TMP Programme Munich - spring term 2014

HOMEWORK ASSIGNMENT – WEEK 05

Hand-in deadline: Thu 15 May by 12 p.m. in the "MSP" drop box.

Rules: Correct answers without proofs are not accepted. Each step should be justified. You can hand in your solutions in German or in English.

Info: www.math.lmu.de/~michel/SS14_MSP.html

Exercise 13. Consider the Weyl algebra $\mathcal{A}_{CCR}(\mathbb{C})$, i.e., the CCR C^* -algebra where the underlying Hilbert space is the one-dimensional space \mathbb{C} . Next to the natural Fock representation $(\pi_{\mathrm{F}}, \mathscr{F}_+)$ of $\mathcal{A}_{\mathrm{CCR}}(\mathbb{C})$ consider the representation (the "Schrödinger representation")

$$\pi_{\mathrm{S}} : \mathcal{A}_{\mathrm{CCR}}(\mathbb{C}) \to \mathcal{B}(L^{2}(\mathbb{R}, \mathrm{d}x))$$
$$W(z) \mapsto \pi_{\mathrm{S}}(W(z)) := e^{\frac{\mathrm{i}}{2}st}U(s)V(t)$$
$$z = s + \mathrm{i}t, \quad s, t \in \mathbb{R},$$

where $\{U(s) \mid s \in \mathbb{R}\}$ and $\{V(t) \mid t \in \mathbb{R}\}$ are strongly continuous one-parameter unitary groups on $L^2(\mathbb{R}, dx)$ defined on each $f \in L^2(\mathbb{R}, dx)$ by

$$(U(s)f)(x) := e^{isx} f(x), \qquad (V(t)f)(x) := f(x+t), \qquad \text{for a.e. } x \in \mathbb{R}.$$

- (i) Prove that the representation $\pi_{\rm S}$ is regular.
- (ii) Prove that $L^2(\mathbb{R}, dx)$ carries a Fock space structure given by the operators

$$a_{\mathrm{S}} := \frac{1}{\sqrt{2}} \left(x + \frac{\mathrm{d}}{\mathrm{d}x} \right), \qquad a_{\mathrm{S}}^* := \frac{1}{\sqrt{2}} \left(x - \frac{\mathrm{d}}{\mathrm{d}x} \right),$$

defined on the class of smooth and rapidly decreasing functions on \mathbb{R} , that is,

- prove that $a_{\rm S}$ and $a_{\rm S}^*$ satisfy the CCR,
- find the normalised function $\Omega_{\rm S} \in L^2(\mathbb{R}, \mathrm{d}x)$ that gives the vacuum w.r.t. $a_{\rm S}$,
- introduce the one-dimensional subspaces $\mathcal{H}_n \subset L^2(\mathbb{R}, \mathrm{d}x), \ \mathcal{H}_n := \{\lambda(a_{\mathrm{S}}^*)^n \Omega_{\mathrm{S}} \mid \lambda \in \mathbb{C}\},\$ and prove that $L^2(\mathbb{R}, \mathrm{d}x) = \bigoplus_{n=0}^{\infty} \mathcal{H}_n.$

(*Hint:* use well known properties of the quantum harmonic oscillator.)

(iii) Conclude that the Fock and the Schrödinger representations of $\mathcal{A}_{CCR}(\mathbb{C})$ are unitarily equivalent via the unitary defined by $(a_{\rm S}^*)^n \Omega_{\rm S} \mapsto (a_{\rm F}^*)^n \Omega_{\rm F}$.

Exercise 14. Consider the Schrödinger representation $\pi_{\rm S} : \mathcal{A}_{\rm CCR}(\mathbb{C}) \to \mathcal{B}(L^2(\mathbb{R}, dx))$ of the Weyl algebra $\mathcal{A}_{\rm CCR}(\mathbb{C})$ over $L^2(\mathbb{R}, dx)$ introduced in Exercise 13. Prove that $\pi_{\rm S}$ is irreducible. (*Hint:* if not, there would exist an invariant proper subspace $\mathcal{H}_1 \subset \mathcal{H}$, but imposing that $\phi \perp \mathcal{H}_1$ deduce that $\phi \equiv 0$.)

Exercise 15. (Coherent states in the bosonic Fock space)

Consider the bosonic Fock space $\mathfrak{F}_+(\mathfrak{h})$ over a given separable Hilbert space \mathfrak{h} . For computational convenience here, consider the "modified" Weyl operator $W(f) := e^{\overline{a^*(f)-a(f)}}$. (In practice, W(f) is nothing but the Weyl operator defined in class associated with the function if and apart from an irrelevant normalisation. This is only to spare you many extra pre-factors in the following.)

(i) Given $f \in \mathfrak{h}$, the state $W(f)\Omega \in \mathfrak{F}_+(\mathfrak{h})$ is called COHERENT STATE with one-particle state f. Prove that

$$W(f)\Omega = e^{-\|f\|^2/2} \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} f^{\otimes n},$$

where $f^{\otimes n}$ indicates the Fock-vector $\{0, \ldots, f^{\otimes n}, 0, \ldots\}$ and || || is the norm in \mathfrak{h} . Interpret this result in terms of a Poisson distribution.

