


This representation is irriducible.
Notice that Ua ≡ exp{iaQ} and Vb ≡ exp{ibP} with a, b ∈ R are two one-parameter strongly
continuous groups of unitary operators.
It is easy to verify that the following identity holds

UaVbU
∗
a = Vbexp{−iab} 7.3

Remark that (7.2) is the differential form of (7.3).

Solution B)
Hilbert space H = L2([0, 2π], dθ)

Q is a bounded operator defined on all of H by

(Qf)(θ) = θf(θ)

The domain D(P ) of the operatorP is made of all periodic function with square integrable
derivative. On this domain P acts as −i d

dθ
.

Also in this case both the Q and P are self-adjoint, Q is bounded. Hovever Q does leave the
domain of P invariant since if f(2π) 6= 0, Qf does not belong to the domain of P.
Therefore PQ is defined only on functions for which f(0) = f(2π) = 0.
This set is dense in L2([0, 2π) but the restriction of P to this set does not define uniquely
a self-adjoint operator (see Chapter 9; to define a self-adjont operator one needs to impose
boundary conditions ).
It can be verified by a direct computation that equation (7.3) is not satisfied: the operator
UaVbU

∗
aV
∗
b is not a multiple of the identity.

Solution C)
In the space of continuous functions consider the characters ξλ of the group R, (i.e. ξλ ≡

eiλx λ ∈ R.)
Denote by K the closure in the topology of L∞ of their finite linear combinations

∑N
1 ciξλi .

K is the space of quasi periodic functions.
The quadratic form

(φ, ψ) ≡ limT→∞
1

2T

∫ T

−T
φ̄(t) ψ(t)dt

is well defined on K and defines a pre-scalar product.
Denote by K the Hilbert space completion of K in the topology of this scalar product.
The characters form a non-denumerable orthogonal basis in K and therefore K is non separable.
On K we define two families of unitary operators Ua and Vb, a , b;∈ R by

Vaξλ = ξλ−a, Ub ξk = eixbξk

This operators satisfy (7.3) but the map a→ Va is not continuous in the strong topology of K
and not even Lebesgue-measurable (i.e. all the functions (φ, Vaφ) φ ∈ K are not measurable
as a function of a).
To verify this, notice that weak and strong measurability coincide for unitary maps, and that

V0 ≡ I |(Va − I)ξλ|2 =
√

2, a 6= 0

The representation C) is irreducible ( an element of B(K) which commutes with Uλ and Va is
a multiple of the identity).
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It is not equivalent to A) because the map a → Va is not Lebesgue-measurable (whereas in
solution A) it is continuos).

Since there are many inequivalent representation of (7.2) we will not put (7.2) at the basis
Quantum Mechanics.
Following H.Weyl we will privilege the relation (7.3) among unitary operators, requiring also
that the map b→ Vb be Lebesgue-measurable .
If the system has N degrees of freedom we require

U(a)V (b)U∗(a)V ∗(b) = exp{−i(a.b)}, a, b ∈ RN 7.4

with

U(a) = exp{iaQ}, V (b) = exp{ibP} Q = {Q1, ..QN} P = {P1, ..PN}.

We shall prove that solution A) given above is the unique (modulo unitary equivalence) irre-
ducible solution of (7.4) for which the map a, b ∈ CN → U(a) , V (b) is Lebesgue-measurable.
If one does not require irreducibility any representation of (7.4) decomposes as a direct sum
of identical copies of the irreducible ones.
This proof, originally due to Schroedinger and later refined by Weyl and von Neumann, leads
to the identification of Schroedinger’s and of Born-Heisenberg’s representations of the C.C.R.

Let z = a+ ib , z ∈ CN , a, b ∈ RN and define

W (z) = exp{−i(a, b)
2
}V (b)U(a) 7.5

Then (7.4) is equivalent to

W (z)W (z′) = exp{− i
2
Im(z, z′)}W (z + z′) z ∈ CN 7.6

We have denotes by (z, z′) the scalar product in CN (antilinear in the first element).
This shows that z → W (z) is a projective unitary representation of the multiplicative group
CN .
It is strongly continuous by construction.

Definition 7.1
We shall call Weyl system on the Hilbert space H a collection of operators which satisfy

(7.6) and are continuous in z in the strong operator topology.
♦

Notice that the semidirect product the Weyl system with the group S1 defines a group: the
Heisenberg group.

Remark 7.2
As one sees from (7.5) in the definition of Weyl system the operators Qk and Pk are not

treated symmetrically.
One could have defined the Weyl operators W (z) inverting the position of U(a) and V (b) in
the definition.
It is easy to see that this would correspond to a unitary transformation.

♣
From Stone’s theorem applied to the subalgebras corresponding to real and imaginary values
of z (from (7.6) one sees that each of these subalgebras is commutative) it follows that there
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exist self-adjiont operators Qk Pkwhich generate the corresponding N-parameter subgroups
and which satisfy (7.1) on a common dense invariant domain.

Remark 7.3
Setting x+ iy = z ≡ {x, y} one has

Im(z, z′) = ω({x, y}, {x′, y′})

where ω is the standard symplectic two-form (recall that the complex structure of CN is
isomorphic to the symplectic structure of R2N .
One can therefore write (7.6) as

W (z)W (z′) = e−
i
2
ω(z,z′)W (z + z′) z, z′ ∈ CN 7.7

♣

To prove uniqueness of the representation it is convenient to study first a more abstract al-
gebraic structure, in analogy with what is done in the analysis of the representations of Lie
groups through their group algebras.
Let z → W (z) be a Weyl system, Lebesgue - measurable in the weak sense.
For each function f ∈ L1(CN) with norm ‖f‖1 we define an operator Wf as follows.

Wf ≡
∫
dzf(z)W (z)

It is easy to see that Wf is a bounded operator with

||Wf || ≤ ||f ||1 7.8

Therefore the linear map f → Wf is norm-contiuous.
The following identities are easy to verify

Wf +Wg = Wf+g, W ∗
f = Wf̄

Wf Wg = Wf×g, (f × g)(z) ≡
∫
dz′f(z − z′)g(z′)e

i
2
ω(zz′) 7.9

The product f × g defined in (7.9) is often called Moyal product .

Lemma 7.1
The map f → Wf is injective.

♦
Proof

If Wf = 0, then for every φ ∈ H one has∫
dzf(z)(ψ,W (z)φ) = 0

Setting φ′ = W (z0)φ , ψ′ = W (z0)ψ , from

W (−z0)W (z)W (z0) = W (z)e
i
2
ω(z,z0)

one derives that for every pair ψ′, φ′

0 =

∫
dzf(z)(ψ′,W (z)φ′)e

i
2
ω(z,z0)
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One concludes that the Fourier transform of f(z)(ψ′,W (z)φ′) vanishes.
For each value of z one can choose φ′ = W (z)ψ′ and therefore

< φ′,W (z)ψ′ >=< φ′, φ′ >= 1

We conclude that f = 0.
♥

We can regard the Wf , with operator norm ‖Wf‖, product law WfWg = Wf×g and conjugation
given by (7.10) as a Banach algebra, without reference to the Weyl system.
Notice that (7.8) can also be written

||Wf || ≤ ||f̂ ||∞

In fact it is easy to prove that the equality sign holds.
Since L∞(X) is a C∗-algebra one can give to the Banach algebra generated by the collection
of Wf a C∗-norm and regard their algebra as a C∗ -algebra.
We will call this C∗-algebra Weyl algebra and we will denote it by the symbol W .
We not indicate the number N of degrees of freedom, with the convention that N < +∞
unless stated explicitly.

In each representation of the Weyl system the map f → Wf provides a correspondence between
function in classical phase space and operators on a Hilbert space.
In Chapter 3 we have called quantization a procedure that associates to a function (in a suitable
class) on phase space an operator on a Hilbert space H. We shall come back at the end of this
Chapter to the problem of quantization.
We shall call Weyl quantization the quantization performed according to Weyl’s algebra.
Notice that if in our analysis if we substitute Weyl’s algebra with the (abelian) algebra of
the characters of the multiplicative group R2N we obtain the correspondence f → F(f) = f̂
(Fourier transform) and the product structure is mapped into convolution.
Therefore one may regard the corresondence f → W (f) as a twisted convolution or a symplectic
Fourier transform .

This makes the following definition natural

Definition 7.2
We will call Weyl quantization the map f → W~(f) defined by

f → W~(f) =

∫
f(z)W~(z)dz

♦
When we will came back to Weyl quantization in Chapter 11, we will use the more common
notaton

W~(f) ≡ OpW~ (f)

Remark 7.4
Weyl’s quantization, originally defined for continuous functions, can be extended to a large

class of functions.
We shall discuss this it in some detail in Chapter 11.
It is also clear that a generalization of Weyl’s quantization can be obtained by substituting to
ω in (7.10) other symplectic structures.
We shall see an example in the Appendix, where we shall discuss the magnetic Weyl algebra.
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♣
Remark 7.4

So far we have not taken into account that position and momentum have dimensions and
that the product position times momentum has the dimension of an action.
This suggests to choose units such that [Q~

k, P
~
h ] = i~δk,h.

With this convention one has
W~(z) = e−i

(a,b)
~ V (b)U(a)

and the product that defines Weyl’s algebra is

W~(z)W~(z′) = W~(z + z′)e−
i

2~ω(z,z′) 7.10

From the point of view of mathematics it is natural to define as semiclassical limit of this
algebraic structure the limit ~→ 0.
It is clear from (7.10) that the semiclassical limit is singular: the relation (7.10) contains a
factor which has fast oscillations when ~→ 0.
We will discuss this limit in Chapter 8 and we shall analyse it further in Chapter 11.
In Chapter 11 we will see the relation, in the semiclassical limit, of the algebraic structure of
the generators of one-parameter groups in the Weyl quantization with the Poisson algebra of
the generators in Hamiltonian Mechanics.
The properties of oscillatory integrals play a crucial role in the formulation of the semi-classicl
limit in the Schroedinger representation.
From the point of view of Physics ~ is a physical constant and its value is not at our disposal.
The mathematical limit ~→ 0 gives informations about those quantities that have the dimen-
sion of the action and take values large as compared to Plank’s constant.

