
WORKING WITH T+ IN MINLOG

KENJI MIYAMOTO

This note describes how to do programming in the term calculus T+ of
Minlog.

1. Building terms and types via parser

In this note we input types and terms by means of the procedures py and
pt standing for Parse tYpes and for Parse Terms, respectively. These pro-
cedure take as an argument a string written in a special syntax representing
a type or a term. Here strings are double quoted expressions (e.g. "abcde")
as common in programming practices.

1.1. Types. Recall that types are defined by the following syntax in the
theory of Minlog.

τ, σ ::= α | ι~τ | τ → σ

where we assume α is a type variable, ι~α is an algebra with parameters ~α,
and→ is a constructor of the arrow type. When Minlog is loaded, some types
including a type variable α are already available. Feeding a string alpha to
the procedure py, we get a type variable α. Here lines staring with “>” are
supposed to be entered by a user, and other lines are responses of Minlog.

> (py "alpha")

(tvar -1 "alpha")

The returned value (tvar -1 "alpha") is an internal representation of the
type variable α which is not very helpful for us, although such a represen-
tation is useful for Minlog. We get a rather user friendly output by means
of the procedure pp standing for Pretty Printing in the following way.

> (pp (py "alpha"))

alpha

Type variables can be indexed by natural numbers.

> (pp (py "alpha3"))

alpha3

When the number is omitted, it is internally indexed by −1 but through pp

the index is not displayed. In order to declare a new type variable name, use
the procedure add-tvar-name.

> (add-tvar-name "sigma" "tau")

ok, type variable sigma added

ok, type variable tau added

Arrow types are formed by =>. For example to make an arrow type from α
to α you can apply py to a string "alpha=>alpha".

Date: 10. Juni 2016.

1

2 KENJI MIYAMOTO

> (pp (py "alpha=>alpha"))

alpha=>alpha

Algebras are usable as base types.

> (pp (py "unit=>boole"))

unit=>boole

If an algebra has parameters (for example the sum type α0 + α1), we need
to feed the type parameters. The sum type and the product type in Minlog
are defined as algebras ysum and yprod, respectively, and are available as
follows.

> (pp (py "alpha0 ysum alpha1"))

alpha0 ysum alpha1

> (pp (py "alpha0 yprod alpha1"))

alpha0 yprod alpha1

There is also a product type @@ which is distinct from yprod. It is not defined
as an algebra, but given as a primitive type in the same sense as the arrow
type.

> (pp (py "alpha0@@alpha1"))

alpha0@@alpha1

1.2. Terms. Recall that the syntax of terms is defined as follows in the
theory.

t, s ::= x | λxt | ts | C | D
where x is a variable, λxt is an abstraction, ts is an application, C is a
constructor and D is defined constant. By means of pt variable names are
parsed as terms of variables. Strings representing types to py work as variable
names to pt. Parentheses can be omitted when there is no confusion.

> (pt "alpha0 ysum alpha1")

(term-in-var-form

(alg "ysum" (tvar 0 "alpha") (tvar 1 "alpha"))

(var (alg "ysum" (tvar 0 "alpha") (tvar 1 "alpha"))

-1

1

""))

> (pp (pt "alpha0 ysum alpha1"))

(alpha0 ysum alpha1)

> (pp (pt "(alpha0 ysum alpha1)"))

(alpha0 ysum alpha1)

It is possible to add new variable names by the procedure add-var-name.
In the following lines we use x, b, and f as variable names of the types α,
boolean and α→ α, respectively.

> (add-var-name "x" (py "alpha"))

ok, variable x: alpha added

> (add-var-name "b" (py "boole"))

ok, variable b: boole added

> (add-var-name "f" (py "alpha=>alpha"))

ok, variable f: alpha=>alpha added

> (add-var-name "y" (py "alpha1"))

WORKING WITH T+ IN MINLOG 3

ok, variable y: alpha1 added

> (add-var-name "z" (py "alpha2"))

ok, variable z: alpha2 added

Indices are used in the following way. Note that the underscore is used to
avoid confusion when a type name is used as a variable name.

> (pp (pt "f0"))

f0

> (pp (pt "f_0"))

f0

> (pp (pt "alpha0 ysum alpha1_0"))

(alpha0 ysum alpha1)_0

> (pp (pt "alpha0 ysum alpha1_0"))

(alpha0 ysum alpha1)_0

> (pp (pt "alpha0 ysum alpha_0"))

(alpha0 ysum alpha)_0

For example, (pp (pt "(alpha0 ysum alpha1)0")) does not yield an ex-
pected result. In order to reset the declared variable name, the variable name
has to be once removed.

> (remove-variable-name "f")

ok, variable f is removed

Now it is possible to add a variable name f again.
There is a special syntax for abstractions. We use brackets instead of

lambda, where commas (“,”) can be used for listing variables. The following
is examples for λxx and λx0,x1x0.

