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1 Introduction

There are many introductory texts about random Schrödinger operators. In the upcom-
ing we will follow the review by Werner Kirsch [Kir08] which is an especially nice survey.

In quantum mechanics a particle moving through d-dimensional space is described by a
vector ψ in the Hilbert space L2(Rd). The time evolution of such a state ψ is described
by a self-adjoint operator of the form

H = H0 + V (1.1)

acting on L2(Rd), a so called Schrödinger operator. The operator H0 represents the
kinetic energy of the particle and is, in the absence of a magnetic field, given by the
Laplacian

H0 = − ~2

2m
∆ (1.2)

where we shall choose the physical units such that ~2(2m)−1 = 1. The operator V is the
multiplication operator with the function V (x)

(V ψ)(x) = V (x)ψ(x) (1.3)

and it represents the potential and thus the physics behind the model.

However, this approach relies on the assumption that we know exactly how this po-
tential looks, i.e. we know the exact placement and type of the atoms involved, which
may not always be the case.
For example, this is the case for solids with an almost crystalline structure, that is a
structure where each atom of the solid may deviate a little bit from a point in a periodic
lattice. Another such example would be an unordered alloy, being a solid that consists
out of several materials with the respective atoms located at lattice points.
Thus, to model such disordered solids, it is a reasonable approach to consider the poten-
tial to be a random variable. The resulting operators of the form

Hω = H0 + Vω (1.4)

are then called random Schrödinger operators.
As a simplification we will only consider random Schrödinger operators on the lattice Zd

and thus on the Hilbert space l2(Zd) instead of L2(Rd). A consequence of the proba-
bilistic approach is that we are now no longer interested in the spectral properties of an
operator Hω for one possible ω of the result space but we must ask ourselves what are the
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1 Introduction

“typical” properties of Hω or in other words which properties hold true with probability
one.
For example, we have the existence of an almost surely non-random spectrum, the exis-
tence of the integrated density of states which will give a notion of how many eigenvalues
we can expect to find per unit volume and the exhibition of a localized regime in the
spectrum near the band edges, i.e. there exists, with probability one, a regime near the
edges of the spectrum of Hω where we will only find dense pure point spectrum and
the corresponding eigenfunctions decay exponentially fast (these standard results can be
found for example in [Kir08, PF92, CL90]).
However, we shall mostly be interest in the correlation of the eigenvalues in the localized
regime. Since we have in this part of the spectrum exponential decay of the corresponding
eigenfunctions, it is natural to assume that there is no or only little correlation between
the eigenvalues. This result, indeed that there is no correlation between the eigenvalues
in the localized regime has first been proven in 1981 by Molchanov (see [Mol81]) in the
case of one-dimensional random Schrödinger operators of the form

− d2

dt2
+ F (xt(ω)), for t ∈ R, (1.5)

where {xt(ω)} is a Brownian motion on a compact Riemannian manifoldK and F denotes
a smooth Morse function with minK F = 0. Molchanov showed in [Mol81] that if we
consider the operator (1.5) restricted to a large interval there is no correlation between
the eigenvalues as the interval gets larger. More precisely, he showed that the eigenvalues
are locally distributed according to Poisson distribution law as the interval gets larger.
However, as commented by Minami in [Min96] Molchanov’s method is strongly dependent
on the considered dimension. Minami extended the result in 1996 to random Schrödinger
operators, in particular to the discrete Anderson model Hω, in arbitrary dimension (see
[Min96]) by proving that the properly rescaled eigenvalues in the localized regime obey
the Poisson distribution law.
A key idea of Minami’s proof of the result was an estimate on the probability that we
find at least two eigenvalues in an interval I in the localized regime, more precisely he
proved that

P(tr χI(HΛ
ω ) ≥ 2) ≤ E

[
tr χI(HΛ

ω )
{
tr χI(HΛ

ω )− 1
}]
≤ const.

(
|I| |Λ|

)2 (1.6)

by estimating the average of a determinant of a 2 × 2 matrix whose entries are the
imaginary parts of the resolvent of the considered random operator (cf. equation (2.52)
and Lemma 2 in [Min96]). This kind of estimate, often referred to as Minami estimate,
can also be used to gain other results such as the simplicity of the eigenvalues of the
Anderson model in the localized region which was proven by Klein and Molchanov in
2006 (cf. [KM06]). However, it was unknown how to extend the methods used by Minami
to prove a Minami estimate to the case of the continuum Anderson model until Combes,
Germinet and Klein provided in [CGK09a] in 2009 a new approach to prove a Minami
estimate for which it was clear how to extend it to the continuum case. In 2010 Klopp
provided in [Klo] a structural statement for random Schrödinger operators Hω saying
that once we have
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(A) spectral localization in an interval I ⊂ σ(Hω),

(B) the independence of local Hamiltonians sufficiently far away from each other, i.e.
there exists anR0 > 0 such that for any two hypercubes Λ1 and Λ2 with dist(Λ1,Λ2) >
R0 the random Hamiltonians HΛ1

ω and HΛ2
ω are stochastically independent,

(C) a Wegner estimate in I, i.e. there exists a constant C > 0 such that for all J ⊂ I
and all hypercubes Λ we have

E
[
tr χJ(HΛ

ω )
]
≤ C|J | |Λ|,

(D) and a Minami estimate in I, i.e. there exist constants C > 0 and ρ > 0 such that
for all J ⊂ I and all hypercubes Λ we have

E
[
tr χJ(HΛ

ω )
{
tr χJ(HΛ

ω )− 1
}]
≤ C

(
|J | |Λ|

)1+ρ
,

then we can conclude Poisson statistics of the eigenvalues in the sense of Minami.

However, random Schrödinger operators are not the only type of random operator of
interest for mathematical modelling of disordered system. In the mathematical mod-
elling of mesoscopic disordered systems, such as dirty superconductors, random block
operators of the form (

Hω Bω
Bω −Hω

)
, (1.7)

with both Hω and Bω self-adjoint, arise in the eigenvalue problem describing quasi-
particle states in a mean-field approximation of BCS theory (cf. [KMM11, de 89]),
also know as the Bogoliubov–de Gennes equations (for more details see for example
[KMM11, AZ97, VSF00, de 89]). In the case of random block operators we can also
retrieve many properties which are already known in case of the Anderson model such
as the existence of an almost surely non-random closed spectrum, the existence of the
integrated density of states (which were proven in [KMM11]) and the exhibition of a
localized regime near the spectral gap (which was proven in [Geb11]).
However, since we have spectral localization near the spectral gap for random block
operators, it is only natural to ask whether the eigenvalues in the localized regime are
stochastically independent. Therefore, it is the main goal of this thesis to provide a struc-
tural statement for random block operators, similar to one Klopp provided for random
Schrödinger operators in [Klo], presenting conditions which are sufficient to prove local
Poisson statistics of the eigenvalues of random block operators and hence the stochastical
independence of the eigenvalues in the localized regime of the spectrum. To this end,
this thesis is organized as follows:
First we will to study the methods which where used by Minami to prove the afore
mentioned result and in particular, we will study the method of Combes, Germinet and
Klein (cf. [CGK09a]) for proving a Minami estimate. Therefore, in Chapter 2, we will
introduce the Anderson model on the lattice Zd, give a Wegner estimate and review a
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1 Introduction

few prominent spectral properties such as the existence of an almost surely non-random
spectrum, the existence of the integrated density of states and the exhibition of a local-
ized regime in the spectrum near the band edges.
In Chapter 3 we shall analyze Minami’s result for the energy level statistics and review
the method of Combes, Germinet and Klein for proving a Minami estimate.
Since, we want to extend Minami’s result to a certain kind of discrete random block
operator, we will, in Chapter 4, introduce the mathematical concept of random block
operators of the form (1.7) based on the analysis obtain in [KMM11, Tre08]. Further-
more, we will give a Wegner estimate and discuss some important properties such as the
exhibition of a localized regime in the spectrum.
In Chapter 5 we will turn to the main goal of this thesis and provide a structural theorem
saying that we can conclude the independence of the eigenvalues in the localized regime
for random block operators given that we have a Wegner and a Minami estimate and
that we have exponentially decaying fractional moments of the Green’s function (similar
to the work of Klopp in [Klo] for the random Schrödinger case). We will also analyze
the assumptions demanded in our structural theorem and give results that might lead
to proving them for random block operators. In particular, we will work on adapting
the method of [CGK09a], for proving a Minami estimate, to the case of random block
operators.
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2 The Anderson model

The goal of this chapter is to introduce the Anderson model on the lattice Zd, i.e.
the Hilbert space L2(Rd) is replaced by the space of sequences l2(Zd). Furthermore,
we will review some of its properties. Most definitions and notations were taken from
[Kir08, KMM11, Klo].

Definition 2.1. For d ∈ N define

H := l2(Zd) :=

ψ : Zd −→ C

∣∣∣∣ ∑
n∈Zd

|ψ(n)|2 <∞


=

(ψ(n))n∈Zd
∣∣∣∣ ∑
n∈Zd

|ψ(n)|2 <∞

 .

We define on H the scalar product

〈ψ, φ〉 :=
∑
n∈Zd

ψ(n)φ(n) for all ψ, φ ∈ H

and the induced norm

‖ψ‖ :=
∑
n∈Zd

|ψ(n)|2 for all ψ ∈ H,

whereas the norm we use on Zd shall be defined by

|n|1 :=
d∑

ν=1

|nν |

for all n ∈ Zd. Furthemore, we will define for n ∈ Zd

δn : Zd −→ C : i 7−→ δn(i) =

{
0, for i 6= n

1, for i = n.

Remark 2.2. Equipped with this scalar product H is a Hilbert space and the set {δn}n∈Zd
forms an orthonormal basis of H.

Definition 2.3. The operator ∆ : H → H : ψ 7→ ∆ψ with

(∆ψ)(n) :=
∑

|n−m|1=1

ψ(m) for ψ ∈ H

is called the centered discrete Laplace operator.
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2 The Anderson model

Remark 2.4. Via direct calculation it is easy to see that ∆ is a bounded and symmetric
operator and thus self-adjoint.
Now we will turn to the definition of a random potential. For this purpose, we will
construct the so-called canonical probability space (Ω,F ,P) as following:

Let (R,B(R), µ) be a probability space where B(R) denotes the Borel σ-algebra on
R and µ a probability measure on R with no atoms. Let Ω := RZ

d be the sample space
and the corresponding σ-algebra F is generated via cylinder sets of the form

{ω | ωi1 ∈ B1, . . . , ωin ∈ Bn, B1, . . . , Bn ∈ B(R), n ∈ N} . (2.1)

Furthermore, let P := µ⊗Z
d be the infinite product measure on (Ω,F) that is induced

by the probability measure µ on (R,B(R)). More details regarding this strategy for
constructing a probability space by cylinder sets can be found in [Kir08] and in general
from a probabilistic point of view in, for example, [Kle08].

Definition 2.5. Let (Ω,F ,P) be the canonical probability space defined above. Let
{Tj}j∈Zd be an ergodic group of measure-preserving transformations on Ω such that we
have for all ω ∈ Ω, all j ∈ Zd and all n ∈ Zd

(Tjω)(n) = ω(n− j).

For n ∈ Zd let ωn : Ω → R : ω 7→ ω(n) be the projection on the n-the component
of ω and let the family (ωn)n∈Zd be an ergodic (w.r. to {Tj}j∈Zd) stochastic process
which is independent and identically distributed with law µ. Then we call the induced
multiplication operator Vω with the function ωn, i.e.

(Vωψ)n = (Vωψ)(n) = ω(n)ψ(n),

a random potential.

Definition 2.6. (Anderson model) Let L(H) denote the space of linear operators on H.
The random operator H : Ω→ L(H)

H : Ω −→ L(H)
ω 7−→ Hω = H0 + Vω

is, for H0 = ∆, called the Anderson model. In the slightly more general case where H0

is a self-adjoint operator on H, we call Hω, as in [CGK09a], the generalized Anderson
model.

Definition 2.7. We define the kernel for a bounded self-adjoint operator A on H by

A(n,m) := 〈δn, Aδm〉,

for all n,m ∈ Zd and thus we have for all ψ ∈ H and all n ∈ Zd

A(ψ)(n) =
∑
m∈Zd

A(n,m)ψ(m).
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2.1 Boundary Conditions

2.1 Boundary Conditions

We will often want to consider an operator restricted to some subset of its domain which
leaves various choices for the behavior of the operator on the boundary of this subset.
The aim of the following is to equip us with a precise notion of Dirichlet, Neumann and
simple boundary conditions.

Definition 2.8. Let Λ ⊂ Zd, then we define the boundary ∂Λ of Λ by

∂Λ :=
{

(n,m) ∈ Zd ×Zd : |n−m|1 = 1 and {n ∈ Λ,m /∈ Λ} or {n /∈ Λ,m ∈ Λ}
}
.

Furthermore, we define the inner boundary of D by

∂−Λ :=
{
n ∈ Zd : n ∈ Λ, ∃m /∈ Λ such that (n,m) ∈ ∂Λ

}
and the outer boundary of D by

∂+Λ :=
{
m ∈ Zd : m /∈ Λ, ∃n ∈ Λ such that (n,m) ∈ ∂Λ

}
.

For Λ1 ⊂ Λ2 ⊂ Zd we define the relative boundary by

∂Λ2Λ1 =
{

(n,m) ∈ Zd ×Zd :
|n−m|1 = 1 and {n ∈ Λ1,m ∈ Λ2\Λ1} or {n ∈ Λ2\Λ1,m ∈ Λ1}

}
.

Definition 2.9. Let H0 be a self-adjoint operator on H = l2(Zd) and Λ ⊂ Zd. Then we
define:

(i) H0,Λ with simple boundary conditions on Λ as an operator on l2(Λ) such that

H0,Λ = χΛH0χΛ

holds, where χΛ denotes the characteristic function of the set Λ.

(ii) HN
0,Λ with Neumann boundary conditions on Λ as an operator on l2(Λ) such that

HN
0,Λ = χΛH0χΛ − (2d− nΛ)

holds, where 2d denotes a multiple of the identity and nΛ denotes the multiplication
operators with the function nΛ(i) := |{j ∈ D : |i− j|1 = 1}| for all i ∈ Λ.

(iii) HD
0,Λ with Dirichlet boundary conditions on Λ as an operator on l2(Λ) such that

HD
0,Λ = χΛH0χΛ + (2d− nΛ)

holds, where 2d and nD are as above.
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2 The Anderson model

Remark 2.10. As mentioned in [Kir08, Sec. 5.2] we would apriori think that the boundary
conditions defined as simple were a good candidate for Dirichlet boundary conditions
since all we do is just cut away everything not belonging to Λ. However, we want
our boundary conditions, in analogy to the continuum, to obey the Dirichlet-Neumann
bracketing, i.e. for two disjoint open sets M1,M2 and M =

(
M1 ∪M2

)◦ we demand

HN
0,M1
⊕HN

0,M2
≤ HN

0,M ≤ HD
0,M ≤ HD

0,M1
⊕HD

0,M2
. (2.2)

The simple boundary conditions as a candidate for Dirichlet boundary conditions do,
however, not satisfy (2.2). Hence the above definition for Dirichlet boundary conditions.

Definition 2.11. Let H0 be a self-adjoint operator and V a multiplication operator
(with the function V ) on H and let H := H0 + V , then we define for Λ ⊂ Zd

HX
Λ := HX

0,Λ + V,

where V stands for the canonical restriction of the multiplication operator V to Λ and
X represents either Dirichlet, Neumann or simple boundary conditions.