♣
Coming back to the Weyl algebra we recall (see Chapter 4 ) that every C∗ algebra has a faithful
representation as operator algebra on a Hilbert space K .
If the C∗ algebra is separable, the space K can be taken separable.
Given a representation π of W in K one can ask what are the conditions under which one can
reconstruct Weyl’s system.
To answer this question let us consider a sequence {fn ∈ L1(CN)} which converges in distri-
butional sense to the measure concentrated in the point z0 ∈ CN .
Consider the sequence of operators π(Wfn) on K. If this sequence converges weakly, denote by
π(W (z0)) the limit operator.
If the limit exists for each subsequence, it is not hard to prove that the operators π(W (z0))
determine a Weyl system.

We shall call regular those representations of the Weyl algebra that induce as above a Weyl
system.
From the uniqueness theorem of representations of Weyl algebra we shall then derive the
uniqueness theorem for the Weyl system.
It is worth remarking that the Weyl algebra contains projection .
Indeed, setting

f0(z) = (2π)−Nexp{−|z|2/2} 7.11

and using Weyl’s relation one obtains

Wf0 = W ∗
f0
, Wf0Wf0 = Wf0

Therefore Wf0 is a projection operator.
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Since representation are homeomorphism, for every representation π, π(Wf0) is a projection
operator.
Moreover from (7.10)

Wf0WfWf0 = WfWf0 ∀f 7.12

We now construct the representations of the Weyl algebra.
As we have seen in Chapter 4, every state ρ determines a representation and every represen-
tation is obtained in this way.
Let us briefly recall this construction (GNS).
A state ρ of a C∗ algebra A is by definition a linear positive functional continuous in the
topology of A.
Every state induces a pre-hilbert structure on A as follows

< a, b >≡ ρ(a∗b) 7.13

Denote by H the Hilbert space obtained by completion.
Denote by ã the equivalence class of a. If b ∈ A define an operator b̂ on H as follows

b̂.ã = b̃a

The operator b̂ is well defined since ρ(a ∗ b ∗ ba) ≤ ||b||ρ(a ∗ a).
Moreover b̂ is closable and bounded and extends to a bounded operator on the entire space H;
we shall denote it by the same name.
From (7.13) follows b̂ĉ = b̂c.
The correspondence a → â provides therefore a representation of A by means of bounded
operators on the Hilbert space Hρ.
We shall denote by πρ the representation induced by ρ and with P ≡ πρ(Wf0) the representative
of the projection operator Wf0 in this representation.
For a generic C∗- algebra and a generic state the G.N.S. representation is not faithful, but for
the Weyl algebra every representation obtained by this procedure is faithful.
This is due to the fact that the product of any two elements Wf e Wg of the Weyl algebra is,
a part from a phase factor, an element of the Weyl algebra.
Since the Weyl algebra is separable also the space Hρ is separable.
Let ωj, j = 1, .. be an orthonormal basis of PHρ.
Denote by Ki the subspace of Hρ generated by the action of πρ(Wf ) applied to ωi (for the sake
of simplicity we omit the index ρ.)
If we prove

⊕Ki = Hρ 7.14

it follows that the representation πρ decomposes in the direct sum of faithful irreducible rep-
resentations each of which has ωj, j = 1, ..dρ as cyclic vector.
Indeed from

Pπ(Wf )P = P

∫
dzf(z)exp{−|z|2/4}

it follows that πρ(Wf ) vanishes if and only if f = 0. From

< πρ(Wf )φi, πρ(Wg)φj >= δi,j

∫
f(z)ḡ(z′)exp{i/2Im(z, z̄′)}exp{−1/2|z − z′|2}dzdz 7.15

one derives that the representation πρ is the direct sum of irreducible representations each in
the Hilbert space generated by the action of πρ(Wf ) on φi.
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They are all equivalent since the scalar product in (7.16) depends on the functions f and g but
not on the representation.
We have proved

Theorem 7.1
All irreducible representations of the Weyl algebra are unitary equivalent to the Schroedinger

representation.
As a consequence they are all regular , the operators π(W (z)) exist in every representation
and define the same Weyl system; the map

z → πρ(W (z))

is a strongly continuos map of CN in the unitary operators of Hρ.
♦

Remark 7.5
In the Schroedinger representation in H = L2(RN) the elements of Weyl’s algebra are

compact operators; this is easy to verify because their integral kernels are known explicitely.
♣

Remark 7.6
The construction of the Weyl system holds for any even dimensional real vector space and for
any non degenerate symplectic form ω.
Notice however that in the proof of uniqueness of the irreducible representation we have used
the Weyl algebra, and this has required the use of Lebesgue measure (to introduce L1 func-
tions).
Lebesgue measure does non exist in R∞ and neither exists in this space a (σ-continuous)
measure that is quasi invariant (invariant modulo translations).
Therefore the uniqueness theorem does not hold for a Weyl structure in a system with infinitely
many degrees of freedom (e.g. in the Theory of Quantized Fields or in Quantum Statistical
Mechanics)

♣
In the Weyl system we shall call K the base space and shall representation space that Hilbert
space on which W (z) acts.

Remark 7.7
The symplectic structure Im(z, z′) is invariant for unitary maps in K.

From the uniqueness theorem follows the existence of a correspondence Γ between U(K) and
U(H).
It is easy to see that this correspondence preserves weak continuity, and then it induces a
correspondence ∂Γ between generators, i.e. between self-adjoint operators on K and self-
adjoint operators on H.
The application ∂Γ extends by linearity to an application which we shall denote by the same
name ∂Γ : B(K)→ B(H),

♣
Definition 7.3 : Second Quantization

The map ∂Γ has functorial character and goes under the name second quantization.
This functor can be constructed also if K has infinite dimensions but then it depends on the
representation of the Weyl system..

♦
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If t → eitA is a one-parameter strongly continuous group of unitary operators on K with
generator A, ΓeitA is a strongly continuous group of unitary operators on H and ∂Γ(A) is its
generator.

The following theorem holds also if K is infinite dimensional.

Teorem 7.2 (Segal)
Let K a complex Hilbert space, W a Weyl system K.

Let H the representation space W. Let A be an operator K with A > 0 and Az 6= 0, ∀z ∈ K.
Let ω be a cyclic vector for W .
Suppose that there exists a one parameter group Γ′(t) of unitary operators on H such that

a)
Γ′(t)W (z)(Γ′(−t)) = W (eiAtz)

b)
Γ′(t)ω = ω ∀t ∈ R

c)
Γ′(t) = eitH , H ≥ 0

Then there exist unique a correspondence (second quantization) Γ : U(K)→ U(H) such that

Γ(eiAt) = Γ′(t) 7.16

and moreover for any operator B ≥ 0 on H one has ∂Γ(B) > 0 (recall that ∂Γ(B) is the
generator of the group Γ(eiBt).

♦
Proof

Let
f(u) =< e−uHW (z)ω,W (z)ω > u = s+ it z ∈ K 7.17

the function f is bounded, holomorphic in s > 0, continuous in s ≥ 0.
Denote by Φ this space of function and notice that they form an algebra.
Weyl’s relations give

f(it) = ei/2Im(zt,z) < W (zt − z)ω, ω >, zt = e−iAtz

The function g(u) = e−1/2(e−uAz,z) belongs to Φ therefore also gf ∈ Φ and one has

(fg)(it) =< W (zt − z)ω, ω > e−
1
2
Re(zt,z)

Substituting z with −z one sees that also the function < W (−zt + z)ω, ω > e−
1
2
Re(zt,z) belongs

to Φ and its boundary value is f̄ ḡ.
By taking adjoints, can construct a function which is bounded, holomorphic in s < 0, contin-
uous s ≤ 0 and has boundary value fg at s = 0.
We conclude that fg can be continued in the entire complex plane as an analytic function,
and is therefore constant as a function of t..
Evaluating this function at zero its value is seen to be e−(z,z)/2; therefore < W (zt− z)ω, ω >=
e−|zt−z|

2/4.
Since the kernel of A is the null vector, when z and t vary the vectors zt − z span a dense set
in K.
Therefore for every z < W (z)ω, ω >= e−|z|

2/4.
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It follows that for every unitary U ∈ B(K) the map∑
aiW (zi)ω →

∑
aiW (Uzi)ω

is well defined and isometric on D ≡ ∪z{W (z)ω}. By density the map extends to a unitary
operator Γ(U).
By construction

Γ(U)W (z)Γ∗(U) = W (Uz), Γ(U)ω = ω

and therefore U → Γ(U) is a representation of U(K), continuous because

< Γ(U)W (z)ω,W (z)ω >= e
i
2
Im(Uz,z)e−|U(z)−z|2/4

In particular choosing U = e−itA one has for all z

Γ(e−iAtW (z)Γ(eiAt = Γ′(t)W (z)Γ′(−t))

and this proves (7.16).
To prove that if B > 0 as an operator on K then ∂Γ(B) > 0 it is sufficient to prove that if
B > 0 then ∫

< Γ(e−iBt)w,w′ > g(t)dt = 0, ∀w,w′ ∈ K 7.18

if g ∈ L2(R), ĝ(p) = 0, p < 0.
By density it is sufficient to prove (7.18) for w = W (z)ω, w′ = W (z′)ω. Notice that

< Γ(e−iBt)W (z)ω,W (z′)ω >= exp(−1

4
(|z|2 + |z′|2) + 2(e−iBtz, z′)

and the exponential map preserves positivity.
Uniqueness follow from the cyclicity of ω.

Segal’s theorem can be extended, with a more complicated proof, to the case in which A ≥ 0
is self-adjoint and zero is a simple eigenvalue.

