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Introduction

Introduction

Explicit Mathematics as introduced by Feferman.

Weak theories exist for applicative part.

Up to now, theories with types were of strength at least PRA.

Goal / Question

We want a theory with types, (full) type induction and of strength the
polynomial time computable functions. Which types can be allowed to
match these requirements?
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Introduction

Provably Total

Definition

A function F : Wn →W is called provably total in an L theory T, if there
exists a closed L term tF such that

(i) T ` tF : Wn 7→W and, in addition,

(ii) T ` tF w1 · · ·wn = F (w1, . . . ,wn) for all w1, . . . ,wn in W.

w for w ∈W means the corresponding standard term.
T is an applicative theory comprising combinatory algebra.
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Applicative Base

The Applicative Base

PT was introduced by Thomas Strahm. It is based on the Logic of Partial
Terms with the binary words as basic elements.

Logic of Partial Terms

Language L individual variables a, b, c , . . .; individual constants k, s,
p, p0, p1, dW, ε, s0, s1, pW, c⊆; constants ∗ and ×; binary
function symbol ·, unary relation symbols ↓ and W, binary
relation symbol =.

Terms Inductively by · from constants and variables.

Formulae Inductively by the usual connectives from relations.

Axioms/Rules Axioms and rules of Hilbert Calculus with equality plus
axioms about definedness.
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Applicative Base

Important Abbreviations

0 := s0ε 1 := s1ε

(s1, s2) := pst (s)i := pi s (i = 0, 1)

s ⊆ t := c⊆st = 0

s ≤ t := lWs ⊆ lWt lWs := 1×s

Wa(s) := (W(s) ∧ s ≤ a),

(∃x ≤ t)A := (∃x ∈W)(x ≤ t ∧ A),

(∀x ≤ t)A := (∀x ∈W)(x ≤ t → A),

(t : W 7→W) := (∀x ∈W)(tx ∈W),

(t : Wm+1 7→W) := (∀x ∈W)(tx : Wm 7→W).
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Applicative Base

Axioms of Base Theory B

I Partial combinatory algebra and pairing
Axioms defining the behaviour of the well-known combinators k and

s and of pairing p and projections p0 and p1

II Definition by cases on W

dWxyab =

{
x a, b ∈W ∧ a = b

y a, b ∈W ∧ a 6= b

III Closure, binary successors and predecessor
W contains the ε and is closed under successors s0, s1 and

predecessor pW. Furthermore, s0, s1 and pW behave as expected.

IV Initial subword relation
c⊆ is a total “predicate” on W. It behaves decently on W, deciding

whether the first word is a initial subword of the second.

V Word concatenation and multiplication
∗ concatenates two words as expected. ×xy = x∗ . . . ∗x︸ ︷︷ ︸

length of y often
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Applicative Base

Induction

f : W 7→W ∧ A[ε] ∧ (∀x ∈W)(A[pWx ]→ A[x ])→ (∀x ∈W)A[x ] (C-IW)

where A[x ] belongs to the formula class C

Definition (Σb
W/Σb−

W )

A formula A[f , x ] belongs to Σb
W (Σb−

W ) if it is of the form
(∃y ≤ fx)B[f , x , y ] where B[f , x , y ] positive and W-free (and not
containing ∀).

Theories PT and PT−

PT := B + (Σb
W-IW)

PT− := B + (Σb−
W -IW)
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Applicative Base

Important Properties of PT− (and PT)

Lemma (λ-Abstraction, Fixpoint)

In B, we have λ-abstraction for any term t and a term rec serving as fixed
point operator.

Theorem

The provably total functions of PT− coincide with the functions
terminating in polynomial time.
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Introduction of theory with types, PET

Language

“Theory of Types and Names”

The Language LT is L extended with type variables X ,Y , . . . , binary
relation symbols ∈,< (naming), constants w, id, dom, un, int, inv

Additional Shortcuts

<(a) := ∃X (<(a,X ))

a ∈̇ b := ∃X (<(b,X ) ∧ a ∈ X )
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Introduction of theory with types, PET Finite axiomatisation

Axioms of PET

Axioms are the axioms of B plus the following:

∃x<(x ,X ) (Expl1)

<(a,X ) ∧ <(a,Y )→ X = Y (Expl2)

∀z(z ∈ X ↔ z ∈ Y )→ X = Y (Expl3)

a ∈W→ <(w(a)) ∧ ∀x(x ∈̇ w(a)↔Wa(x)) (wa)

<(id) ∧ ∀x(x ∈̇ id↔ ∃y(x = (y , y))) (id)

<(a) ∧ <(b)→ <(un(a, b)) ∧ ∀x(x ∈̇ un(a, b)↔ (x ∈̇ a ∨ x ∈̇ b)) (un)

<(a) ∧ <(b)→ <(int(a, b)) ∧ ∀x(x ∈̇ int(a, b)↔ (x ∈̇ a ∧ x ∈̇ b)) (int)

<(a)→ <(inv(f , a)) ∧ ∀x(x ∈̇ inv(f , a)↔ fx ∈̇ a) (inv)

<(a)→ <(dom(a)) ∧ ∀x(x ∈̇ dom(a)↔ ∃y((x , y) ∈̇ a)) (dom)

ε ∈ X ∧ (∀x ∈W)(pWx ∈ X → x ∈ X )→ (∀x ∈W)(x ∈ X ) (T-IW)
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Introduction of theory with types, PET Restricted Elementary Comprehension

Comprehension: Preparations

Definition (Class of Σb
T formulas and set of variables FVW(A))

A ≡ (s = t), s↓ or (s ∈ X ) A is a Σb
T formula and FVW(A) := ∅.

