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HOMEWORK ASSIGNMENT 10
Hand-in deadline: Tuesday 2 July 2013 by 4 p.m. in the “MSP” drop box.
Rules: Each exercise is worth 10 points. Correct answers without proofs are not accepted. Each step should be
justified. You can hand in your solutions in German or in English.
Info: www.math.lmu.de/~michel/SS13_MSP.html

Exercise 37. (Peierls’ argument – Part II) contact: benedikt.rehle@gmail.com

In Exercise 31, we used Peierls’ contour argument to show that the Ising model on a 2D square
lattice with positive boundary conditions exhibits a positive magnetization at sufficiently low
temperatures. More concretely, we derived a lower bound for the magnetisation which is
independent of the lattice size. In the following exercise, we return to periodic boundary
conditions and use our previous result to conclude that the free energy per site is non-analytic
in the thermodynamic limit. This establishes the existence of a phase transition in the 2D
Ising model.

Consider the Ising model on a square lattice Λ ⊆ R2 – use the notation and the results Exercise
31. For the standard case of periodic boundary conditions, the energy function reads

E(S) = −ε
∑

〈pq〉:p,q∈Λ

spsq −B
∑
p∈Λ

sp,

where sites p and q on opposite sides of the square are considered direct neighbours. Define
the free energy per site as

aΛ (β,B) := − 1

βN
log

∑
S

e−βE(S)

and, analogously, for positive boundary conditions,

aΛ,+ (β,B) := − 1

βN
log

∑
S

e−βE+(S) .

Consider a sequence of n × n boxes Λn. It can be proved that the thermodynamic limit
a (β,B) := limn→∞ aΛn (β,B) exists for any β > 0, B ∈ R.

(i) Prove that
lim
n→∞

aΛn,+ (β,B) = a (β,B) .

Remark: This means that the boundary conditions have no influence on the asymptotic
free energy per site.

(ii) Prove that B 7→ aΛ,+ (β,B) is a concave function for all β > 0.

(iii) Let (fn)n∈N ⊆ C1 (R) be concave functions and f : R → R such that fn → f pointwise.
Prove that for any h > 0,

lim inf
n→∞

f ′
n(x) ≥ f(x+ h)− f(x)

h
.
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(iv) Using the identity
∂

∂B
aΛ,+ (β,B)

∣∣∣∣
B=0

= −mΛ,+ (β,B = 0)

and the result from Exercise 31, prove that the asymptotic free energy per site a (β,B)
is non-analytic at B = 0 for sufficiently large β.

Exercise 38. (Application of RG: a quantum flute – or a bosonic string)

Consider a cigar-shaped tube of length π and assume that the pressure inside it can be modelled
by a function p(t, x) of the time t and of the coordinate x along the tube. Consider the classical
Hamiltonian

H =

∫ π

0

dx
((∂p

∂t

)2

+
(∂p
∂x

)2)
.

(i) Assume Dirichlet boundary conditions p(t, 0) = p(t, π) = 0. Re-write H in terms of the
Fourier transform of p(t, x) with respect to x and prove that H takes this way the form
of an infinite sum of classical harmonic oscillators of mass 1

2
,

H =
∞∑
k=1

hk , hk :=
(dpk
dt

)2

+ ωk p
2
k ,

of which you have to specify the frequency ωk.

(ii) Consider the quantisation of the Hamiltonian H obtained in (i), consisting of the replace-
ment of each mode pk with the operator of multiplication times xk and correspondingly
of dpk

dt
with the differential operator −i ∂

∂xk
. Let Ek be the ground state energy of the

harmonic oscillator hk. Prove that
∑∞

k=1 Ek = +∞.

(iii) To cure the divergence found in (ii), assume that H can be regularised to some Hreg

in such a way that each harmonic oscillator hk has a ground state damped by a factor
e−a/λk , where a is a reference distance (say, the typical inter-atomic distance) and λk is

the wave length of the mode k. Correspondingly, consider Ẽ :=
∑∞

k=1 Eke
−a/λk . Prove

the following asymptotics

Ẽ =
1

a2
− 1

12
+O(a) as a → 0.

(iv) An immediate consequence of (iii) is that re-normalizing Hreg by

Hreg 7→ H ′ := Hreg −
∫ π

0

dx
1

a2
,

namely adding a contribution which is p-independent (thus, not affecting the equation
of motion) and preserves locality, the ground state energy of H ′ stays finite as a → 0.
Discuss the value of this ground state in relation to the quantity ζ(−1), where ζ is the
Riemann zeta function.