♥
Let us consider in the Schroedinger representation in L2(Rd) the positive self-adjoint operator

N =
d∑

k=1

Nk, Nk = 1/2(P 2
k +Q2

k − 1) = −1

2
∆k +

1

2
x2
k −

1

2

The operators Nk satisfy on a dense domain

[Nh, Pk] = δk,hQk [N,Qk] = −δh,kPk

The spectrum of Nk is non-degenerate and consists of the non negative integers. The eigen-
vector to the eigenvalue zero is 1

2π
e−

1
2
x2
k .

All continuous and bounded functions of functions N belong to the Weyl algebra.
It is convenient to introduce the operators

ak =
1√
2

(Qk − iPk) ≡
1√
2

(xk +
∂

∂xk
) k = 1, ..d

a∗k =
1√
2

(Qk + iPk) ≡
1√
2

(xk −
∂

∂xk
) k = 1, ..d
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which satisfy in a dense domain (e.g. D(N) ) the relations (that we still call of canonical
commutation relation )

[ak, ah] = [a∗k, a
∗
h] = 0, [ah, a

∗
k] = δh,k 7.19

The operators ak e a∗k have a dense common domain of definition, are adjoints and on D(N)
satisfy

N =
d∑

k=1

Nk, Nk = a∗kak, [Nk, ah] = −ahδh,k

The spectrum of the operators ak is the real axis, while a∗k have empty spectum.
All have a dense set of analytic vectors (in particular the analytic vectors of

√
N).

Often the operator N is denoted number operator ; in the Schroedinger representation it
coincides with the hamiltonian of the harmonic oscillator.
The operators Nk are a complete system: an operator that commutes with all of them is a
multiple of the identity.
Therefore there exists a canonical isomorphism of H with (l2)⊗d in which a complete orthonor-
mal basis is given by the sequences of d non negative integers.
The eigenvalue which corresponds to the sequence {n1, ...nd} the eigenvalue of N is

∑d
1 nk.

To the non degenerate eigenvalue 0 di N corresponds the sequence {0, ...0}, and this vector
coincides with the cyclic vector ω.
From (7.19) one derives

ak{n1, ..nd} =
√
nk{n1, , nk − 1, ..nd}, a∗k{n1, ..nd} =

√
n+ 1{n1, , nk + 1, ..nd}

Notice that N
−1/2
k ak and N

−1/2
k a∗k are bounded operators.

In the Schroedinger representation for a system with N degrees of freedom in L2(RN) one has

{n1, ...nd} → hn1(x1)...hnd(xN)e−
1
2
|x|2

where hi is the ith Hermite polynomial

Definition 7.4
The representation of the canonical commutation relations in the basis {n1, nd} is the Fock

representation .
♦

The functor Γ (second quantization) takes a particularly interesting form in the Fock repre-
sentation.
If A is a complex-valued matrix of rank d we have

Γ(A) ≡ {0, A,A⊗ I + I ⊗ A,A⊗ I ⊗ I + I ⊗ A⊗ I + I × I × A+ ....} 7.20

In particular
Γ(0) = 1, Γ(et) = e−tN , limt→∞Γ(et)φ = (ω, φ)ω 7.21

Remark that the explicit form of the representation depends on the choice of the basis but a
change of the basis leads to an equivalent representation.
Fock’s representation is not much used in Non Relativistic Quantum Mechanics which studies
systems with a fixed number of particles.
In this case Schroedinger’s representation is more useful since it allows the use of techniques
of Classical Functional Analysis (for example Sobolev inequalities , Lebesgue’s dominated
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convergence, positivity preserving semigroups...) that do not have a natural counterpart in
Fock’s representation.

We remark that if K is infinite dimensional one can still define a Fock representation but the
representation will depend in general from the basis chosen.
A change of base associated to a matrix which is not of Hilbert-Schmidt cannot be realized
with a unitary map, and therefore one ends up in an inequivalent Fock representation.
If one identifies K with L2(R, dGk) where Gk is a Gauss measure one can construct Fock
representations based on spaces of functions; typically in this case the representation space is
a space of distributions.
But it should be stressed that in infinite dimensions not every representation is of Fock type.
In the case of systems with infinitely many degrees of freedom Fock’s representation is an
useful instrument for a perturbative analysis, using Duhamel’s formula.
One should be aware that, due to non uniqueness, if the theory depends on a small parameter
(coupling constant) one may be forced to use different irreducible representation for different
values of the parameter so that perturbation expansion may present some difficulties.

REAL AND COMPLEX BARGMANN-SEGAL REPRESENTATIONS

The Weyl system admits also representations that use Gauss measures, and therefore can
be extended to the infinite dimensional case.
Since in R∞ there are Gauss measures which are inequivalent to each other, we will have
inequivalent representations of the C.C.R.. In the case of a finite number of degrees of freedom
the representations are all equivalent.
We describe two of them in the finite-dimensional setting, because of their relevance to the
infinite dimensional case.

Let us note preliminarly that gaussian measure share with Lebesgue’s the property of being
cylindrical, and have the advantage of being probability measures. It is this property that
allows an extension to infinite dimensions.

Complex Bargmann-Segal representation

In the infinite dimensional setting this is the weak normal distribution in the terminology used
by I.Segal

The complex Segal-Bargmann representation diagonalizes the annichilation operators.
Even for systems which have a denumerable infinity of degrees of freedom it permits the use
of techniques of Functional Analysis similar (but weaker) to the one that are used in the
Schroedinger representation in the finite dimensional case.
The origin of the complex Bargmann-Segal representation can be traced to the remark of Fock
who noticed that the commutation relations among a∗k and ah are satisfied by the operators zk
e d
dzh

acting on the space F of entire functions with a suitable Gauss measure.
We shall come back to this point later.
To describe this representation and to verify its equivalence with the Schroedinger representa-
tion, consider the isomorphism F of Hilbert spaces

L2(RN , dx)→ B ≡ L2(CN , dG)an φ(x)→ ψ(z) 7.22

where the target space is the Bargmann space B of functions analytic in the sector zk ≥ 0, k =
1..N which are square-integrable for the Gauss measure

(
1

π
)ne−|z|

2

Πdxidyi
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Notice that the requirement that the functions be analytic in a quadrant is necessary to have
isomorphism.
The correspondence is given by

F : φ(x)→ ψ(z) = (
1

π
)n

∫
Rn
e−1/2(z2+|x2|)+

√
2(z.x)φ(x)dx 7.23

The advantage of using B instead of the smaller space F is that one introduces a duality with
the space B′ obtained by complex conjugation and which is composed of functions analytic in
the opposite sector.
On this dual space one can realize another representation of the Weyl algebra. Due to equiv-
alence, there is a unitary map J between these representations.
On the other hand, taking boundary values, one has a unitary map between B and the space
Breal of functions on RN which are square integrable with respect to suitable Gauss measure.
Since this is the space on which we will define the real Bargmann-Segal representation by
uniqueness the there is a unitary map between the Complex and Real Bargmann-Segal repre-
sentations.
In the real representation the operator which corresponds to multiplication by zk = qk + ipk
when qk = 0 is ∂

∂xk
and therefore z → z̄ correspond to hermitan conjugaton.

On a dense domain Fa∗kF
−1 is multiplication by z and FakF

−1 is the operator ∂
∂z
.

The operator Fa∗kF
−1 cannot have eigenvectors because the equation zφ(z) = λφ(z) cannot

be solved with φ(z) analytic.
The spectrum of the operator FakF

−1 is the entire complex plane; in fact for every complex λ
the equation dφλ

dz)
= λφλ(z) has the solution φλ(z) = eλz which is analytic and square integrable

with respect to Gauss measure.
The eigenvectors of FakF

−1 are called coherent states and play a mayor role in Quantum
Optics.
For λ = 0 the solution is φ0(z) = C which corresponds to the vacuum in Fock space (and the
the ground state of the harmonic oscillator in the Schroedinger representation.
It is easy to see that the vectors , obtained by repeated action of Fa∗kF

−1 on φ0

zm1
1 ....zmnn√
m1!...mn!

, mk ∈ N

form a complete orthonormal basis in Kn ≡ L2
an(CN , dzN).

The vectors ψaare not orthogonal (the operators ak are not self-adjoint) but provide a complete
system in the sense that any vector φ can be expressed as an integral over coherent states

φ(z) =

∫
ezw̄dµ(w) dµ(w) = (

1

π
)nφ(w)e−|z|

2

Πdzk 7.24

One sees from (7.24) that

(
1

π
)nφ(w)e−|z|

2

7.25

is a reproducing kernel for the state in this representation.
The inverse transformation F−1 is given as follows

(F−1g)(z) = limM→∞

∫
|z|<M

Ā(x, z)g(z)dνn(z) 7.26

with A(x, z) = e−
1
2

(z2+x2)+
√

2(z.x).
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Remark that for each x ∈ Rn one has A(x, z) ∈ Kn but only for a dense subset of Kn the
integral in (7.26) is absolutely convergent for |x| → ∞.
For a generic vector in Kn convergence in (7.26) is understood in a weak sense.

As remarked before, a (different) complex Bargmann-Segal representation can be also con-
structed on the space F(CN , dµ) of entire functions on CN , square integrable with respect to

the Gaussian measure dµ = e−
1
2
|z|2dz.

In this case the function

K(z, w) = (
1

2π
)Ne

1
2

(z,w) 7.27

is a reproducing Kernel i.e. for f ∈ F(CN , dµ)

f(z) =

∫
CN

K(z, w)f(w)dµ 7.28

At the same time the function K(z, w) is the integral kernel of the orthogonal projection P of
L2(CN , dµ) onto F(CN) (recall that the latter is composed of entire functions).
This structure permits the introduction of Toeplitz Operators defined in this particular case by

Tf : F → F Tf (g) = P (fg) 7.29

These operators (see e.g. [BC87] have a great relevance in Operator Theory and in Quantum
Mechanics; their relation with the Weyl operators in the Bargmann-Segal representation can
be seen to be

Tf = WΘf Θf(z) = (
1

π
)N

∫
CN

e−|z−w|
2

dw 7.30m

The difference between the operators Tf and Wf comes therefore from the difference in the
space of representation; the map Θ is an isometry between the Fock space F and the Bargmann-
Segal space B.
The complex Bargman-Segal representation and the Fock representation play an important
role in The Berezin-Wick quantization, that we will discuss brefly in Chapter 11; in this
quantization the role of the creation operators is taken by Toeplitz operators.

