is Zariski strictly A1-
invariant. Any homotopy invariant sheaf with transfers in the sense of [28]
is Zariski strictly A1-invariant by [29].

Recall the construction C� from [27, 28] (in [28] it is denoted by C�).
It associates to a sheaf N 2 Abk the complex of sheaves C�(N) with n-th
term the sheaf X 7! N(�n �X), with �n the n-th algebraic simplex4, and
with di�erential in degree n, �ni=0(�1)i@i, with @i induced by the i-th coface
�n�1 ! �n.
Lemma 3.3 Let M be a Zariski strictly A1-invariant sheaf.

1) For any non-negatively graded chain complex C� in Abk the morphism
HomD(Abk)(C�;M)! HomD(Abk)(C� 
 Z(A1);M)

induced by the projection C� 
 Z(A1)! C�, is an isomorphism.
2) For any sheaf N 2 Abk the morphism N ! C�(N) induces an isomor-

phism
HomD(Abk)(C�(N);M [�]) �= HomD(Abk)(N;M [�]) = Ext�Abk(N;M)

Proof. 1) By de�nition, forM to be Zariski strictly A1-invariant exactly
means that for any X 2 Smk the homomorphism

HomD(Abk)(Z(X);M [�]) = H�(X;M)!
H�(X � A1;M) = HomD(Abk)(Z(X)
 Z(A1);M)

is an isomorphism. The part 1) of the Lemma then follows easily from stan-
dard homological and the fact that the sheaves Z(X) are generators of Abk.

4i.e. �n = Spec(k[T0; : : : ; Tn]=(�iTi � 1))
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The part 2) of the Lemma follows from 1) exactly in the same way as in
[20, Corollary 3.8 p.89].�

An A1-homotopy between morphisms f; g : C� ! D� of chain complexes
in Abk is a morphism h : C�
Z(A1)! D� which induces f (resp. g) through
the 0 (resp. 1) section Spec(k)! A1.

As a consequence of 1) of the Lemma, any two A1-homotopic morphisms
f; g : C� ! D�, with C� non-negatively graded induce the same mor-
phism HomD(Abk)(D�;M) ! HomD(Abk)(C�;M), for M Zariski strictly A1-
invariant.

3.2 Vanishing of some groups HomD(Abk)(Z=2(n);M [�])
For X 2 Smk, we let Ztr(X) denote the sheaf which maps Y 2 Smk to the
group of �nite correspondences from Y to X, that is to say the free abelian
group c(Y;X) on the set of irreducible closed subschemes Z � Y �X which
are �nite on Y and which dominate an irreducible component of Y [28, 27].

For X1 and X2 pointed smooth k-schemes we let
Ztr(X1 ^X2) 2 Abk

denote the cokernel of the obvious morphism given by the base points Ztr(X1)�
Ztr(X2) ! Ztr(X1 � X2). Iterating this construction we get for a family
(X1; : : : ; Xn) of pointed smooth k-schemes the sheaf [27]:

Ztr(X1 ^ � � � ^Xn)
For any integer n, the motivic chain complex in weight n of Suslin-Voevodsky
[27, 28] is the chain complex Z(n) := C�(Ztr(G^nm ))[�n].

The following result is a variation on a idea from [31]:
Theorem 3.4 Let n � 1 and let M be sheaf which comes from a cycle
module of weights � n� 1. Then one has

HomD(Abk)(Z(n);M [m]) = 0 (9)
for any integer m 2 Z.
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The proof will be given below, after a couple of preliminary Lemmas. Of
course the case m < 0 is trivial.

For X 2 Smk, we let zeq(X) denote the sheaf which maps Y 2 Smk to
the free abelian group zeq(X)(Y ) on the set of irreducible closed subschemes
Z � Y �X which are quasi-�nite on Y and which dominates an irreducible
component of Y [28]. We have the following geometric lemma:
Lemma 3.5 (Voevodsky [30]) There exist explicit quasi-isomorphisms of chain
complexes in Abk of the form
Z(n)[2n] = C�(Ztr(G^nm ))[+n] C�(Ztr(Pn)=Ztr(Pn�1))! C�(zeq(An))
The following two Lemmas and their Corollary below are inspired by the

proof of [31, Proposition 3.3].
Lemma 3.6 Let X 2 Smk and let z 2 zeq(An)(X). Let us denote by 
(z) �
X �An the open complement of the support jzj � X �An of z. Let zj
(z) be
the pull back of z through the morphism 
(z) � X � An ! X. Then there
exists a canonical cycle

h(z) 2 zeq(An)(
(z)� A1)
such that @1h(z) = zj
(z) and @0h(z) = 0. This cycle is functorial in X.

