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HOMEWORK ASSIGNMENT 11
Hand-in deadline: Tuesday 9 July 2013 by 4 p.m. in the “MSP” drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be
justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/SS13_MSP.html

Exercise 41. (Coherent states in the bosonic Fock space)

Given a Hilbert space h, consider the bosonic Fock space F+(h) with the usual notation for the
annihilation, creation, and number operator, respectively a(f), a∗(f), N , where f ∈ h. Define

W (f) := ea
∗(f)−a(f). (Note that, apart from an irrelevant normalisation, W (f) is nothing but

the Weyl operator defined in class associated with the function if .) Denote by Ω the vacuum
in the Fock space.

(i) Given f ∈ h, the state W (f)Ω ∈ F+(h) is usually called coherent state with one-
particle state f . Prove that

W (f)Ω = e−‖f‖2/2
∞∑
n=0

1√
n!

f⊗n ,

where f⊗n indicates the Fock-vector {0, . . . , f⊗n, 0, . . . } and ‖ ‖ is the norm in h.

Remark: this justifies the terminology of “coherent state”: W (f)Ω is a superposition of states with a

different number of particles, the probability of having n particles in W (f)Ω being given by e−‖f‖2

/n!.

(ii) Prove that the expectation of the number of particles in the coherent state of f is ‖f‖2,
namely prove that

〈
W (f)Ω , N W (f)Ω

〉
F(h)

= ‖f‖2 =
∞∑
n=1

〈
W (f)Ω, a∗(fn)a(fn)W (f)Ω

〉
F(h)

,

where the second identity is understood under the additional assumption that {fn}∞n=1 is
an orthonormal basis of h.

(iii) Let N ∈ N and f ∈ h with ‖f‖ = 1. Consider the factorised N -particle state

ΨN := {0, . . . , 0, f⊗N , 0, 0, . . . } ∈ F+(h) .

Prove that ΨN can be expressed as the following linear superposition of coherent states:

ΨN = CN

∫ 2π

0

dθ

2π
eiθNW (e−iθ

√
Nf)Ω

with the constant CN :=

√
N !

NN/2e−N/2
. (Note that CN ∼ N1/4 as N → ∞.)

Remark: the above expansion is useful in the study of the time evolution of a Bose-Einstein condensate of
N identical bosons all prepared at time zero in the state f , because it reduces the study of the evolution
of ΨN to the evolution of each coherent state, which is somewhat more manageable in the Fock space
formalism. (Why? Because the dynamics tend not to keep the particle number fixed!) See, for instance,
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– I. Rodnianski, B. Schlein. Quantum fluctuations and rate of convergence towards mean field dynam-
ics. Comm. Math. Phys. 291 (2009), 31–61

– A. Michelangeli, B. Schlein. Dynamical collapse of boson stars, Comm. Math. Phys. 311 (2012),
645–687

Exercise 42. (Group of Bogoliubov transformations for the ideal Bose gas.)

Given a Hilbert space h, consider the bosonic Fock space F+(h) with the usual notation for the
second quantisation, annihilation and creation operators, respectively Γ, a(f), a∗(f), where

f ∈ h. Define W (f) := ea
∗(f)−a(f). (Note that, apart from an irrelevant normalisation, W (f)

is nothing but the Weyl operator defined in class associated with the function if .) Let H be
a one-particle Hamiltonian on h. Define

L(F+(h)) 3 A 7→ τt(A) := Γ(eitH)AΓ(e−itH) ∈ L(F+(h)) , t ∈ R .

(i) Prove that
τt(W (f)) = W (eitHf)

for each t ∈ R and each f ∈ h. (Whence τt leaves ACCR(h) invariant.)

(Hint: on the L.H.S. re-writeW (f) expanding ea
∗(f)−a(f) by means of [a(f), a∗(f)] = ‖f‖2;

on the R.H.S. compute a(eitHf) and a∗(eitHf) in terms of a(f) and a∗(f) respectively,
analogously to what was done in class in the fermionic case.)

(ii) Prove that {τt}t∈R is a one-parameter group of ∗-automorphism of the CCR algebra in
L(F+(h)) generated by W .

(iii) Is the group {τt}t∈R strongly continuous? Justify your answer.

Exercise 43. (Distributional formalism for the (bosonic) Fock space)

Given the Hilbert space h = L2(Rd), consider the bosonic Fock space F+(h) with the usual
notation for the annihilation, creation, and number operator, respectively a(f), a∗(f), N ,
where f ∈ h. Introduce the operator-valued distributions a∗x and ax, with x ∈ Rd, defined so
that

a∗(f) =

∫
Rd

dx f(x) a∗x ,

a(f) =

∫
Rd

dx f(x) ax

for every f ∈ L2(Rd), namely whose explicit action is

(axΨ)(n)(x1, . . . , xn) :=
√
n+ 1Ψ(n+1)(x, x1, . . . , xn) ,

(a∗xΨ)(n)(x1, . . . , xn) :=
1√
n

n∑
i=1

δ(x− xi)Ψ
(n−1)(x1, . . . , x̂i . . . , xn) ,

for every Ψ ∈ F+(h). (The notation x̂i means that the variable xi is missing.)
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(i) Prove that the CCR for a∗x and ax take the form

[ax, a
∗
y] = δ(x− y) , [ax, ay] = [a∗x, a

∗
y] = 0 .