Remark 7.8
The correspondence between L2(Rn, dx) and Kn can also be seen in terms of the symplectic

structures.
ωn ≡

∑
dqk ∧ dpk iµk ≡

∑
dzk ∧ z̄k 7.31

defined respectively on R2N ≡ CN and on C2N .
Notice that Dn ≡ {{z, w} ∈ C2n, w = z̄} is a symplectic sub-variety with respect to the two
form

∑
dzk ∧ dwk.

The corresponding symplectic reduction C2n → Cn is given by

{z, z̄} → z

The linear symplectic transformation (T ∗Rn, ωn)→ (Cn, µn) has as generating function Φ(x, z) =
−i logA(x, z).
One can indeed verify the following identities

pk = − ∂ψ
∂xk

wk =
∂ψ

∂zk
k = 1, ...n

14



This symplectic transformation maps
∑

k(p
2
k + q2

k) to
∑

k zkz̄k which is the classic counterpart
of the map ∑

k

−(
∂

∂xk
)2 + x2

k →
∑
k

zk
∂

∂zk
7.32

♣

Real Bargmann-Segal representation

The real Bargmann-Segal representation is obtained using the isomorphism of Hilbert spaces
(that depends on the positive matrix B)

L2(RN , dx)→ L2(RN , e−(x,Bx)dx), B > 0, φ(x)→ ψ(x) = CBe
1
2

(x,Bx)2φ(x) 7.33

where CB is a normalization constant.
This isomorphism induces on the canonical operators the map Xk → Xk, Pk → Pk− iBk,hxh.
The real Bargman-Segal representation has been used by I.Segal in the infinite dimensional
case to represent the quantum fields as linear functions on spaces of distributions (in the same
way as, in the finite dimensional case, the coordinates xk are linear functions on RN).

Remark 7.9
To give a historical prospective on Segal’s real wave representation it is worth noting that

it has been introduced and employed for the quantization of the Klein-Gordon equation

∂2u(t, x)

∂t2
= ∆u(t, x)−mu(t, x) x ∈ Rd, m ≥ 0 7.34

(for m = 0 this is the wave equation).
This hyperbolic equation admits a unique real solution (in suitable function spaces) if one
chooses as intial data at time t = 0 the (real) function u(0, x) and its gradient ∇u(0, x) ≡
v(0, x).
On the space of pairs of real - valued functions that describe these initial data there exists a
natural (and singular) symplectic structure defined as

ω(f, g) =
1

2

∫
[f(x)∇g(x)−∇f(x) g(x)]dx, x ∈ Rd 7.35

for pairs {f, g} ∈ H1(Rd)⊗H1(Rd)

It can be extended to pairs in H
1
2 or to couples f ∈ H1, g ∈ L2.

This structure is invariant for the flow defined by equation (7.34) and under it the flow is
hamiltonian with as hamiltonian the energy of the classical field.
In this formulation the space K is the Hilbert space of pairs of functions {f(x), g(x)} with
f(x) ∈ H1 g(x) ∈ L2..
The second quantization in this case corresponds (see e.g. [S92] to the Schroedinger represen-
tation but has as configuration space, instead of RN , the space of the real distribution-valued
solutions of the equation (7.34).

♣
The connection with the Fock representation is seen by the following formal argument: chosen
two bases fn, gm ∈ S orthonormal with respect to the L2 scalar product, define the linear
functions on S ′ (coordinates on S ′.
Notice that the Fourier transform is an isometry of S ′).

qn =

∫
fn(x)φ(x)dx, pm =

∫
gm(x)π(x)dx

15



Then the real wave representation gives {qn}, {pm} as operators which satisfy, on a suitable
domain, the relations

[qn, pm] = iδn,m, [qn, qm] = [pn, pm] = 0, n,m = 1, 2,

The complex Segal representation has coordinates on S ′ given by qn+ ipn. This are coordinates
of a lagrangian manifold that evolves in time according to the equation of the classical field.
In this respect the complex representation is of lagrangian rather than hamiltonian nature.

The real and complex Segal representations depends on the choice if the Gaussian measure
(weak normal distribution in the terminology of I.Segal).
We shall study conditions under which there is equivalence.
The representation space has as coordinates linear functionals i ξ(z), z = {f ∈ S, g ∈ S}; for
a detailed analysis see e.g. [Gr67]
Remark that a Gaussian measure is completely characterized by the mean and the variance;
but even if the space K has finite dimension there does not exists a canonical space in which
the measure is realized.

Remark 7.10
We shall see an example of this in Chapter 14 when we shall discuss Brownian motion and

the process of Ohrstein-Uhlembeck (that can be considered as a Quantum Field Theory in zero
space-dimension).
We shall there come back the arbitrariness and restrictions in the choice of the measure space
if we want to restrict attention to choices that allow as measurable functions suitable functions
of the coordinates.
For example in the theory of Relativistic Quantized Fields are of relevance the polynomials
and the exponential functions which can be informally written as φ(x)p and eiφ(x). t
These expression are informal since the coordnate φ(x) is a distribution.
In Quantum Field Theory are of relevance the polynomials in the evaluation of the coordinates
on regular functions, that one writes informally as∫

φ(x)f(x)dx,

∫
π(x)g(x)dx φ, π ∈ S ′, f, g ∈ S 7.36

One can ask whether it is possible, by taking limits in measure, to choose f, g in less regular
function spaces.
This depends on the dimension of the space in which is defined the Klein-Gordon equation,
since it is linked to the different value of k for which the immersion of Hk in L2 is a trace class
operator, where

Hk = {φ(x) ∈ L2(Rd), (−∆ + |x|2 + 1)kφ ∈ L2(Rd)} 7.37

♣

We shall discuss now briefly the condition under which a linear symplectic map in the space
K is realized by a unitary transformation in H.
Consider the family of unitary transformations z → eitAz, A = A∗.
In the finite dimensional case for each value of t the Gauss measure is transformed into an
equivalent one.
Using in K the base of the eigenvectors of A it easy to see that the Radon-Nykodym derivative
is

(det(A∗A))−1)exp{−Tr[(A∗A))−1 − I)]} 7.38
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This considerations are valid also in the case K has infinite dimensions, under the condition
that (7.38) be well defined.
As a consequence the two measures are certainly equivalent (and therefore the map is imple-
mented by a unitary operator and the representations are equivalent) if the operator (A∗A))−1−
I is trace class.
However this condition is not necessary .
A necessary and sufficient condition is that ((A∗A))−1 − I) be of class Hilbert-Schmidt and
therefore A = I +B where B is a Hilbert-Schmidt operator.
This can be seen as follows. Notice that any H.S. operator B can be written as the limit,
in the H.S. topology (a Hilbert space topology) of operators BN =

∑N
n=1 bnΠn where bn are

eigenvalues of B and πn are one-dimensional projection operators.
It is easy to verify that the limit

limN→∞e
−TrBNdetBN 7.39

is finite; it is often denoted by eTr1B.
Taking B = (A∗A)−1 − I proves the statement.

Remark 7.11
In the real Bargmann-Segal representation this has the following interpretation: two gaus-

sian measures with densities formally written as

Dλ = Cλe
−

P
n λnx

2
n , Dµ = Cµe

−
P
n µnx

2
n 7.40

where C is a normalization factor and λn (respectively µn) are the eigenvalues of the operators
L (resp. M) are equivalent if and only if L−M is a Hilbert-Schmidt operator.
If L − M is not trace-class, the series e

P
k λkx

2
k−

P
k µkx

2
k does not converge in general on the

support of the Gaussian with density measure Dλ; however there exists a sequence of real
numbersi cn (connected to the normalization constans Cλ and Cµ) such that the series∑

n

((λn − µn)x2
n − cn)

converges almost surely wit respect to the Gauss measure with density Dµ

♣
We have remarked that the one-parameter groups of symplectic linear maps on K are realized
by one parameter groups of unitary operators on H.
Suppose that the group is determined by the solution of the liner homogeneous equation

ż = JBz

where B is a symmetric matrix.
Making use of the Fock representation it is easy to see that ∂Γ(B) (the corresponding generator
of the unitary group on H) is the self-adjoint operator

∂Γ(B) ≡
∑
k,j

a∗kBk,jaj 7.41

The operator ∂Γ(B)(N +I)−1 is bounded and therefore the analytic vectors for N are analytic
vectors for all ∂Γ(B).
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It is easy to verify that the following relation holds

[∂Γ(B1), ∂Γ(B2)] = ∂Γ([B1, B]) + Tr(B1B2) 7.42

One can also express ∂Γ(B) as bilinear expression in the operators in Pi and Qk and the
resulting commutation rules are similar to (7.42)
In case K = R3 this leads to a simple expression for the generators in H of the rotation group.

Before discussing in some detail the rotation group, we remark that if G is a group of linear
symplectic transformations on K and U(g) = Γ(U(g)), in general the operators Γ(U(g)) do
not provide a representation of G.
This is true only if G is semisimple.
A simple example is the Galilei group, which has time-translations as abelian invariant sub-
group; we shall discuss it shortly.

