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1. In his foregoing paper* Mr. M. Fréchet discussed the following question:
When is a linear, metric space L isometric with a generalized Hilbert space??
In other words: When can one define in it a bilinear symmetric inner product,
from which its given metric can be derived in the customary way? Mr. Fréchet
discovered a necessary and sufficient algebraic condition, from which he derived
this more abstract criterium: This is the case if and only if every < 3-dimensional
linear subspace L’ of L is isometric with a Euclidean space.

On the pages which follow we will derive another necessary and sufficient
algebraic condition, which implies that Mr. Fréchet’s abstract criterium can be
weakened as follows: The answer to the above question is affirmative if and
only if every < 2-dimensional linear subspace L’ of L is isometric with a Euclid-
ean space.

The criterium which we will derive has some further interest, because it shows
that the linear spaces with a bilinear symmetric inner product are in a certain
sense limiting cases of the general linear metric spaces.

We will only consider complex linear spaces. Real linear spaces could be
discussed along the same lines, even with some simplifications. Mr. Fréchet
showed, loc. cit., how the two types of linearity are connected.

2. We repeat the customary definitions of linearity, metricity, and of the
bilinear symmetric inner products. As we consider complex linearity, the
symmetry of inner products will be interpreted as Hermitian symmetry.

The definitions in question are:

DerINITION 1.3 A space L is (complex) linear and metric, if for all f, g ¢ L and

1 Sur la définition axiomatique d’une classe d’espaces vectoriels distanciés applicables
vectoriellement sur ’espace de Hilbert, Ann. of Math. (2) 36 (1935) pp. 705-718.

2 Hilbert space is uniquely characterized (up to an isomorphism) by five postulates
A-E, which have been formulated by one of us, Math. Ann. vol. 102 (1929), pp. 63-66. Of
these postulates 4, B are the really essential ones: The omission of C would only add the
(finite dimensional) Euclidean spaces; the omission of D could be compensated by the
standard manipulation of ‘‘completion;’’ in the absence of E essentially new hyper-Hilbert
spaces arise, but they are nevertheless similar to Hilbert space under most aspects.

The hyper-Hilbert spaces (without E) have been first discussed by H. Lowig, Acta
Szeged, vol. 7 (1934), pp. 1-33. The ‘“‘completion’’ of spaces without D plays a fundamental
role in the work of K. Friedrichs, Math. Ann., vol. 109 (1933), pp. 472-476. A connected
discussion of the respective roles of the conditions A-E is to be found in a series of mime-
ographed lectures on operator theory, given by one of us in Princeton in the year 1933-34.

3 Cf. S. Banach, Fund. Math., Vol. 3, pp. 134-136 (1922); and H. Hahn, Monatshefte
fiir Math. und Phys., Vol. 92, pp. 1-4 (1922).
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all complex numbers « the quantities a-f, f 4+ g ¢ L and the real number || f ||
are defined, with the following properties:
1. a-f, f + g obey the rules of the vector-calculus:

11. 1.f = f, 0-f = 0 (independent of f),

12. (@ +B)f=af+B-fa-(f+9) =af+ ay,
13. af-f = a-(B-f),
W.f+9=9+,0+9+h=F+(@+h.

(We use the customary notations (—=1)-f = —f, f+(—¢) =f—g¢.)
2. || f || obeys the rules for an absolute value:

21. ||f] > 0iff =0,
22. [f+gll=lfl+1gl,
23. la-fll=1lel-Ifl.

DEerFINITION 2. A space L is generalized (complex) linear and metric, if it ful-
fills all conditions of the preceding definition, except for 23, which is replaced
bv the weaker condition:

2. la-fl = 0ifa—Oand [|+f || = [ f].

DEerFINITION 3.4 A space L is linear with a (bilinear and symmetric) inner
product, if for all f, g € L and all complex numbers « the quantities a-f, f + ge L
and the complex number (f, g) are defined, with the following properties:

1. As in Definition 1.
2. (f, g) is linear in f, conjugate linear in g, Hermitian-symmetric, and definite:

21. (a-f, 9) = a-(f, 9),

2. +Mo=0 9+ 9,

23. (f,9) = (g, -

23 transforms 21, 22 into 21* (f, a-g) = &-(f, ¢) and
22 (f,9'+9")=U9)+ (f,9").

24. (f, /) (which is real by 23) > 0if f # 0.

Well known considerations show that || f || = \/(F, f) fulfills the conditions 2 of
Definition 1.5 In this sense every linear space L with an inner product is at the
same time a linear space with a metric. We call [| f | = \/(J, f) the metric de-
rived from the inner product (f, g).

4 Cf. footnote 2, we are using the conditions A, B.
5 Cf. pp. 6465 in the Math. Ann. paper quoted in footnote 2.
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3. We will now determine all generalized linear, metric spaces L, which can be
considered at the same time as linear spaces with an inner product. This is
our criterium:

THEOREM 1. Lel L be a generalized linear, metric space, with the operations
a-f, f+ g, | fll. Inorder thatitbe possible to define an operation (f, g) in L, so
that L with the original «-f, f + g and this (f, g) is a linear space with an inner
product, and that the original || f || is the metric derived from this (f, g), the following
condition ts necessary and sufficient:

*) Wf+agl2+Ilf—glP=20fI>P+1gl forallf, geL.S

If this is the case, then (f, g) ts uniquely determined by the above requirements.
Proor: Assume first that an (f, ¢g) of the desired sort exists. Relations 21, 21*
(for « = —1) and 22, 22* from Definition 3 give immediately:

F+eof+9-UG—-9f-—9 =29 + @@ ).