> (pp (pt "[x]x"))

[x]x

> (pp (pt "[x0,x1]x0"))

[x0,x1]x0

Applications ts are written as t s. For example λgα→α1→α2 ,fα→α1 ,xα(gx(fx))
is dealt with as follows.

> (add-var-name "g" (py "alpha=>alpha1=>alpha2"))

ok, variable g: alpha=>alpha1=>alpha2 added

> (pp (pt "[g,f,x]g x(f x)"))

[g,f,x]g x(f x)

The type of term can be seen by using the procedure term-to-type.

> (pp (term-to-type (pt "[g,f,x]g x(f x)")))

(alpha=>alpha1=>alpha2)=>(alpha=>alpha1)=>alpha=>alpha2

The term is normalized by means of the procedure nt standing for Normalize
Term.

> (pp (nt (pt "([x]x)x1")))

x1

> (pp (nt (pt "([g,f,x]g x(f x))g1 f1 x1")))

g1 x1(f1 x1)

Constructors are used in a similar way. The constructors tt and ff of the
boolean algebra has in Minlog the names True and False. By means of the
procedure display-alg the list of constructors and their types are displayed.

4 KENJI MIYAMOTO

> (display-alg "boole")

boole

True: boole

False: boole

> (display-alg "ysum")

ysum

InL: alpha1=>alpha1 ysum alpha2

InR: alpha2=>alpha1 ysum alpha2

> (display-alg "yprod")

yprod

PairConstr: alpha1=>alpha2=>alpha1 yprod alpha2

If the algebra has type parameters, constructors require types to be fed.

> (pp (pt "(InL boole alpha)b"))

(InL boole alpha)b

> (pp (term-to-type (pt "(InL boole alpha)b")))

boole ysum alpha

> (pp (pt "(InR alpha boole)x"))

(InR alpha boole)x

> (pp (term-to-type (pt "(InR alpha boole)x")))

boole ysum alpha

> (pp (pt "(PairConstr alpha boole)x b"))

x pair b

> (pp (term-to-type (pt "(PairConstr alpha boole)x b")))

alpha yprod boole

Note that the type parameter looks opposite for the case of InR. In the
case of the product algebra, you can use pair instead of PairConstr with
parameters.

> (pp (pt "x pair b"))

x pair b

It does not require the type parameters because it can be inferred. The
type inference is not possible for InL and InR in the same way (Why?).
Corresponding to the primitive product type @@ there is the pairing x@y.

From now, we say B, N and Lα for the algebras boolean, naturals, and
lists of α. Naturals and lists are available by loading libraries as follows.

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(libload "list.scm")

(set! COMMENT-FLAG #t)

The result of display-alg is as follows.

> (display-alg "nat" "list")

nat

Zero: nat

Succ: nat=>nat

list

Nil: list alpha

Cons: alpha=>list alpha=>list alpha

WORKING WITH T+ IN MINLOG 5

Instead of writing "(Cons alpha)x xs" where x and xs are of type alpha

and list alpha, respectively, one can write "x::xs". Also instead of writing
(Cons alpha)x((Cons alpha)x1((Cons alpha)x2(Nil alpha))) one can
write "x::x1::x2:".

The first and the last lines are there just to suppress the messages from
Minlog during the loading. After loading the nat.scm library, n and m are
available as variable names of natural numbers. The case distinction Cτι is
in Minlog the if construct. Recall that the type of CαB is B → α→ α→ α.
The term CαBttx0x1 is given as follows.

> (pp (pt "[if True x0 x1]"))

[if True x0 x1]

As the type of CαN is N → α → (N → α) → α, CαNnx0λnx1 is given in
Minlog as follows.

> (pp (pt "[if n x_0 ([n]x_1)]"))

[if n x_0 ([n]x_1)]

Recursion and corecursion operators are defined for given algebra ι and ty-
pe parameter τ . Assuming iota is an algebra and tau is a type, the recursion
and corecursion operators are specified by the strings "(Rec iota=>tau)"

and "(CoRec tau=>iota)". Recall the following types of recursion and co-
recursion operators.

RτN : N → τ → (N → τ → τ)→ τ

RτLσ : Lσ → τ → (σ → Lσ → τ → τ)→ τ
coRτN : τ → (τ → U + (N + τ))→N
coRτLσ : τ → (τ → U + σ × (Lσ + τ))→ Lσ

The above operators are given in Minlog as follows.