(ii) Prove that the number operator, expressed through the distributions a∗x and ax, is given by

N =

∫
Rd

dx a∗xax .

(iii) Let d ∈ N. Consider a smooth function V : Rd → R. Prove that

H :=

∫
Rd

dx a∗x(−∆x)ax +
1

2

∫∫
Rd×Rd

dx dy V (x− y) a∗xa
∗
yayax

defines an operator acting on F+(h) that on the n-particle sector L2(Rnd), n ∈ N, acts as

H(n) =
n∑

j=1

(−∆xj
) +

∑
16i<j6n

V (xi − xj) (xj ∈ Rd) .

Exercise 44. (Two-point function for a bosonic Gibbs state)

Given a Hilbert space h, consider the CCR algebra ACCR(h) acting on the bosonic Fock space
F+(h) and the Gibbs state ω acting on ACCR(h) as

ω(A) :=
Tr(e−β dΓ(H−µ1)A)

Tr(e−β dΓ(H−µ1))
, β, µ ∈ R , A ∈ ACCR(h) ,

where Γ is the second quantisation operator and H is one-particle Hamiltonian on h such that
β(H − µ1) > O. Consider the two-point functions ω(a∗(f)a(g)) with f, g ∈ h.

(i) Prove that ω(a∗(f)a(g)) is well defined and there is a constant Cβ,µ such that

|ω(a∗(f)a(g))| 6 Cβ,µ ‖f‖ ‖g‖ ∀f, g ∈ h .

(ii) Let n ∈ N and f1, . . . , fn, g1, . . . , gn ∈ h. Mimicking the analogous calculation done in class
for the fermionic case, but of course applying now the commutation relations, compute

ω
( n∏

i=1

a∗(fi)
n∏

j=1

a(gj)
)

and deduce that the value of ω on monomials of the a and a∗ are determined by sums of
products of the above two-point function.
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Hints

Recommendation: try first to solve the exercises with the only amount of information provided
in their formulation. I.e., try to understand the question, to identify what the involved no-
tions from class are, to structure a potentially successful solving strategy. Go through these
additional hints only if you get completely stuck in your first attempts.

Hints for Exercise 41. (i) Use [a(f), a∗(f)] = ‖f‖2, which commutes with a(f) and a∗(f),
to split the exponential ea∗(f)−a(f). (ii) A standard Fock-space computation. (iii) Plug into the
integral the expansion found in (i).

Hints for Exercise 42. (i) On the L.H.S. re-write W (f) expanding ea
∗(f)−a(f) by means of

[a(f), a∗(f)] = ‖f‖2, which commutes with a(f) and a∗(f); on the R.H.S. prove and use that
a(eitHf) = eitdΓ(H)a(f)e−itdΓ(H) and a∗(eitHf) = eitdΓ(H)a∗(f)e−itdΓ(H). One has to deal with
the exponential of an unbounded self-adjoint operator: while it is false that the corresponding
formal series converges, it is true that it does on a dense of analytic vectors. (ii) Direct check.
(iii) It suffices (why?) to prove that ‖τt(W (f)) −W (f)‖ > C > 0 for all t ∈ R. To this aim,
compute the L.H.S. using the result from (i) for τt, the multiplication properties of the Weyl
operator W (f), and the fact that ‖W (f)− 1‖ = 2 for all non-zero f ∈ h, whence also (why?)
‖eiαW (f)− 1‖ = 2 for all α ∈ R and all non-zero f ∈ h.

Hints for Exercise 43. The formal check is a straightforward direct check. It is convenient
to perform it on each level of the Fock space at fixed number of particles.

Hints for Exercise 44. (i) A Cauchy-Schwarz inequality together with the fact that Tr(A∗A) 6
Cβ,µ‖f‖2 whereA := a(f)e−β dΓ(H−µ1)/2. (ii) Prove and use that a∗(eitHf) = eitdΓ(H)a∗(f)e−itdΓ(H).
This, together with the CCRs and the relation ω(a∗(f)a(g)) =

〈
g , e−βH(1+e−βH)−1f

〉
, should

yield

ω
( n∏

i=1

a∗(fi)
n∏

j=1

a(gj)
)

=
n∑

p=1

ω
(
a∗(f1)a(gp)

)
ω
( n∏

i=2

a∗(fi)
n∏

j=1
j 6=p

a(gj)
)
.

Iterate it to get the conclusion.
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