In the case of the rotation group in R3 we denote by jk, k = 1, 2, 3 the generators of the
rotations around the axes, and use the notation ĵk ≡ ∂Γ(jk).
One has

ĵk = i
∑
h,j

εk,j,lPjQl 7.43

where εk,j,l is Ricci’ symbol.
The analytic vectors of N are a set of analytic vectors for the ĵk and in this domain the
following relations are statisfied

[ĵk, ĵl] = iεk,l,mĵm 7.44

From (7.37) follows that each ĵk commutes with ĵ2 =
∑

k(ĵk)
2 and therefore for each value of

k one can diagonalize simultaneously ĵ2 e ĵk.
With the notation

L± ≡ ĵ1 ± iĵ2, L3 ≡ ĵ3 L2 ≡ ĵ2

one has, on the analytic vectors of N

[L3, L±] = ±L±, L2 = L2
3 + L3 + L−L+ 7.45

In the Schroedinger representation (and therefore in any other representation of the Weyl
system) one has e2πiL3 = I (rotations around any one axis of an angle multiple of 2π is
represented by the identity operator)
Therefore the eigenvalues of L3 must be a subset of the integers.
We shall denote by the symbol m the eigenvalues of L3, with g(l) ∈ N the eigenvalues of L2

and with |l,m > the corresponding common eigenvalues.
From (7.45) one derives

L3L±|l,m >= (m± 1|l,m >, L2L±|l,m >= g(l)L±|l,m > 7.46

and from (7.46)

L±|l,m >=
√
g(l)−m(m+ 1)|l,m± 1 > 7.47

From (7.47) noticing that L−.L+ is a positive operator (since L− = L∗+) one derives that
g(l) must have the form g(l) = l(l + 1) and that the joint eigenvalues of L3 and L2 are
l,m;m ∈ {−l, ..l}.
In order to have more explicit formulas it is convenient to refer to the Schroedinger represen-
tation.
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On the domain of the harmonic oscillator one has

ĵkf(x) = i
∑
h,l

εk,h,lxh
∂f

∂xl
7.48

It is convenient to use the isomorphism L2(R3) ' L2(R+)×L2(S3, dµ) (description in spherical
coordinates) where µ is the invariant measure on the sphere of radius one.
In these new coordinates the operators ĵk take the form

ĵk = I ⊗ Jk

where Jk has the same expression as ĵk but now as an operator on L2(S3, dµ).
Using spherical coordinates the common eigenvalues of J3, J

2 to the eigenvalues m, l take the
form |l,m >≡ Yl(θ)e

imφ where Yl(θ) are the spherical harmonics.

We now treat briefly the Galilei group in the Schroedinger representation.
The Galilei group is a ten parameter Lie group; its defining representation, in the enlarged
phase space for a material point of mass m is

i)
x→ x+ a, p→ p, x, p ∈ R3,

ii)
x→ x+ vt, p→ p+mv v ∈ R3

iii)
x→ Rx, p→ Rp R ∈ O(3)

iv)
x→ x, p→ p t→ t+ τ τ ∈ R

In this notation x is the cartesian coordinate, p is the momentum.
The elements of the abelian subgroup ii) are called is ”boosts”).
The subgroup iv) is time translations; it is an abelian non-compact invariant subgroup ; there-
fore the Galilei group in s not semisimple and its representations by means of unitary are in
general projective .
For each value of t the function

K(x, p, t) ≡ pt−mx 7.49

generates the symplectic subgroup ii) with parameter v ∈ R3. The operators Km satisfy

{Ki, pj} = mδi,j, {Ki, xj} = tδi,j {xi, pj} = δi,j

and together with
{xi, t} = {t, pj} = {t,Kj} = 0

define the structure of Galilei group as a Lie group.
Weyl quantization substitutes the functions qk, pk, Kk with the operators q̂k, p̂k, K̂k which
satisfy the commutation relations (t and m are parameters)

[K̂i, p̂j] = imδi,j, [K̂i, x̂j] = itδi,j [x̂i, p̂j] = iδi,j 7.50

Using (7.46) it is not difficult to give the explicit expression of the unitary operators Ut(v,m)
implementing the maps x→ x+ vt, p→ p+mv.
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In the representation in which the operators x̂k are diagonal one obtains for any function
g ∈ L2(R3)

(Ut(v,m)g)(x) = exp{−itmv
2

2
}exp{−i(x.mv)}exp{i(p.v)}g(x) 7.51

where con pk ≡ −i ∂
∂xk

.

Using (7.51) one can verify that indeed this is a projective representation of the Galilei group.
Notice that

2σ((0,mv), (tv, 0)) = mt|v2|

.

THE FORMALISM OF QUANTIZATION. STRICT QUANTIZATIONS

Generally speaking, a quantization is a linear map that associates to a function f of a suitable
class on a function space X an operator W~(f)n on a Hilbert space H.
If the function is real valued, in general it is required that Qf be selfadjoint.
It is required that some functional relations are preserved under quantizaton.
We will see that there is no quantization that preserves all functional relations.
In definition (7.8) we have defined as Weyl Quantization the map that to each functon f (of
a suitable class) on phase space Rd ×Rd associates the operator QW (f) acting on L2(Rd).
Other quantization have been constructed (see the Berezin-Wick and Toepliz quantizations
described in Chapter 11 ) for which the operators act on a Hilbert space of analytic functions.
The Weyl quantization and the Berezin-Wick quantization are strict quantizations of a Poisson
structure in the following sense.

Definition 7.7
A Poisson structure (or Poisson agebra) is a triple (X ,×, {., .}) where X is a real vector

space ,× is a bilinear associative and commutative map X × X → X (called product) and
{., .} is an antisymmetric map from X × X to X that is for every f ∈ X a derivation both
with respect to × and with respect to {., .}.
Therefore for each two elements f , g h ∈ X one has

i)
f × g = g × f, (f × g)× h = f × (g × h)

ii)
{f, g} = −{g, f}

iii)
{f, gh} = {f, g}h+ f{g, h} (Leibnitz’s rule )

iv)
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity)

♣
Notice that iii) and iv) are the requirement that the Poisson bracket act as a derivation with
respect to both product structures.

A quantization by deformation associates to each value of the parameter 0 < ~ ≤ ~0, and
to each f ∈ X an element of a C∗ algebra A (quantum observables) in such a way that the
algebraic structure of the quantum observables converges in a suitable sense when ~ → 0 to
the structure described by the Poisson algebra.
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Often X is the space of all functions on a symplectic manifoldM; in this case one applies the
quantization procedure only to a subset X0 ⊂ X (for example to functions of class C∞0 onM).

Definition 7.8
Let X be a Poisson Algebra densely contained in the self-adjoint part of an abelian algebra

A0 .
If I is a subset of R+ which has zero as only accumulation point, a strict quantization of the
Poisson algebra (X ,× {., .}) is a family of maps Q~, ~ ∈ I from A0 to the real elements of a
family A~ of C∗-algebras, with norm ‖.‖~ , which satisfies the following conditions

(a) linearity
Q~ is linear for each value of ~ and Q0 is the inclusion.

(b) Rieffel condition

If a ∈ A0 the map I 3 ~→ Q~(a) ∈ R+ is continuous.

(c) von Neumann’s condition

For a, b ∈ A0 one has

lim~→0‖Q~(a) J Q~(b)−Q~(a× b)‖~ = 0

where the suffix J denotes the Jordan product

Q~(a) J Q~(b) ≡ 1

2
[Q~(a) Q~(b) +Q~(b) Q~(a)] 7.52

(d) Dirac’s condition

For a , b ∈ A0 one has

lim~→0‖
1

2~
[Q~(a) Q~(b)−Q~(b) Q~(a)]−Q~({a, b})‖ = 0

(e) completeness condition

Q~(A0) is dense A~
real for ~ ∈ I.

♣
Remark 7.12

The notation strict quantization is introduced to distinguish it from the formal quantization
obtained by formal power expansion in the parameter ~.

♣
Recall that a Poisson manifold is a smooth manifold M that admits on C∞loc(M) a Poisson
structure in which the product is the the standard product of functions on M.

Definition 7.9
A complete quantization of a Poisson manifoldM is a choice of a subalgebraA0 of C∞(Mr)

and a strict quantization of this subalgebra.
♣

Under favorable circumstances the liner maps Q~ are morphisms for each value of ~ and define
for each value of ~ a structure of modified product.

Definition 7.10
A strict quantization is called strict deformation quantization if Q~(A0) is for each value

of ~ a subalgebra of A~ and the map is injective.
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If this is the case, we can define the product A0 ∗ A0 → A0 in such a way that

Q~(A ∗ B) = Q~(A) . Q~(B)

♣
Weyl quantization is a strict deformation quantization ( corresponds to deform the product of
two functions). Another strict deformation quantization is Berezion-Wick quantization that
we will introduce in Chapter 11.

Let us consider the important special case in which the Poisson structure is realized in a space
of functions (e.g. C∞) on the classical phase space T ∗(Rd) and the corresponding quantum
structure is realized by means self-adjoint operators on H = L2(Rd).
Analogous considerations can be done in the case X = T ∗(T d).
Let {xk} be cartesian coordinates in Rd. To simplify notations we write Q~(A) ≡ Â neglecting
the parameter ~.
We want to find a correspondence between classical observables A and quantum observables
Â which satisfies

a)
A↔ Â is linear

b)
xk ↔ x̂k,where x̂k is multiplication by xk

c)
pk ↔ p̂k ≡ −i~ ∂

∂xk

d)
The correspondence A↔ Â is such that if f is continuous then f̂(x) = f(x̂)

f̂(p) = (Ff)(x̂) where F denotes Fourier transform.

e)
Lζ ↔ L̂ζ con ζ = (α, β) α, β ∈ Rd. Here Lζ is the symplectic generator of the translations

in the direction ζ and L̂ζ is the generator of the group of unitary operators t→ W (tζ) = Wζ(t)
defined by

(wζ(t)φ)(x) = e
i
2

(tα;x+ 1
2
t2 β)φ(x+ t β)

(i.e. the one parameter group associated by the Weyl algebra to the direction z).

It is worth noticing that, through suitable limit procedures, a) , e) imply b) , c).