Proposition 2.12. Let H = H0 + V be the Anderson model. Then we have for Λ ⊂ Zd

HN
Λ ⊕HN

Zd\Λ ≤ H ≤ H
D
Λ ⊕HD

Zd\Λ

and in case of simple boundary conditions the following splitting formula for Λ1 ⊂ Λ2 ⊂
Zd

HΛ2 = HΛ1 ⊕HΛ2\Λ1
+ ΓΛ2

Λ1

with

ΓΛ2
Λ1

(n,m) :=

{
−1 if (n,m) ∈ ∂Λ2Λ1

0 else.

Proof. The statements follow by direct calculation, see [Kir08, Sec. 5.2] for more details.

Remark 2.13. Whenever practical, we are going to use the following notation for the
resolvent of an operator H on H

(H − z)−1(n,m) = G(z;n,m) (2.3)

for all z /∈ σ(H) and all n,m ∈ Zd. If we restrict the operator H to a subset Λ ⊂ Zd
then we will write

(HΛ − z)−1(n,m) = GΛ(z;n,m) (2.4)

where z /∈ σ(HΛ) and n,m ∈ Zd.

Proposition 2.14 (Geometric resolvent equation). Let Λ1 ⊂ Λ2 ⊂ Zd, x ∈ Λ1, H be
the Anderson Model and let HΛi for i = 1, 2 be its restriction under simple boundary
conditions to Λi. Let z /∈

(
σ(HΛ1) ∪ σ(HΛ2) ∪ σ(HΛ2\Λ1)

)
, then we have

GΛ2(z;x, x) = GΛ1(z;x, x) +
∑

(y,y′)∈∂Λ1

y∈Λ1,y′∈Λ2

GΛ1(z;x, y)GΛ2(z; y′, x).
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2.2 Ergodic properties of the Anderson Model

Remark 2.15. The geometric resolvent equation can occur in different forms, we present
the version in Proposition 2.14 since we will need it later on. Further details can be
found in [Kir08, Sec. 5.3].

Proof of Proposition 2.14. The proof of this statement can be found in [Kir08, Sec. 5.3].

2.2 Ergodic properties of the Anderson Model

In the following we will have a short review of some important properties of the Anderson
model. For this purpose, I will follow [Kir08].

Definition 2.16. Let {Tj}j∈Zd be an ergodic group of measure-preserving transforma-
tions on Ω such that we have for all ω ∈ Ω, all j ∈ Zd and all n ∈ Zd

(Tjω)n = ωn−j .

Furthermore, let for all j ∈ Zd Uj be the unitary translation operator induced by the
ergodic group {Tj}j∈Zd , i.e. for ψ ∈ H we have for all n ∈ Zd

(Ujψ)(n) := ψ(n− j).

Then we call H ergodic w.r.t. Zd-translations if there exists a {Tj}j∈Zd as above such
that

UjHωU
∗
j = HTjω

holds for every ω ∈ Ω and every j ∈ Zd.

The next result guarantees us that the spectrum of Hω is, almost surely, a closed set and
in particular a non-random quantity.

Theorem 2.17. For P-almost all ω we have σ(Hω) = σ(H0) + suppµ.

Proof. The proof uses a standard argument via the Weyl criterion and is analogous to
the proof given in [Kir08, Sec. 3].

Remark 2.18. Another important result is the existence of a quantity that measures the
density of spectral values of an ergodic random operator. It thus provides us with a
notion of how many states there are per unit volume in a certain energy regime. This
quantity is generally called density of states which we shall make more precise in the
following.

Definition 2.19. For L ∈ N we define the finite-volume hypercube

ΛL := Λ := [−L,L]d ⊂ Zd

and its cardinality by |Λ| := (2L+ 1)d.

11



2 The Anderson model

Proposition 2.20. For every A ∈ B(R) and P-almost surely we have

lim
L→∞

1
|ΛL|

E
[
tr
{
χΛLχA(Hω)

}]
= E[< δ0, χA(Hw)δ0 >].

Proof. The proof applies Birkhoff’s ergodic theorem and can be found in [Kir08, Sec.
5.1].

With the Proposition 2.20 the following definition is justified.

Definition 2.21. Let Hω be the Anderson model and χΛL denotes the multiplication
operator with the indicator function of ΛL on H. The measure ν, defined by

ν(A) := lim
L→∞

1
|ΛL|

E
[
tr
{
χΛLχA(Hω)

}]
for all A ∈ B(R),

is called the density of states of Hω. The non-decreasing function N : R→ [0, 1], defined
via

N(E) := ν(]−∞, E]) for all E ∈ R,

is called integrated density of states of Hω.

Definition 2.22. Let Hω be the Anderson model and let X represent either D for the
Dirichlet, N for the Neumann or S for simple boundary conditions, then we define the
finite-volume eigenvalue counting function

NΛ
ω,X(E) :=

1
|Λ|

tr
[
χ]−∞,E](H

X
ω,Λ)

]
,

for all E ∈ R.

Proposition 2.23. Let E ∈ R such that N exists at E. Then there exists a set Ω0 ⊂ Ω
of full probability, i.e. P(Ω0) = 1, such that

N(E) = lim
L→∞

NΛ
ω,X(E)

for all ω ∈ Ω0 and every boundary condition X.

Proof. The proof can be found in [Kir08].

Remark 2.24. 1. Proposition 2.23 tells us that we can, indeed, interpret the integrated
density of state N as an eigenvalue counting function.

2. In the following we will often consider an operator Hω restricted to the finite volume
box Λ with some kind of boundary conditions and then we will let Λ become very
large. Therefore, the notion |Λ| → ∞ is a short for considering the hypercube Λ = ΛL
in the limit L→∞.
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2.3 Wegner estimate

2.3 Wegner estimate

In this section we want to establish a Wegner estimate. It can be used to prove that
the integrated density of states N is absolutely continuous with respect to the Lebesgue
measure and that it has a bounded density.

Theorem 2.25 (Wegner estimate). Let Hω be the generalized Anderson model. Consider
a probability measure µ with no atoms, let Sµ(s) := sup

a∈R
µ([a, a+ s]) be the concentration

function of µ, and let

Qµ(s) :=

{
‖g‖∞s if µ has a bounded Lebesgue density g
8Sµ(s) otherwise.

Let I ⊂ R be a bounded interval, then

E
[
tr χI(HΛ

ω )
]
≤ Qµ(|I|)|Λ|.

Remark 2.26. We can find many kinds of Wegner-type estimates (see e.g.[Kir08, CGK09a,
AM93]). The version above is from [CGK09a]. The proof can be found in [CGK09a] and
is stated, for the readers’ convenience, in Appendix A.1.

Corollary 2.27. Suppose the probability measure µ has a bounded density g, then the
integrated density of states is absolutely continuous with a bounded density n(E) which
shall be called density of states, in particular we have for Lebesgue-almost all E ∈ R

n(E) ≤ ‖g‖∞.

Proof. The statement follows immediately from theorem (2.25).

2.4 Anderson localization

A very important result about disordered systems is the fact that there exists a regime in
the spectrum near the band edges where the spectrum is almost surely pure point and the
corresponding eigenfunctions decay exponentially. This phenomenon is called Anderson
Localization. It has first been proven in 1977 by Gol’dshtein, Molchanov and Pastur
in [GMP77] for the discrete one-dimensional random Schrödinger operator. This result
was then extended to the case of discrete random Schrödinger operators in arbitrary
dimensions (cf. [FS83, FMSS85, vK89]). It was then proven in 1994 by Combes and
Hislop in [CH94] that we have Anderson localization even in the case of continuum
random Schrödinger operators. In the following we will state a result about the spectral
localization which can be found in [Kir08].

Definition 2.28. The random operator Hω exhibits spectral localization in an interval
I with I ∩ σ(Hω) 6= ∅ if for P-almost all ω

I ∩ σ(Hω) = I ∩ σpp(Hω),

where σpp(Hω) denotes the pure point spectrum of Hω. In particular, the spectrum inside
I is pure point almost surely.

13



2 The Anderson model

Theorem 2.29. There exists E1 > E0 := inf(σ(Hω)) such that the spectrum of Hω

exhibits spectral localization in the interval I = [E0, E1]. More strongly, the corresponding
eigenfunctions decay exponentially.

Proof. There are two major ways to prove this result. One of them, using multiscale
analysis, can be found in [Kir08, Sec. 9-11]. The other, using the decay of the fractional
moments, goes back to Aizenman and Molchanov and relies on [AM93].

Let us have a quick look at the results of multiscale analysis which can be found in [Kir08,
Sec. 9]. We consider an interval I = [E1, E2] close to the bottom of the spectrum.

Proposition 2.30. 1. Multiscale analysis - weak form: There exists an α > 1, p > 2d
and a γ > 0 such that for all E ∈ I

P
[
∀n ∈ ΛL1/2 , m ∈ ∂−ΛL : |GΛL(E;n,m)| > e−γL

]
≤ 1
Lp

(2.5)

holds.

2. Multiscale analysis - strong form: There exists a p > 2d, an α with 1 < α < 2p
p+2d and

a γ > 0 such that for any two disjoint cubes Λ1 := ΛL(n) and Λ2 := ΛL(m)

P
[
∃E ∈ I : ∀n ∈ ΛL1/2 , m ∈ ∂−ΛL :

|GΛ1(E;n,m)| > e−γL and |GΛ2(E;n,m)| > e−γL
]
≤ 1
L2p

(2.6)

holds.

Proof of Proposition 2.30. One way of proving these results is to use induction over the
cube side length L and can be found in [Kir08, Sec. 10 - 11].

As stated above a different approach to proving spectral localization relies on proving
exponential decay of the so-called fractional moments (cf. Definition 2.31) of the Green’s
function and goes back to Aizenman and Molchanov [AM93].

Definition 2.31. Let Hω be as above, 0 < s < 1, z ∈ C\R and x, y ∈ Zd then we call

|〈x, (HΛ
ω − z)−1y〉|s = |GΛ(z;x, y)|s

the fractional moment of the Green’s function. Furthermore, let E ∈ R, we then say that
the fractional moment decays exponentially fast if there exists an s ∈]0, 1[, a C(s) > 0,
an m(s) > 0 and a r(s) > 0 such that for all Λ ⊂ Zd

E
[
|GΛ(z;x, y)|s

]
≤ C(s)e−m(s)|x−y|1

with x ∈ Λ and y ∈ ∂Λ and z ∈ {z ∈ C : =z > 0, |z − E| < r(s)}.
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2.4 Anderson localization

Remark 2.32. The Conditions under which exponential decay of the fractional moments
holds can be found for example in [AM93, ASFH01, Gra94]. As shown in [ASFH01], it
is possible to conclude the exponential decay of the fractional moments from the results
of multiscale analysis. However, the proof for this fact given in [ASFH01] requires the
boundedness of the fractional moments. More precisely:

Proposition 2.33. Let Vω be a random potential of a random self-adjoint operator Hω,
as in Definition (2.6), satisfying the following regularity condition:
For n ∈ Zd let µ(dx) be the probability distribution of Vω(n). There exist a τ ∈]0, 1] and
a C <∞ such that for all ε > 0

µ(a− ε, a+ ε) ≤ Cεs

with a ∈ R.
Then for all Λ ∈ Zd and all s < τ

E
[
|GΛ(z;x, y)|s

]
≤ C(s)

holds for all z ∈ C\R and all x, y ∈ Zd.

Proof. The statement of the Proposition and its proof can be found in [ASFH01]; a key
method used in the proof is a rank-2-perturbation of the Green’s function.

Remark 2.34. Similar statements upon the decay and boundedness of the fractional
moments can be found in [AM93, Gra94] but with somewhat less general demands on
the potential than given in Proposition 2.33.
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3 Eigenvalue statistics for the Anderson
model

In this chapter we will focus on understanding an important result about the statisti-
cal distribution of the eigenvalues in the localized regime of the spectrum. Our aim is
to show that the eigenvalues in the the localized regime are stochastically independent.
As mentioned in the introduction this has first been proven by Molchanov for the one-
dimensional random Schrödinger operator (cf. [Mol81]).
However, the result we are going to analyze has been proven by Nariyuki Minami in
1996 [Min96] and holds for discrete random Schrödinger operators in arbitrary dimen-
sion. Furthermore, we will discuss some improvements on Minami’s proof by Combes,
Germinet and Klein [CGK09a] with the aim in mind, that we want to extend Minami’s
result to discrete random block operators (see Chapters 4 and 5).

3.1 Point processes

The following is a brief introduction to the theory of point processes, mostly taken and
summarized from [Kle08, DVJ08, Min96], more details can be found in there.

Definition 3.1. LetM(R) denote the set of all non-negative Radon measures on R and
let C+

c (R) denote all non-negative continuous function on R with compact support. A
sequence (µn)nN ⊂M(R) converges vaguely to a µ ∈M(R) if

lim
n→∞

∫
φ(x)dµn(x) =

∫
φ(x)dµ(x) ∀φ ∈ C+

c (R).

Remark 3.2. The concept of vague convergence defines a topology on M(R) which is
called the vague topology. More details can be found in [Kle08]. Furthermore, with
respect to this topology, we will get a Borel σ-algebra.

Definition 3.3. LetMp(R) ⊂M(R) be the space of all integer valued Radon measures.
Let (Ω,A, P ) be a probability space. Furthermore, let B(Mp(R)) denote the trace-σ-
algebra induced by the Borel σ-algebra given by the vague topology onM(R). A random
variable ξω, defined by

ξω : Ω −→Mp(R) : ω 7−→ ξω

is called a point process. The measure µ, defined by

µ(A) := E[ξω(A)] ∀A ∈ B(R),

is called the intensity measure of ξω.
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3.1 Point processes

Remark 3.4. The setMp(R) is closed inM(R) with respect to the vague topology. By
Fubini’s theorem and the fact that ξω is a Radon measure it can easily be checked that
the intensity measure µ is indeed a measure, thus well defined.

Definition 3.5. A point process ξω with intensity measure µ is called a Poisson point
process if the following two conditions hold:

i) for all Borel sets A ∈ B(R) and all k 6= 0:

P(ξω(A) = k) = e−µ(A)µ(A)k

k!

ii) for all A1, . . . , An disjoint Borel sets:

ξω(A1), . . . , ξω(An) are independent random variables.

Definition 3.6. Let (ξωn )n∈N be a sequence of point processes defined on a probability
space (Ω,F , P ). We say that this sequence converges weakly to a point process ξω̃ defined
on a probability space (Ω̃, F̃ , P̃ ) if and only if

lim
n→∞

∫
φ(ξωn )dP (ω) =

∫
φ(ξω̃)dP̃ (ω̃)

holds for all bounded continuous functions φ onM(R). As an abbreviation for the above
we will simply write

ξωn
w−→ ξω̃, for n→∞.

Lemma 3.7. The statement ξωn
w→ ξω̃ for n→∞, as above, is equivalent to

lim
n→∞

EP

[
e−ξ

ω
n (φ)

]
= EP̃

[
e−ξ

ω̃(φ)
]

for all φ ∈ C+
c (R),

where we have set
ξωn (φ) :=

∫
R

φ(x)dξωn (x)

and for ξ accordingly.

Proof. A proof for this lemma can be found in [DVJ08, chapter 11].

