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How is it that infinitary proof theory gives rise to finitistic
reductions?

• It suffices to use recursive proof trees.

• Recursive proof trees can be encoded by natural numbers.

• E.g. Pohlers: Proof-theoretical analysis of IDν by the
method of local predicativity. In: W. Buchholz, S. Feferman,
W. Pohlers, W. Sieg: Iterated inductive definitions and
subsystems of analysis: Recent proof-theoretical studies
(1981)
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Recursive proof trees

• Provides a reduction of a theory T (e.g. T = ∆1
2-CA + BI)

to PA +
⋃
α<λ TI(α) where λ is a sufficiently large ordinal

(representation system).

• Drawback: Has probably never been sufficiently
formalized. Glossing over detail. A lot of handwaving.
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Primitive recursive proof trees

• Schwichtenberg: Some applications of cut-elimination. In:
J. Barwise (ed.): Handbook of Mathematical Logic (1977).

1 Primitive recursive proof trees suffice for
PA +

⋃
α<λ TI(α).

2 Uses the Primitive Recursion Theorem of Kleene 1958.

3 Continuous cut-elimination: The repetition rule appears
in the guise of improper instances of the ω-rule.

• Drawback: Proofs inchoate. Hand waving exacerbated.

• It works for PA +
⋃
α<λ TI(α). Would it work for

KPi = ∆1
2-CA + BI?

• Does this machinery work for elementary in place of
primitive recursive functions?
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Complexity of Ordinal Representation Systems

• Rick Sommer has investigated the question of complexity
of ordinal representation systems at great length. His case
studies revealed that with regard to complexity measures
considered in complexity theory the complexity of ordinal
representation systems involved in ordinal analyses is
rather low. It appears that computations on ordinals in
actual proof-theoretic ordinal analyses can be handled in
the theory

I∆0 + Ω1

where Ω1 is the assertion that the function x 7→ x log2(x) is
total.
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Elementary descent recursion and proof theory

• H. Friedman, M. Sheard: Elementary descent recursion
and proof theory (1995)

• Proof theory of infinitary proof figures

• Provides a lot of details about the provably computable
functions of theories of the form PA +

⋃
α<λ TI(α).

• Characterizes them as the λ-descent recursive
functions.

• Treatment is semi-rigorous.
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The Descent Computable Functions

Theorem (Friedman, Sheard)

The provably computable functions of

PA +
⋃
α<λ

TI(α)

are all functions f of the form

f (~m) = g(~m, least n.h(~m,n) E h(~m,n + 1)) (1)

where g and h are elementary and, for some α∈A,

EA ` ∀~xy h(~x , y)∈Aα.

The above class of functions is called the descent
computable functions over Aλ.
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Main Step

• Ordinal analysis reduces a theory T which is a subsystem
of second order arithmetic or set theory to

PA +
⋃
α<λ

TI(α),

where λ is the proof-theoretic ordinal of T.
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Friedman’s question:

1 Proof theory (almost?) always is establishing a
conservative extension result that says that a given formal
system T is a conservative extension of a system of
arithmetic transfinite induction on a notation system, for Σ0

1
sentences, or even Π0

2 sentences.

2 The conservative extension statement itself is a Π0
2

sentence. All I really need is that this Π0
2 sentence has a

reasonable Skolem function. E.g., a "reasonable" primitive
recursive function will do. By "reasonable" I mean, e.g.,
that its presentation in the primitive recursion calculus of
Kleene uses at most, say, 21000 symbols.

3 From this, I can apply Friedman/Sheard with the old
classical theory of infinitary derivations, linking to
elementary recursive descent recursion, and no longer
need your expertise.
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Friedman’s question:

1 21000 ' 10300 > ] atoms in the visible universe
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An intuitionistic fixed point theory

• Wilfried Buchholz: An intuitionistic fixed point theory
Archive Math Logic (1997)

• The strongly positive formulas are built up from
formulas P(t) and atomic formulas of HA by means of
∧,∨,∀,∃.

• ÎD
i
1 is obtained from HA by adding for each strongly

positive operator form Φ(P, x) a new predicate symbol IΦ
and the axiom

(FPΦ) ∀x [Φ(IΦ, x)↔ IΦ(x)].