Moreover, given any (�nite) decomposition z = �jnjzj, with nj 2 Z and
zj 2 zeq(An)(X), then �rst jzj � [jjzjj, so that \j
(zj) � 
(z) and one has
the following equality in zeq(An)(\j
(zj)� A1)

h(z) = �jnjh(zj)
The assertion involving A1-homotopies follows from the explicit construc-

tion given in loc. cit.. Beware that a priori it is not clear whether or not that
given a morphism Z(X) f! Z(Y ) and an element y 2 zeq(An)(Y ), one has
f(Z(
(f �(y)))) � Z(
(y)), although this is true for f : X ! Y a morphism
of schemes. For instance we will be in a situation where f �(y) = 0. This is
why will need the next Lemma.
Lemma 3.7 Given an elementary morphism

f : Z(X)! Z(Y )
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an element y 2 zeq(An)(Y ), considered as a morphism Z(Y ) ! zeq(An),
and an open subscheme 
Y � Y � An, whose complement ZY is quasi-�nite
equidimensional over Y and contains jyj (in other words 
Y � 
(y)), then
there exits an open subscheme


X � X � An
whose complement ZX is quasi-�nite equidimensional over X and contains
jxj (in other words 
X � 
(x)), with x = y � f = f �y, and such that f maps
Z(
X) into Z(
Y ). Moreover, the restriction to Z(
X) of the A1-homotopy
h(x) of Lemma 3.6 is compatible with the restriction to Z(
Y ) of the A1-
homotopy h(y).

Proof. We may assume X is irreducible. Write f = �jnjfj, a �nite sum.De�ne Z � X � An to be the union over the �nite set of indices j of the
support of the cycles f �j (ZY ) 2 zeq(X � An).

By construction one has
jxj = j�jnjf �j (y)j � �jjf �j (y)j � �jjf �j (ZY )j = Z

Clearly 
X = X � An � Z satis�es the conclusions.
To check that f maps Z(
X) into Z(
Y ) it su�ces to observe that

Z(
X) = \jZ(
(X � Annf �j (ZY ))) so that each morphism fj separately
maps Z(
X) into Z(
Y ).Following this, one proves easily the assertion on the A1-homotopies using
Lemma 3.6 above.�

Corollary 3.8 Let �� : Z(X�) '! zeq(An) be an elementary resolution (given
by Lemma 3.1). Then there exists a subcomplex

Z(
�) � Z(X�)
 Z(An) = Z(X� � An)
such that for each q � 0, 
q is an open subscheme in Xq � An whose com-
plement is a closed subscheme Zq quasi-�nite equidimensional over Xq, such
that the composition

Z(
�) � Z(X�)
 Z(An) = Z(X� � An)! Z(X�) ��! zeq(An)
is homotopic to zero.
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Proof. We construct the subcomplex
Z(
�) � Z(X�)
 Z(An)

by an induction on the degree q � 0 using Lemmas 3.6 and 3.7 above, by
imposing that for each q, 
q is an open subset of 
(zq), where zq = 0 for
q > 0 and z0 = �0 : X0 ! zeq(An), and that the homotopy is the restriction
in each degree q of the homotopy on Z(
(zq)� A1) given by Lemma 3.6.

To start with, apply Lemma 3.6 to the morphism �0 : Z(X0) ! Z(An)
which we see as an element z0 2 zeq(X0 � An). We get an open subset

0 = 
(z0) � X0 � An whose complement is quasi-�nite equidimensional
over X0 such that the composition

Z(
0) � Z(X0)
 Z(An) = Z(X0 � An)! Z(X0) �0! zeq(An)
is homotopic to zero, through the explicit homotopy of the Lemma 3.6.

Now Lemma 3.7 applied to the boundary, an elementary morphism by
assumption, �1 : Z(X1)! Z(X0), and to z0 allows one to de�ne 
1 (observethat even if ��1(z0) = Z1 = 0), Lemma 3.7 works and is non trivial!) . The
process continues thanks to Lemma 3.6 and the functorial property of the
homotopy.�

Proof of Theorem 3.4. Set M := M0. To prove the vanishing of the
Theorem, it is clearly su�cient, by Lemmas 3.5 and 3.3, to prove for each
m 2 N the vanishing

ExtmAbk(zeq(An);M) = HomD(Abk)(zeq(An);M [m]) = 0
We proceed inspired by Voevodsky's proof of [31, Prop. 3.6]. Choose an ele-
mentary resolution Z(X�) ! zeq(An). As M is Zariski strictly A1-invariant,
Lemma 3.3 implies that the morphisms

Z(X�)
 Z(An)! Z(X�)! zeq(An)
induce isomorphisms

HomD(Abk)(zeq(An);M [m]) �= HomD(Abk)(Z(X�);M [m])
�= HomD(Abk)(Z(X�)
 Z(An);M [m])
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By Corollary 3.8 and Lemma 3.3 again, the restriction morphism
HomD(Abk)(Z(X�)
 Z(An);M [m])! HomD(Abk)(Z(
�);M [m])

is 0. The group HomD(Abk)(Z(X�) 
 Z(An);M [m]) is thus a quotient of
the group HomD(Abk)(Z(X�) 
 Z(An)=Z(
�);M [m]). By construction the
complex Z(X�) 
 Z(An)=Z(
�) is degreewise a direct sum of sheaves of the
form Z(X)=Z(X � Z) with Z everywhere of codimension � n; the groups
HomD(Abk)(Z(X)=Z(X � Z);M [m]) = Hm(X;X � Z;M) thus vanish by
Lemma 2.9. The Theorem follows.�

3.3 Vanishing of some extension groups ExtiAbk(kn;M)
Let C� be a non-negatively graded chain complex inAbk and n 2 Z an integer.
We denote by HnC� its n-th homology sheaf or in other words its (�n)-th
cohomology sheaf H�nC�. We have the following well-known construction,
which can be derived from standard homological algebra [10]:
Lemma 3.9 (Universal coe�cient spectral sequence) Let C� be a non-negatively
graded chain complex in Abkand let M be a sheaf of abelian groups on Smk.
Then there exists a natural, strongly convergent spectral sequence of cohomo-
logical type of the form

Ep;q2 = ExtpAbk(HqC�;M)) HomD(Abk)(C�;M [p+ q])
We are now in position to prove our main result on the vanishing of Ext

groups:
Theorem 3.10 Let n > 0 be an integer and M� be a cycle module. Then:

1) If M�n(k) = 0 then HomAbk(kn;M0) = 0;
2) If M� is of weights � n� 1 then Ext1Abk(kn;M0) = 0;
3) If M� is of weights � n� 1 and M�n+1(k) = 0 and if H2(N-1) holds

and 1 � n � N � 1, then:
Ext2Abk(kn;M0) = 0
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Proof. Set M := M0. Let n > 0 be an integer. Let's �rst prove 1). An
easy computation as in [27, Lemma 3.3 p. 23] shows that

M((Gm)n) = �nm=0M�m(k)
�nm�

As a consequence the intersection of the kernels of the morphisms M(�i) :
M((Gm)n)!M((Gm)n�1), with �i : (Gm)n�1 ! (Gm)n the closed subschemede�ned by i-th coordinate = 1, is exactlyM�n(k). Let � : kn !M be a mor-
phism and let (Gm)n ! kn be the morphism of sheaves of sets corresponding
to the obvious symbol in kn((Gm)n). From the previous observation we see
that the composition (Gm)n ! kn �!M is zero because M�n(k) = 0 and its
composition with the �i's is 0 because a symbol of length n containing 1 is
trivial. Thus � is the zero morphism on sections over �elds, and is thus zero
because M(X) � �x2X(0)M0(�(x)) for any X 2 Smk.

Now let's prove 2). AssumeM� is of weights � n� 1. By Theorem 3.4 the
groups HomD(Abk)(Z=2(n);M [�]) vanish. The universal coe�cient spectral
sequence of Lemma 3.9 thus converges to 0. By de�nition of the complex
Z=2(n) [27], see also section 3.2, the homology sheaves Hi(Z=2(n)) vanish for
i < �n and by Theorem A.7 we have a canonical isomorphism:

kn �= H�n(Z=2(n))
Looking at the E2-term gives the vanishing (already known by 1) ):

HomAbk(kn;M) = HomD(Abk)(Z=2(n);M [�n]) = 0
and the vanishing:

Ext1Abk(kn;M) � HomD(Abk)(Z=2(n);M [�n+ 1]) = 0
To prove 3) we go further into the study of the E2-term which also gives a
canonical isomorphism

HomAbk(H�n+1(Z=2(n));M) �= Ext2Abk(kn;M) (10)
By H2(N-1) , for any integer 1 � n � N � 1 the morphism of sheaves

kn�1 = H�n+1(Z=2(n� 1))! H�n+1(Z=2(n)) (11)
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induced by the cup-product by � , induces an epimorphism on sections over
any �elds F jk 2 Fk. Because M is 0-pure, this easily implies that the
induced morphism HomAbk(H�n+1(Z=2(n));M) ! HomAbk(kn�1;M) is in-
jective. Together with the isomorphism (10) we get an injection

Ext2Abk(kn;M) � HomAbk(kn�1;M)
but by the case 1) already proven, the group on the right vanishes because
M�n+1(k) = 0 by assumption.�

3.4 Construction of eN
We can now complete the proof of our main result Theorem 1.3, following
the lines of the introduction.

Let N > 0 be a �xed integer. We assume hypothesis H1(N) and H2(N-1)hold. Proceeding by increasing induction we may assume the Milnor conjec-
ture on the Witt ring in weights � N � 1 for �elds F jk is proven.

Let us denote by j� the kernel in the category of cycle modules of the
Milnor epimorphism k� ! i� constructed in Theorem 2.11. By our inductive
assumption, jn = 0 for any n � N � 1. By H2(N-1) and Theorem 3.10, for
any integer 1 � n � N � 1 one has the vanishing

ExtiAbk(kn; jN) = 0
for i 2 f0; 1; 2g. This vanishing also holds for n = 0: use the short exact
sequence of sheaves 0! Z 2! Z! k0 ! 0 andH1(N) which gives jN(k) = 0.