Remark 3.8. Let δy denote the Dirac measure concentrated at the point y. We can write
each ξ ∈Mp(R) in the form

ξ(A) =
∑
j∈N

δxj (A) for all Borel sets A,

where (xj)j∈N is a sequence in R with no finite accumulation point.
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3 Eigenvalue statistics for the Anderson model

3.2 Eigenvalue statistics

Now that we are equipped with the notion of a point process, defined in the previous
section, we can turn to the theorem proven by Minami [Min96]. In the following we will
stick closely to the ideas and notations of [Min96]. The statement of the theorem is,
roughly speaking, as following:
Let HΛ be the restriction of the Anderson model to the finite volume Λ and let E be an
energy which lies in the regime of the spectrum where we have Anderson localization.
Then we find that there is no correlation between the eigenvalues ofHΛ in a neighborhood
of E as Λ gets large.
Let us further note that, as afore mentioned in the Introduction, Klopp provided in
[Klo] a generalization of the above statement saying that we only need four properties
(cf. [Klo] and Chapter 1) to hold for a random Schrödinger operator such that we can
conclude local Poisson statictics for the eigenvalues in the localized spectral regime and
hence their stochastic independence.

Remark 3.9. (1) In this section we shall make the following assumptions:
Let Hω = H be the Anderson model with the independent and identically distributed
(iid) ergodic stochastic process V = {Vj : j ∈ Zd} as random potential and let their
common distribution µ have a bounded Lebesgue density g such that ‖g‖∞ < ∞.
Furthermore, let Λ ⊂ Zd be a hypercube, as in Section 2, HΛ the restriction of H to
Λ with simple boundary conditions (cf. Section 2.1) and let the set {Ej(Λ)}1≤j≤|Λ| be
the eigenvalues of HΛ ordered by magnitude and repeated according to multiplicity,
i.e.

E1(Λ) ≤ · · · ≤ E|Λ|(Λ).

(2) To gain knowledge about the spacing of the eigenvalues of HΛ as |Λ| → ∞ we will
have to rescale the eigenvalues according to their average density. Otherwise, they
would just move closer and closer together as |Λ| gets large. Fortunately, we know by
the Wegner estimate (cf. Theorem 2.25) that the average spacing behaves like |Λ|−1

as |Λ| gets large. Therefore, we will consider the eigenvalues of HΛ shifted by E
and rescaled with |Λ| to gain information about the local structure of the eigenvalues
in the vicinity of E. More precisely we consider the set {ξn(Λ, E)}1≤n≤|Λ| with
ξn(Λ, E) := |Λ|(Ej(Λ)− E).

Definition 3.10. Let E ∈ R be in the localized regime of σ(H) such that the density
of states n(E) exists at E. We define the family of point processes {ξ(Λ, E)}Λ by

ξ(Λ, E) :=
|Λ|∑
j=1

δ|Λ|(Ej(Λ)−E).

Now let us state the main result of Minami’s theorem:

Theorem 3.11 (Minami 1996, [Min96]). Suppose that the density of states n(E) exists
at E and is positive and the fractional moment of the Green function decays exponentially
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3.2 Eigenvalue statistics

fast as in Definition 2.31. Then the point process ξ(Λ, E) converges weakly, as L →∞,
to the Poisson point process ξ with intensity measure n(E)dx.

Remark 3.12. The key ingredients to the proof of this theorem (cf. [Min96]) are the
following results:

(1) Wegner estimate, i.e. for all I ⊂ R bounded intervals and all Λ ⊂ Zd finite-volume
hypercubes we have

E
[
tr χI(HΛ

ω )
]
≤ ‖g‖∞|I| |Λ| (3.1)

(see Section 2.3), and in particular that we have for all j ∈ Zd

E
[
〈δj , χI(HΛ

ω )δj〉
]
≤ ‖g‖∞|I|. (3.2)

(2) Boundedness of the fractional moments, i.e. for all z ∈ C, all x, y ∈ Zd, all Λ ⊂ Zd
and 0 < s < 1 there exists a constant C(s) > 0 such that

E
[
|GΛ(z;x, y)|s

]
≤ C(s) (3.3)

holds.

(3) Exponential decay of the fractional moments, i.e. there exists an s ∈]0, 1[, a C(s) > 0,
an m(s) > 0 and a r(s) > 0 such that for all Λ ⊂ Zd

E
[
|GΛ(z;x, y)|s

]
≤ C(s)e−m(s)|x−y| (3.4)

with x ∈ Λ and y ∈ ∂Λ and z ∈ {z ∈ C : =z > 0, |z − E| < r(s)}.

Proofs for the last two results can be found for example in [AM93, ASFH01, Gra94]. The
proof for Minami’s theorem, as can be found in [Min96], essentially relies on proving the
following two assertions:

(A) Asymptotic negligibility, i.e. we split the finite volume cube Λ into small cubes Cp
and then prove that we can approximate the point process ξ(Λ, E), induced by the
spectrum of HΛ near E, by a superposition of independent point processes η(Cp;E)
induced by the spectrum of HCp near E, more precisely

η(Cp;E) =
|Cp|∑
j=1

δ|Λ|(Ej(Cp)−E). (3.5)

(B) Minami estimate, i.e. that we have for all finite Λ ⊂ Zd and any bounded interval
I ⊂ R

E
[
tr χI(HΛ

ω )
{
tr χI(HΛ

ω )− 1
}]
≤ (‖g‖∞|I| |Λ|)2 . (3.6)
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3 Eigenvalue statistics for the Anderson model

In the original proof of Minami the Minami estimate, was proven by ingeniously estimat-
ing the average of determinant of a 2×2 matrix whose entries are given by the imaginary
part of the resolvents of HΛ (cf. [Min96, Lemma 2]). A key ingredient of this strategy
is using a rank-2-perturbation which is also referred to as Krein’s formula (cf. [AM93,
Appendix I]).
The other approach, based on Theorem 3.14, was proposed by Combes, Germinet and
Klein in [CGK09a] which has the advantage that this method allows to prove a Minami
estimate for the continuum Anderson Hamiltonian.

We will omit the explicit proof for Minami’s theorem (it can be found in [Min96]) as
we are going to present a modified version of it in Section 5.

3.3 Minami estimate

Remark 3.13. The statement of the following Theorem can be found in [CGK09a] and is
an essential ingredient, along with a Wegner estimate, for the proof of Minami’s Theorem.
However, these two estimates are essential for further results about eigenvalue statistics
in the localized regime, in particular, level spacing statistics (cf. [Klo]).
As explained in the Introduction, the aim of this thesis is not only to achieve a structural
theorem providing us with local Poisson statistics of the eigenvalues in the sense of
Minami but also to work on proving a Minami estimate for random block operators (see
Chapters 4 and 5). Hence, we will present in this section the strategy to achieve the
Minami estimate for the Anderson model quite explicitly to fully understand it and thus
prepare us for the task of extending it to discrete random block operators.

Theorem 3.14 (Minami estimate). Let Hω be the generalized Anderson model with the
same assumptions and notations as in Theorem 2.25 (Wegner estimate) and let Λ ⊂ Zd
be a finite volume. Then we have for any bounded interval I ⊂ R

E
[
tr χI(HΛ

ω )
{
tr χI(HΛ

ω )− 1
}]
≤ (Q(|I|)|Λ|)2 .

Remark 3.15. We will prove this Theorem here under the assumption that the common
probability distribution µ = µn of the iid stochastic process {Vω(n)}n∈Zd has compact
support. Since we have tr χI(HΛ

ω ) ≤ |Λ| for any interval I, assuming that µ has compact
support is indeed sufficient for proving the estimate in full generality by the approxima-
tion argument given in [CGK09a, Appendix B].
However, before we can prove the Minami estimate we have to introduce the following
results which are essential to the proof and are based on the ideas and analysis obtained
in [CGK09a, CGK09b].

Lemma 3.16. Let H0 and W be self-adjoint operators on a Hilbert space H. Let W ≥ 0
be bounded. Consider for s ≥ 0 the self-adjoint operator Hs = H0 +sW and suppose that
for all c ∈ R tr χ]−∞,c](Hs) <∞. Then for all a, b ∈ R with a < b we have for 0 ≤ s ≤ t

tr χ]a,b](Hs) ≤ tr χ]a,b](Ht) +
{
tr χ]−∞,b](H0)− tr χ]−∞,b](Ht)

}
.
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3.3 Minami estimate

Proof. Let a < b ∈ R and 0 ≤ s ≤ t. Then, since W ≤ 0 we get

tr χ]−∞,b](Ht) ≤ tr χ]−∞,b](Hs). (3.7)

This implies

tr χ]a,b](Hs) = tr χ]−∞,b](Hs)− tr χ]−∞,a](Hs)

≤ tr χ]−∞,b](H0)− tr χ]−∞,a](Ht)

=
{
tr χ]−∞,b](H0)− tr χ]−∞,b](Ht)

}
− tr χ]a,b](Ht). (3.8)

Corollary 3.17. Consider a Hilbert space H, φ ∈ H with ‖φ‖ = 1 and let Pφ denote the
orthogonal projection onto the subspace spanned by π. Let H0 be a self-adjoint operator
on H bounded from below and consider for s ∈ R the self-adjoint operator Hs = H0 +sPφ
and suppose that for all c ∈ R tr χ]−∞,c](Hs) <∞. Then for all a, b ∈ R with a < b we
have for 0 ≤ s ≤ t

tr χ]a,b](Hs) ≤ 1 + tr χ]a,b](Ht).

Proof. By analytic perturbation theory (cf. [Kat76]) the statement is indeed an imme-
diate consequence of Lemma 3.16. However, for later references, we will calculate the
result explicitly:
Let {En(s)}n denote the eigenvalues of Hs ordered from least to greatest including mul-
tiplicity and let {En}n denote the eigenvalues of H0 accordingly. Since Pφ ≥ 0 and s ≥ 0
we have sPφ ≥ 0 and thus H0 ≤ Hs. Therefore, we have for all n and all s ≥ 0

En ≤ En(s). (3.9)

Furthermore, by the min-max principle (cf. [Kir08, RS78]) we have

En(s) = sup
ψ1,...,ψn−1

inf
ρ⊥ψ1,...,ψn−1

‖ρ‖=1

〈ρ,H0ρ〉+ s|〈ρ, φ〉|2

≤ sup
ψ1,...,ψn−1

inf
ρ⊥ψ1,...,ψn−1,φ

‖ρ‖=1

〈ρ,H0ρ〉+ s|〈ρ, φ〉|2

= sup
ψ1,...,ψn−1

inf
ρ⊥ψ1,...,ψn−1,φ

‖ρ‖=1

〈ρ,H0ρ〉

≤ sup
ψ1,...,ψn

inf
ρ⊥ψ1,...,ψn
‖ρ‖=1

〈ρ,H0ρ〉

= En+1. (3.10)

Hence, we have for 0 ≤ s ≤ t

0 ≤ tr χ]−∞,b](H0)− tr χ]−∞,b](Ht) ≤ 1, (3.11)

where the first inequality is an immediate consequence of equation (3.7). The statement
then follows from Lemma 3.16.
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3 Eigenvalue statistics for the Anderson model

Proof of Theorem 3.14. Let us first recall that we have assumed that the probability
distribution µn of Vω(n) = ωn has compact support and no atoms. In particular this
implies that we have for all c ∈ R

E
[
tr χ{c}(HΛ

ω )
]

= 0. (3.12)

Therefore, we can assume the interval I to be of the form ]a, b] with a < b ∈ R and thus
we can apply Corollary 3.17 to the following construction:
We will procede similarly to the proof of the Wegner estimate (cf. Theorem 2.25) and
consider, for j ∈ Λ, HΛ

ω as a rank-1-perturbation of the form

HΛ
ω = HΛ + ωjPj , (3.13)

with HΛ := HΛ
ω − ωjPj which is independent of ωj . Furthermore, recall the notation

introduced in the proof of Theorem 2.25:

ω = (ω⊥j , ωj) for j ∈ Λ. (3.14)

Building on this, by writing χI(H(ω⊥j ,s)
) for s ∈ R we mean that we have, in accordance

with (3.13), increased or decreased ωj to s.
Thus by using Corollary 3.17 we get for τj ≥ ωj

tr χI(HΛ
ω )
{
tr χI(HΛ

ω )− 1
}

=
∑
j∈Λ

{
〈δj , χI(HΛ

ω )δj〉
(
tr χI(HΛ

ω )− 1
)}

≤
∑
j∈Λ

{
〈δj , χI(HΛ

(ω⊥j ,ωj)
)δj〉

(
tr χI(HΛ

(ω⊥j ,τj)
)
)}
. (3.15)

The grand scheme behind this estimate is that now the expectation factorizes due to
the fact that only one of the factors in (3.15) is dependent on ωj . We may now take
τj ≥ max suppµj for all j ∈ Λ and then perform the expectation for the random vector
{ωj}j∈Zd to get together with (3.15) and the Wegner estimate (cf. Theorem 2.25)

Eω

[
tr χI(HΛ

ω )
{
tr χI(HΛ

ω )− 1
}]

≤
∑
j∈Λ

Eω⊥j

[{
tr χI(HΛ

(ω⊥j ,τj)
)
}{
Eω〈δj , χI(HΛ

(ω⊥j ,ωj)
)δj〉

}]
≤ Qµ(|I|)

∑
j∈Λ

Eω⊥j

[
tr χI(HΛ

(ω⊥j ,τj)
)
]
. (3.16)

This estimate holds for all τj ≥ max suppµj and j ∈ Λ Therefore, we may choose
τj := max suppµj + ω̃j , where ω̃ = {ω̃j}j∈Zd is a new family of random variables which
have the same distribution as {ωj}j∈Zd , more precisely {ω̃j}j∈Zd and {ωj}j∈Zd are two
independent and identically distributed families of random variables. Averaging over
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3.3 Minami estimate

these new random variables yields

Eω

[
tr χI(HΛ

ω )
{
tr χI(HΛ

ω )− 1
}]

= Eω̃

{
Eω

[
tr χI(HΛ

ω )
{
tr χI(HΛ

ω )− 1
}]}

≤ Qµ(|I|)
∑
j∈Λ

E(ω⊥j ,ω̃j

[
tr χI(HΛ

(ω⊥j ,τj)
)
]

≤
(
Qµ(|I|)|Λ|

)2
, (3.17)

where we have again used the Wegner estimate.

23



4 Random block operators

As was mentioned in the introduction random block operators of the type considered
in this chapter arise in the modelling of mesoscopic disordered systems such as dirty
superconductors. Our main goal in this section is to introduce the concept of certain
block operators, study their extension to random block operators and analyze some basic
properties. For this chapter we will mostly follow the analysis obtained in [KMM11,
Tre08].

4.1 Structural properties of block operators

Let (H; 〈, 〉) denote a Hilbert space which is for now arbitrary, although later we are going
to be interested mainly in the case where H = l2(Zd) as in Section 1. Hence, consider
the Hilbert space H2 := H⊕H equipped with the scalar product

〈〈Ψ,Φ〉〉 := 〈ψ1, φ1〉+ 〈ψ2, φ2〉, (4.1)

with

Ψ :=
(
ψ1

ψ2

)
,Φ :=

(
φ1

φ2

)
∈ H2. (4.2)

We shall denote the norm induced by this scalar product as following

|||Ψ||| :=
√
‖ψ1‖2 + ‖ψ2‖2. (4.3)

On this Hilbert space we shall consider operators of the form

H :=
(
H B
B −H

)
, (4.4)

where H and B are self-adjoint operators on H. As shown in [KMM11, Tre08], we can
conclude self-adjointness for H under certain conditions, more precisely

Proposition 4.1. Let H,B be self-adjoint operators on H and assume that dom(B) ∩
dom(H) is a core for H and that dom(|H|1/2) ⊂ dom(B). Then H is essentially self-
adjoint on {dom(B) ∩ dom(H)} ⊕ {dom(B) ∩ dom(H)}.

Proof. As mentioned in [KMM11], the statement is a consequence of Proposition 2.3.6
in [Tre08].