Moreover, the induction schema is extended to the new
language.
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Let CT0 be Church’s thesis, i.e. the schema

∀x∃y B(x , y)→ ∃e∀x B(x , {e}(x)).

Theorem 1 For each strongly positive operator form Φ
there is an arithmetical formula AΦ(x) such that

HA + CT0 ` ∀x [Φ(AΦ, x)↔ AΦ(x)].
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Theorem 2 ÎD
i
1 is conservative over HA w.r.t. almost

negative formulas.

Proof: For each formula B of ÎD
i
1 let B∗ be the result of

replacing each subformula IΦ(t) by AΦ(t).

1 ÎD
i
1 ` B ⇒ HA + CT0 ` B∗ (Theorem 1)

2 HA + CT0 ` C ⇒ HA ` ∃e (erC).

3 HA ` ∃e (erC)→ C for almost negative C.
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i
1 is conservative over HA w.r.t. almost

negative formulas.

Proof: For each formula B of ÎD
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i
1 let B∗ be the result of

replacing each subformula IΦ(t) by AΦ(t).

1 ÎD
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ÎD
i
1 +

⋃
α<λ TI(α) as a metatheory for ordinal analysis

• A semi-formal system à la Schütte is given by a derivability
predicate D(α, ρ, Γ) meaning ‘Γ is derivable with order α
and cut-rank ρ’ defined by transfinite recursion on α as
follows:

(∗) D(α, ρ, Γ)⇔

α < λ, and either Γ contains an axiom or Γ is the
conclusion of an inference with premisses (Γi)i∈I such
that for every i ∈ I there exists βi < α with D(βi , ρ, Γi),
and if the inference is a cut it has rank < ρ.

• (∗) can be viewed as a fixed-point axiom which together
with

⋃
α<λ TI(α) defines D implicitly, whence the

metatheory ÎD
i
1 +

⋃
α<λ TI(α) suffices.
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The strength of Kruskal’s theorem

M. Rathjen, A. Weiermann: Proof–theoretic investigations
on Kruskal’s theorem (1993)

Theorem 1. The proof-theoretic ordinal ordinal of Π1
2 − BI0

and Π1
2 − BI−0 is the Ackermann ordinal θΩω0.

Theorem 2. For every n, Π1
2 − BI−0 proves KTn, i.e.

Kruskal’s theorem for finite at most n branching trees.

Π1
2 − BI0 6` ∀x KTx .

Theorem 3. ACA0 proves that Kruskal’s theorem is
equivalent to the uniform Π1

1-reflection for Π1
2 − BI0.
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Buchholz’s Ω-rule

• Ω-rule particularly suited to deal with Bar induction, BI.

• BI is equivalent (over RCA0 to the schema

(∀-Inst) ∀X A(X )→ A(F )

where A(X ) is an arithmetic formula and F (u) is an
arbitrary formula of second order arithmetic. A(F ) results
from A(X ) by replacing every subformula t ∈ X by F (t).

1 Crude motivation for the Ω-rule: An intuitionistic proof of an
implication B → C is a method which transforms a proof of
B into a proof of C.

2 How to transform a proof of ∀X A(X ) into a proof of A(F )?

3 Easy if the proof of ∀X A(X ) is cut-free: substitution.
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Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying

1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying

1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying

1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying
1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying
1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying
1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Buchholz’s Ω-rule cont’d

Weak formulas are formulas that are arithmetic or Π1
1.

Inductive definition of T ∗
α

% Γ for α ∈ OT (ψ) and
% < ω + ω.

• (Ω-rule). Let f be a fundamental function satisfying
1 Ω ∈ dom(f ) and f (Ω) � α,

2 T ∗
f (0)

% Γ,∀XF (X ) , where ∀XF (X ) ∈ Π1
1, and

3 T ∗
β

0
Ξ,∀XF (X ) implies T ∗

f (β)

% Ξ, Γ for every set of
weak formulas Ξ and β < Ω.

Then T ∗
α

% Γ holds.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



The other rules

1 If A is a true constant prime formula or negated prime
formula and A ∈ Γ, then T ∗

α

% Γ.

2 If Γ contains formulas A(s1, . . . , sn) and ¬A(t1, . . . , tn) of
grade 0 or ω, where si and ti (1 ≤ i ≤ n) are equivalent
terms, then T ∗

α

% Γ.