For each integer n 2 N, set Wn := W=In+1. Using the short exact
sequences

0! in !Wn !Wn�1 ! 0 (12)
and the inductive assumption that kn �= in for 0 � n � N � 1, we conclude
from the above vanishing of Ext groups that for any i 2 f0; 1; 2g, the group

ExtiAbk(WN�1; jN)
vanishes as well. This implies, by the short exact sequence of Lemma 2.7

0! jN ! kN ! iN ! 0 (13)
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that the homomorphism
ExtiAbk(WN�1;kN)! ExtiAbk(WN�1; iN)

is an isomorphism for i 2 f0; 1g and a monomorphism for i = 2. For i = 1,
this implies the existence of a sheaf of abelian groups �N which �ts into a
commutative square in Abk of the form:

0 ! kN ! �N ! WN�1 ! 0
# # jj

0 ! iN ! WN ! WN�1 ! 0
(14)

in which the horizontal rows are exact, the bottom one being of the form
(12), and which induces the Milnor morphism on the left.
Lemma 3.11 Let X 2 Smk be such that jN(X) = 0. Then the morphism

�N(X)!WN(X)
is an isomorphism, and thus so is kN(X)! iN(X) by (14).

Proof. The epimorphism �N ! WN has kernel jN . We get for any
X 2 Smk an exact sequence 0 ! jN(X) ! kN(X) ! iN(X) ! H1(X; jN).By de�nition for Y 2 Smk one has

jN(Y ) := Ker� �y2Y (0) jN(�(y))! �z2Y (1)jN�1(�(z)) �

(see 2.2) and by our assumptions which implies that, for any �eld F jk,
jN�1(F ) = 0), we see that any open immersion U � Y induces an iso-
morphism jN(Y ) �= jN(U); this sheaf is thus asque and H1(X; jN) = 0 for
any X by [10]. This implies the Lemma.�

This is for instance the case for X = Gm because (jN)(Gm) = jN(k) �jN�1(k) = 0 (byH1(N) ). The same observation holds for a product (Gm)n bythe formula used in the proof above. This also holds for any open subscheme
X � (Gm)n because jN(X) � jN((Gm)n) = 0.

As a consequence there exists a unique lift
Gm ! �N
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through �N !WN of the obvious \symbol"
Gm !WN ; u 7!< u >2WN

We denote by � : Z(Gm)! �N the morphism of abelian sheaves induced by
this lift.

We denote by (�) : Gm ! Z(Gm) ; x 7! (x) the morphism of sheaves of
sets given by the \inclusion of the base" into the free sheaf of abelian groups
Z(Gm) on it. We let �0 : X0 = Gm �Gm ! Z(Gm) denote the morphism

(U; V ) 7! (U)� (U : V 2)
where we denote by U : Gm � Gm ! Gm and V : Gm � Gm ! Gm the
projections to the �rst and second factor. We will also need the morphism
�1 : X1 = Gm ! Z(Gm) de�ned by

(U) 7! (U) + (�U)
Let X2 � Gm�Gm denote the open complement to the closed subscheme of
Gm�Gm de�ned by the equation U+V = 0. Finally we let �2 : X2 ! Z(Gm)denote the morphism

(U; V ) 7! (U) + (V )� (U + V )� ((U + V ):U:V )
Lemma 3.12 For i 2 f0; 1; 2; g, the composition

Xi ! Z(Gm) �! �N
is trivial, i.e. constant with value the 0 section of �N .

Proof. By the above observation, the morphisms
�N(Xi)!WN(Xi)

are isomorphisms. The Lemma now follows from the fact that the corre-
sponding statements hold for the compositions Xi !WN . These are indeedclassical relations which hold in the Witt ringW (F ) of any �eld F jk (see [25,
Corollary 9.4 p. 66]) and we conclude by the remark below, which implies
that the WN are 0-pure.�
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Remark 3.13 If 0 ! M 0 ! M ! M" ! 0 is a short exact sequence
of sheaves in the Zariski topology, and that both M 0 and M" are strictly
A1-invariant in the sense of Appendix A.2, it is clear that M itself is also
strictly A1-invariant. This implies easily by induction, because the iN are
each strictly A1-invariant, that the WN are strictly A1-invariant as well. By
Corollary A.5 these are also 0-pure.
Corollary 3.14 For each �nite type �eld extension F jk, the morphism

�(F ) : Z(F�)! �N(F )
factors through the epimorphism Z(F�)! W (F ) and thus de�nes a natural
transformation on Fk:

�(F ) : W (F )! �N(F )
Proof. This is clear from the previous Lemma and the fact that for each

�eld F of char 6= 2 the relations < u >=< u:v2 >, < u > + < �u > and
< u > + < v >=< u + v > + < (u + v)uv >, with u 2 F� and v 2 F�
(u+ v 6= 0 in the last case), generate the kernel of the epimorphism

Z(F�)! W (F )
by loc. cit..�

Lemma 3.15 The natural transformation on Fk:
� : W (�)! �N jFk

obtained above arises from a unique morphism of sheaves of abelian groups
� :W! �N