Remark 4.2. From here on we will always assume that the conditions of Proposition 4.1
are satisfied. The following results and proofs can be found in [KMM11].
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4.1 Structural properties of block operators

Lemma 4.3. Let H be defined as above. Then the spectrum of H, denoted by σ(H), is
symmetric around 0; more precisely we have

σ(H) = σ(−H)

and in particular, if we have HΨ = EΨ for some E ∈ R and Ψ = (ψ1, ψ2)T ∈ H2 then

HΨ̃ = −EΨ̃,

where Ψ̃ = (ψ2,−ψ1)T .

Proof. Consider the unitary transformation

U :=
(

0 1
−1 0

)
(4.5)

on H2 which satisfies U−1 = −U. Thus we have

UHU∗ = −H (4.6)

which implies the statement.

Lemma 4.4. The operator H2 is given by

H2 =
(
H2 +B2 [H,B]
−[H,B] H2 +B2

)
,

where [−,−] denotes the commutator.

Proof. The statement follows by direct computation

H2 :=
(
H B
B −H

)(
H B
B −H

)
=
(
H2 +B2 HB −BH
BH −HB H2 +B2

)
. (4.7)

Corollary 4.5. The spectrum of the operator H2 has multiplicity at least 2 with exception
possibly at 0. Furthermore, we have

σ(H) =
{
E ∈ R : E2 ∈ σ(H2)

}
.

Proof. The statement follows immediately form Lemma 4.3.

However, we can infer more information about the structure of the spectrum of H, in
particular we can prove the occurrence of a spectral gap around 0 which arises due to
the block structure of H.

Proposition 4.6. Let H be defined as above. Then

(i) σ(H) ⊂ [−‖H‖ − ‖B‖, ‖H‖+ ‖B‖] .
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4 Random block operators

(ii) If there exists a λ ≥ 0 such that H ≥ λ1, then we have

σ(H) ∩ ]− λ, λ[= ∅.

(iii) Assume that there exists a β ≥ 0 such that B ≥ β1, then

σ(H) ∩ ]− β, β[= ∅.

(iv) Assume that there exist λ, β ≥ 0 such that H ≥ λ1 and B ≥ β1, then we have

σ(H) ∩
]
−
√
λ2 + β2,

√
λ2 + β2

[
= ∅.

Proof. The proof can be found in [KMM11].

4.2 Ergodic properties of random block operators

Similarly to the Anderson Model on l2(Zd), let us consider the canonical probability
space (Ω,F ,P) where we set Ω := RZ

d × RZd . For the construction of F , consider the
two probability spaces (R,B(R), µ1) and (R,B(R), µ2). Then, let F be the σ-algebra
induced by the cylinder sets of the form{

ω = (ω1, ω2) ∈ Ω | ω1
i1 ∈ B1, . . . , ω

1
in ∈ Bn, B1, . . . , Bn ∈ B(R), n ∈ N

and ω2
i1 ∈ B1, . . . , ω

2
im ∈ Bm, B1, . . . , Bm ∈ B(R), m ∈ N

}
.

(4.8)

Finally, let P be the infinite product measure on (Ω,F) induced by µ1 ⊗ µ2.

Remark 4.7. From this point on we shall, unless explicitly noted, only consider the
discrete Hilbert space H := l2(Zd) as in Section 2, and accordingly H2 := H ⊕H with
the structure induced by H. Furthermore, we note that the set{(

δj
0

)
,

(
0
δj

)}
j∈Zd

=: {δj ⊕ 0, 0⊕ δj}j∈Zd , (4.9)

where δj is as in Definition 2.1, forms an orthonormal basis of H2.

Definition 4.8. Let L(H2) denote the set of linear operators on the Hilbert space H2.
Let Hω, Bω be self-adjoint operators such that Proposition 4.1 is fulfilled. Then the
block-operator-valued random variable H, defined by

H : Ω −→ L(H2)

ω 7−→ Hω :=
(
Hω Bω
Bω Hω

)
where Hω is densely defined on H2 for P-a.e. ω ∈ Ω, will be called random block operator.
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4.2 Ergodic properties of random block operators

We will now introduce a notation similar to Definition 2.7, as is used in [Geb11], to make
the block structure more explicit.

Definition 4.9. Let Ψ ∈ H2, then we define for all n ∈ Zd

Ψ(n) :=
(
〈〈δn ⊕ 0,Ψ〉〉
〈〈0⊕ δn,Ψ〉〉

)
=:
(
ψ1(n)
ψ2(n)

)
.

Let A be a bounded self-adjoint operator on H2 then we define the kernel of A by

A(n,m) :=
(
〈〈δn ⊕ 0, A(δm ⊕ 0)〉〉 〈〈δn ⊕ 0, A(0⊕ δm)〉〉
〈〈0⊕ δn, A(δm ⊕ 0)〉〉 〈〈0⊕ δn, A(0⊕ δm)〉〉

)
for all n,m ∈ Zd such that we have for all Ψ ∈ H2 and all n ∈ Zd

(AΨ)(n) =
∑
m∈Zd

A(n,m)Ψ(m).

Definition 4.10. Let p ∈ Nd, pZd :=
⊕d

k=1 (pkZ) and {Tj}j∈pZd an ergodic group of
measure-preserving transformations on Ω such that we have for all ω ∈ Ω, all j ∈ pZd
and all n,m ∈ Zd

(Tjω)(n,m) = (ω1
n−j , ω

2
m−j).

Furthermore, let for all j ∈ pZd Uj and in particular Uj be the unitary translation
operator induced by the ergodic group {Tj}j∈pZd , i.e. for Ψ ∈ H2 we have

UjΨ :=
(
Uj 0
0 Uj

)
Ψ =

(
Ujψ1

Ujψ2

)
=
(
ψ1(· − j)
ψ2(· − j)

)
.

Then we call H ergodic w.r.t. pZd-translations if there exists a p ∈ Nd and a {Tj}j∈pZd
as above such that

UjHωU
∗
j = HTjω

holds for every ω ∈ Ω and every j ∈ pZd.

With this setting we can proceed quite similar to the case of the Anderson model and
gain analogous results such as the integrated density of states (cf. Section 2) and an
almost surely non-random and closed spectrum.

Proposition 4.11. For P-almost all ω we have σ(Hω) = Σ for Σ ⊂ R a non-random
closed set.

Proof. The proof uses a standard argument via the Weyl criterion and proceeds along
analogous arguments as can be found in [Kir08].
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4 Random block operators

Definition 4.12. Let tr denotes the trace on H2 and E denote the expectation on Ω.
Let Λ0 := {j ∈ Zd : 0 ≤ j < pk ∀k ∈ {1, . . . , d}} denote the elementary cell, then we
call the right-continuous, non-decreasing function N : R→ [0, 1], defined by

N(E) :=
1

2|Λ0|
E
[
tr
{

(χΛ0 ⊕ χΛ0)χ]−∞,E](Hω)
}]
,

integrated density of states of H.

Remark 4.13. In the following we will write instead of χΛ0⊕χΛ0 simply χΛ0 to abbreviate
the notation.

Lemma 4.14. Let H be a random block operator defined as above. Then we have P-
almost surely for every E ∈ R and all j ∈ Zd

N(E) = lim
L→∞

1
2|Λ|

tr
[
χΛ(j)χ]−∞,E](Hω)

]
.

Proof. The proof is analogous to the case of the Anderson model and can be found, with
obvious adaptions, in [Kir08, Sec. 5.1].

From this point on we will focus on random block operators with the following properties:
Let Hω be the Anderson model as in Section 2 but with the slight difference that we
consider the common probability distribution µV of the iid real-valued stochastic process
V = {Vj : j ∈ Zd} to have a Lebesgue density φV of bounded variation. As before V
gives rise to the multiplication operator Vω on H, more precisely we have for all ψ ∈ H
and n ∈ Zd

(Vωψ)(n) = Vω(n)ψ(n). (4.10)

Furthermore, consider the iid ergodic real-valued stochastic process b = {bj : j ∈ Zd}
such that

bj : Ω −→ R : ω 7−→ bω(j) (4.11)

with the common probability distribution µb with a Lebesgue density φb of bounded
variation. Thus, let Bω = bω be the multiplication operator on H induced by b, more
precisely we have for all ψ ∈ H and n ∈ Zd

(bωψ)(n) = bω(n)ψ(n). (4.12)

Remark 4.15. Both processes V and b are ergodic with respect to pZd-translations. We
will also, in analogy with Remark 2.3, assume that µV and µb have compact support.

Hence, from now on we shall consider the random block operator of the form

H : ω 7−→ Hω :=
(
Hω bω
bω −Hω

)
(4.13)

which is self-adjoint according to Proposition 4.1.
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4.3 Almost sure spectrum of random block operators

4.3 Almost sure spectrum of random block operators

Remark 4.16. In the following we want to make the notion of the almost sure spectrum
of H more precise. For this purpose we will again follow the ideas and methods which
can be found in [KMM11]. However, we already know from Section 2 that we have

σ(Hω) = σ(H0) + supp(µV ) (4.14)

P-almost surely and, by using an analogous argument,

σ(bω) = supp(µb) (4.15)

P-almost surely.

Proposition 4.17. Consider the random block operator H defined in (4.13) and define

r := sup
E∈σ(Hω)

|E|+ sup
β∈supp(µb)

|β|.

Then we have P-almost surely{
±
√
E2 + β2 : E ∈ σ(Hω), β ∈ supp(µb)

}
⊂ σ(Hω) ⊂ [−r, r].

If inf σ(Hω) ≥ 0 and inf supp(µb) ≥ 0 and if

λ± := ±
√

[inf σ(Hω)]2 + [inf supp(µb)]2,

then λ+ and λ− are the endpoints of the open gap interval which separates the positive
and the negative parts of the symmetric almost sure spectrum of Hω.

Proof. The proof uses a Borel–Cantelli and a standard Weyl sequence argument and can
be found in [KMM11, Lemma 4.3, Corollary 4.5]

4.4 Boundary conditions

In this section we will give a precise notion of boundary conditions for random block
operators, analogous to Section 2.1.

Definition 4.18. Let H be the random block operator defined in (4.13) and let Λ ⊂ Zd
be a finite-volume hypercube. Then we define the following boundary conditions for H
restricted to the 2|Λ|-dimensional Hilbert space H2

Λ := l2(Λ)⊕ l2(Λ):

(i) We define Dirichlet boundary conditions by

HΛ
D :=

(
HΛ
D b
b −HΛ

D

)
,
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4 Random block operators

(ii) Neumann boundary conditions by

HΛ
N :=

(
HΛ
N b
b −HΛ

N

)
,

(iii) and simple boundary conditions by

HΛ :=
(
HΛ b
b −HΛ

)
,

whereHΛ
D, H

Λ
N andHΛ denote the restrictions ofH to the Hilbert space l2(Λ) with Dirich-

let, Neumann and simple boundary conditions, as we introduced them in Section 2.1.
Furthermore, we consider all multiplication operators to have canonical restrictions. We
also define the Dirichlet-bracketing and Neumann-bracketing restrictions by

HΛ
+ :=

(
HΛ
D b
b −HΛ

N

)
and HΛ

− :=
(
HΛ
N b
b −HΛ

D

)
.

Proposition 4.19. Let H be the random block operator defined in (4.13) and let Λ ⊂ Zd
be a finite-volume hypercube. Then we have

HΛ
− ≤ HΛ

N ≤ HΛ
+ and HΛ

− ≤ HΛ
D ≤ HΛ

+.

Furthermore, in case of simple boundary conditions, we have the following splitting for-
mula for Λ1 ⊂ Λ2 ⊂ Zd

HΛ2 = HΛ1 ⊕HΛ2\Λ1
+ ΓΛ2

Λ1
⊕
(
− ΓΛ2

Λ1

)
:=
(
HΛ1 ⊕HΛ2\Λ1

b

b −HΛ1 ⊕HΛ2\Λ1

)
+

(
ΓΛ2

Λ1
0

0 −ΓΛ2
Λ1

)
with

ΓΛ2
Λ1

(n,m) :=

{
−1 if (n,m) ∈ ∂Λ2Λ1

0 else.

Proof. Details for the proof of the first statement can be found in [KMM11]. The proof
for the second statement proceeds along the same reasoning as for Proposition 2.12 and
can be found, with slight modifications, in [Kir08, Sec. 5.2].

4.5 Wegner estimate

In this section we ultimately want to proof a Wegner estimate for H, analogous as for
the Anderson Model. However, since we have lost the monotonicity in the growth of the
eigenvalues of Hω due to the operator −Hω in H we will need a couple of additional
lemmata. The ideas and methods in this section are again from [KMM11]. However,
first we introduce the following notations:
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4.5 Wegner estimate

Definition 4.20. Let H denote the random block operator defined in (4.13), let Λ ⊂ Zd
be a finite-volume hypercube and E ∈ R. Let, furthermore, X denote any self-adjoint
restriction such that

HΛ,−
ω ≤ HΛ,X

ω ≤ HΛ,+
ω

holds. Then we define the random, finite-volume eigenvalue counting function by

NΛ,X
ω (E) :=

1
2|Λ|

tr
[
χ]−∞,E](H

Λ,X
ω )

]
.

Lemma 4.21. Given the above definition, there exists a set Ω0 of full probability, i.e.
P[Ω0] = 1, such that

N(E) = lim
|Λ|→∞

NΛ,X
ω (E)

for any self-adjoint restriction X as in Definition 4.20, every ω ∈ Ω0 and every continuity
point E ∈ R of N.

Proof. The proof proceeds along similar lines as in the case of the Anderson model (cf.
Section 2), for more details see [Kir08, KMM11].

Definition 4.22. For a complex-valued function φ with compact support in R the total
variation norm is defined by

‖φ‖BV := sup
P

∑
i

|φ(xi+1)− φ(xi)|,

where P := {(x1, . . . , xp) : inf supp(φ) ≤ x1 ≤ · · · ≤ xp ≤ sup supp(φ), p ∈ N} denotes
the set of all partitions of the support of φ. φ is said to be of bounded variation if

‖φ‖BV <∞.

Remark 4.23. We will now state the result of the Wegner estimate, as it can be found in
[KMM11] with a slight deviation in the constants of the estimates. The reason for this
difference will become apparent during the proof.

Theorem 4.24 (Wegner estimate). Consider the random block operator

H : ω 7−→ Hω =
(
Hω bω
bω −Hω

)
defined as in (4.13). Assume that at least one of the following two conditions is satisfied:

(i) there exists a λ > 0 such that H ≥ λ1 holds P-almost surely and µV is absolutely
continuous with a piecewise continuous Lebesgue density φV of bounded variation
and compact support,

(ii) there exists a β > 0 such that b ≥ β1 holds P-almost surely and µb is absolutely
continuous with a piecewise continuous Lebesgue density φb of bounded variation
and compact support.
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4 Random block operators

Then we have for all E ∈ R for ε ∈]0,min{λ, 1}/3[ that

E
{
trχ]E−ε,E+ε](H

Λ)
}
≤ 4ε|Λ|E + 1

λ
‖φV ‖BV .

Remark 4.25. 1. Consider the unitary transformation

U :=
1√
2

(
1 1
1 −1

)
. (4.16)

It then follows by direct calculation that the two operators Hω and H′ω of the form

Hω =
(
Hω bω
bω −Hω

)
and H′ω =

(
bω Hω

Hω −bω

)
(4.17)

are unitary equivalent, i.e. Hω = UH′ωU
∗. Hence, we see that the roles of the

operators Hω and bω are interchangeable and thus it suffices to prove Theorem 4.24
only for one of the two conditions. Hence, we will choose to prove the Theorem under
condition (i) wherefore we will suppress the bω-dependence of the Eigenvalues and
simply write E(Vω) to have an easier notation. Furthermore, for convenience, we will
write V = Vω.