A ≡Wa(t) A is a Σb
T formula and FVW(A) := {a} if a /∈ FVI (t).

A ≡ (B ∧ C ) or (B ∨ C ) with B and C in Σb
T and if no conflict arises

between FVI and FVW, then A is a Σb
T formula and

FVW(A) := FVW(B) ∪ FVW(C ).

A ≡ ∃xB with B ∈ Σb
T and x /∈ FVW(B), then A is a Σb

T formula and
FVW(A) := FVW(B).
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Introduction of theory with types, PET Restricted Elementary Comprehension

Comprehension: Preparations

Definition (ρA(B , x))

For a Σb
T formula A, we define a term ρA(B, x) by induction on the

complexity of B in Σb
T, where x 6∈ FVW(B) and x not bound in B:

ρA(s = t, x) := inv(λx .(s, t), id),

ρA(s↓, x) := inv(λx .(s, s), id),

ρA(s ∈Wa, x) := inv(λx .s,w(a)),

ρA(s ∈ X , x) := inv(λx .s, µA(X )),

ρA(C ∧ D, x) := int(ρA(C , x), ρA(D, x))

ρA(C ∨ D, x) := un(ρA(C , x), ρA(D, x))

ρA(∃yC , x) := dom(ρA(C [(x)0/x , (x)1/y ], x)).

where µA(X ) assigns an individual variable not occurring in A to the free
type variable X .
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Introduction of theory with types, PET Restricted Elementary Comprehension

Restricted Elementary Comprehension

Theorem (Restricted elementary comprehension in PET)

For A a Σb
T formula with FVT (A) = {X1, . . . ,Xn} and

FVW(A) = {w1, . . . ,wm}. Let zi := µA(Xi )(1 ≤ i ≤ n) and
ρA,x := ρA(A, x), then we have:

1 FVI (ρA,x) = (FVI (A) \ {x}) ∪ {z1, . . . , zn},
2 PET `W(~w) ∧ <(~z , ~X ) → <(ρA,x),

3 PET `W(~w) ∧ <(~z , ~X ) → (∀x)(x ∈̇ ρA,x ↔ A).

Remark

As a consequence of comprehension and type induction, induction is
available for Σb

T formulae.
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Lower Bounds

Lower Bounds: Preparatory Work

Lemma (Properties of the subword relation)

The following statements are provable in PET:

1 x ∈W ∧ z ∈W ∧ x ⊆ pWz → x ⊆ z,

2 x ∈W ∧ y ∈W ∧ z ∈W ∧ x ⊆ y ∧ y ⊆ z → x ⊆ z (Transitivity),

3 x ∈W ∧ y ∈W ∧ x ⊆ y → x ≤ y.
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Lower Bounds

Lower Bounds: “Bounded Induction”

a ∈W ∧ ε ∈ X ∧ (∀x ⊆ a)(pWx ∈ X → x ∈ X )→ a ∈ X (T-IbW)

Lemma

We have that (T-IW) and (T-IbW) are provably equivalent in PET without
(T-IW).
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Lower Bounds

Bounding Functions f : W 7→ W

Lemma

There is a closed term max such that PET proves:

1 f : W 7→W→ maxf : W 7→W,

2 f : W 7→W ∧ f ∗ = maxf ∧ x ∈W ∧ y ∈W ∧ x ⊆ y → f ∗x ≤ f ∗y),

3 f : W 7→W ∧ f ∗ = maxf ∧ x ∈W→ fx ≤ f ∗x),

4 f : W 7→W ∧ f ∗ = maxf ∧ x ∈W ∧ y ∈W ∧ x ⊆ y → fx ≤ f ∗y.

Proof (Sketch)

max := λf .λx .f (maxargfx) where maxarg is a functional detecting the
argument maximising the function f up to x .
Proof of (1) by proving f : W 7→W→ maxargf : W 7→W by (T-IbW) on
(∃y ≤ a)((maxargf )x = y). Proof of (2) and (3) by induction.
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Lower Bounds

Lower Bounds

Theorem

PT− is contained in PET.

Proof

Steps of proving PET ` (Σb−
W -IW):

1 Take Σb−
W formula A[x ] ≡ (∃y ≤ fx)B[f , x , y ] and assume

f : W→W ∧ A[ε] ∧ (∀x ∈W)(A[x ]→ A[s0x ] ∧ A[s1x ])

2 Prove (∃y ≤ fx)B[x , y ]↔ (∃y ≤ f ∗c)(y ≤ fx ∧ B[x , y ]) for c ∈W
and x ⊆ c .

3 With Comprehension we can construct type X such that
(∀x ⊆ c)(x ∈ X ↔ (∃y ≤ f ∗c)(y ≤ fx ∧ B[x , y ])) as f ∗c ∈W

4 ε ∈ X ∧ (∀x ⊆ c)(pWx ∈ X → x ∈ X ) immediate from above.