Proof. We observe by remark 3.13 that the sheaves iN and WN�1 beingstrictly A1-invariant, the sheaf �N , being an extension between two strictly
A1-invariant sheaves is also strictly A1-invariant, thus 0-pure. Both sheaves
in the statement of Lemma 3.15 being 0-pure, we reduce by Lemma A.2 to
checking that for any geometric discrete valuation v on F jk 2 Fk:
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(1) �(F ) maps W (Ov) � W (F ) into �N(Ov) � �N(F ).
(2) the following induced diagram is commutative

W (Ov) ! �N(Ov)
�v # # �v

W (�(v)) �(�(v))! �N(�(v))
It is well known that W (Ov) � W (F ) is the subgroup generated by symbols
< u > with u 2 O�v , see [25]. This shows that the morphism of sheaves

Z(Gm)!W
is onto on geometric discrete valuation rings Ov. Using the morphism of
sheaves � : Z(Gm)! �N this clearly implies (1) and (2).�

We let ((�)) : Gm ! Z(Gm) denote the morphism of sheaves of sets
u 7! ((U)) := 1� (U)

and more generally for each n > 0 we let
(Gm)n ! Z(Gm)

denote the morphism of sheaves of sets
(U1; : : : ; Un) 7! ((U1)) [ � � � [ ((Un))

(whose de�nition uses the obvious structure of sheaf of commutative rings
on Z(Gm) with product denoted by [).
Lemma 3.16 For each n 2 N the composition

�n : (Gm)n ! Z(Gm) �! �N
is trivial if n > N and its image is contained in the subsheaf kN � �N for
n = N . In that case the induced morphism

(Gm)N ! kN
is the obvious symbol: (U1; : : : ; Un) 7! fU1g : : : fUNg.
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Proof. By our above observation, the morphisms
�N((Gm)n)!WN((Gm)n) and kN((Gm)n)! iN((Gm)n)

are isomorphisms. Thus it su�ces to check each statements on WN and iNrespectfully, which is clear, because the composition
(Gm)n �n! �N !WN

is the n-fold P�ster symbol.�
We can now easily combine the above results to prove the Milnor conjec-

ture in weight N , �nishing the proof of Theorem 1.3:
Corollary 3.17 The composition

In �W �! �N
is zero for n > N and for n = N induces a morphism

eN : iN �= IN=IN+1 ! kN = ker(�N !WN�1)
This is a left inverse to the Milnor morphism in weight N which is thus an
isomorphism.

Proof. Lemma 3.16 implies that the morphism In � W ! �N is zero
on �elds F jk 2 Fk for n > N and is thus zero. The induced morphism
IN=IN+1 ! �N composed with �N !WN�1 is zero on �elds by Lemma 3.16again and is thus zero. Thus we get

eN : iN �= IN=IN+1 ! kN = ker(�N !WN�1)
Lemma 3.16 implies that the composition

(Gm)N ! IN ! IN=IN+1 ! kN
is the N -symbol; thus the composition

(Gm)N ! kN sN! iN eN! kN
is also the obvious one, so that the composition kN sN! iN eN! kN is the
identity on �elds, thus is the identity.�
Remark 3.18 In fact to prove the Milnor conjecture in weight N it is not
necessary to construct � as a morphism of sheaves. The natural transfor-
mation � on �elds su�ces, and one can adapt the end of the proof to that
situation.
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A Complement on sheaves
A.1 Elementary properties of 0-pure sheaves of sets
We will not repeat here the de�nition of 0-pure sheaves of sets given in 2.1.

Let M be a 0-pure sheaf and denote by
M jFk : Fk ! Ab

its restriction to �nite type �eld extensions of k. For any geometric discrete
valuation v on F jk 2 Fk, one has an associated subset M(Ov) � M(F ) and
a restriction map

�v :M(Ov)!M(�(v))
We will not try to describe explicitly the properties satis�ed by these data
which characterizes exactly the one coming from a 0-pure sheaf5. We will
only use the following Lemma:
Lemma A.1 Let M be a 0-pure sheaf of sets and N � M jFk be a sub-
functor. For any irreducible X 2 Smk with function �eld F set

N(X) := N(F ) \M(X) �M(F )
and for any X 2 Smk set N(X) := ��2X(0)N(X�) �M(X).

Assume that for any geometric discrete valuation v on a �nite type �eld
extension F jk, the map �v : M(Ov) ! M(�(v)) sends M(Ov) \ N(F ) into
N(�(v)) �M(�(v)).

Then for any morphism f : Y ! X in Smk, the map M(f) : M(X) !
M(Y ) maps N(X) into N(Y ) and the correspondence X 7! N(X) is a 0-pure
sheaf of sets.

Proof. We assume X and Y are irreducible with �eld of fractions E and
F . Also it su�ces to prove the claim separately for f a smooth morphism
and for f a closed immersion.