> (pp (pt "(Rec nat=>tau)"))

(Rec nat=>tau)

> (pp (term-to-type (pt "(Rec nat=>tau)")))

nat=>tau=>(nat=>tau=>tau)=>tau

> (pp (pt "(Rec list sigma=>tau)"))

(Rec list sigma=>tau)

> (pp (term-to-type (pt "(Rec list sigma=>tau)")))

list sigma=>tau=>(sigma=>list sigma=>tau=>tau)=>tau

> (pp (pt "(CoRec tau=>nat)"))

(CoRec tau=>nat)

> (pp (term-to-type (pt "(CoRec tau=>nat)")))

tau=>(tau=>uysum(nat ysum tau))=>nat

> (pp (pt "(CoRec tau=>list sigma)"))

(CoRec tau=>list sigma)

> (pp (term-to-type (pt "(CoRec tau=>list sigma)")))

tau=>(tau=>uysum(sigma@@(list sigma ysum tau)))=>list sigma

Here we find further algebras and types in the case of corecursion. The
algebra uysum alpha is defined to be µξ(ξ, α→ ξ).

> (display-alg "uysum")

6 KENJI MIYAMOTO

uysum

DummyL: uysum alpha1

InrUysum: alpha1=>uysum alpha1

It is used to substitute ysum when the left parameter type is empty.
General recursion operator Fτσ : (σ →N)→ σ → (σ → (σ → τ)→ τ)→

τ is in Minlog given as follows.

> (pp (pt "(GRec tau sigma)"))

(GRec tau sigma)

> (pp (term-to-type (pt "(GRec tau sigma)")))

(tau=>nat)=>tau=>(tau=>(tau=>sigma)=>sigma)=>sigma

It is possible to introduce constants with computation rules. Constants
are defined by means of the procedure add-program-constant which takes
two arguments the name and the type.

> (add-program-constant "Y" (py "(tau=>tau)=>tau"))

ok, program constant Y: (tau=>tau)=>tau

of t-degree 0 and arity 1 added

To use such constants with type parameters in pt, the parameters should
be given in the same way as above.

> (pp (pt "(Y tau)"))

(Y tau)

By means of the procedure add-computation-rule computation rules are
given.

> (add-computation-rule "(Y tau)(tau=>tau)"

"(tau=>tau)((Y tau)(tau=>tau))")

ok, computation rule (Y tau)(tau=>tau) ->

(tau=>tau)((Y tau)(tau=>tau)) added

There is also the procedure add-computation-rules which takes more than
one pair of computation rules.

> (add-program-constant "Predecessor" (py "nat=>nat"))

ok, program constant Predecessor: nat=>nat

of t-degree 0 and arity 1 added

> (add-computation-rules "Predecessor Zero" "Zero"

"Predecessor(Succ n)" "n")

ok, computation rule Predecessor Zero -> Zero added

ok, computation rule Predecessor(Succ n) -> n added

2. Examples

We give examples.

2.1. Even or not. The function NEven is of type N → B, such that
NEven(2n) = tt and NEven(2n + 1) = ff. By using recursion operator and
case distinction, it is defined to be λn(RB

N n tt λn,b(CBB b ff tt)). In Minlog,

"[n](Rec nat=>boole)n True ([m,b][if b False True])"

WORKING WITH T+ IN MINLOG 7

2.2. Half of a natural number. The function NHalf of type N → N ,
such that NHalf(2n) = n and NHalf(2n+1) = n. By using general recursion
operator, λn(FN

N λnn n λn,fN→N (CNN n 0 λn(CNN n 0 λn(Succ(fn))))) defines
NHalf. In Minlog it is given as follows, assuming f is a variable name declared
to be of type nat=>nat.

"[n](GRec nat nat)([n]n)

n

([n,f][if n Zero

([n][if n Zero

([n]Succ(f n))])])"

2.3. Filtering a list. The function Filter is of type Lτ → (τ → B)→ Lτ
such that from the given list elements satisfying the given boolean valued
function are chosen to be output.

"[xs,h](Rec list tau=>list tau)xs

(Nil tau)

([x,xs,xs1][if (h x)

(x::xs1)

xs1])"

2.4. Cototal ideal of N . Cototal ideals can be defined by means of core-
cursion operator. An infinite number can be defined as an example of cototal
ideals. This is given by coRU

N Dummy λu(InRU ,N+U (InRU ,Nu)). In Minlog
the following string represents it.

"(CoRec unit=>nat)Dummy([u]((InrUysum nat ysum unit)

((InR unit nat)u)))"

Since corecursion operator is in general not terminating, normalization of
corecursion operator is delayed under the use of nt. In order to undelay it,
there is the procedure undelay-delayed-corec which takes a term and a
number (a positive integer in Scheme). As an example, we unfold the above
defined term for three times. For readability we abbreviate the definition of
the infinite natural number as Inf.

> (pp (nt (undelay-delayed-corec (pt "Inf") 3)))

Succ(Succ(Succ(Inf)))

3. Reference

Minlog Reference Manual and Minlog Tutorial, which are in the official
Minlog package.