5 By (T-IbW): c ∈ X

Daria Spescha (IAM) Types and polytime operations Munich, 2008/04/05 22 / 30



Lower Bounds

Lower Bounds

Theorem

PT− is contained in PET.

Proof

Steps of proving PET ` (Σb−
W -IW):

1 Take Σb−
W formula A[x ] ≡ (∃y ≤ fx)B[f , x , y ] and assume

f : W→W ∧ A[ε] ∧ (∀x ∈W)(A[x ]→ A[s0x ] ∧ A[s1x ])

2 Prove (∃y ≤ fx)B[x , y ]↔ (∃y ≤ f ∗c)(y ≤ fx ∧ B[x , y ]) for c ∈W
and x ⊆ c .

3 With Comprehension we can construct type X such that
(∀x ⊆ c)(x ∈ X ↔ (∃y ≤ f ∗c)(y ≤ fx ∧ B[x , y ])) as f ∗c ∈W

4 ε ∈ X ∧ (∀x ⊆ c)(pWx ∈ X → x ∈ X ) immediate from above.

5 By (T-IbW): c ∈ X

Daria Spescha (IAM) Types and polytime operations Munich, 2008/04/05 22 / 30



Lower Bounds

Lower Bounds

Theorem
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W -IW):
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W formula A[x ] ≡ (∃y ≤ fx)B[f , x , y ] and assume
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Upper bounds

Structures for PET

Definition (LT structure)

A LT-structure M? is a tuple

(M, T , E ,R,w, id,dom, un, int, inv)

where (i) M is a L-structure, (ii) T is a non-empty set of subsets of |M|,
(iii) E is the usual ∈ relation on |M| × T , (iv) R is a non-empty subset of
|M| × T , and (v) w, id, dom,un, int, inv are elements of |M|.
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Upper bounds

Model Construction

Take model M of PT−.

Choose decent interpretation for constants.

Inductively define
Tk := {ext(m) : m ∈ Rk},Rk := {(m, ext(m)) : m ∈ Rk},
M?

k := (M, Tk ,Rk ,w, id,dom, un, int, inv) where Rk ⊆ |M| and
ext(m) ⊆ |M| for m ∈ Rk :

k = 0 R0 := {id} ∪ {wa : a ∈WM}
k > 0 Rk := {un(a, b), int(a, b) : a, b ∈ Rk−1}

∪{inv(f , a),doma : a ∈ Rk−1} and e.g.
ext(un(a, b)) := {m ∈ |M| :M?

k−1 |= m ∈̇ a ∨m ∈̇ b}

Set T :=
⋃

k∈N Tk and R :=
⋃

k∈NRk .
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Upper bounds

Upper Bounds

Theorem (Model extension)

Any model M? constructed as described above from a model M of PT−

satisfies the following conditions:

1 M |= A ⇐⇒ M? |= A for any L sentence A,

2 M? |= T-IW,

3 M? |= PET.

Proof of 2

We show that every type X ∈ T is weakly Σb−
W definable, i.e. that

X = {m ∈ |M| :M |= A[m]} for A Σb−
W formula with a fixed bound. This

is proved by induction on the level k when X is added to Rk .
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Extensions and Further Work

Uniformity
Cantini showed that the Uniformity Principle UP can be added to PT
without strengthening the theory.

(∀x)(∃y ∈W)A(x , y)→ (∃y ∈W)(∀x)A(x , y) for A positive (UP)

UP entails the following bounded uniformity axiom:

∀x(∃y ≤ t)A[x , y ]→ (∃y ≤ t)(∀x)A[x , y ] for A positive (UP’)

In the presence of UP′ we can add an universal type to PET:

<(a)→ <(all a) ∧ ∀x(x ∈̇ all a↔ ∀y(〈x , y〉 ∈̇ a)) (all)

Lemma

PT + (UP) is contained in PET + (all) and PET + (all) is a conservative
extension of PT + (UP) for closed L formulae.
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Extensions and Further Work

Other Extensions

Choice (∀x ∈W)(∃y ∈W)A(x , y)→
(∃f : W 7→W)(∀x ∈W)A(x , fx)

for A positive and containing type variables only
in the form t ∈ X

Totality ∀x∀y(xy↓)
Extensionality ∀f ∀g(∀x(fx ' gx)→ f = g)

Theorem

The provably total functions of PET augmented by any combination of the
principles (all), Choice, Totality, and Extensionality coincide with the
polynomial time computable functions.
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Extensions and Further Work

Further Work

We are currently studying the addition of disjoint join:
Join: <(a) ∧ f : a 7→ < → <(j(a, f )∧

∀x(x ∈̇ j(a, f )↔ (x)0 ∈̇ a ∧ (x)1 ∈̇ f (x)0)

Furthermore, we plan to study weak theories of partial (self referential)
truth.
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