Remark 7.13
Through the correspondence A ↔ Â linear symplectic transformations are mapped to

unitary transformations.
This is not true in general for non linear symplectic transformations, except the ones that
obtained as lift of tranformation of coordinates in Rd.

♣
One can prove that conditions a), .. e) determine completely the correspondence A↔ Â, and
that it cannot be extended to generic functions in phase space.
One has indeed the following theorem

Theorem (van Hove [vH51]
Let G the class of C∞ functions on phase space that generate global one-parameter groups.

We shall denote by Φg the group generated by g ∈ G.
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There does not exist a map g ↔ ĝ, with ĝ self-adjoint , such that

p̂k = i
∂

∂xk
, x̂k = .xk, (a g + b h)̂ = aĝ + bĥ

({g, h})̂ = i[ĝ, ĥ],

Φf
s .Φ

g
t .Φ

f
−s.Φ

g
−t ⇒ eisf̂ eiĝ e−isf̂e−itĝ 7.54

♦

An interesting problem in the theory of quantization is the following.
Let β be a quantization, let H(q, p) be a hamiltonian on R2d and let β(H) ≡ Ĥ. Let H be
self-adjoint and let U(t) be the corresponding unitary group.
Let A ∈ D(β) and let At its classical evolution according to evolution

dA

dt
= {H,A}

and suppose that At ∈ D(β), ∀t.
A natural question to ask is what is the relation between β(At) e and U(t)β(A)U(−t), i.e.
what is the obstruction to the commutativity of the following diagram

A→Φcl At →β Ât →Φq (Â)t →β−1

A 7.55

where Φcl and Φq are respectively the flux associated to the classic hamiltonian H and the one

associated to the quantum hamiltonian Ĥ.
One can try to estimate

‖β(A)t − β(At)‖ 7.56

or
|[β(A)t − β(At)]ψ| 7.57

for a suitable dense set of vectors ψ.
A dual problem, that privileges the role of Quantum Mechanics, is the estimate of

|Ãt − At|∞, |Ãt − At|Lp 7.58

where the function Ã, if it exists is defined by

β(Ãt) = β(A)t

The next problem is to introduce a small parameter ~, which codifies the difference between
the two formalisms (Classical and Quantum), and to require that the quantization be defined
for any 0 < ~ ≤ ~0.
In particular we expect that the right hand side of (7.56) , (7.57) , (7.58) be infinitesimal in ~
and that

[β~(A), β~(B)] =
1

~
β({A,B}) + 0(1) 7.59

(recall that in the definition of the Weyl agebra there is a phase that becomes e
c
~ .

One can hope also to find an asymptotic expansion in ~ (non convergent in general) for the
right hand side of (7.56) , (7.57), (7.58).
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This means finding functions Ak, k = 0, 1, .. with A0 = A such that for each integer N

||β~(A)t −
N∑
0

~kβ~(Ak)(t)|| ≤ cn~N+1 7.60

where cN are suitable constants.
The series will be only asymptotic if one does not prove that supNcN <∞.

The answer to these questions depends on the specific correspondence A↔ β~(A). We will see
in Chapter 11 some examples of quantization by deformation.
We remark that also in a strict quantization the series (7.58) ned not converge for a large class
of classical observables A; in this case the map A→ β~(A) is well defined for every 0 < ~ ≤ ~0

but is not analytic.

GEOMETRIC QUANTIZATION

We end this Chapter with a brief description of another form of quantization, called Geometric
Quantization .
This approach, initiated by B.Kostan and B.Souriau in the early 70’, has had a remarkable
development in the following years and is still object of intense research.
For an introduction on can consult [GS94] [Ki01]; for later developments one can see [H10].

While Deformation Quantization has its origin in Heisenberg’s formulation of Quantum Me-
chanics, Geometric Quantization has its origin in Schroedinger’s formulation. It aims at con-
structing, starting with phase space of a mechanical system, a Hilbert space in which a quantum
mechanical theory can be formulated.
In this sense, Bargmann’s and Segal’s complex representation is a paradigm of Geometric
Quantization and so is the construction of Wigner functions that we will consider in Chapter
11.
We will consider a simple example of Geometric Quantization in the appendix A of Chapter
8, in the framework of the analysis of the semiclassical limit through the W.K.B. method.
As remarked, the purpose of Geometric Quantization is to associate a Hilbert space H(M) to
a symplectic manifold {M,ω} where ω is a closed two-form.
The Hilbert space H(M) is constructed viewing M as a fibered manifold V , with complex-
valued fibers on which a connection is defined with curvature ω.
Recall that, denoting by Γ(V ) the collection of smooth sections of V , a connection ∇ is a map

∇ : Γ(V )→ Ω1(M)⊗ Γ(V ) 7.61

( Ω1 is the collection of 1-forms σ on M ) which satisfies for any smooth function f

∇(σ1 + σ2) = ∇σ1 +∇σ2, ∇(fσ) = df ⊗ σ + f∇σ 7.62

We shall assume that the fibered manifold is locally trivializable (reducible to a product man-
ifold ) by a changement of coordinates in a neighborhood of each point of M.
It is then possible to represent in each point of M the connection by a one-form Θ.
With this notation the curvature of the connection is given by Ω = dΘ. A connection is flat if
Ω = 0.
It is easy to verify that this is independent of the trivialization chosen.
The collection of all sections turn out a too large set.
For example, ifM = X ⊗T+X, where X is the configuration space of a mechanical system, if
the connection is flat and if one takes the collection of all smooth sections, the resulting Hilbert
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space is L2(M, dl) where dl is Lebesgue measure, whereas the Hilbert space of Quantum
Mecanics is L2(X, dx) (notice that this is not a subspace of the former )
It is then necessary to consider only a subset of sections of Γ(V ). This choice goes under the
name of Polarization (roughly speaking, a choice of conjugate variables).
Various polarization have been chosen. One posible choice is the Kaeler Polarization detrmined
by a choice of complex structure forM (sinceM is locally a symplectic manifold, its symplectic
structure defines locally a complex structure).
The Kaeler Polarization is then the choice of olomorphic leaves.
Another choice is the polarization defined by the selection as leaves of lagrangean manifolds.We
shall call this Real Polarization .
One should remark the analogy of these choices with the real and the complex Bargmann-Segal
representation of the Weyl system.
For example, in the case of the hydrogen atom, one can consider the set Ω− of points in phase
space in which the energy is strictly negative. Ω− is provided with the standard symplectic
structure.
In this case the base manifold is compact, the symplectic fibers are smooth (except the origin)
and one can consider only the Bohr-Sommerfeld fibers i.e the fibers for which a globally flat
section can be defined (so that a complete set of action-angle variables can be defined).
One proves [GS84] that the set of Bohr-Sommerfeld fibers is discrete, and this leads to the
Bohr-Sommerfeld Quantization.
From the point of view of semiclassical analysis this can be interpreted as a procedure that
replaces, for the construction of the Hilbert space, the space of function over Ω− with a space
of functions defined over the collection of all smooth Bohr-Sommerfeld orbits.
The definition of Bohr-Sommerfeld fibers can be extended to other systems ad this extends
the definition of Bohr-Sommerfeld Quantization.
Remark that the symplectic manifold on which the quantization is performed is locally iso-
morphic to a toroidal manifold and the fibers are defined by a momentum map.
For further detais about this interesting field of research on can consult [GS94][Ki01] .
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APPENDIX : The magnetic Weyl algebra

In this appendix we describe the Magnetic Weyl algebra , a modification of the Weyl algebra
useful for the description of particles in a magnetic field.
We have seen that the Weyl algebra is a structure adapted to quantize hamiltonian Mechanics
with phase space R2N using the standard symplectic form.
In classical Mechanics when treating charged particles in a magnetic field it may be convenient,
instead of modifying the hamiltonian through a redefinition of momentum (minimal coupling),
to leave the hamiltonian invariant and modify the Poisson Brackets into Magnetic Poisson
Brackets.
In the same way in Quantum Mechanics in the treatment of non relativistic particles interacting
with an electromagnetic field, it may turn to be convenient to make use of a modified form of
Weyl Algebra,the Magnetic Weyl Algebra .
This permits often to clarify topological effects which are due to the presence of the magnetic
field.

Let us briefly recall the Poisson structure associated to a symplectic manifold.
In particular consider the configuration spaceM of a particle which we identfy with RN , N ≥
2. Each fiber of the tangent space is a copy of RN and each fiber of the cotangent spacecan be
also identified with RN .
We shall denote by q ≡ {q1, .., qN} a system of coordinates relative to orthogonal axes and by
{p1, .., pn} coordinates relative to orthogonal axes in the fibers of the cotangent space.
A symplectic structure on M is a closed non-degenerate two-form Σ ∈ Ω2M (the space of
two-forms on M).
We suppose always that Σ has C∞ coefficients with respect to the standard two-form.
Remark that, being non degenerate, Σ uniquely defines an isomorphism β : Ω1 → Ξ(M) (the
fibered space of the vector fields on M.) Defining

{f, g}Σ = Σ(β(df)β(dg)) 7A.1

the symplectic manifold acquires a Poisson structure.
In the case M = RN and without magnetic field the symplectic structure most commonly
used is

σ : Ξ× Ξ→ R, σ[(q, p), (q′, p′)] = q′.p− q.p′ 7A.2

where q, q′ ∈ RN are orthogonal coordinates in RN and p, p′ ∈ RN are coordinates relative to
the axes parallel to dq1, ..dqN .
We treat only the case of one particle in R3 subject to an external magnetic field B; the case
of several particles is analyzed in a similar way.
The dynamics of a non-relativistic particle of mass m in R3 in field of scalar potential V and
subject to a magnetic field B(q) is given by the hamiltonian

H(p, q) =
1

2m
(p+ eA(q))2 + V (q), rot A = B 7A.3

together with the symplectic form (7A.2).
Notice that the magnetic field defines a two-form B̂ through (in local coordinates) B̂i,j(q) =
1
2
εi,j,kBk(q) where εi,j,k is the totally antisymmetric Ricci symbol.