The first equation coincides with (*), thus (*) is necessary. The second equa-
tion gives, considering 23, R(f,g9) = 3(|f+gl* = || f =g |?. 21 (fora = 1)
gives (i-f,9) =1-(f,9),RE-f,9) = — S (f,9). Thus|| f|| (forall f ¢ L) determines

R(f, 9) and I (f, g) uniquely, so that (f, g) itself is unique. So we need only to
prove the sufficiency of (*).

Assume therefore that (*) is fulfilled. We must define (f, g), but we know that
the only possibility is

[m(f, g) = %(“f+ g Hz - “f - 9“2))
i (f,9) = R, 9) — ¢-R(C-1, 9).

So our task is to verify 21-23 (Definition 3) and || f || = /{7, /).
Replace f, g in (*) by f’ & ¢, f'/, and subtract. Then

W+ gl =0+ =P+ N =g =1 =gl
=201/ +gl2-1f —9®

(%)

obtains, that is (considering (¥ )):

() RS+ 9+ RG" =" 9) =2R(, 9).

(*) with f = O proves || —g |2 = | g I|?, and so (%) withf = 0 gives & (0, g) = 0.
Therefore (§) with ' = f""is R (2f’, 9) = 2R (f/, g). Thus (§) itself becomes

R +19 + RS =7, 9 = RES, 9),

8 This equation occurred in a paper of E. Wigner and the authors, Annals of Math., vol.
35 (1934), p. 32. Its importance in generalized Hilbert space has been pointed out by F.
Riess, Acta Szeged, vol. 7 (1934), p. 36, cf. equation (6), loc. cit.



722 P. JORDAN AND J. V. NEUMANN

or if we replace f', f"' by 3(f' + /'), 3(/' — f'"):
RS, 9 +RU",9) =RGE + 17, 9.
Now (%) gives immediately
o+ "9 =00+719
proving 22 (Definition 3).

22 (Definition 1) with f = ", g = f" — f"gives [ f' [ = [[f" | = | f" = 1 II.
Interchanging f', f"" now shows | /"' [ — [| /' [ = [[ /" = f" I =11 — f" |
(remember || — g [ = || g ), thus[[[f"|| — /" [[[ = lf'— " |l. Therefore
[lafxgll—=lBSfxgll=(a—B)-f]. Soa— g implies by 23" (Defini-

tion2) |a-f g || — || B-f g | thatis, || «-f & ¢ || is continuous in a. Now
by (%) R (a-f, g) and (a-f, g) are also continuous in a.

Consider now the set S of all «'s for which 21 (Definition 3) holds. 1 €S is
obvious; by 22 (Definition 3) o, B e Simplya = 8¢S. Soalla = 0,+ 1, & 2,
...arein §. Clearly o, 8¢8S,8 = 0,imply a/B ¢ S, so all rational a’s arein S.
The above proved continuity of (a-f, g) in « implies that S is closed, so all real
a’sarein 8. Finally (%) givesieS (use (—f,9) = — (f,9),as —1¢€8!), there-

. . (83 .
fore if ay, ap are real a; — iz = a1 + = ¢ S. Thus all complex a's are in S,
)

that is 21 holds always.
As [l if || = || f |, the first equation in (%) gives R (if, 29) = R (f,9). It gives
immediately R (f, g) = R (g, f) too, and these combined give

RG99 =REA, 19 =R(=F, 1) = -N{,49) = — R (g, ).

So (f, 9) = (g,7), proving 23 (Definition 3). 21 and 23 (all in Definition 3)
imply 21*, and thus (of, af) = | « |2 (f, f).

Now (#) gives R (f,f) = t (|2 (B = [0-F[[®) = [[fIERGSS) =1
(LA +0)fl2= | (1= S5 =0s0(f, /) = || /. This proves 24 (Defini-
tion 3)7 and Hf” = \/(f7f)

Thus the proof is completed.

4. The condition that every < 2-dimensional subspace L’ of L be isometric
to a Euclidean space, is obviously necessary for the existence of an inner product
in the generalized linear, metric space L. It is sufficient, too, because if it is
fulfilled, we can argue as follows: If fo, go € L the space L’ of all a-fo +8-go (e, B
arbitrary complex numbers) is < 2 dimensional, thus (*) holds in L’ (as in every
Euclidean space). Therefore it holds in particular for f = fo, g = go, and as
fo, go are arbitrary, Theorem I proves the existence of an inner product.

5. The following theorem holds for linear, metric spaces:
TuEOREM II. Let L be a linear, metric space. Define

¢, L IitglE+lf—glP

= f y GIJ, = =0
3 T orfgelymotf =g
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and denote the l.u.b. of the Cy, , by b, and their g.l.b. by a. Then we have

The linear spaces with a (bilinear and symmetric) inner product represent the
extreme case

a=b=1.
Proor: Clearly 0 = a = b. 22 (Definition 1) gives:
o <l 20 ll+1glD* o1 2207k +]glP _

< _. <_. =2,
he=72 712+ 1lgle 2 71+ gli2

sob = 2. 23 (Definition 1) for « = 2 gives:

P S 1 2 NP .4t 2

T2 I f4glE S —gll 1 f+gllP+Nf—gl2 Cro’

soa = 5. Thus b < 2 implies a = %, and a < bimpliesa = 1 = b, together:
l1<as1sb=2

That linear spaces with an inner product are characterized by a = b = 1

is the statement of Theorem I.

RoHsTOCK, GERMANY AND PRINCETON, N. J.