2. As indicated at the beginning of this section, we will have to face additional difficulties
if we want to proof the Wegner estimate. Due to the form of the block operator, in
particular due to the operator −H, we cannot use the ideas of the standard methods,
such as in [Kir08, Sec. 5.5] or the method of [CGK09a] we used in Section 2.3, since
both of them rely on the monotonic growth of the eigenvalues which we do not have
in case of the considered block operator. However, as can be found in [KMM11], there
is a way around this problem wherefore we need the following lemmata.

Lemma 4.26. Let E(V ) be an eigenvalue of(
HΛ(V ) b

b −HΛ(V )

)
.

Then we have
E(V )

∑
j∈Λ

∂E(V )
∂Vj

≥ inf supp
(
HΛ(V )

)
.

Proof. This statement can be derived as a consequence of the Feynman-Hellmann theo-
rem and can be found in [KMM11].

Lemma 4.27. Let φ : R → C be a piecewise continuous function of bounded variation
with compact support. Let F ∈ C1(R) and assume that there exists a constant a > 0 such
that |F (x)− F (y)| ≤ a holds for all x, y ∈ R. Then we have∣∣∣∣∫

R

F ′(x)φ(x)dx
∣∣∣∣ ≤ a‖φ‖BV .
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4.5 Wegner estimate

Proof. This statement can be shown by explicitly calculating the statement for step
functions approximating φ and then using a density argument to conclude it for all φ of
bounded variation. The explicit proof can be found in [KMM11].

Remark 4.28. Let us note at this point that in the standard random Schrödinger case it
proved to be extremely helpful to consider the random operator as a rank-1-perturbation
of the form

HΛ
ω = HΛ + ωkPk, (4.18)

where Pk, k ∈ Λ, denotes the orthogonal projection onto the subspace spanned by δk
and HΛ := HΛ

ω − ωkPk. This point of view helps for proving not only with a Wegner
estimate (as can be seen in Appendix A.1 and [CGK09a]) but also a Minami estimate (see
Theorem 3.14) since we can easily infer the monotonic growth (in the coupling constant
ωk) of the eigenvalues (as can be seen in the proof of Corollary 3.17).
However, if we try to adapt this approach to a random block operator H and consider
it as a rank-2-perturbation (as can be seen in Lemma 4.29), we see immediately that
the eigenvalues grow non-monotonically with respect to the coupling constant Vj (see
Lemma 4.29).
Since one of our goals is to work on adapting the method of Combes, Germinet and Klein
given in [CGK09a] for proving a Minami estimate to discrete random block operators (see
Chapter 5), we can, at this point, learn from Lemma 4.29 that we cannot adapt Lemma
3.16 and Corollary 3.17 to random block operators directly. However, in Section 5.2 we
shall provide a solution to this problem.
We can still use Lemma 4.29 though to achieve a better bounding constant for the Wegner
estimate (cf. Remark 4.30).

Lemma 4.29. Let H denote the random block operator defined in (4.13) and let HΛ

denote the random block operator restricted to Λ ⊂ Zd under any given self-adjoint
boundary condition. For ε > 0 consider the switch function ρ ∈ C1(R) such that ρ is
non-decreasing with 0 ≤ ρ ≤ 1 and

ρ =

{
0 for x < −ε
1 for x > ε

and consider an η > 0 such that inf suppρ(· − η) ≥ λ+, i.e. inf suppρ(· − η) is located in
the positive part of the spectrum of H. Furthermore, consider the operator HΛ = HΛ(V )
in the form of a rank-2-pertubration, i.e. for all j ∈ Λ we have

H = H0 + VjΠj :=
(
HΛ(V )− VjPj b

b −HΛ(V ) + VjPj

)
+ Vj

(
Pj 0
0 Pj

)
,

where H0 is independent of Vj and Pj denotes the projection onto the subspace spanned
by δj. Then we have for T ∈ R∣∣∣trρ(HΛ(V ⊥j , T )− η)− trρ(HΛ(V )− η)

∣∣∣ ≤ 1.
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4 Random block operators

Remark 4.30. Since we consider a rank-2-perturbation we would apriori expect a 2 in
the estimate above. However, since we have the projection on the subspace spanned by
δj ⊕ 0 with a positive sign and the projection on the subspace spanned by 0 ⊕ δj with
a negative sign we get a monotonic behavior of the eigenvalues if we change only one of
the corresponding coupling constants Vj . This effect, as shown below, yields an estimate
with the constant 1, but the price we have to pay for this is the modulus.

Proof of Lemma 4.29. Let En(V ) for 1 ≤ n ≤ 2|Λ| denote the eigenvalues of HΛ(V )
ordered by magnitude and according to multiplicity, i.e.

E1(V ) ≤ · · · ≤ E2|Λ|(V ). (4.19)

Let En(V ⊥j , T ) for 1 ≤ n ≤ 2|Λ| denote the eigenvalues ofHΛ(V ⊥j , T ) ordered accordingly.
Let us first assume that T ≥ Vj . Then we get by the min-max principle (cf. [Kir08, RS78])
for all n ∈ {1, . . . , 2|Λ| − 1}

En(V ⊥j , T ) = sup
Ψ1,...,Ψn−1

inf
Φ⊥〈Ψ1,...,Ψn−1〉

〈〈Φ,H0Φ〉〉+ T |〈δj , φ1〉|2 − T |〈δj , φ2〉|2

≤ sup
Ψ1,...,Ψn−1

inf
Φ⊥〈Ψ1,...,Ψn−1〉

〈〈Φ,H0Φ〉〉+ T |〈δj , φ1〉|2 − Vj |〈δj , φ2〉|2

≤ sup
Ψ1,...,Ψn−1

inf
Φ⊥〈Ψ1,...,Ψn−1,δj⊕0〉

〈〈Φ,H0Φ〉〉+ Vj |〈δj , φ1〉|2 − Vj |〈δj , φ2〉|2

≤ sup
Ψ1,...,Ψn

inf
Φ⊥〈Ψ1,...,Ψn〉

〈〈Φ,H(V )Φ〉〉

= En+1(V ), (4.20)

where 〈Ψ1, . . . ,Ψn−1〉 denotes the linear span of the vectors Ψ1, . . . ,Ψn−1 ∈ H2. If we
follow the same strategy, however starting with the other coupling constant Vj , we get
for all n ∈ {2, . . . , 2|Λ|}

En−1(V ) = sup
Ψ1,...,Ψn−2

inf
Φ⊥〈Ψ1,...,Ψn−2〉

〈〈Φ,H0Φ〉〉+ Vj |〈δj , φ1〉|2 − Vj |〈δj , φ2〉|2

≤ sup
Ψ1,...,Ψn−2

inf
Φ⊥〈Ψ1,...,Ψn−2〉

〈〈Φ,H0Φ〉〉+ T |〈δj , φ1〉|2 − Vj |〈δj , φ2〉|2

≤ sup
Ψ1,...,Ψn−2

inf
Φ〈⊥Ψ1,...,Ψn−2,0⊕δj〉

〈〈Φ,H0Φ〉〉+ T |〈δj , φ1〉|2 − T |〈δj , φ2〉|2

≤ sup
Ψ1,...,Ψn−1

inf
Φ〈⊥Ψ1,...,Ψn−1〉

〈〈Φ,H(V ⊥j , T )Φ〉〉

= En(V ⊥j , T ). (4.21)

In case Vj ≥ T we can infer the same estimates by adapting the above procedure accord-
ingly. Hence we have for all n ∈ {2, . . . , 2|Λ| − 1} and all T ∈ R

En−1(V ) ≤ En(V ⊥j , T ) ≤ En+1(V ). (4.22)
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4.5 Wegner estimate

Furthermore, we can infer by (4.20)

trρ(HΛ(V ⊥j , T )− η)− trρ(HΛ(V )− η) =
2|Λ|∑
n=1

{
ρ(En(V ⊥j , T )− η)− ρ(En(V )− η)

}

≤
2|Λ|−1∑
n=1

{ρ(En+1(V )− η)− ρ(En(V )− η)}+ ρ(E2|Λ|(V
⊥
j , T )− η)− ρ(E2|Λ|(V )− η)

= ρ(E2|Λ|(V )− η)− ρ(E1(V )− η) + ρ(E2|Λ|(V
⊥
j , T )− η)− ρ(E2|Λ|(V )− η)

≤ 1 (4.23)

and by (4.21)

trρ(HΛ(V )− η)− trρ(HΛ(V ⊥j , T )− η) =
2|Λ|∑
n=1

{
ρ(En(V )− η)− ρ(En(V ⊥j , T )− η)

}

≤
2|Λ|∑
n=2

{ρ(En(V )− η)− ρ(En−1(V )− η)}+ ρ(E1(V )− η)− ρ(E1(V ⊥j , T )− η)

= ρ(E2|Λ|(V )− η)− ρ(E1(V )− η) + ρ(E1(V )− η)− ρ(E1(V ⊥j , T )− η)

≤ 1. (4.24)

Hence, we can conclude∣∣∣trρ(HΛ(V ⊥j , T )− η)− trρ(HΛ(V )− η)
∣∣∣ ≤ 1. (4.25)

Remark 4.31. As noted in Remark 4.25 it suffices to prove the Wegner estimate assuming
condition (i). Furthermore, due to the symmetry of the spectrum of H (cf. Lemma 4.3)
it is sufficient to restrict ourselves to the positive half of the spectrum, i.e. E ≥ 0. In
fact, due to Proposition 4.17 and due to condition (i) we have E ≥ λ.

Equipped with these helpful tools we can turn to the proof of the Wegner estimate:

Proof of Theorem 4.24. Let En(V ) denote the nth eigenvalue of HΛ(V ) ordered by mag-
nitude and repeated according to multiplicity. Fix ε ∈ ]0,min{λ, 1}/3[ and consider the
respective switch function ρ ∈ C1(R) defined in Lemma 4.29, i.e. ρ is non-decreasing,
0 ≤ ρ ≤ 1 and

ρ =

{
0 for x < −ε
1 for x > ε.

(4.26)

Then we have for I :=]E − ε, E + ε]

0 ≤ χI(η) ≤ ρ(η − E + 2ε)− ρ(η − E − 2ε) (4.27)
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4 Random block operators

for all η ∈ R. Thus we get by the spectral theorem (cf. [RS80, Rud91])

tr
{
χI(HΛ(V ))

}
≤

2|Λ|∑
n=1

{
ρ(En(V )− E + 2ε)− ρ(En(V )− E − 2ε)

}
= −

2|Λ|∑
n=1

∫ E+2ε

E−2ε

∂

∂η
ρ(En(V )− η)dη

=
2|Λ|∑
n=1

∫ E+2ε

E−2ε
ρ′(En(V )− η)dη. (4.28)

By the chain rule we get

∑
j∈Λ

∂

∂Vj
ρ(En(V )− η) = ρ′(En(V )− η)

∑
j∈Λ

∂En(V )
∂Vj

. (4.29)

Since we assumed HΛ(V ) ≥ λ > 0 by condition (i), we conclude from Lemma 4.26

ρ′(En(V )− η) ≤ En(V )
λ

∑
j∈Λ

∂

∂Vj
ρ(En(V )− η)

≤ E + 1
λ

∑
j∈Λ

∂

∂Vj
ρ(En(V )− η) (4.30)

for all n ∈ N and η ∈ [E−2ε, E+2ε]. Let us remark here, that to gain the last inequality
we used that ε < min{λ, 1}/3 which guarantees us that only the En(V ) ∈]0, E + 1[
contribute. Furthermore, we applied here Lemma 4.26 which guarantees us that the j-
sum is, for those En(V ), positive.
Now let us average over the random variable {Vj}j∈Λ to get

E
{
trχI(HΛ)

}
≤ E + 1

λ

∑
j∈Λ

∫ E+2ε

E−2ε

∫
R

· · ·
∫
R

∫
R

∂

∂Vj

2|Λ|∑
n=1

ρ(En(V )− η)dµV (Vj)



×

∏
k∈Λ
k 6=j

dµV (Vk)

 dη (4.31)

Since the function

Vj 7−→ F (Vj) :=
2|Λ|∑
n=1

ρ(En(V )− η) = tr
{
ρ(HΛ(V )− η)

}
(4.32)
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4.6 Anderson localization for random block operators

is non-monotonic in its argument for given η ∈ R and Vk ∈ R, for k 6= j, we have to
use a different argument than for the proof of the Wegner estimate in [Kir08]. Since we
have, by Lemma 4.29, that for all x, y ∈ R

|F (x)− F (y)| ≤ 1 (4.33)

holds, we can apply Lemma 4.27 to (4.31) to get

E
{
trχI(HΛ)

}
≤ 4ε|Λ|E + 1

λ
‖φV ‖BV . (4.34)

Corollary 4.32. Under the conditions of Theorem 4.24 we have that the integrated den-
sity of states N of H is Lipschitz continuous and has a bounded density

D :=
dN

dE
.

In particular, we have for Lebesgue-almost all E ∈ R

D(E) ≤ |E|+ 1
λ
‖φV ‖BV ,

in case condition (i) holds, and

D(E) ≤ |E|+ 1
β
‖φb‖BV ,

in case condition (ii) holds.

Proof. The assertion follows immediately from Theorem 4.24 by Lemma 4.21 and domi-
nated convergence.

4.6 Anderson localization for random block operators

In this section we will state the result of Anderson localization for discrete random block
operators which was obtained by Gebert in [Geb11] using multiscale analysis. This result
guarantees us that we can find a regime of P-almost sure dense pure point spectrum near
the spectral gap of the spectrum of H. It is therefore of vital importance for the main
result of this thesis, Theorem 5.7, where we will be analyzing the correlation between
the eigenvalues in the localized regime.

Theorem 4.33. Let H be the random block operator defined in (4.13) such that H ≥ λ,
λ ≥ 0 and the common distribution laws µV resp. µb of V resp. b fulfill the assumptions
of Theorem 4.24. Then we have P-almost surely that there exists an interval I = [−a, a],
a > 0, with σ(H) ∩ I 6= ∅ and

σ(H) ∩ I = σpp(H) ∩ I.

More strongly, the corresponding eigenfunctions decay exponentially.

Proof. The proof of the statement can be found in [Geb11].
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5 Eigenvalue statistics for random block
operators

In this chapter we will state and prove a structural theorem (cf. Theorem 5.7) yielding
the independence of the eigenvalues in the localized regime for random block operators
provided that we have a Wegner and a Minami estimate and that we have the exponential
decay of the fractional moments of the Green’s function (similar to the work of Klopp in
[Klo] for the random Schrödinger case).
To achieve this we, will adapt the proof of Minami’s theorem on the stochastic indepen-
dence of the eigenvalues of the Anderson model in the localized regime to random block
operators.
We will also present first steps on adapting the method of Combes, Germinet and Klein
given in [CGK09a], for proving a Minami estimate, to the case of discrete random block
operators and give suggestions for possible future studies on how one might prove the
other assumptions of our structural theorem (cf. Theorem 5.7).

5.1 Local Poisson structure of the spectrum of random
block operators

Definition 5.1. Let H be the random block operator defined in (4.13) then we denote
for z /∈ σ(H) the resolvent of H by

G(z) := (H− z)−1

and for Λ ⊂ Zd we define
GΛ(z) := (HΛ − z)−1

and according with Definition 4.9 we define the kernel of G(z) by

G(z;n,m) : = (H− z)−1(n,m)

=
(
〈〈δn ⊕ 0,G(z)δm ⊕ 0〉〉 〈〈δn ⊕ 0,G(z)0⊕ δm〉〉
〈〈0⊕ δn,G(z)δm ⊕ 0〉〉 〈〈0⊕ δn,G(z)0⊕ δm〉〉

)
for all n,m ∈ Zd.