This is an instance of Hodge duality in a manifold of dimension three. .
The same dynamics can be equivalently described with the hamiltonian H ′(p, q) = 1

2m
p2 +V (q)

but then the symplectic two-form must be modified adding the closed two-form B̂.
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The resulting form is closed and non degenerate together with the old one defines a new Poisson
structure.
This representation has an intrinsic ambiguity in that two vector potentials A(q) , A′(q) ∈
R3, q ∈ R3 give rise locally to the same two-form B̂(q) if A′(q)−A(q) = ∇φ(q) where φ(q) is
a C1 function (local gauge invariance).
We shall call gauge group this group of transformations.
In local coordinates the magnetic field B(q) is represented by the antisymmetric tensor rotA
and therefore corresponds to the antisymmetric two-form (∂i Ak − ∂k Ai)dqk ∧ dqi which is by
construction invariant for local gauge transformations.
This formalism can be extended to the case of generic smooth manifoldsM and that one can
consider cases in which the magnetic field is represented by a two form which is closed but not
exact.
For example one can consider the case of the magnetic field of an infinite rectilinear wire with
constant electric current.
The corresponding two form is closed but not exact, and originates topological effects ( Bohm-
Aharanov effect ).

In the phase space R3 × R3 with natural coordinates qk, ph, h, k = 1, 2, 3 the equations of
motion

q̇k =
1

m
pk, ṗk =

e

m

3∑
h=i

Bk,h(q) ph 7A.4

are associated to the hamiltonian (7A.3) through the symplectic form
∑

k dpk ∧ dqk; they can
also be associated to the hamiltonian

H0(p, q) =
1

2m
p2 + V (q)

through the symplectic form

∑
k

dpk ∧ dqk +
e

m

3∑
h,k=1

Bi,k dph ∧ dpk

The corresponding Poisson Brackets are

{f, g}B =
3∑

h,k=1

(
∂f

∂pk

∂f

∂qh
− ∂f

∂qk

∂f

∂ph
+

e

m
Bk,h

∂f

∂pk

∂g

∂pk
) 7A.5

Notice that the equation of motion (7A.4) are gauge invariant (they only depend on the
magnetic field) while the hamiltonian varies through the addition of a total derivative.
It seems preferable to introduce a quantization map invariant under gauge tranforamtions.
This leads to the intruduction of the Magnetic translations and to the Magnetic Weyl Algebra
[Z68] .

We want to find a symplectic transformations α that extend maps x→ x+ q, x ∈ R3

αx{q, p} = {q + x, p+ τx(q, p)} 7A.6

. The group property implies τx+y(q, p) = τx(q, p) + τy(q + x, p+ τx(q.p)).
The condition to be symplectic is

α∗x(σB)− σB = 0
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It is easy to show that this identity reads

T−x;i,j(q, p)dqi ∧ dqj + S−x;i,j(q − px)dqj ∧ dpi = 0

where

Tx;i,j(q, p) =
∂

∂qi
τ(x, k)− ∂

∂qk
τ(x, j) + eB(q)j,k − eB(q + x)j,k Sx =

∂

∂pj
τx,i(q, p)

From this one derives ∂τ(q,p)
∂pk

= 0, k = 1, 2, 3 and moreover

∂

∂qj
(τq,p)k −

∂

∂qk
(τx(q, p))j + eB(q)j,k − eB(q + x)j,k = 0 7A.7

To determine τ we must invert the differential relation (7A.7) which can be written, taking
into account that the magnetic field is (at least locally) an exact differential form

∂

∂t
α−tx(q, p)t=0 = −(x, e(DA(q)).x))

where the one-form A satisfies dA = B (in coordinates (rotA)i,j = Bi,j).
This will the origin of the gauge ambiguity.
The solution A(q) of (7A.7 ) is

τx(q) = eA(q + x)− A(q) rotA = B 7A.8

and is defined modulo the addition of the gradient of a function (gauge ambiguity).
It follows that magnetic translations are defined modulo a gauge transformation.
Recall that in Hamiltonian Mechanics the momentum µΞ associated by a symplectic form to
a vector field Ξ (and therefore to an infinitesimal transformation in configuration space) is by
definition the contraction of the symplectic form with the field Ξ.
The momentum map associated to the magnetic translation is µA(q, p) = p− eA(q).
Gauss’s theorem implies that the integral of a one-form A along a closed path is equal to the
flux of the magnetic field across a surface that has the given path as boundary.
The magnetic translations along a closed path may therefore generate a non trivial homotopy
if the form which represents the magnetic field is closed but not exact.
This will play a role in the quantization.
Weyl’s quantization in its algebraic structure does not pose serious problems since the sym-
plectic form that defines the Weyl system is simply substituted by the magnetic symplectic
form.
Its description in the Schroedinger representation requires a choice of gauge, in accordance
with the fact that the classical hamiltonian (and therefore its quantum counterpart) depends
on the choice of gauge. The representation of the state will depend on this choice, but all the
expectation values are gauge independent.
The choice of a gauge in which to describe the Schroedinger equation (and therefore to use
the formalism of partial derivatives and the Fourier transform) corresponds in the geometric
quantization to a choice of a local Lagrangian manifold.

In the presence of a magnetic field B(x) the Weyl product takes the following form in dimension
N [MP04]

(f ∗~B g)(ξ) = (
2

~
)2N

∫
dη

∫
dζe−

2i
~ σ(η,ζ)− i

~
R
T (q,y,z)B(x;η,ζ)dξf(ξ − η)g(ξ − ζ) 7A.9
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(recall that for each value of x, B(x) is a two form; we denote by B(x; η, ζ) its value, where
η, ζ are in the tangent space at x).
In 7A.9 we have denoted by T (q, y, z) the projection on configuration space of the triangle
T (ξ, η, ζ) with vertices the vectors ξ, η, ζ (i.e the symplectic area of the triangle; this referenceto
the symplectic area is a feature common to Geometric Quantization (see [We94] [BC86])
Only the projection on configuration space enters because the two form is modified only in
that space; the particular form (7A.9) is most naturally derived in its infinitesimal form and
extended by parallel tranport.
The product described by (7A.9) is usually called magnetic Weyl -Moyal product.
It is associative, non-commutative and satisfies

(f ∗~B g)
∗

= (g ∗~B f) 7A.10

We can give (7A.9) a more convenient form.
Using Fourier transform it can be seen that

(f ∗~ g)(ξ) =

∫
Ξ

dη

∫
Ξ

dζe−
i
~σ(ξ−η,ξ−ζ)f(η)g(ζ)

where Ξ is phase space and ξ, η, ζ ∈ T (Ξ) ≡ Ξ.
The Weyl-Moyal magnetic product is now

(f ∗~
B g)(ξ) =

∫
Ξ

dη

∫
Ξ

dζe−
i
~ (σ+eB)(ξ−η,ξ−ζ)f(η)g(ζ) 7A.11

If the magnetic field s of class C∞ the Weyl-Moyal magnetic product is a map S(RN)×S(RN)
to S(RN), and can be extended by duality to a continuous map S(RN) × S ′(RN) in S ′(RN)
trough

(F ~
Bf, g) = (F, f ∗~B fg), (f ∗~

B F, g)∗ = (F, f ∗~B g), F ∈ S ′(RN), f ∈ S(RN) 7A.12

and, again by duality and with a limit procedure to a continuous map S ′(Rn) × S ′(RN) in
S ′(RN) which satisfies

(F ∗~
B G, f)) = (G,F ∗~

B f), F, G ∈ S ′, f ∈ S 7A.13

The resulting extended magnetic Weyl algebra is useful to compose quantum observables in a
gauge invariant way.
When we will analyze in Chapter 11 the Wigner transform we will see that it is sometimes
convenient to use a representation in term of functions on M×M rather then on M×M∗

where M is configuration space.
In the caseM = RN that we are considering one obtains this more convenient form by taking
the Fourier transform with respect to the second variables, keeping in mind that pk = i~ ∂

∂qk
.

With the notation φ = (I ⊗ F)f where F is Fourier transform the multipliction lax for the
magnetic Weyl algebra becomes

(φ ∗~
B ψ)(q, x) =

∫
RN

dyφ(q − ~
2

(x− y), y)) ψ(q +
~
2
y, x− y)e−

i
~ ΦB(q,;x;y) 7A.14

wher ΦB(q;x; y) is the magnetic flux through the triangle with vertices in the points {q −
~
2
x , q − ~

2
x+ ~y , q + ~

2
x}.
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This product depends only on the magnetic field.
If the two-form representing the magnetic field is exact in any representation on the Hilbert
L2(RN) it is convenient to make use of a one form a related to the two-form B by B = da.
In local coordinates the one-form a is represented by a vector potential A(x) related to B
through B(x) = rot A(x)
This relation has not a unique inverse and the solutions differ from each other by a gradient
(at least locally)

A′(x) = A(x) +∇φ 7A.15

where φ(x) is a scalar field.
We shall see that the representations which correspond to different choices of A are all unitarily
equivalent and we will give the unitary operator which implements the equivalence.
The need to introduce the vector potential the has its origin in the fact that in the Schroedinger
representation there exist unitary operators which commute with the elements of the magnetic
Weyl algebra.
This is the quantum counterpart of classical gauge invariance.
The analysis of this probem could be done in the general context of projective representations
of algebras defined by a twisted product (as are the Weyl algebra and the magnetic Weyl
algebra).
In the following we consider only the special case of the Schroedinger representation of the
magnetic Weyl algebra on the configuration space R3.
Let A = Ak(x)dxk be a one-form in R3 dA = B. In coordinates

Bi,j = h(x, y)k,jdxk ∧ dxj, h(x, y)k,j =
∂Ak(x)

dxj
− ∂Aj(x)

dxk
7A.16

If x, y ∈ R3 define ΓA[x, y] to be the integral of the one-form A on the segment

[a, b] ≡ ∪s∈[0,1][sx+ (1− s)y]

