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The full mark in each exercise is 10 points. Correct answers with-

out proofs are not accepted. Each step should be justified. You

can hand in the solutions either in German or in English.

Exercise 5. Let X be a topological space.

(i) Prove that the complement of an open set, X \ O, is a closed set. (Recall that in class a
closed set was defined to be a set containing all its limit points: see the handout “Analysis
and topology: an overview”.)

(ii) Let E ⊂ X. Prove that the closure E of E, defined as E = E ∪ {limit points of E}, is
closed in X.

(iii) Let E ⊂ X. Prove that the interior of E, defined as E̊ = {interior points of E}, is open
in X.

Exercise 6.

(i) Prove that the topology of the pointwise convergence as given in class in the space C([0, 1])
does not originate from any metric. (Recall that the pointwise convergence in the space
C([0, 1]) was defined in class by declaring an explicit basis of neighbourhoods – see the
handout “Topologies on continuous functions”. This basis is of course not unique.)

(ii) Give an example of a sequence of functions in C([0, 1]) that do not converge in a fixed dp

metric but they converge pointwise. Give an example to the opposite as well: a sequence
of functions that converge in dp but not pointwise. Recall that dp(f, g) = (

∫ 1

0
|f −g)|p)1/p.

Exercise 7. Let P (N) := {polynomials [0, 1] → R of degree 6 N} with N ∈ N.

(i) For fixed N ∈ N and K > 0 prove that {p ∈ P (N) | ‖p‖∞ 6 K} is compact in C([0, 1])
with the ‖ ‖∞-norm topology.
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(ii) Let f ∈ C([0, 1]) be the uniform limit of a sequence in P (N) for some fixed N . Prove that
f is a polynomial.

Exercise 8. Which of these subsets of C([0, 1]) are pre-compact (i.e., their closure is compact)
with respect to the ‖ ‖∞-norm topology?

(i) {f | f ∈ C1([0, 1]) , f(0) = 0 , and |f ′(x)| 6 1∀x }

(ii) {f | f ∈ C1([0, 1]) , f(0) = 0 , and |f(x)| 6 1∀x }

(iii) {f | f ∈ C2([0, 1]) , f(0) = 0 , and |f ′′(x)| 6 1∀x }

(iv) {f | f ∈ C1([0, 1]) , |f(x)| 6 1∀x , and
∫ 1

0
|f ′(x)|2dx 6 1 }
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