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The first arises when the components \l/^"^ of each ij/ are Symmetrie under

interchange of coordinates. Particles whose states transform in this manner are

called bosons and are said to satisfy Böse (-Einstein) statistics. The second ease

corresponds to anti-symmetry of the i/^^"^ under interchange of each pair of

coordinates. The associated particles are called /ermzö/?^ and are said to satisfy
Fermi (-Dirac} statistics. Thus to discuss these two types of particle one must

examine the Hubert subspaces 5.^, of 5, formed by the ij/ = {^ }n>Q whose

components are Symmetrie (the + sign) or anti-symmetric (the - sign). These

subspaces are usually called Fock spaces but we will also use the term for more

general direct sum spaces.

To describe particles which have internal structure, e.g., an intrinsic angular

momentum, or spin, it is necessary to generalize the above construction of

Fock space.

Assume that the states of each particle form a complex Hubert space l) and

let l)'' = t) 0 I) (g) 0 f) denote the /7-fold tensor product of i^ with itself. Fur

ther introduce the Fock space g(l)) by

5(1)) = © t)"
,

n>0

where if C. Thus a vector \\j G 5(f)) is a sequence {iA''"''}/2>o ^^ vectors

i/^^"^ G t)'^ and l)" can be identified äs the closed subspace of g(l)) formed by the

vectors with all components except the th equal to zero.

In Order to introduce the subspaces relevant to the description of bosons

and fermions we first define operators P on (5(^) by

^+(/i /2 ^ ^ /.) = (n !)"^ V /., 0 /., 0 0 /. ,Z-^^

P-(fl^f2^"'^ fn] = (n !)
^

^ Bnfn, ^ fn.

for all /l, ...,/ G f). The sum is over all permutations TI; (1. 2, ...,) F-^

(TII, 712, , 7r) of the indices and n is one if TT is even and minus one if TC is odd.

Extension by linearity yields two densely defined operators with ||P|| = l and

the P extend by continuity to bounded operators of norm one. The P+ and P_

restricted to i^", are the projections onto the subspaces of 1^" corresponding to

the one-dimensional unitary representations n \-^ l and TC H- 8;^ of the per-

mutation group ofn elements, respectively. The Bose-Fock space g^(t)) and the

Fermi-Fock space (5_({)) are then defined by

S(^)=/'5(l))

and the corresponding -particle subspaces I)'^ by I)^ == P {)" .

We also define a

number operator N on g(^) by

D(N) = (lA; ^ = {^^"^}.>o, E^'ll^^'^^ll' < +^|
l '^>o J

and

7v,A = {.AW}>o

Bosonic/Fermionic Fock Space: quick recap
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for each \l/ G D(N). It is evident that A^ is selfadjoint since it is already given in

its spectral representation. Note that e^^^ leaves the subspaces 5.t(i^) invariant.

We will also use TVto denote the selfadjoint restrictions of the number operator
to these subspaces.

The peculiar structure of Fock space allows the amplification of operators
on I) to the whole spaces 5.^(1)) by a method commonly referred to äs second

qiiantization. This is of particular interest for selfadjoint operators and uni-

taries.

If H is selfadjoint operator on f), one can define Hn on I)'^ by setting HQ = Q

and

ffn(P(f\ ^'"^ fn]] =P\y^fl^f2^-'-^Hfi^-"^fn

for all // G D(H), and then extending by continuity. The direct sum of the // is

essentially selfadjoint because (1) it is Symmetrie and hence closable, (2) it has a

dense set of analytic vectors formed by finite sums of (anti-) symmetrized
products of analytic vectors of H, The selfadjoint closure of this sum is called

the second quantization of H and is denoted by dY(H]. Thus

dY(H) = @Hn .

;i>0

The simplest example of this second quantization is given by choosing // = H
,

one then has

jr(i)=7v .

If u is unitary, [/ is defined by L/o = H and by setting

Un(P(fl 0 /2 0 ^ fn)] = P(Ufl 0 ^/2 0 0 Ufn)

and extending by continuity. The second quantization of U is denoted by r(f/),
where

r(u) = @u .

n>0

Note that r(U) is unitary. The notation dY and P is chosen because if Ut = e'^^
is a strongly continuous one-parameter unitary group, then

r(t/,) - e'"^''(^)
.

