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Tutorial: The Lax-Milgram theorem

It is a fairly simple abstract principle from linear functional analysis which provides in certain
circumstances the existence and uniqueness of a weak solution to a boundary-value problem.

Let H be a complex Hilbert space and let B : H×H → C be a sesquilinear form (which means: B
is linear in both entries). Note first that:

B is continuous ⇔ ∃M > 0 such that |B(x, y)| 6 M‖x‖ ‖y‖ ∀x, y ∈ H . (1)

Indeed “⇐” follows from

|B(x, y)−B(x0, y0)| 6 |B(x− x0, y) +B(x0, y − y0)| 6 ‖x− x0‖ ‖y‖+ ‖x0‖ ‖y − y0‖ ,

while “⇒” is a consequence of the uniform boundedness principle (Banach-Steinhaus), because the
family F = {B(·, y) | y ∈ H, ‖y‖ = 1} consists by assumption of bounded linear operators H → C
(owing to the continuity of B(·, y)) and for each fixed x ∈ H has the property |B(x, y)| 6 Mx

∀B ∈ F (owing to the continuity of B(x, ·)), thus by uniform boundedness ‖B(·, y)‖H∗ is bounded
uniformly in y for all B ∈ F (i.e., for all y with ‖y‖ = 1), which reads precisely |B(x, y)| 6 M‖x‖ ‖y‖
∀x, y ∈ H.

In fact, the above arguments proves also that B is continuous ⇔ B is separately continuous in each
entry.

As a second preliminary remark, note that

B is continuous ⇔ ∃A ∈ B(H) such that B(x, y) = 〈x,Ay〉 ∀x, y ∈ H . (2)

Indeed “⇐” is obvious and “⇒” is a consequence of the Riesz representation theorem, as follows. By
assumption B(·, y) is a bounded linear functional H → C and therefore by Riesz ∃! ỹ ∈ H such that
B(x, y) = 〈x, ỹ〉 ∀x ∈ H. The map A : H → H defined by Ay := ỹ (such a definition is well-posed)
is linear because ∀λ1, λ2 ∈ C and ∀y1, y2 ∈ H one has

〈x,A(λ1y1 + λ2y2)〉 = B(x, λ1y1 + λ2y2) = λ1B(x, y1) + λ2B(x, y2)

= λ1〈x,Ay1〉+ λ2〈x,Ay2〉 = 〈x, λ1Ay1 + λ2Ay2〉 ,

and A is bounded because ‖Ax‖2 = 〈Ax,Ax〉 = B(x,Ax) 6 M‖x‖ ‖Ax‖, whence ‖Ax‖ 6 M‖x‖
∀x ∈ H.

The Lax-Milgram theorem is formulated for continuous sesquilinear forms that are also coercive,
that is, such that B(x, x) > c‖x‖2 for some c > 0. They exhibit the following remarkable property.

Theorem. If B is continuous and coercive on H then given w ∈ H there exists a unique element
x ∈ H such that B(u, x) = 〈u,w〉 for all u ∈ H. For such x one has ‖x‖ 6 1

c
‖w‖ where c > 0 is the

bound from below of the form (that is, B(u, u) > c‖u‖2 ∀u ∈ H).

Proof. Eventually x = A−1w where A is the bounded linear operator that represents B, see (2).
Thus, all what one needs to prove is that A is invertible with bound ‖A‖ 6 c−1, and that such
x is unique. The fact that A is injective and that RanA is closed in H follows immediately from
coercivity: c‖x‖2 6 B(x, x) = 〈x,Ax〉 6 ‖x‖ ‖Ax‖, whence c‖x‖ 6 ‖Ax‖ ∀x ∈ H. The fact that A
is surjective follows by contradiction, for otherwise ∃z ∈ H, z 6= 0, z ⊥ RanA (recall that RanA is
closed), whence 0 < c‖z‖2 = B(z, z) = 〈z, Az〉 = 0. The bound ‖A‖ 6 c−1 follows from c‖x‖ 6 ‖Ax‖
∀x ∈ H. Last, uniqueness holds because B(x, y) = 〈w, y〉 = B(x̃, y) ⇒ B(x − x̃, y) = 0 ∀y ∈ H
whence 0 6 c‖x− x̃‖2 6 B(x− x̃, x− x̃) = 0 and therefore necessarily x̃ = x. Note that in all four
steps above coercivity was used in a crucial way.
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Here is a sketch of the typical application of Lax-Milgram to (elliptic) PDEs (you don’t need to
know all notions in advance, just grab the main message).

The task is always to identify the “good” Hilbert space of functions among which we look for solutions
to a given PDE, and to check the validity of the assumptions on B. The sesquilinear form emerges
naturally when testing the PDE against some test functions (in fact, one looks for weak solutions).
Coercivity encodes some kind of Sobolev embedding.

Let Ω be a bounded region in Rd. Let f ∈ L2(Ω) be given. Let a > 0. Consider the boundary-value
problem {

−∆u+ au = f in Ω

u = 0 on ∂Ω .
(3)

The claim is: there exists a unique “weak” solutions u to (3) in the space H1
0 (Ω), the completion

of C∞
0 (Ω) with respect to the norm ‖v‖H1

0
:=

√
‖v‖22 + ‖∇v‖22 . Note that the condition u ∈ H1

0 (Ω)
encodes the vanishing of u at the boundary of Ω. By weak solution to (3) one means a function u
that satisfies

〈∇v,∇u〉+ a〈v, u〉 = 〈v, f〉 ∀v ∈ H1
0 (Ω) , (4)

where 〈·, ·〉 denotes the scalar product in L2 as usual. (∇u for u ∈ H1
0 (Ω) is a well defined function

in L2 via a limiting procedure – recall the definition of H1
0 (Ω)). In fact, if u and v were smooth and

vanished on ∂Ω then, owing to integration by parts, (4) would be equivalent to∫
Rd

(
−(∆u)(x) + au(x)

)
v(x) dx =

∫
Rd

f(x) v(x) dx ,

that is, the PDE −∆u + au = f “tested” against v. Thus, (4) would be certainly satisfied by a
“classical” solution u to (3) – which might not exist in this case, though, because f is a priori not
smooth enough. (4) suggests that the appropriate bilinear form in this case is

B(v, u) := 〈∇v,∇u〉+ a〈v, u〉 . (5)

Such a B is bounded on H1
0 (Ω) because ∀u, v ∈ H1

0 (Ω)

|B(v, u)| 6 ‖∇v‖2‖∇u‖2 + a‖v‖2‖u‖2 6 (1 + a)‖v‖H1
0
‖u‖H1

0
(6)

(Schwartz inequality) and is coercive on H1
0 (Ω) because ∀v ∈ H1

0 (Ω)

|B(v, v)| = ‖∇v‖22 + a‖v‖22
(a>0)

> ‖∇v‖22 > c ‖v‖22 , (7)

where the last step is the “deep” one and follows from the Poincaré’s inequality for functions g ∈
H1

0 (Ω)
‖g‖L2(Ω) 6 cΩ‖∇g‖L2(Ω) (when |Ω| < ∞)

and c := min{1
2
, 1
2c2Ω

} > 0. Therefore Lax-Milgram says that ∃! u ∈ H1
0 (Ω) such that B(v, u) = 〈v, f〉,

which means precisely that there is a unique weak solution u to (3).

The original reference for the Lax-Milgram is the work: P. D. Lax, A. N. Milgram, “Parabolic
equations” in Contributions to the theory of partial differential equations, Annals of Mathematics
Studies 33 (1964) 167-190, Princeton University Press.
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