Prof. Dr. Markus Heydenreich Kilian Matzke

Wahrscheinlichkeitstheorie: Übungsblatt 6

Tutoriumsaufgaben

Aufgabe T6.1 Zeigen Sie, dass eine Folge $(P_n)_{n\in\mathbb{N}}$ von Wahrscheinlichkeitsmaßen genau dann straff ist, wenn eine derartige messbare Funktion $f:\mathbb{R}\to\mathbb{R}_0^+$ existiert, dass $f(x)\to\infty$ für $|x|\to\infty$ und $\sup_{n\in\mathbb{N}}\int f\,\mathrm{d}P_n<\infty$.

Aufgabe T6.2 Sei $\varphi = \varphi_X$ die charakteristische Funktion einer Zufallsvariable X mit fast überall stetiger Lebesgue-Dichte f. Zeigen Sie, dass $\varphi(t) \xrightarrow{|t| \to \infty} 0$.

Aufgabe T6.3 Berechnen Sie die charakteristische Funktion der Zufallsvariable X, wobei

- $X \sim \text{Bin}(p)$,
- $X \sim \text{Poi}(\lambda) \text{ mit } \lambda > 0$,
- $X \sim \mathcal{U}_{(a,b)}$ mit $a < b \in \mathbb{R}$.

Aufgabe T6.4

- (a) Sei φ eine charakteristische Funktion. Zeigen Sie, dass $e^{\varphi-1}$ ebenfalls eine charakteristische Funktion ist.
- (b) Zeigen Sie, dass e^{t^4} keine charakteristische Funktion ist. (Hinweis: Verwenden Sie Satz 6.6 aus der VL.)

Hausaufgaben

Aufgabe H6.1 Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, $\delta > 0$ und definiere $Y_n = |X_n|^{\delta}$ für $n \in \mathbb{N}$. Zeigen Sie, dass aus der gleichgradigen Integrierbarkeit von $(Y_n)_{n\in\mathbb{N}}$ die Straffheit von $(P_{X_n})_{n\in\mathbb{N}}$ folgt.

Aufgabe H6.2 Zeigen Sie: Eine Folge von Maßen $(P_n = P_{X_n})_{n \in \mathbb{N}}$ ist genau dann straff, wenn die zugehörigen Verteilungsfunktionen $(F_n = F_{X_n})_{n \in \mathbb{N}}$ die in n uniformen Konvergenzen

$$\lim_{x \to \infty} \inf_{n \in \mathbb{N}} F_n(x) = 1, \qquad \lim_{x \to -\infty} \sup_{n \in \mathbb{N}} F_n(x) = 0$$

erfüllen.

Aufgabe H6.3 Sei $\varphi = \varphi_X$ die charakteristische Funktion einer Zufallsvariable X. Zeigen Sie:

$$\exists s \neq 0 : |\varphi(s)| = 1 \iff \exists a, 0 \neq b \in \mathbb{R} : P(X \in a + b\mathbb{Z}) = 1.$$

(Die rechte Seite bedeutet, dass X auf dem Gitter $a+b\mathbb{Z}$ konzentriert ist.)

 $\mathbf{Aufgabe}\ \mathbf{H6.4}$ Berechnen Sie die charakteristische Funktion der Zufallsvariable X, wobei

- $X \sim \text{Geom}(p) \text{ mit } p \in (0,1), \text{ also } P(X=k) = p(1-p)^{k-1} \text{ für } k \in \mathbb{N},$
- $X \sim \text{Exp}(\lambda) \text{ mit } \lambda > 0.$