Next we wish to describe two C*-algebras of observables associated with

bosons and fermions, respectively. Both algebras are defined with the aid of

particle "annihilaüon" and "creation" operators which are introduced äs fol-

lows. For each / e 1) we define operators a(f), and *(/), on 5(1)) by initially
setting a(/).A(0) = 0,a*(/)^() = /, / e ^, and

a(/)(/i f2---fn) = n^'^(f, /i)/2 /3 / ,

*(/)(/! /2---/) = (+l)'^V /l-
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Extension by linearity again yields two densely defined operators and if

i/^^"^ G l)\ one easily calculates that

||a(/)^Wi| <'/2||/||||^(")||, ||a*(/),AW|| < (+1)'/2|/||||^W|| .

Thus a(f] and *(/) have well-defined extensions to the domain D(N^f^] of

N^f^ and

\\a*(fm<\\f\ ||(A^+l)^/Vll

for all \l/ G D(N^^^), where a^(f} denotes either a(f) or a*(/). Moreover, one

has the adjoint relation

(a*(/)(p,iA) = ((p,ß(/)iA)

for all (p,iA G D(N^^^). Finally, we define annihilation and creation operators

a(f] and <2^(/) on the Fock spaces 5^(1)) by

(/) = /'i a(f)P^ ,
a ; (/) = P fl* (/)P .

The relations

(/)?, A) = (<?>,* (/W, iii(/)'/'ii < 11/11 ii(A^ + i)'^Vii

follow from the corresponding relations for a(f} and *(/). Moreover,

(/)-(/)^, a;(/)=Pfl*(/)

because a(f) leaves the subspaces g.j_([)) invariant. Note that the maps

f^-^a(f] are anti-linear but the maps /i-^a(/) are linear.

The physical interpretation of these operators is the following. Let

Q == (l, 0, 0, . . .), then Q corresponds to the zero-particle state, the vacuum. The

vectors

A (/) = ;(/)"

identify with elements of the one-particle space 1^ and hence a^ (/) "creates" a

particle in the state /. The vectors

iA(/i,...,/.)-^('^0~'/'<(/i)--<(/.)^
= P(f\'--fn)

are -particle states which arise from successive "creation" of particles in the

States /,/_!, . . .

, /l . Similarly the a (/) reduce the number of particles, i.e.,

they annihilate particles. Note that if fi=fj for some pair /, j with

l <i<j<n, then

iA_(/b...,/)-^-(/i^---^/) = o

by anti-symmetry. Thus it is impossible to create two fermions in the same

state. This is the celebrated Pauli principle which is reflected by the operator

equation

a*_(/K_(/)=0 .
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This last relation is the simplest case of the commutation relations which link

the annihilation and creation operators.
One computes straightforwardly that

[ + (/), a + (9)]=0 = [<(/),<(ö)] ,

[fl+(/),a;((7)]=(/,ör)1 ,

and

K(/),a-(^)} = 0 = K(/),al(ö)} ,

{.(/), al(./)} = (/,^)1 ,

where we have again used the notation {A, B} AB + BA. The first relations

are called the canonical commutation relations (CCRs) and the second the ca-

nonical anti-commutation relations (CARs).
Although there is a superficial similarity between these two sets of algebraic

rules, the properties of the respective operators are radically different. In ap-

plications to physics these differences are thought to be at the root of the

fundamentally disparate behaviors of Böse and Fermi Systems at low tem-

peratures. In order to emphasize these differences we separate the subsequent
discussion of the CARs and CCRs but before the general analysis we give an

example of the creation and annihilation operators for point particles.

EXAMPLE 5.2.1. If l) = L~(U'), then 5^(1)) consists of sequences {iA^"^}>o of

functions of n variables x/ G [R^' which are totally Symmetrie ( + sign) or totally an-

tisymmetric ( - sign). The action of the annihilation and creation operators is given by

(a(/)A)'"'(^i, . . . .x) = (n + l)'/' fdxj{x)'^^"^'\x,x^,.
. .,x) ,

(al(f]il,f\x,,. . . ,x] = -'/2 ;^( l)'-'/(^,),A('-')(.x,, . . . ,.x,, . . . ,x) ,

i=\

where i/ denotes that the i th variable is to be omitted. Note that äs the maps

/->(/), /^i(/)

are anti-linear and linear, respectively, one may introduce operator-valued dis-

tributions, i.e., fields fl (x), and a*_^ (x), such that

a(f) = j dxW)^(^)
, <(f) = Jdxf(x)al(x) ,

and then the action of these fields is given by

(a W,A)W(^i, . . . ,x) = (n+ l)'/2 ,/.("+ ')(x,^,, . . . ,x) ,

(a;(;c)iA)("'(xi, . . . ,x) = -'/2 ^( l)'-'5(.v -.x,OiA'"-"(-X|, . . . ,x,, . . . ,x) .

/=!

In terms of these fields the number operator A^ is formally given by

A^- [dxa-'^(x}a^(x) .

4


