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Completeness

Completeness: i.e., all Cauchy sequences converge.

• In a way, completeness is “automatic”, just push one button and switch it on:

Theorem. If (M, d) is an incomplete metric space, it is possible to find a complete metric space

M̃ so that M is isometric to a dense subset of M̃. The completion M̃ of M is unique.

• Abstractly speaking, the completion M̃ is made of the equivalence classes of all Cauchy
sequences (x1, x2, x3, . . . ) in M under the equivalence relation (x1, x2, x3, . . . ) ∼ (y1, y2, y3, . . . ) ⇔
d(xn, yn) → 0. In the isometric embedding M → M̃ each x ∈ M is mapped into the equivalence

class [(x, x, x, . . . )]. A Cauchy sequence {x(N)}N in M̃, x(N) = [(x
(N)
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3 , . . . )], converges to

x = [(x
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1 , x
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2 , x

(3)
3 , . . . )].

• In concrete applications M is a subset of an already complete metric space (M̃, d) and

taking its completion amounts to take its closure in (M̃, d). That is, some Cauchy sequence in
M (with respect to the metric induced by d) do not converge in M while they converge to a limit

point in M̃ \M, and the completion consists of just adding to M such limit points. Like adding to
“black” marbles some further “red” marbles.

• Actually the abstract theorem is automatic and fairly cheap, but almost useless. We never work
with equivalence classes of objects, too big headache! (We like

√
2 to be a point on the real line, not

an equivalence class.) The key is to identify the completion with something that is much easier
to deal with. Like to identify your points with black marbles to which you may add red marbles.

• Completeness allows one to create new structures that are more powerful and they canoni-
cally include the previous ones. Like R from Q, or L2[0, 1] from C[0, 1]. The Cauchy property can
be checked directly from the sequence without any reference to the limit itself. This idea allows one
to create new objects as limits of Cauchy sequences even though the limit is not checked directly.

• Completeness, as the distinguishing property of infinite-dimensional Banach spaces, enters at a
very early stage of the theory to guarantee the existence of a non-empty interior of the Banach
space. This is the Baire category theorem: if X =

⋃∞
n=1An is a complete metric space then

at least one An must have a non-empty interior. Thus, pictorially, a Banach space is indeed a
sufficiently “fat” boy, he doesn’t play with those “skinny” kids of topology or set theory. (Banach
spaces are sets of second category, not of first category.) Not only: you can “slice” him in
countably many pieces (poor boy!) and at least one slice is still suitably “fat”.

• This allows to prove a number of cornerstones in Banach space theory: uniform boundedness
principle, open mapping theorem, inverse mapping theorem, closed graph theorem. They all
rely on Banach being sufficiently “fat”. (Notice: Hahn-Banach doesn’t require completeness – it
requires Zorn though.)

• In the Hilbert space framework, completeness is the key ingredient for the existence of the
projection of a point x onto a closed subspace V of H (the projection theorem: H = V ⊕ V ⊥)
and therefore for the Riesz lemma and all what follows from Riesz (e.g., definition and properties
of the adjoints).

• Thus, quantum mechanically, Physics does not “dictates directly” the spaces of wave functions
to be complete (in fact one always deals with a dense of wave functions, doesn’t need all them), but
completeness is needed for the existence of the main objects of the theory. For instance, the fact
that to every ket |ψ〉 there’s one bra 〈ψ| (Riesz lemma).
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