(ii) Prove that the expectation of the number of particles in the coherent state of f is $||f||^2$, namely prove that

$$\langle W(f)\Omega, \mathcal{N}W(f)\Omega \rangle_{\mathfrak{F}(\mathfrak{h})} = ||f||^2 = \sum_{n=1}^{\infty} \langle W(f)\Omega, a^*(f_n)a(f_n)W(f)\Omega \rangle_{\mathfrak{F}(\mathfrak{h})},$$

where, in the second identity, $(f_n)_{n=1}^{\infty}$ is an orthonormal basis of \mathfrak{h} .

(iii) Let $N \in \mathbb{N}$ and $f \in \mathfrak{h}$ with ||f|| = 1. Consider the factorised N-particle state

 $\Psi_N := \{0,\ldots,0,f^{\otimes N},0,0,\ldots\} \in \mathfrak{F}_+(\mathfrak{h}).$

Prove that Ψ_N can be expressed as the following linear superposition of coherent states:

)

$$\Psi_N = C_N \int_0^{2\pi} \frac{\mathrm{d}\theta}{2\pi} e^{i\theta N} W(e^{-i\theta}\sqrt{N}f)\Omega$$

with the constant $C_N := \frac{\sqrt{N!}}{N^{N/2}e^{-N/2}}$. (Note that $C_N \sim N^{1/4}$ as $N \to \infty$.

Exercise 16. (In this exercise do the necessary algebraic manipulations in a formal way, namely with no concern with domain issues of unbounded operators.)

Consider:

- the Weyl algebra $\mathcal{A}_{CCR}(\mathfrak{h})$ over a given separable Hilbert space \mathfrak{h} ,
- a real linear invertible map $S : \mathfrak{h} \to \mathfrak{h}$ such that $\mathfrak{Im}\langle Sf, Sg \rangle = \mathfrak{Im}\langle f, g \rangle \ \forall f, g \in \mathfrak{h}$, and the corresponding Bogoliubov *-automorphism $\gamma : \mathcal{A}_{CCR}(\mathfrak{h}) \to \mathcal{A}_{CCR}(\mathfrak{h})$ defined by $\gamma(W(f)) := W(Sf) \ \forall f \in \mathfrak{h}$,
- the Fock representation (π, \mathfrak{F}_+) of $\mathcal{A}_{CCR}(\mathfrak{h})$ (recall that this representation is *regular*).

Correspondingly, for every $f \in \mathfrak{h}$ let $\widetilde{\Phi}_{\pi}(f)$, $\widetilde{a}_{\pi}(f)$, and $\widetilde{a}_{\pi}^{*}(f)$ be the (unbounded) operators on \mathfrak{F}_{+} defined respectively by

$$e^{i\tilde{\Phi}_{\pi}(f)} := \pi(\gamma(W(f)))$$

$$\tilde{a}_{\pi}(f) := \frac{1}{\sqrt{2}} (\tilde{\Phi}_{\pi}(f) + i\tilde{\Phi}_{\pi}(if))$$

$$\tilde{a}_{\pi}^{*}(f) := \frac{1}{\sqrt{2}} (\tilde{\Phi}_{\pi}(f) - i\tilde{\Phi}_{\pi}(if)).$$

(i) Find in terms of S two maps $L: \mathfrak{h} \to \mathfrak{h}$ and $A: \mathfrak{h} \to \mathfrak{h}$ such that, for every $f \in \mathfrak{h}$,

$$\widetilde{a}_{\pi}(f) = a(Lf) + a^*(Af)$$

$$\widetilde{a}_{\pi}^*(f) = a(Af) + a^*(Lf).$$

Are these maps complex linear?

(*Hint:* use the fact that $\pi : \mathcal{A}_{CCR}(\mathfrak{h}) \to \mathcal{B}(\mathfrak{F}_+)$ is regular to give meaning to the generator of $t \mapsto \pi(W(tf)), t \in \mathbb{R}$, and compare it with $\widetilde{\Phi}_{\pi}(f)$.)

(ii) Prove that imposing that $\tilde{a}_{\pi}(f)$ and $\tilde{a}_{\pi}^*(g)$ satisfy the CCR as operators on \mathfrak{F}_+ yields

$$L^{*}L - A^{*}A = 1 = LL^{*} - AA^{*}$$
$$L^{*}A - A^{*}L = 0 = AL^{*} - LA^{*}.$$

(*Hint:* derive two of the four identities above directly from the CCR; as for the other two, observe that $f \mapsto e^{i \tilde{\Phi}_{\pi}(f)}$ and $f \mapsto e^{\frac{i}{\sqrt{2}}(\overline{a(f)+a^*(f)})}$ are two Weyl operators on the same CCR algebra and apply a uniqueness result stated in class: the invertibility of the correspondence $a(f), a^*(g) \leftrightarrow \tilde{a}_{\pi}(f), \tilde{a}^*_{\pi}(g)$ yields the other two identities requested above.)

(iii) Assume that $\text{Tr}A^*A < \infty$. Prove that

$$\langle \Omega, \mathcal{N}_{\pi} \Omega \rangle_{\mathfrak{F}} = \mathrm{Tr} A^* A,$$

where $\widetilde{\mathcal{N}}_{\pi} := \sum_{n=1}^{\infty} \widetilde{a}_{\pi}^*(f_n) \widetilde{a}_{\pi}(f_n)$ and $(f_n)_{n \in \mathbb{N}}$ is an orthonormal basis of \mathfrak{h} .