Assume �rst f : Y ! X is smooth. The map M(f) : M(X) ! M(Y )
extends to a map M(E) ! M(F ), and thus maps N(X) = M(X) \ N(E)
into N(Y ) = M(Y ) \ N(F ). Assume now f : Y ! X is a closed immer-
sion. Let y 2 Y � X be the generic point of Y and OX;y its local ring

5Though this can be done
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in X; a regular local ring of dimension codimX(Y ) = d. Choose a regular
sequence (x1; : : : ; xd) generating the maximal ideal of OX;y. Because k is
perfect, we get the existence of an open subscheme U � X containing y and
a ag Y \ U = Y1 � � � � � Yd+1 = U of integral closed subschemes, smooth
over k, such that Yi is the principal divisor in Yi+1 de�ned by the function
xi. We observe that N(X) = N(U)\M(X) and N(Y ) = N(Y1)\M(Y ). It
is thus su�cient to check that M(U) ! M(Y1) maps N(U) into N(Y1) andusing the above ag we reduce to the case f is a closed immersion with Y a
principal divisor in X de�ned by a function. Denoting by v the discrete val-
uation on E associated to Y we see that M(f) :M(X)!M(Y ) extends to
�v : M(Ov) ! M(�(v)) = M(F ); but then by construction and assumption
N(X) =M(X) \N(E) =M(X) \N(Ov) maps to M(Y ) \N(F ) = N(Y ).

The fact that X 7! N(X) is a 0-pure sheaf is proven as follows. We may
assume X irreducible. Let fUig be a �nite open covering of X. To check
that the obvious diagram

N(X) � �iN(Ui) !! �i;jN(Ui \ Uj)
is left exact follows easily from the fact that it imbeds into the corresponding
diagram for M . The rest is easy.�

Now we can describe morphisms between 0-pure sheaves in analogous
terms. Let M and N be 0-pure sheaves of sets and let � : N !M be a mor-
phism of sheaves. By restriction to Fk this de�nes a natural transformation

�jFk : N jFk !M jFk
between functors Fk ! Sets. Moreover �jFk has the following two proper-
ties, for any geometric discrete valuation v on F jk 2 Fk:

(1) �(F ) maps N(Ov) into M(Ov) � N(F ).
(2) the following induced diagram is commutative

N(Ov) ! M(Ov)
�v # # �v

N(�(v)) �(�(v))! M(�(v))
Conversely:
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Lemma A.2 Given 0-pure sheaves of sets M and N , the above correspon-
dence de�nes a bijection from the set Homk(N;M) of morphisms of sheaves
of sets on Smk from N to M to the set C(N;M) consisting of natural trans-
formations

� : N jFk !M jFk
satisfying, for any geometric discrete valuation v, properties (1) and (2)
above.

Proof. By the 0-purity property, the injectivity of the mapHomk(N;M)!
C(N;M)is clear. Now let � : N jFk ! M jFk be a natural transformation in
C(N;M). Then for each irreducible X 2 Smk, with function �eld F , �
induces by property (1) and De�nition 2.1 a morphism

�(X) : N(X) = \y2X(1)N(OX;y)! \y2X(1)M(OX;y) =M(X)
It only remains to show that the �(X) altogether de�ne a morphism of
sheaves, that is to say a natural transformation on functors on Smk. To
do this one proceeds using the same argument as in the proof of Lemma
A.1 above: to check the property for pull-back along smooth morphisms one
considers everything embedded in sections over the corresponding function
�elds and to check the property for pull-back along closed immersions one
reduces to the case of a principal divisor using property (2).�

A.2 Strictly A1-invariant sheaves and 0-purity
De�nition A.3 A sheaf M 2 Abk is said to be strictly A1-invariant if it is
Zariski strictly A1-invariant and if for any smooth k-variety X the compari-
son homomorphism

H�(X;M)! H�Nis(X;M)
from Zariski cohomology to Nisnevich [21] cohomology is an isomorphism.

Any homotopy invariant sheaf with transfers [28, De�nition 3.1.10] is
strictly A1-invariant by [loc. cit., Theorem 3.1.12].
Lemma A.4 For any cycle module M� the sheaf M0 is strictly A1-invariant
sheaf.
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Proof. We know that it is Zariski strictly A1-invariant by [24, x9]. The
fact that it is a sheaf in the Nisnevich topology and that the comparison
homomorphism

H�Zar(X;M0)! H�Nis(X;M0)
is an isomorphism follows from [6, Theorem 8.3.1 and x7.3 Ex 5)].�

Lemma 5.5.4 of [18] gives:
Lemma A.5 A strictly A1-invariant sheaf is 0-pure.
Corollary A.6 A morphism M ! N of strictly A1-invariant which induces
an isomorphism on �elds F jk is an isomorphism.

