TMP Programme, Munich – Winter Term 2010/2011

EXERCISE SHEET 4, issued on Tuesday 16 November 2010 **Due:** Tuesday 23 November 2010 by 8,15 a.m. in the designated "MQM" box on the 1st floor **Info:** www.math.lmu.de/~michel/WS10_MQM.html

> Each exercise is worth a full mark as specified below. Correct answers without proofs are not accepted. Each step should be justified. You can hand in the solutions either in German or in English.

Exercise 13. Consider the hydrogenic Hamiltonian $H^{(Z)} = -\Delta - \frac{Z}{|x|}$ (Z > 0) in three dimensions. Recall that its ground state energy is

$$\mathcal{E}_{\mathrm{GS}}(Z) := \inf_{\substack{\psi \in \mathcal{M} \\ \|\psi\|_2 = 1}} \langle \psi, H^{(Z)}\psi \rangle = -\frac{Z^2}{4}$$

where $\mathcal{M} = \{\psi | \psi, \nabla \psi, | \cdot |^{-1/2} \psi \in L^2(\mathbb{R}^3)\}$. Consider the coherent states of the form $\psi_{q,p,\theta}$ where (see Exercise 4)

$$\psi_{q,p,\theta}(x) := \frac{1}{(\theta\sqrt{\pi})^{3/2}} e^{ipx} e^{-\frac{|x-q|^2}{2\theta^2}}, \qquad x \in \mathbb{R}^3$$

for some q and p in \mathbb{R}^3 and $\theta > 0$. Estimate $\mathcal{E}_{GS}(Z)$ from above by minimising the energy on the coherent states only and prove that

$$\inf_{q,p\in\mathbb{R}^3,\theta>0}\langle\psi_{q,p,\theta},H^{(Z)}\psi_{q,p,\theta}\rangle = -\frac{2Z^2}{3\pi}.$$

Exercise 14.

(i) Prove that

$$\int_{\mathbb{R}^3} \frac{|\psi(x)|^2}{|x|^2} \,\mathrm{d}x \leqslant 4 \, \|\nabla\psi\|_2^2 \qquad \forall \psi \in C_0^\infty(\mathbb{R}^3) \,.$$

(*Hint:* you may prove it by analogy with the proof given in class of the inequality)

$$\int_{\mathbb{R}^3} \frac{|\psi(x)|^2}{|x|} \, \mathrm{d}x \leqslant \|\nabla \psi\|_2 \|\psi\|_2 \qquad \forall \psi \in H^1(\mathbb{R}^3)$$

i.e., computing commutators.)

(ii) Prove by a standard density argument that

$$\int_{\mathbb{R}^3} \frac{|\psi(x)|^2}{|x|^2} \,\mathrm{d}x \leqslant 4 \,\|\nabla\psi\|_2^2 \qquad \forall \psi \in H^1(\mathbb{R}^3) \,. \tag{(4)}$$

(iii) Deduce from (\spadesuit) the following inequality

$$\int_{\mathbb{R}^3} \frac{|\psi(x)|^{\alpha}}{|x|} \, \mathrm{d}x \leqslant 2^{\alpha} \|\nabla\psi\|_2^{\alpha} \|\psi\|_2^{2-\alpha} \qquad \forall \psi \in H^1(\mathbb{R}^3)$$

for any $\alpha \in [0, 2]$. (Note that for $\alpha = 1$ one obtains (\clubsuit) apart from the right constant.)

Exercise 15. Denote by $\mathbb{1}_{\{|x| \leq 1\}}$ the characteristic function of the ball of unit radius in \mathbb{R}^3 . Denote by $\chi_{<}$ the cut-off function $\chi_{<}(x) := \xi(|x|) \ \forall x \in \mathbb{R}^3$ where $\xi : \mathbb{R}^+ \to [0, 1]$ is smooth and such that $\xi(r) = 1 \ \forall r \in [0, \frac{1}{2}]$ and $\xi(r) = 0 \ \forall r \geq 1$. Use the definition of the Sobolev space H^1 (formula (11.28) in the handout "Crash course in Analysis") to prove that

- (i) the function $\frac{\chi_{<}}{|\cdot|^{\alpha}}$ belongs to $H^1(\mathbb{R}^3)$ if and only if $\alpha < \frac{1}{2}$
- (ii) the function $\mathbb{1}_{\{|x| \leq 1\}}$ does not belong to $H^1(\mathbb{R}^3)$.

Exercise 16. Same assumption as in Exercise 15. Use the Fourier characterisation of the Sobolev space H^1 (Theorem 11.3 in the handout "*Crash course in Analysis*") to prove that

- (i) the function $\frac{\chi_{<}}{|\cdot|^{\alpha}}$ belongs to $H^1(\mathbb{R}^3)$ if and only if $\alpha < \frac{1}{2}$
- (ii) the function $\mathbb{1}_{\{|x| \leq 1\}}$ does not belong to $H^1(\mathbb{R}^3)$.