Remark 5.2. 1. The above definition was chosen thusly to be in accordance with the
notations chosen in [Geb11].

2. Analogously to Proposition 2.14 we can prove a geometric resolvent equation for ran-
dom block operators, more precisely:
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5.1 Local Poisson structure of the spectrum of random block operators

Proposition 5.3 (Geometric resolvent equation for random block operators). Let Λ1 ⊂
Λ2 ⊂ Zd, x ∈ Λ1, H be the random block operator defined in (4.13), HΛi for i = 1, 2 be its
restriction under simple boundary conditions and let z /∈

(
σ(HΛ1)∪σ(HΛ2)∪σ(HΛ2\Λ1)

)
.

Then we have

GΛ2(z;x, x) = GΛ1(z;x, x) +
∑

(y,y′)∈∂Λ1

y∈Λ1,y′∈Λ2

GΛ1(z;x, y)
(
−1 0
0 1

)
GΛ2(z; y′, x).

Proof. The proof proceeds as in the standard random Schrödinger case, see [Kir08, Sec.
5.3]. For an explicit derivation of this result we refer to [Geb11].

Definition 5.4. For a matrix A ∈ C2×2 we shall denote the maximum norm of A by

‖A‖∞ :=
∥∥∥∥(a11 a12

a21 a22

)∥∥∥∥
∞

:= max{|a11|+ |a12|, |a21|+ |a22|}

and its trace by
tr2×2A = a11 + a22.

Remark 5.5. (1) We are now going to show that we can adapt Minami’s proof for Theo-
rem 3.11 to the case of random block operators. However, since not all the necessary
ingredients have yet been proven, we shall assume them and show that with this
structure the adaption is possible. To make comparison with the original result
[Min96] easier we will follow the ideas, notations and steps expressed by Minami in
[Min96].

(2) As for proving the local Poisson structure of the localized regime in the spectrum of
the Anderson model (cf. Section 3.2), we must rescale the eigenvalues ofHΛ according
to their average spacing to reveal the local spectral structure. Since our Wegner
estimate (Theorem 4.24) tells us that the average level spacing of the eigenvalues
behaves as (2|Λ|)−1 as |Λ| gets large we shall consider the set {Ξn(Λ, E)}1≤n≤2|Λ| with
Ξn(Λ, E) := 2|Λ|(Ej(Λ) − E) where Ej(Λ) for 1 ≤ j ≤ 2|Λ| denote the eigenvalues
of HΛ and E ∈ R lying in the localized regime of the spectrum of H is chosen such
that the density of states D(E) exists at E an obeys D(E) > 0.

Definition 5.6. Let HΛ denote the restriction of H to the finite-volume hypercube
Λ ⊂ Zd under simple boundary conditions and let us denote the eigenvalues of HΛ by

E1 ≤ · · · ≤ E2|Λ| (5.1)

ordered by magnitude and repeated according to multiplicity. Let E ∈ R be in the
localized regime of σ(H) such that the density of states D(E) exists at E and is positive.
Define the family of point processes {Ξ(Λ, E)}Λ by

Ξ(Λ, E) :=
2|Λ|∑
j=1

δ2|Λ|(Ej(Λ)−E).
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5 Eigenvalue statistics for random block operators

Theorem 5.7. Consider the random block operator defined in (4.13)

H : ω 7−→ Hω =
(
Hω bω
bω −Hω

)
Assume that at least one of the following two conditions is satisfied:

(i) there exists a λ > 0 such that H ≥ λ1 holds P-almost surely and µV is absolutely
continuous with a piecewise continuous Lebesgue density φV of bounded variation
and compact support,

(ii) there exists a β > 0 such that b ≥ β1 holds P-almost surely and µb is absolutely
continuous with a piecewise continuous Lebesgue density φb of bounded variation
and compact support.

Let HΛ denote the restriction of H to the finite-volume hypercube Λ ⊂ Zd under simple
boundary conditions and suppose that

(1) we have a Wegner estimate, and in particular that there exists a constant D > 0 such
that we have for all x ∈ Λ

E
[
‖=GΛ(z;x, x)‖∞

]
≤ D, (5.2)

(2) for E ∈ R in the localized regime of σ(H), the density of states D(E) exists at E and
is positive,

(3) the fractional moments of the Green’s function are bounded and decay exponentially
fast, i.e. that we have for all z ∈ C, all x, y ∈ Zd, all Λ ⊂ Zd and 0 < s < 1 that
there exists a constant C(s) > 0 such that

E
[
‖GΛ(z;x, y)‖s∞

]
≤ C(s), (5.3)

and that there exists an s ∈]0, 1[, a C(s) > 0, an m(s) > 0 and a r(s) > 0 such that
for all Λ ⊂ Zd

E
[
‖GΛ(z;x, y)‖s∞

]
≤ C(s)e−m(s)|x−y|1 (5.4)

with x ∈ Λ and y ∈ ∂Λ and z ∈ {z ∈ C : =z > 0, |z − E| < r(s)}

(4) we have a Minami estimate, i.e. there exist constants C > 0 and ρ > 0 such that

E
[
tr χI(HΛ

ω)
{
tr χI(HΛ

ω)− 1
}]
≤ C (|I| |Λ|)1+ρ (5.5)

holds for all bounded intervals I.

Then the point process Ξ(Λ, E) converges weakly, as |Λ| → ∞, to the Poisson point
process Ξ with intensity measure D(E)dx.
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5.1 Local Poisson structure of the spectrum of random block operators

Remark 5.8. Similarly to the proof of the Wegner estimate (cf. Theorem 4.24) it is
enough to prove Theorem assuming either (i) or (ii). We shall choose to prove it in the
case that (i) holds true. Furthermore, due to the symmetry of the spectrum of H (cf.
Lemma 4.3) it is enough to consider only positive energies, i.e. E ≥ 0.

Proof of Theorem 5.7.

Step 1.

Remark 5.9. A key aspect of Minami’s proof is the that there exist many methods to
properly deal with resolvents of operators. Therefore, we will prove in the first step that
for weak convergence to hold (cf. Lemma 3.7) we don’t need to consider the whole space
C+
c (R) but that it is enough to consider a certain kind of test function (cf. Definition 5.10)

that will later on deliver us resolvents instead of arbitrary operator-valued functions.

Definition 5.10. Define A to be the class of functions f : R→ R of the from

f(x) :=
n∑
j=1

ajτ

(x− σj)2 + τ2

with n ≥ 1, τ > 0 and aj > 0,σj ∈ R for 1 ≤ j ≤ n.

Lemma 5.11. Let |A| denote the Lebesgue measure of any real Borel set A. Let Ξ and
Ξn, n ∈ N, be point processes on R with intensity measures µ and µn, respectively.
Assume that there exists a constant c > 0 such that for all real Borel sets A

µn(A) ≤ c|A|, for n ≥ 1, and µ(A) ≤ c|A|

holds. Then the following two statements are equivalent:

i) Ξn converges weakly to Ξ as n→∞

ii) for all f ∈ A
lim
n→∞

E [exp {−Ξn(f)}] = E [exp {−Ξ(f)}]

holds.

Proof. The proof of this statement uses standard density and approximation arguments
and can be found in [Min96].

Step 2.

Remark 5.12. In this step we will check whether the point processes defined in Definition
5.6 as well as the Poisson point process on R, Ξ, with intensity measure µ(dx) = D(E)dx
satisfy the conditions of Lemma 5.11.
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5 Eigenvalue statistics for random block operators

Therefore, we define
fζ(x) :=

τ

(x− σ)2 + τ2
(5.6)

for any ζ := σ + iτ ∈ C+, i.e. τ > 0. Then we get

E [Ξ(Λ;E)(fζ)] = E

2|Λ|∑
j=1

τ

(2|Λ|(Ej(Λ)− E)− σ)2 + τ2


=

1
2|Λ|

E

2|Λ|∑
j=1

(2|Λ|)−1τ

(Ej(Λ)− E − (2|Λ|)−1σ)2 + ((2|Λ|)−1τ)2


=

1
2|Λ|

E
[
tr=(HΛ − E − (2|Λ|)−1ζ)−1

]
. (5.7)

We know by the Wegner estimate (Theorem 4.24) that for all bounded intervals I ⊂ R

E
{
trχI(HΛ)

}
≤ 2|I| |Λ| |E|+ 1

λ
‖φV ‖BV (5.8)

holds. Hence, we define the real valued Borel measure

ν(I) := E
{
trχI(HΛ)

}
(5.9)

for all Borel sets I ⊂ R. Define z := E + (2|Λ|)−1ζ ∈ C+, then we get by the Stieltjes
transformation (cf. [PF92, Appendix A])

E
[
tr=(HΛ − z)−1

]
=
∫
R

=z
(<z − t)2 + (=z)2

dν(t)

≤ 2|Λ| |E|+ 1
λ
‖φV ‖BV

∫
R

=z
(<z − t)2 + (=z)2

dt

= 2|Λ| |E|+ 1
λ
‖φV ‖BV π. (5.10)

Thus we get

E [Ξ(Λ;E)(fζ)] =
1

2|Λ|
E
[
tr=(HΛ − E − (2|Λ|)−1ζ)−1

]
≤ |E|+ 1

λ
‖φV ‖BV

∫
R

fζ(x)dx. (5.11)

Hence, we can conclude from the Stieltjes–Perron inversion formula (see [PF92, Appendix
A]) that

E [Ξ(Λ;E)(dx)] ≤ |E|+ 1
λ
‖φV ‖BV dx. (5.12)

Since by Corollary 4.32 we have

D(E) ≤ |E|+ 1
λ
‖φV ‖BV (5.13)

42



5.1 Local Poisson structure of the spectrum of random block operators

the conditions of Lemma 5.11 are satisfied and thus, in order to prove Theorem 5.7, it is
enough to prove the following:

Let n ∈ N and 1 ≤ j ≤ n, then for all τ > 0, aj > 0, σj ∈ R and ζj := σj + iτ

lim
|Λ|→∞

E

exp

− 1
2|Λ|

n∑
j=1

aj=trGΛ(E + (2|Λ|)−1ζj)


 = LP (φ), (5.14)

where we set

φ(x) :=
n∑
j=1

aj
τ

(x− σj)2 + τ2
∈ A (5.15)

and LP (φ) denotes
LP (φ) = E [exp {−Ξ(φ)}] (5.16)

where Ξ is the Poisson point process with intensity measure D(E)dx.

Step 3.
Remark 5.13. The key idea in this step is to break down our big cube Λ into smaller
cubes Cp and prove that we can approximate the point process

Ξ(Λ, E) :=
2|Λ|∑
j=1

δ2|Λ|(Ej(Λ)−E) (5.17)

asymptotically as |Λ| gets large by the point process

η(Λ, E) :=
∑
p

η(Cp, E) :=
∑
p

2|Cp|∑
j=1

δ2|Λ|(Ej(Cp)−E) (5.18)

where {Ej(Cp)}1≤j≤2|Cp| denote the eigenvalues of HCp (with simple boundary condi-
tions).
With this aim in mind, let us define two diverging integer valued sequences (NL)L∈N and
(lL)L∈N which behave for L→∞ as following

NL = o(L) and lL = o(L/NL). (5.19)

The exact choice of NL and lL will be apparent later. Now let us divide ]− L,L]d ⊂ Rd
into Nd

L equal cubes Dp, for p = 1, . . . , Nd
L, with the side length (2L+ 1)/NL and of the

form ]a, b]d. Furthermore, define

Cp := DP ∩Zd (5.20)

and
int(Cp) := {x ∈ Cp : dist(x, ∂Cp) > lL}. (5.21)
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5 Eigenvalue statistics for random block operators

As our next step we are going to plug this construction into the geometric resolvent
equation (cf. Proposition 5.3) and receive the following perturbation formula for z ∈ C
and x ∈ int(Cp)

GΛ(z;x, x) = GCp(z;x, x) +
∑

(y,y′)∈∂Cp
y∈Cp,y′∈Zd\Cp

GCp(z;x, y)
(
−1 0
0 1

)
GΛ(z; y′, x). (5.22)

Recall the notations regarding the 2 × 2 matrix structure of GΛ(z;x, x) introduced in
Definition 5.4. Hence, we can infer∣∣tr2×2=GΛ(z;x, x)

∣∣ ≤ 2‖=GΛ(z;x, x)‖∞. (5.23)

By the geometric resolvent equation (5.22) we then get∣∣∣∣∣ 1
2|Λ|
= trGΛ(z)− 1

2|Λ|
∑
p

= trGCp(z)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1
2|Λ|

∑
p

∑
x∈Cp

{
tr2×2=GΛ(z;x, x)− tr2×2=GCp(z;x, x)

}∣∣∣∣∣∣
≤ 1
|Λ|
∑
p

∑
x∈Cp\int(Cp)

{
‖=GΛ(z;x, x)‖∞ + ‖=GCp(z;x, x)‖∞

}
+

1
|Λ|
∑
p

∑
x∈int(Cp)

∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

‖GCp(z;x, y)‖∞‖GΛ(z; y′, x)‖∞

=: AL +BL (5.24)

We want to show that E[AL]→ 0 and E[BL]→ 0 as L→∞. Since, by assumption 1,

E[‖=GΛ(z;x, x)‖∞] and E[‖=GCp(z;x, x)‖∞] (5.25)

and are both bounded by a constant independent of z, Λ, p and x we can conclude that
for L→∞

E[AL] = O
(

(2L+ 1)−dNd
L((2L+ 1)/NL)d−1lL

)
= O(NLL

−1ll). (5.26)

Before we can estimate BL, let us consider E[Bs/2
L ] for an s ∈]0, 1[. By the Hölder

inequality we can then conclude

E[Bs/2
L ] ≤ 1

|Λ|s/2
∑
p

∑
x∈int(Cp)

∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

E
[
‖GCp(z;x, y)‖s/2∞ ‖GΛ(z; y′, x)‖s/2∞

]

≤ 1
|Λ|s/2

∑
p

∑
x∈int(Cp)

∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

√
E [‖GCp(z;x, y)‖s∞]

√
E [‖GΛ(z; y′, x)‖s∞]. (5.27)
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5.1 Local Poisson structure of the spectrum of random block operators

The term E[‖GΛ(z; y′, x)‖s∞] is bounded by a constant Cs < ∞ independently of Λ,
z ∈ C+, and x, y′ ∈ Λ by assumption (3). Since the second term E[‖GCp(z;x, y)‖s] is
bounded exponentially by assumption (3) we can conclude

E[Bs/2
L ] ≤

√
Cs

|Λ|s/2
∑
p

∑
x∈int(Cp)

∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

e−m(s)|x−y|1

= O

(
(2L+ 1)−s/2Nd

L

(
2L+ 1
NL

)d−1(2L+ 1
NL

− lL
)(

2L+ 1
NL

)d−1

e−(m(s)/2)lL

)
= O(Ld(2−s/2)−1N1−d

L lLe−(m(s)/2)lL). (5.28)

If we now choose NL := (2L + 1)α for 0 < α < 1 and lL := β lnL for a β large enough
we get that E[Bs/2

L ] = o(1) for L → ∞. Indeed, if we plug these definitions into (5.28)
we get

E[Bs/2
L ] = O(Ld(2−s/2)−1+α(1−d)−β(m(s)/2) lnL). (5.29)

Thus we have for
β >

2
m(s)

(
d
(

2− s

2

)
− 1 + α(1− d)

)
(5.30)

that E[Bs/2
L ] = o(1) for L→∞ and thus

E[BL] = o(1) and E[AL] = O(Lα−1 lnL) = o(1) for L→∞. (5.31)

Therefore, with the definitions given in Remark 5.13, we can conclude that

lim
|Λ|→∞

∣∣∣E [exp {−Ξ(Λ, E)(φ)}]− E [exp {−η(Λ, E)(φ)}]
∣∣∣ = 0, (5.32)

where we have set φ ∈ A as in (5.15). Therefore, it is enough to prove

lim
|Λ|→∞

E

exp

− 1
2|Λ|

∑
p

n∑
j=1

aj= tr GCp(E + (2|Λ|)−1ζj)


 = LP (φ). (5.33)

To conclude the theorem from proving (5.33) we have to convince ourselves at this point
that the conditions of Lemma 5.11 are still satisfied for the point process η(Λ, E). By
performing the exact same procedure as in Step 2 for the point process η(Cp, E)(dx) we
can get

E [η(Cp;E)(dx)] ≤
(
E + 1
λ
‖φV ‖BV

)
|Cp|
|Λ|

dx ≤
(
E + 1
λ
‖φV ‖BV

)
N−dL dx, (5.34)

and thus
E [η(Λ;E)(dx)] ≤

(
E + 1
λ
‖φV ‖BV

)
dx. (5.35)

Hence, by Lemma 5.11, we can conclude the theorem from the following:
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5 Eigenvalue statistics for random block operators

Proposition 5.14. The point process η(Λ, E), defined in Remark 5.13, converges weakly,
for |Λ| → ∞, to the Poisson point process Ξ with intensity measure D(E)dx.