Proof. By Lemma A.2 bothM and N are 0-pure. Thus such a morphism
M ! N is a monomorphism of sheaves. Let C be its cokernel. It is clearly a
strictly A1-invariant sheaf thus a 0-pure sheaf again by Lemma A.2. Moreover
it vanishes on each �eld F jk. It is thus 0.�

A.3 Motivic complexes and unrami�ed Milnor K-theory
The cohomology sheaves Hi(Z(n)) of the Suslin-Voevodsky motivic complex
Z(n) in weight n vanish by construction for i > n. A standard result of
Suslin-Voevodsky [27] gives the computation of Hn(Z(n))(F ) for each �eld
F jk. More precisely, we know from [27] that there is a canonical quasi-
isomorphism Z(1) �= Gm[�1]. This gives in particular for each �eld F jk a
canonical isomorphism

F� = H1(Spec(F );Z(1))
It is shown in [27, Theorem 3.4] that it induces, using the product

Z(n)
 Z(m)! Z(n+m) (15)
a canonical isomorphism of graded rings

��(F ) : KM� (F ) �= �nHn(Spec(F );Z(n)) = �nHn(Z(n))(F )
Altogether these isomorphisms de�ne an isomorphism of functors on Fk

�n : KMn �= Hn(Z(n))jFk
The following result ([33, Corollary 2.4 (and proof)] and [7]) extends naturally
the previous isomorphism to an isomorphism of sheaves:

39



Theorem A.7 Let n 2 N be an integer.
1) There exists a unique isomorphism of sheaves

�n : KMn �= Hn(Z(n))
which induces the natural isomorphism of Suslin-Voevodsky on the �eld ex-
tensions of k.

2) For each integer m > 0, the above isomorphism induces an isomor-
phism (in Abk): KMn =m �= Hn(Z=m(n))

We include the proof for the comfort of the reader:
Proof. 1) In the proof we simply denote by Hn the sheaf of Hn(Z(n)).

We �rst construct �n using Lemma A.2. We thus have to check Properties
(1) and (2) of that Lemma. Uniqueness is clear.

Fix a discrete valuation v on F jk 2 Fk of geometric type. Each element
of Hn(F ) of the form

�n(fu1g : : : fung)
with the ui's inO�v , can be expressed, using the morphismH1
: : :
H1 ! Hn
induced by (15) as the cup-product �1(fu1g) [ � � � [ �1(fung) so that it liesin Hn(Ov) � Hn(F ), because each symbol �1(fuig) lies in H1(Ov) = O�v .Moreover we clearly have the formula

�v(�n(fu1g : : : fung)) = �v(�1(fu1g) [ � � � [ �1(fung))
= �1(�v(fu1g)) [ � � � [ �1(�v(fung)) = �n(�v(fu1g : : : fung))

Properties (1) and (2) of Lemma A.2 follow immediately from that observa-
tion and from the result of Bass-Tate [5, Prop. 4.5 (b) p. 22], see also 2.10,
that any x 2 KMn (Ov) is a sum of symbols of the previous form. This de�nes

�n : KMn ! Hn

The n-th cohomology sheaf Hn being a homotopy invariant sheaf with trans-
fers by [28, De�nition 3.1.9], it is strictly A1-invariant by [loc. cit., Theorem
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3.1.12]; so is KMn by Lemma 2.7. We conclude that �n is an isomorphism by
Corollary A.6.

2) is an easy consequence of 1).�

Remark A.8 As a consequence, the sheaves KMn and kn have canonical
structures of homotopy invariant sheaf with transfers, given by the above
isomorphisms. By [7] any sheaf arising from a cycle module has a canonical
structure of homotopy invariant sheaf with transfers; it is also proven in loc.
cit. that the above isomorphisms of sheaves are compatible with these addi-
tional structures.

References
[1] J. Arason, Cohomologische Invarianten Quadratischer Formen. J. Algebra

36 (1975), no. 3, 448{491.
[2] J. K. Arason et R. Elman, Powers of the fundamental ideal in the Witt

ring, Journal of Algebra 239, 150-160 (2001).
[3] P. Balmer, S. Gille, I. Panin and C. Walter), The Gersten conjecture on

Witt groups in the equicharacteristic case, Documenta Mathematica 7
(2002), pp. 203-217.

[4] J. Barge et F. Morel, Cohomologie des groupes lin�eaires, K-th�eorie de
Milnor et groupes de Witt. (French) [Cohomology of linear groups, Milnor
K-theory and Witt groups] C. R. Acad. Sci. Paris S�erie I Math. 328
(1999), no. 3, 191{196.

[5] H. Bass and J. Tate, The Milnor ring of a global �eld. AlgebraicK-theory,
II: "Classical" algebraicK-theory and connections with arithmetic (Proc.
Conf., Seattle, Wash., Battelle Memorial Inst., 1972), pp. 349{446. Lec-
ture Notes in Math., Vol. 342, Springer, Berlin, 1973.

[6] J.-L. Colliot-Th�el�ene, R. T. Hoobler, B. Kahn, The Bloch-Ogus-Gabber
theorem. Algebraic K-theory (Toronto, ON, 1996), 31{94, Fields Inst.
Commun., 16, Amer. Math. Soc., Providence, RI, 1997.