Due to Stokes’s theorem, if we denote by ΩB(q1, q2, q3) the flux of the two-form B across the
triangle defined by the points q1, q2, q3 one has

ΩB(q, q+ ~x, q+ ~x+ ~y) = ΓA([q, q+ ~x]) ΓA[q+ ~x, q+ ~x+ ~y] (ΓA[q+ ~x+ ~y])−1 7A.17

Setting

ω~
b (q, x, y) = e−

i
~ Ω~(q,x,y) λ~

A(q, x) = e−
i
~AΓA([q,q+~x])

one obtains
ω~(q, x, y) = λ~

A(q, x)λ~
A(q + ~x, y))(λ~

A(q, x+ y)−1 7A.18

Setting
[U~

A(x)φ](q) = λ~
A(q, x)φ(q + ~x), V ~(p)φ̂(k) = φ(k + p) 7A.19

one verifies that these unitary operators generate a representation determined by A, of the
magnetic Weyl algebra associated to the magnetic two-form B.
Using (7A.19) it is easy to verify that if one modifies the one- form A in A′ = A + dΦ where
Φ is a sufficiently regular scalar field one obtains

e
i
~ Φ(q)[U~

A(x)φ](q) = [U~
A′(x)φ](q)e

i
~ Φ(q)

Notice that the magnetic Weyl algebra is described by the following relationsé

[Qj, Qk] = 0 [Qk,Π
~
A,j] = i~δi,j [Π~

A,j,Π
~
A,k] = i~Bk,j 7A.20
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Denoting by eiQ.p the group that induces translations in Fourier transform and with

U~
A(x) ≡ eixΠ~

A ≡ e−
i
~ ΓA([Q,Q+~x])eix.P

the group of magnetic translations in the configuration space one has

U~
A(x)U~

A(x′) = ω~
B(Q;x, x′)U~

A(x+ x′)

and a unitary representation of the magnetic Weyl group is given by the unitary operators

W ~
A(q, p) ≡ e−iσ(q,p;Q,Π~

A) = e−
i
2
q.pe−iQ.pU~

A(x) 7A.21

Remark 7A.1
In a planar system with constant perpendicular magnetic field the relation (7A.20) takes

the form
[Q1, Q2] = 0 [Π1,Π2] = ~B [Qk,Πj] = δk,j 7A.22

Setting Kj = Pj − 1
~B εj,kQk one has

[Kj, Km] =
1

~B
εk,j, [Πj,Πk] = ~Bεj,k [Kj,Πk] = 0 7A.23

It is to be noted that the pair K1, K2 generates a Heisenberg algebra , and the same is true
for the pair Π1,Π2.
These two algebras commute. They can be represented in the space L2(R2, dx1dx2) by

K1 ≡ .x1, Π2 ≡ .x2 K2 ≡ ~B
∂

∂x1

, Π1 ≡
1

~B
∂

∂x2

From (7A.23) one can trace back the symplectic transformation between this representation
and the one in the space L2(R2, dQ1dQ2).

♣
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Appendix B to Chapter 7: Landau hamiltonian (magnetic field in R2): Fock representation

As an example of the Fock (or of the complex Bargmann-Segal representation, we will discuss
briefly the case of a particle in R3 subjected to a magnetic field B(x) oriented along an axis,
that we will choose to be 3̂ [F28] [LL77]
We shall start with the case in which the magnetic field has constant strength B0.
The hamiltonian, in suitable units, can be presented as

H0 = −(∇+ iA0)2, A0 =
B0

2
{−x1, x2, 0} B0 > 0 7B.1

We have chosen a suitable gauge; one has ∇A0 = B03̂. The notation H0 is used to distinguish
the case of constant magnetic field.
This hamiltonian corresponds to free motion along the axis 3̂; therefore we will consider only
the motion in the {1̂, 2̂} plane.
It is convenient to introduce the complex notation

z = x1 + ix2, ∂ = ∂z =
1

2
(
∂

∂x1

− i ∂
∂x2

) ∂̄ = ∂z̄ 7B.2

It is convenient also to introduce the operators P±0 = H0 ±B.
They describe in L2(R3) ⊗ C2 the dynamics a particle with magnetic moment 1 and spin 1

2

under the influence of the magnetic field (often called Pauli system).
Define the operators

Q0 = −2i∂̄z − A0 Q̄0 = −2∂z 7B.3

These operators can be written, with ψ = B0

4
|z|2 as

Q0 = −2ie−ψ0 ∂̄eψ0 , Q̄0 = Q∗0 = −2ieψ0∂e−ψ0 7B.4

Notice that ψ0 solves ∆ψ = B0 i.e. is a potential for B0.
One verifies that

[Q0, Q̄0] = 2B0I 7B.5

i.e. that the pair Q0, Q̄0 satisfy canonical commutation relations.
One verifies also that the operators

P+
0 = Q0Q̄0, P−0 = Q̄0Q0 7B.6

are orthogonal projection operators with P+ + P− = I and that

H0 = Q0.Q̄0 −BI = Q̄0.Q0 +BI 7B.7

The vectors in the subspace H− on which P+ projects satisfy

P+
0 u = 0⇒ Q0u = e−ψ0 ∂̄(eψ0u) = 0 7B.8

This implies that the function f ≡ eψ0u is entire analytic in C.
On the other hand U = e−ψ0f ∈ L2(R2).
The vectors in H− are therefore in one-to -one correspondence with the elements of the space

F ≡ {f(z) : (∂̂f(z)).e−
B0|z|

2

4 ∈ L2} 7B.9
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which is Fock space.
From (7B.5) one derives also the the spectrum of the operator H0 is

SpH0 = {(2q + 1)B0, q ∈ N} 7B.10

and the multiplicity of each eigenvalue is infinite ( because P+ project on a space of infinite
dimension).
One verifies the the projection operator Pk on the kth subspace Lk has kernel

Kk(z, w) = e
1
4

(wz−|z|2−|w|2)Πk
j=1Lk(

1

2
(z : j − wj)2) 7B.11

where Lk is the Laguerre polynomial of order k

Lk(y) =
ey

n!

dn

dyn
(e−yyn)

We consider now briefly the case in which the magnetic field is not constant, but still directed
along 3̂ [Iw83] [MR03][RT08] [ST03]
The motion along 3̂ is still free motion, and we study only the motion on the 1̂, 2̂ plane .
Define as before z = x1 + ix2, ∂ = ∂1 − i∂2 and introduce as before the potential φ solution of

∆φB = B, ∆ = −∂̄.∂ 7B.12

We consider B(x) as a small perturbation of B0 and write B(x) = B0 + λb(x) with b(x) of
compact support and λ a small parameter.
We write the solution of (7B.12) as

φB(z) =
B0

4
|z|2 + φλ(z) 7B.13

and the vector potential A(x) as

A(x) = A0(x) + λa(x), A0(x) = {−x2 − λa2(x), x1}

Notice that if the flux Ψ of b(x) (i.e
∫
b(x)dx) is not zero, a(x) cannot decay wit the distance

R more than 1
R

since
∫ 2π

0
a(Rn̂).ndθ = Ψ.

The hamiltonian is
Hλ = (i∇+ A)2, A = A0 + λa 7B.14

The parameter λ is small, and we can try to expand H in powers of λ.
To first order there is a term (A0.a) which does not vanish at infinity if the total magnetic flux
of b(x) is not zero (recall that a(x) in that case cannot decay more than as R−1.)
In spite of this one proves that Hλ − H0 is compact relative to H0 and therefore by Weyl’s
theorem the essential spectrum of Hλ is the same as that of H0 i.e. {(2n+ 1)B0.

Also in this case one can define

Q = −2i∂̄ − A = −2ie−φ∂̄eφ

Q̄ = −2i∂ − Ā = −2ieφ∂e−φ

One has
[Q, Q̄] = 2B0 + 2b(x) x ∈ R2 7B.15
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Notice that the algebra generated by Q and Q̄ is no longer the Heisenberg algebra.
One can still define the operators

P+ = Q.Q̄ P− = Q̄.Q

but they are no longer projetion operators. Still one has

P− − P+ = 2B0 + 2b(x), H = Q.Q̄− (B0 + b(x) = Q̄.Q+ 0 + b(x) 7B.16

The spectrum of H is still contained in [B,∞) and the eigenspace to the lowest eigenvalue the
set of functions u for which P−u = 0 i.e Qu = o.
This implies

∂̄eψu = 0⇒ u = fe−ψ 7B.17

. Therefore the eigenspace to the lowest eigenvalue is made of entire functions which belong
to L2(C) when multiplied by e−ψ.
This is a Fock space relative to the (non gaussian measure) e−ψ(z) where ψ(z) is the potential
of B0 + b(z).
It is now not easy to construct a complete orthonormal set. In general the nth eigenfunction
in the Fock representation is given by an entire function ξn(z) (not a polynomial).
And it is non longer easy to find the remaining part of the spectrum of H.
Since the perturbation is relatively compact, the points {(2n + 1)B0} belong to the essential
spectrum of H but in general they are no longer eigenvalues. The eigenvalues λn,k have
(2n + 1)B0 as limit point, and under suitable conditions λn,k converge super-exponentially to
(2n+ 1)B0 as k →∞. [RS11]
There is so far no complete theory to determine the location of the eigenvalues of H.

Remark 7B.1
The corresponding Landau problem on a torus gives further problems since the requirement

that the eigenfunctions be single-valued restricts B0 to have quantized values of the flux across
the torus.
The same problem appears when one adds to the Landau Hamiltonian a potential (scalar or
vector) which is periodic. Let C a corresponding cell. The requirement that the eigenvector
be single valued requires also here that the flux of B0 across C be quantized.
In this case the fact that the U(1)bundle over C (corresponding to the fact that on each
point the phase of the wave function can be changed) can be non trivial leads to interesting
topological problems.
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