Step 4.

Remark 5.15. In the next two steps we are going to prove Proposition 5.14 by using the
results from Lemma 5.18 and the assumption (4).

Definition 5.16. (Uniformly asymptotically negligible array) Let {ξn}n∈N be a family
of point processes such that each ξn is formed by a superposition of other point processes
θni for 1 ≤ i ≤ mn with mn ∈ N, i.e.

ξn =
mn∑
i=1

θni .

If for all n ∈ N the families {θni : 1 ≤ i ≤ mn} are mutually independent and if for all
bounded Borel sets A

lim
n→∞

sup
1≤i≤mn

P [θni (A) > 0] = 0

holds, we shall call them uniformly asymptotically negligible array.

Remark 5.17. More details about uniformly asymptotically negligible arrays can be found
in [DVJ08, Sec. 11.2], indeed the statement of the following lemma is a special case of
Theorem 11.2.V in [DVJ08, Sec. 11.2].

Lemma 5.18. The superposition of the point processes η(Cp, E) converges weakly to the
Poisson point process Ξ with intensity measure D(E)dx if for all bounded Borel sets A∑

p

P [η(Cp, E)(A) ≥ 1] −→ D(E)|A|, (5.36)∑
p

P [η(Cp, E)(A) ≥ 2] −→ 0 (5.37)

holds for |Λ| → ∞.

Proof. Since the point processes η(Cp, E) are independent for all p and, since η(Cp, E)(A)
is integer valued for all bounded real Borel sets A, (5.34) and the Markov inequality imply
that we have for all bounded Borel sets A

lim
L→∞

sup
1≤p≤Nd

L

P [η(Cp, E)(A) > 0] = 0.

Hence, the η(Cp, E) indeed form a uniformly asymptotically negligible array and thus
the statement follows from Theorem 11.2.V in [DVJ08].
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5.1 Local Poisson structure of the spectrum of random block operators

However, to conclude to theorem, we still have to verify the conditions (5.36) and (5.37).
By assumption (4) we get for all finite intervals A∑

j≥2

P [η(Cp, E)(A) ≥ j] =
∑
j≥2

(j − 1)P [η(Cp, E)(A) = j]

≤
∑
j≥2

j(j − 1)P [η(Cp, E)(A) = j]

= E [η(Cp, E)(A) {η(Cp, E)(A)− 1}]
= E

[
tr χÃ(HCp)

{
tr χÃ(HCp)− 1

}]
≤ C |A|

2

|Λ|2
|Cp|2 = o(N−dL ), (5.38)

where Ã := |Λ|−1 − E, which implies condition (5.37). Furthermore, this yields

P [η(Cp, E)(A) ≥ 1] = E [η(Cp, E)(A)]−
∑
j≥2

P [η(Cp, E)(A) ≥ j]

= E [η(Cp, E)(A)] + o(N−dL ). (5.39)

Therefore, it is enough to prove

Nd
LE [η(Cp, E)(A)] −→ D(E)|A| for L→∞ (5.40)

and for this purpose it is enough, by the previous construction, to prove for all ζ =
σ + iτ ∈ C+

Nd
LE [η(Cp, E)(fζ)] −→ D(E)π for L→∞, (5.41)

which we will prove in the following step.

Step 5. As in Step 3, we have for λ := E + (2|Λ|)−1ζ

E [η(Cp, E)(fζ)] =
1

2|Λ|
E
[
= trGCp(λ)

]
=

1
2|Λ|

E

 ∑
x∈int(Cp)

tr2×2=GCp(λ;x, x) +
∑

x∈Cp\int(Cp)

tr2×2=GCp(λ;x, x)

 . (5.42)

First we are going to perform an analogous argument as for the estimate of E[AL] in
Step 3. Let us therefore choose NL and lL as in Step 3. We can then conclude that the
part of (5.42) where we sum over all x ∈ Cp\int(Cp) is of order

O

(
(2L+ 1)−d

(
2L+ 1
NL

)d−1

lL

)
= O(Lα(1−d)−1 lnL) = o(N−dL ). (5.43)
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5 Eigenvalue statistics for random block operators

On the other hand we have, by the geometric resolvent equation, for x ∈ int(CP ) and
z ∈ C+

GCp(z;x, x) = G(z;x, x)−
∑

(y,y′)∈∂Cp
y∈Cp,y′∈Zd\Cp

GCp(z;x, y)
(
−1 0
0 1

)
G(z; y′, x) (5.44)

and in particular

tr2×2G
Cp(z;x, x) =tr2×2G(z;x, x)

−
∑

(y,y′)∈∂Cp
y∈Cp,y′∈Zd\Cp

tr2×2

[
GCp(z;x, y)

(
−1 0
0 1

)
G(z; y′, x)

]
. (5.45)

By the definition of λ we see that =λ = (2|Λ|)−1τ . Hence we can deduce, by using the
standard bound on resolvents, that

‖GCp(z;x, x)‖∞ ≤
4
=z

=
4|Λ|
τ

and ‖G(z;x, x)‖∞ ≤
4
=z

=
4|Λ|
τ
. (5.46)

Let us now recall that we have exponential decay of the fractional moments of the Green’s
function by assumption (3) and that they are bounded by a constant independent of the
points in Zd as well as of z ∈ C+. Thus we can conclude for s ∈]0, 1[∣∣∣E[tr2×2=GCp(λ;x, x)]− E[tr2×2=G(λ;x, x)]

∣∣∣
≤

∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

E

{∣∣∣∣tr2×2

[
GCp(z;x, y)

(
−1 0
0 1

)
G(z; y′, x)

]∣∣∣∣
}

≤ 2
∑

(y,y′)∈∂Cp
y∈Cp,y′∈Zd\Cp

E
{
‖GCp(z;x, y)‖∞‖G(z; y′, x)‖∞

}

≤ 2
(
|Λ|
τ

)2−s ∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

E
{
‖GCp(z;x, y)‖s/2∞ ‖G(z; y′, x)‖s/2∞

}

≤ 2
(
|Λ|
τ

)2−s ∑
(y,y′)∈∂Cp

y∈Cp,y′∈Zd\Cp

√
E
{
‖GCp(z;x, y)‖s∞

}√
E
{
‖G(z; y′, x)‖s∞

}

= O

(
(2L+ 1)d(2−s)

(
2L+ 1
NL

)d−1

e−(m(s)/2)lL

)
= O

(
Ld(3−s)−1N1−d

L e−(m(s)/2)lL
)
. (5.47)
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If we now choose NL = (2L+ 1)α with 0 < α < 1 as before and lL = γ lnL with γ large
enough, say

γ >
2

m(s)

{
(3− s)d− 1 + α(d− 1)

}
, (5.48)

we have

E[tr2×2=GCp(λ;x, x)] = E[tr2×2=G(λ;x, x)] + o(1), as L→∞. (5.49)

In particular the term o(1) in the expression above is uniform in x ∈ Zd. By the Stieltjes
transformation applied to the integrated density of states N (cf. [PF92, Appendix A]),
we have for all x ∈ Zd

E[tr2×2=G(λ;x, x)] = 2=
∫
R

1
t− λ

dN(t). (5.50)

However, we assumed that D(E) exists at E which implies, in particular, that N(t) is
differentiable at t = E with Lebesgue derivative D(E). Since for L → ∞ we have that
λ→ E from above which implies by the Sokhotski-Plemelj formula [PF92, Appendix A,
A.6] that

=
∫
R

1
t− λ

dN(t) −→ π
dN(t)
dt

∣∣∣∣
t=E

= πD(E) (5.51)

as L→∞. Thus we can infer

E [η(Cp, E)(fζ)] =
|intCp|

2|Λ|
2=
∫
R

1
t− λ

dN(t) + o(N−dL )

= πN−dL =
∫
R

1
t− λ

dN(t) + o(N−dL ) (5.52)

Hence
Nd
LE [η(Cp, E)(fζ)] −→ πD(E), as L→∞, (5.53)

which finishes the proof.

5.2 Minami estimate for random block operators

The original method of Minami (cf. [Min96]) for proving a Minami estimate for the
Anderson model involves a rank-2-perturbation. However, if we try this approach for
random block operators of the form (4.13) we face serious difficulties due to the −H
in the block structure. It is at this point unclear whether this approach would yield
anything at all.
Therefore, it seems reasonable to try to adapt the method of [CGK09a] (cf. Section 3.3)
to random block operators. This approach consists of two main parts: a Wegner estimate
and an estimate that allows us to factorize the expectation over the random variables (cf.
Corollary 3.17) by making one of the factors in (4) independent of one specific random
variable. In this section we aim to gain a similar factorization formula for random block
operator.
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5 Eigenvalue statistics for random block operators

Remark 5.19. The first ingredient we need is that the eigenvalues of H are P-almost
surely of multiplicity one. Unfortunately we do not have a Minami estimate for random
block operators, and therefore cannot use the strategy proposed in [KM06] which would
allow us to conclude simplicity of the eigenvalues from a Minami estimate. However, in
[Geb11, Appendix A] we can find a different approach which does not rely on a Minami
estimate. We will state it and present the proof for the readers’ convenience in the
following while sticking closely to the ideas and notations found in [Geb11, Appendix A].

Theorem 5.20. Let HΛ be the restriction of a random block operator as defined in (4.13)
to Λ ⊂ Zd under any kind of boundary conditions as defined in Section 4.4, then we have

P(HΛ has a degenerate eigenvalue) = 0.

Proof. The argument can be found in [Geb11, Appendix A] and is stated, for the readers’
convenience, in Appendix A.2.

With this we can conclude a more exact version of Corollary 4.5

Corollary 5.21. The spectrum of the operator H2 has multiplicity 2 with a possible
exception at 0.

Definition 5.22. Let H be the random block operator defined in (4.13) and let HΛ

denote its restriction to the finite-volume hypercube Λ ⊂ Zd under either Dirichlet,
Neumann or simple boundary conditions. Then we denote by

HΛ,Dj

for all j ∈ Zd the operator HΛ with additional Dirichlet boundary conditions in the
points δj ⊕ 0 and 0⊕ δj , i.e. for all Ψ ∈ dom(HΛ,Dj ) we have Ψ ⊥ 0⊕ δj and Ψ ⊥ δj ⊕ 0.

Remark 5.23. As the spectrum of H is symmetric around 0 (cf. Lemma 4.3) it suffices
for a Minami estimate to consider only positive energies, i.e. E ≥ 0.

Proposition 5.24. Let H be the random self-adjoint block operator on the Hilbert space
H2 defined in (4.13) and let HΛ denote its restriction to the finite-volume hypercube
Λ ⊂ Zd under either Dirichlet, Neumann or simple boundary conditions. Then we have
for all a, b ∈ R≥0 with a < b and all j ∈ Λ

trχ[a,b[(H
Λ) ≤ 1 + trχ[a,b[(H

Λ,Dj ).

Proof. Let us denote the eigenvalues of HΛ by

E1 < · · · < E2|Λ| (5.54)

ordered by magnitude (the multiplicity of the eigenvalues is, however, 1 due to the above)
and let

λ1 ≤ · · · ≤ λ2|Λ| (5.55)
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5.2 Minami estimate for random block operators

denote the eigenvalues of (HΛ)2 ordered by magnitude including multiplicity which is
exactly 2 as follows from Corollary 5.21. In particular we have

λ1 = λ2 < λ3 = λ4 < · · · < λ2|Λ|−1 = λ2|Λ|. (5.56)

Fix j ∈ Λ and let analogously

Ej1 < · · · < Ej2(|Λ|−1) (5.57)

denote the eigenvalues of HΛ,Dj and

λj1 ≤ · · · ≤ λ
j
2(|Λ|−1) (5.58)

the eigenvalues of (HΛ,Dj )2 ordered by magnitude including multiplicity which is again
exactly 2 as follows from Corollary 5.21. In particular we have

λj1 = λj2 < λj3 = λj4 < · · · < λj2|Λ|−3 = λj2|Λ|−2. (5.59)

Since we have for all j ∈ Λ
(HΛ,Dj )2 =

(
(HΛ)2

)Dj , (5.60)

if follows again by the symmetry of the spectrum and by Corollary 5.21 that we have the
following identifications

Ek = −
√
λ2k and E|Λ|+k =

√
λ2k−1 for 1 ≤ k ≤ |Λ| (5.61)

and
Ejk =

√
λj2k and Ej|Λ|+k =

√
λj2k−1 for 1 ≤ k ≤ (|Λ| − 1). (5.62)

Since dom(HΛ,Dj ) ⊂ dom(HΛ) we get by the min-max principle (cf. [Kir08, RS78])

λ2k−1 = sup
Ψ1,...,Ψ2k−1

inf
Φ⊥Ψ1,...,Ψ2k−1

Φ∈dom(HΛ)

〈〈Φ,HΛΦ〉〉

≤ sup
Ψ1,...,Ψ2k−1

inf
Φ⊥Ψ1,...,Ψ2k−1

Φ∈dom(HΛ,Dj )

〈〈Φ,HΛΦ〉〉

= sup
Ψ1,...,Ψ2k−1

inf
Φ⊥Ψ1,...,Ψ2k−1

Φ∈dom(HΛ,Dj )

〈〈Φ,HΛ,DjΦ〉〉

= λj2k−1 = λj2k (5.63)

and

λj2k−1 = sup
Ψ1,...,Ψ2k−1

inf
Φ⊥Ψ1,...,Ψ2k−1

Φ∈dom(HΛ,Dj )

〈〈Φ,HΛ,DjΦ〉〉

= sup
Ψ1,...,Ψ2k−1

inf
Φ⊥Ψ1,...,Ψ2k−1,0⊕δj ,δj⊕0

Φ∈dom(HΛ)

〈〈Φ,HΛΦ〉〉

≤ sup
Ψ1,...,Ψ2k+1

inf
Φ⊥Ψ1,...,Ψ2k+1

Φ∈dom(HΛ)

〈〈Φ,HΛΦ〉〉

= λ2k+1 = λ2k+2, (5.64)
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for all 1 ≤ k ≤ (|Λ| − 1). Together we have for 1 ≤ k ≤ (|Λ| − 1)