Exercise 39. (Fermi-Dirac ideal gases: computation of thermodynamic quantities.)
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Consider a gas of identical non-interacting spin-1
2
particles of mass m confined in a three-

dimensional cubic box of size L and hence volume V = L3. Assume periodic boundary con-
ditions, so that the one-particle momentum operator has eigenvalues pl =

2π~
L
(lx, ly, lz) with

lx, ly, lz ∈ Z. Here l := (lx, ly, lz) labels each possible momentum eigenstate, in which in turn
at most two particles can be, one with spin up and one with spin down. Accordingly, the
one-particle kinetic energy operator has eigenvalues

εl =
4π2~2

2mL2
(l2x + l2y + l2z) .

Let nl,σ denote the number of particles with quantum numbers l and spin σ ∈ {↑, ↓}. The
grand-partition function at temperature T (β := (kBT )

−1) and chemical potential µ takes the
form

Z(T, V, µ) =
∏
l

( ∑
nl,↑=0,1

e−βnl,↑(εl−µ)
∑

nl,↓=0,1

e−βnl,↓(εl−µ)
)

=
∏
l

(1 + e−β(εl−µ))2 .

(i) Prove that the average number of particles in the gas 〈N〉 :=
(∂(kBT lnZ(T, V, µ))

∂µ

)
T,V

is given by

〈N〉 =
∑
l

〈nl〉 , 〈nl〉 :=
2

eβ(εl−µ) + 1
=

2z

eβεl + z
, z := eβµ .

Remark: 〈nl〉 = average number of particles with quantum numbers l; z = fugacity.

(ii) Plot 〈nl〉 as a function of εl for T > 0 and T = 0.

(iii) Prove that for large volume V the average particle density 〈n〉 := 〈N〉
V

can be written as

〈n〉 =
2

λ3
T

f3/2(z) ,

where λT :=
( 2π~2

mkBT

)1/2

= “thermal wavelength” and

f3/2(z) :=
4√
π

∫ +∞

0

dx
z x2

ex2 + z
=

∞∑
α=1

(−1)j+1 zα

α3/2

(Hint: for large volume V one can change the summation
∑

l to an integration, namely∑
l ≈ 4πV

(2π~)3
∫ +∞
0

p2dp.)

Exercise 40. (Variance of the particle number for a Fermi-Dirac ideal gases)

Same notation as in Exercise 39. Prove that the variance 〈(N − 〈N〉)2〉 in particle number for
a spin-1

2
Fermi-Dirac gas when the temperature T → 0 is

〈(N − 〈N〉)2〉 = kBTV
m

~2
(12〈N〉
4π4V

)1/3

.

To this aim use the thermodynamic identity

〈(N − 〈N〉)2〉 = kBT
(∂〈N〉

∂µ

)
T,V

,

the result of Exercise 39 (iii), and the asymtpotics (that will be proved in the tutorial)

f3/2(z) ≈ 4

3
√
π
(ln z)3/2 as z → +∞ .
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Hints

Recommendation: try first to solve the exercises with the only amount of information provided
in their formulation. I.e., try to understand the question, to identify what the involved no-
tions from class are, to structure a potentially successful solving strategy. Go through these
additional hints only if you get completely stuck in your first attempts.

Hints for Exercise 37. (i) Compare E and E+. (ii) Look at derivatives of aΛ,+(β,B). (iii)
Note that for (aij)i∈N,j∈N

⊆ R, one has lim infi supj aij ≥ supj lim infi aij. (iv) Put everything
together.

Hints for Exercise 38. (i) Fourier-transform with respect to the orthonormal basis { 2
π
sin kx}∞k=1

of L2[0, π]. (ii) Recall that the eigenvalues of h = 1
2m

p2+ 1
2
mω2x2 are ~ω(n+ 1

2
), n = 0, 1, 2, . . . .

(iii) λk = k−1. Then exchange derivative and summation in the series. Last, Taylor expansion
around a = 0.

Hints for Exercise 39. (i) Direct computation. (ii) 0 6 〈nl〉 6 2, smoothly vanishing at
higher temperature; jump at T = 0... (iii) For large volume V change the summation

∑
l to

an integration, namely
∑

l ≈ 4πV
(2π~)3

∫ +∞
0

p2dp. Then direct computation.

Hints for Exercise 40. Use 〈n〉 = 2
λ3
T
f3/2(z) and the asymptotics for f3/2(z) ≈ 4

3
√
π
(ln z)3/2

as z → +∞ to derive an expression of 〈N〉 as a function of µ, then take ∂
∂µ
.
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