41



[7] F. D�eglise, Modules homotopiques avec transferts et motifs gnriques.
Th�ese de l'universit�e Paris VII, disponible �a:
http://www-math.univ-paris13.fr/ deglise/these.html

[8] P. Elbaz-Vincent and S. M�uller-Stach, Milnor K-theory of rings, higher
Chow groups and applications, Inventionnes Math., 148, p. 177-206
(2002).

[9] S. Garibaldi, A. Merkurjev, J.-P. Serre, Cohomological Invariants in Ga-
lois Cohomology, University Lecture series, volume 28, AMS.

[10] A. Grothendieck, Sur quelques points d'alg�ebre homologique, Tohoku.
(French) Tohoku Math. J. (2) 9 1957 119{221.

[11] B. Kahn and R. Sujatha, Motivic cohomology and unrami�ed cohomol-
ogy of quadrics. J. Eur. Math. Soc. (JEMS) 2 (2000), no. 2, 145{177.

[12] K. Kato, A generalization of local class �eld theory by using K-groups.
II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, 603{683.

[13] K. Kato, Milnor K-theory and the Chow group of zero cycles. Appli-
cations of algebraic K-theory to algebraic geometry and number theory,
Part I, II (Boulder, Colo., 1983), 241{253, Contemp. Math., 55, Amer.
Math. Soc., Providence, RI, 1986.

[14] M.-A. Knus, Quadratic and Hermitian forms over rings. With a fore-
word by I. Bertuccioni. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 294. Springer-Verlag,
Berlin, 1991.

[15] J. Milnor, Algebraic K-theory and Quadratic Forms, Inventionnes math.
9, 318-344 (1970).

[16] F. Morel, Suite spectrale d'Adams et invariants cohomologiques des
formes quadratiques, C.R. Acad. Sci. Paris, t. 328, S�erie I, p. 963-968,
1999.

[17] F. Morel, Sur les puissances de l'id�eal fondamental de l'anneau de Witt,
CMH.

42



[18] F. Morel, The stable A1-connectivity theorems, to appear in K-theory
Journal.

[19] F. Morel, Milnor's conjecture on quadratic forms and the operation Sq2,
in preparation.

[20] F. Morel and V. Voevodsky, A1-homotopy theory of schemes. Inst.
Hautes �Etudes Sci. Publ. Math. No. 90 (1999), 45{143.

[21] Y. Nisnevich, The completely decomposed topology on schemes and
associated descent spectral sequences in algebraic K-theory. Algebraic
K-theory: connections with geometry and topology (Lake Louise, AB,
1987), 241{342, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 279,
Kluwer Acad. Publ., Dordrecht, 1989.

[22] M. Ojanguren, I. Panin, A purity theorem for the Witt group. Ann. Sci.�Ecole Norm. Sup. (4) 32 (1999), no. 1, 71{86.
[23] D. Orlov, A. Vishik and V. Voevodsky, An exact sequence

for Milnor's K-theory with applications to quadratic forms,
http://www.math.uiuc.edu/K-theory/0454/ .

[24] M. Rost, Chow groups with coe�cients. Doc. Math. 1 (1996), No. 16,
319{393 (electronic).

[25] W. Scharlau, Quadratic and Hermitian forms. Grundlehren der Mathe-
matischen Wissenschaften, 270. Springer-Verlag, Berlin, 1985.

[26] M. Schmidt, Wittringhomologie, Dissertation, Universit�at Regensburg,
1998.

[27] A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic coho-
mology with �nite coe�cients. The arithmetic and geometry of algebraic
cycles (Ban�, AB, 1998), 117{189, NATO Sci. Ser. C Math. Phys. Sci.,
548, Kluwer Acad. Publ., Dordrecht, 2000.

[28] V. Voevodsky, Triangulated categories of motives over a �eld. Cycles,
transfers, and motivic homology theories, 188{238, Ann. of Math. Stud.,
143, Princeton Univ. Press, Princeton, NJ, 2000.

43



[29] V. Voevodsky, Cohomological theory of presheaves with transfers. Cy-
cles, transfers, and motivic homology theories, 87{137, Ann. of Math.
Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000.

[30] V. Voevodsky, Motivic cohomology groups are isomorphic to higher
Chow groups in any characteristic, IMRN 2002:7 (2002) 351-355.

[31] V. Voevodsky, Reduced power operations in motivic cohomology, Inst.
Hautes �Etudes Sci. Publ. Math. No. 98 (2003), 1{57.

[32] V. Voevodsky, Motivic cohomology with Z/2-coe�cients, Inst. Hautes�Etudes Sci. Publ. Math. No. 98 (2003), 59{104.
[33] V. Voevodsky, The Milnor conjecture, preprint, 1996, available at

http://www.math.uiuc.edu/K-theory/0170/
Fabien Morel, Institut de Math�ematiques de Jussieu, 2 place Jussieu,

75251 Paris. e-mail : morel@math.jussieu.fr

44