λ2k−1 = λ2k ≤ λj2k−1 = λj2k ≤ λ2k+1 = λ2k+2 (5.65)

which translates with (5.61) and (5.62) to

E|Λ|+k ≤ E
j
(|Λ|−1)+k ≤ E|Λ|+(k+1) (5.66)

for 1 ≤ k ≤ (|Λ| − 1) and in particular to

E2|Λ|−1 ≤ E
j
2(|Λ|−1) ≤ E2|Λ|. (5.67)

Hence, we can conclude for all c > 0

0 ≤ trχ[c,∞[(H
Λ)− trχ[c,∞[(H

Λ,Dj ) ≤ 1. (5.68)

Thus we get for all a, b ∈ R≥0 with a < b

trχ[a,b[(H
Λ) = trχ[a,∞[(H

Λ)− trχ[b,∞[(H
Λ)

≤ trχ[a,∞[(H
Λ)− trχ[b,∞[(H

Λ,Dj )

≤ trχ[a,∞[(H
Λ)− trχ[a,∞[(H

Λ,Dj ) + trχ[a,b[(H
Λ,Dj )

≤ 1 + trχ[a,b[(H
Λ,Dj ). (5.69)

Remark 5.25. Unlike in the case of the Anderson model (cf. Section 3.3), it is at this
point not quite clear how Proposition 5.24 and the Wegner estimate 4.24 can be used to
get the desired Minami estimate. Indeed, they seem to point towards the desired result,
but only in a very specific case, since we have for all i ∈ Λ:

E
[
tr χI(HΛ

ω)
{
tr χI(HΛ

ω)− 1
}]
≤ E

[
tr χI(HΛ

ω)
{
tr χI(HΛ,Di

ω )
}]

≤ E + 1
λ

∑
j∈Λ

∫ E+2ε

E−2ε
EV ⊥j

∫
R

∂

∂Vj

2|Λ|∑
n=1

ρ(En(V )− η)
{
trχI(HΛ,Di

ω )
}
dµV (Vj)

 dη

≤


(

2εE+1
λ ‖φV ‖BV

)2
2|Λ|, for j = i

? for j 6= i.
(5.70)

Let us note at this point more explicitly that it is the fact that

Vj 7−→
∂

∂Vj

2|Λ|∑
n=1

ρ(En(V )− η) (5.71)

can be negative which does not let us conclude the Minami estimate easily. Let us further
note that this problem arises due to the non-monotonic growth of the eigenvalues of HΛ

with respect to a single Vj , j ∈ Λ.
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5.3 Exponential decay of the fractional moments of the
Green’s function

In this section we give a short outlook on possible strategies to prove the condition of
Theorem 5.7 on the exponential decay of the fractional moments of the Green’s function,
i.e. we need to prove that there exists an s ∈]0, 1[, a C(s) > 0, an m(s) > 0 and a
r(s) > 0 such that for all Λ ⊂ Zd and all x ∈ Λ, y ∈ ∂Λ

E
[
‖GΛ(z;x, y)‖s∞

]
≤ C(s)e−m(s)|x−y|1 (5.72)

with z ∈ {z ∈ C : =z > 0, |z − E| < r(s)}, holds.

Remark 5.26. Actually, we don’t need to prove the above statement in its full glory for
the purpose of proving Theorem 5.7. In particular, we only need to prove the above
exponential decay for z := E + (2|Λ|)−1ζ, where E ∈ σ(H) lies in the localized regime
such that the density of state D(E) exists at E and is positive, and ζ := σ+ iτ ∈ C+ for
large enough Λ such that we are close enough to the spectrum, i.e. z ∈ {z ∈ C : =z >
0, |z − E| < r(s)} as above (cf. Step 3 in the proof of Theorem 5.7).

The standard procedures to prove the exponential decay of the fractional moments (cf.
[AM93, ASFH01]), in the case of random Schrödinger operators, are based on rank-2-
perturbations. If we adapt this method directly to random block operators, and use a
rank-4-perturbation of the form

H = H0 + Vj

(
Pj 0
0 −Pj

)
+ Vl

(
Pl 0
0 −Pl

)
=: H0 + VjΠj + VlΠl (5.73)

where H0 := H − VjΠj − VlΠl, and then follow the argument given in [AM93], we
immediately run into difficulties. At the moment it is unclear how to prove this statement
via this method.
However, as noted in Section 2.4 Aizenman, Schenker, Friedrich and Hundertmark showed
in [ASFH01] that in the case of random Schrödinger operators there exists a direct link
between the exponential decay of the fractional moments and the results of multiscale
analysis and the latter is something we do have for random block operators thanks to
Gebert (cf. [Geb11]). As can be found in [Geb11], we have for an interval I = [E1, E2]
close to the gap of the spectrum that there exists a p > 2d, an α with 1 < α < 2p

p+2d and
a γ > 0 such that for any two disjoint cubes Λ1 := ΛL(n) and Λ2 := ΛL(m)

P
[
∃E ∈ I : ∀n ∈ ΛL1/2 ,m ∈ ∂−ΛL :

‖GΛ1(E;n,m)‖∞ > e−γL and ‖GΛ2(E;n,m)‖∞ > e−γL
]
≤ 1
L2p

, (5.74)

where ΛL(n) denotes the hypercube ΛL centered at the point n ∈ Zd. Basically we can
apply the same strategy as for the prove of the above statement (as can be found in
[Geb11]; see also [Kir08, Sec. 9-11]) to gain the weaker form of the multiscale analysis
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result (cf. Section 2.30). Hence, we could prove that there exists an α > 1, p > 2d and
a γ > 0 such that for all E ∈ I

P
[
∀n ∈ ΛL1/2 ,m ∈ ∂−ΛL : ‖GΛL(E;n,m)‖∞ > e−γL

]
≤ 1
Lp

(5.75)

holds. The advantage of this result is that it only considers one cube but it is generally
weaker than (5.74) since it is not uniform in the energies E, however, it should be
enough for our purposes. It should even be possible to gain subexponential decay of the
probability in (5.75) as L gets large by adapting the idea of Bootstrap multiscale analysis,
as was shown for the case of random Schrödinger operators by Germinet and Klein in
[GK01], to the case of random block operators. Building on this, we can follow the idea
proposed in [ASFH01, Sec. 4.4] and divide our space Ω into the “good set”

ΩG := {ω : ‖GΛL(E; 0,m)‖∞ ≤ e−γ|m|1} (5.76)

and the “bad set”
ΩB := {ω : ‖GΛL(E; 0,m)‖∞ > e−γ|m|1}. (5.77)

for m ∈ ∂± Hence, we get for s ∈]0, 1[ and all y ∈ ∂±

E
[
‖GΛ(z; 0, y)‖s∞

]
= E

[
‖GΛ(z; 0, y)‖s∞1ΩG

]
+ E

[
‖GΛ(z; 0, y)‖s∞1ΩB

]
≤ Ce−γL +

(
E
[
‖GΛ(z; 0, y)‖t∞

]) s
t (E [1ΩB ])1− s

t , (5.78)

with t ≥ s. Since we have =z = (2|Λ|)−1τ we get for δ > 0 and 0 ≤ κ ≤ 1

E
[
‖GΛ(z; 0, y)‖s∞

]
≤ Ce−γL +

(
4|Λ|
τ

)s (
e−δL

κ
)1− s

t
. (5.79)

However, we see in [ASFH01] that to gain exponential decay of the fractional moments
of the Green’s function we also need to prove that the fractional moments are bounded
by a constant independent of Λ, x, y ∈ Λ and of z. What we gain easily is that we have
for all x, y ∈ Λ and all z := E + (2|Λ|)−1ζ

‖GΛ(z;x, y)‖∞ ≤
4
=z

=
4|Λ|
τ
. (5.80)

If we can indeed show subexponential decay of the probability in (5.75) it ought to
be enough to suppress the |Λ| factor arising from the rather rough inequality (5.80).
However, we still need to work on how exactly to conclude the desired exponential decay
of the fractional moments of the Green’s function for all x, y ∈ Λ from the above.
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A Appendix

For the readers’ convenience we shall state in the following the proof of the Wegner
estimate for the Anderson Model (cf. Theorem 2.25 and [CGK09a]) and the proof of
Theorem 5.20 (cf. [Geb11, Appendix A]).

A.1 Proof of the Wegner estimate for the Anderson model

In the following we will present the proof of the Wegner estimate for the Anderson
Model (cf. Theorem 2.25) for the case that µ has bounded Lebesgue density. The proof,
including the general case of an arbitrary probability distribution µ, can be found in
[CGK09a].

Proof of Theorem 2.25. Let g denote the bounded Lebesgue density of µ and consider
the self-adjoint operator HΛ

ω which can be written in the form

HΛ
ω = HΛ

0 +
∑
j∈Λ

ωjPj , (A.1)

where Pj denotes the orthogonal projection onto the subspace spanned by δj . For k ∈ Λ
we can interprate HΛ

ω to be a rank-1-perturbation of the following form

HΛ
ω = HΛ + ωkPk, (A.2)

with HΛ := HΛ
ω − ωkPk which is therefore independent of ωk. Given z := λ + iε ∈ C

with =z = ε > 0, the resolvent equation yields

(HΛ
ω − z)−1 = (HΛ − z)−1 − wk(HΛ

ω − z)−1Pk(HΛ − z)−1. (A.3)

We can infer from the by (A.3) induced quadratic form evaluated at δk that

〈δk, (HΛ
ω − z)−1δk〉 =

(
〈δk, (HΛ − z)−1δk〉−1 + ωk

)−1
. (A.4)

Define
〈δk, (HΛ − z)−1δk〉−1 =: a ∈ C (A.5)

which is number independent of ωk since HΛ
ω is independent of ωk. It then follows from

(A.4) that ∫
R

=〈δk, (HΛ
ω − z)−1δk〉dωk =

∫
R

=a
(<a+ ωk)2 + (=a)2

dωk = π (A.6)
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holds. Now we will make use of Stone’s formula [RS80, Theorem VII.13] which yields for
any self-adjoint operator A on a Hilbert space and c < d ∈ R the following identity

lim
%→0

1
2πi

∫ d

c

[
(A− κ− i%)−1 − (A− κ+ i%)−1

]
dκ =

1
2
[
χ[c,d](A) + χ]c,d[(A)

]
(A.7)

where the limit holds in the strong sense. Let the interval I be of the form [a, b], ]a, b], [a, b[
or ]a, b[ then together with (A.6) Stone’s formula yields

1
2

∫
R

〈δk,
[
χ[a,b](H

Λ
ω ) + χ]a,b[(H

Λ
ω )
]
δk〉dωk = lim

ε→0

1
π

∫ b

a

∫
R

=〈δk, (HΛ
ω − λ− iε)−1δk〉dωkdλ

≤ (b− a). (A.8)

In particular this yields that we have for any c ∈ R∫
R

〈δk, χ{c}(HΛ
ω )δk〉dω = 0. (A.9)

Hence, we get for any bounded interval I∫
R

〈δk, χI(HΛ
ω )δk〉dµ(ω) =

∫
R

〈δk, χI(HΛ
ω )δk〉dg(ω)dω ≤ ‖g‖∞|I|. (A.10)

Now we are nearly done, however, before we can conclude the statement we will introduce
the following notation. Let Eωj be the expectation with respect to the random variable
ωj and accordingly we will write E = Eω for the expectation with respect to all ran-
dom variables. Furthermore, let ω⊥j := (ωn)n∈Zd\{j} and Eω⊥j denote the corresponding
expectation. Thus we can conclude

E
[
tr χI(HΛ

ω )
]

=
∑
k∈Λ

Eω⊥k

{
Eωk

[
〈δk, χI(HΛ

ω )δk〉
]}
≤ Qµ(|I|)|Λ|. (A.11)

A.2 Proof of the simplicity of the eigenvalues of H

In the following we will state the proof of Theorem 5.20 which can be found in [Geb11,
Appendix A]. Thus, let H be the random block operator defined in (4.13). Since we
assumed that the common distribution of V , µV , and respectively of b, µb, are absolutely
continuous with respect to the Lebesgue measure we can use the following result to prove
Theorem 5.20.

Lemma A.1. Let λ be the Lebesgue measure on Rd and let A ⊂ Rd be a Borel set with
λ(A) > 0. Then we have

∃a ∈ A : ∃(cn)n∈N ∈ RN : cn → 1, for n→∞, such that: {acn}n ⊂ A.
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Proof. Let us define for a ∈ Rd the line starting in 0 and ending in a by [0 : a] :=
{ta : t ∈ [0,∞[}. We will prove the statement by contradiction. Assume that ∀a ∈
A : ∀cn → 1 : acn /∈ A for n large. Then we have

∀a ∈ A ∃ε(a) : Bε(a)(a) ∩ [0 : a] ∩A = {a}. (A.12)

Hence, there are no accumulation points in A ∩ [0 : a] and thus we have that A ∩ [0 : a]
is discrete. Therefore, it is of measure 0 with respect to the Lebesgue measure on R. By
transforming into spherical coordinates and using Fubini we can conclude that λ(A) = 0
contradicting the assumption that λ(A) > 0.

Remark A.2. With the help of this lemma we can turn to the proof of Theorem 5.20 as
can be found in [Geb11].

Proof of Theorem 5.20. Define I := {1, . . . , 2|Λ|} ⊂ N and let the set {En(V, b)}n∈I
denote the eigenvalues ofHΛ ordered by magnitude and repeated according to multiplicity
which depend on the random potential V and the off-diagonal random entries b. Since
we have that

P
(
HΛ has a degenerate eigenvalue

)
= P

(
∃ l 6= k ∈ I : El(V, b) = Ek(V, b)

)
≤
(

2|Λ|
2

)
max
k 6=l

P
(
El(V, b) = Ek(V, b)

)
, (A.13)

it is sufficient to proof that P
(
El(V, b) = Ek(V, b)

)
= 0 for all k 6= l. We shall prove this

by contradiction. Hence, fix k 6= l and assume

P
(
El(V, b) = Ek(V, b)

)
> 0. (A.14)

Since we assumed that for all n ∈ Λ Vn and bn are absolutely continuous with respect to
the Lebesgue measure we have that the set A := {(V, b) ∈ R2|Λ| : El(V, b) = Ek(V, b)} ⊂
R2|Λ| has positive Lebesgue measure λ(A) > 0. Lemma A.1 then equips us with a point
a := (Ṽ , b̃) ∈ A and real valued sequence (cn)n with cn → 1 such that the set {acn}n ⊂ A
and has the accumulation point a.
Now consider the operator

T (β) :=
(
HΛ

0 0
0 −HΛ

0

)
+ β

(
Ṽ b̃

b̃ −Ṽ

)
, (A.15)

where β ∈ C. Let us denote the eigenvalues of T (β) by ϑn(β). Then we have by the above
that for all n ϑk(cn) = ϑl(cn) and in particular ϑk(1) = ϑl(1). However, we know by
analytic perturbation theory (cf. [Kat76]), that the ϑn(β) are analytic in some complex
neighborhood U of 1. Since we have that ϑk(β) = ϑl(β) on a set with an accumulation
point we can conclude by the identity theorem of complex analysis that ϑk(β) = ϑl(β)
holds for all β ∈ U . Since we get for all real β a neighborhood in which the eigenvalues
are analytic we can conclude that ϑk(β) = ϑl(β) holds for all β ∈ R and in particular
for β = 0. Recall that we assumed Hω to be the Anderson model and hence HΛ

0 = ∆Λ.
Hence, we know that all eigenvalues of HΛ

0 are distinct and that HΛ
0 > 0 which is a

contradiction.
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