3 If T ∗
β

% Γi and β � α hold for every premiss Γi of an
inference (∧), (∨), (∃1), (∀2) or (Cut) with a cut formula
having grade < %, and conclusion Γ, then T ∗

α

% Γ.

4 If T ∗
α0

% Γ,F (U) holds for some α0 � α and a

non-arithmetic formula F (U), then T ∗
α

% Γ, ∃XF (X ) .
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Metatheory for the Ω-rule?

• The derivability notion T ∗
α

% Γ seems to require an iterated
inductive definition.

1 First inductively defined set, T∞: Infinitary (cut-free) proofs
without Ω-rule.

2 Inductive definition of T ∗
α

% Γ involves T∞ negatively.

• Buchholz’s result can be extended to finitely iterated
inductive definitions.

• T. Arai: Some results on cut-elimination, provable
well-orderings, induction and reflection (1998).

• ÎD
i
n(strong) can be interpreted in intuitionistic analysis

EL + AC-NF basically by the same proof as the classical
second recursion theorem. EL + AC-NF is conservative
over HA by Goodman’s theorem.

Π0
2 CONSERVATION IN PROOF THEORY Π0

2 CONSERVATION IN PROOF THEORY



Metatheory for the Ω-rule?

• The derivability notion T ∗
α

% Γ seems to require an iterated
inductive definition.

1 First inductively defined set, T∞: Infinitary (cut-free) proofs
without Ω-rule.

2 Inductive definition of T ∗
α

% Γ involves T∞ negatively.

• Buchholz’s result can be extended to finitely iterated
inductive definitions.

• T. Arai: Some results on cut-elimination, provable
well-orderings, induction and reflection (1998).

• ÎD
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Metatheory for the Ω-rule cont’d

Two Drawbacks:
(1) The employment of Goodman’s theorem makes the proof

less explicit. Hard to say how long a fully formalized proof
would be.

(2) ÎD
i
n is formulated for strongly positive operator forms.

But the iterated inductive definition of T ∗
α

% Γ seems to
require a strictly positive iterated inductive definition.

• The strictly positive (with respect to P) formulas of
L1(P,Q) formulas are closed under the following clause:

If A is an L1(Q) formula and B is strictly positive, then
A→ B is strictly positive.
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Metatheory for the Ω-rule cont’d

• C. Rüede, T. Strahm: Intuitionistic fixed point theories for
strictly positive operators. (MLQ 2002)

• Theorem. ÎD
i
n(strict) is conservative over HA w.r.t. Π0

2
sentences.

Proof uses a realizability interpretation of ÎD
i
n(strict) into

ÎD
i
n(acc) (preserves almost negative formulas).

• Proof can be easily made fully formal.

• An accessibility operator form A(P,Q, x , y) is of the
form A(x , y) ∧ ∀z[B(x , y , z)→ P(z)], where A,B belong
to L1(Q).
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Friedman’s impractical matters

• R.L. Smith: Consistency strength of some finite forms of
the Higman and Kruskal theorems. In: Harvey Friedman’s
research on the foundations of mathematics. (1985)

• Section 4: Practical Matters

• Let Q be the well-quasi ordering of all finite trees with 6
labels under label preserving homoemorphisms.

• Let SWQ(Q) be the statement that for any c there exists a
number k which is so large that, for any sequence
〈T0, . . . ,Tk 〉 of trees in Q with |Ti | ≤ c · (i + 1) for all i ≤ k ,
there exist indices i < j ≤ k such that Ti is
homoemorphically embeddable into Tj .

• Let ΨQ(c) be the smallest such k .
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labels under label preserving homoemorphisms.

• Let SWQ(Q) be the statement that for any c there exists a
number k which is so large that, for any sequence
〈T0, . . . ,Tk 〉 of trees in Q with |Ti | ≤ c · (i + 1) for all i ≤ k ,
there exist indices i < j ≤ k such that Ti is
homoemorphically embeddable into Tj .

• Let ΨQ(c) be the smallest such k .
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Impractical matters cont’d

Theorem. SWQ(Q) is provable in Π1
2-BI but not in Π1

2-BI0.

• When c is specialized we obtain a Σ0
1 statement SWQc(Q).

Theorem. SWQ1(Q) is provable in Π1
2-BI0 (of course!) but

any proof requires at least 2[900] symbols.

2[0] := 1, 2[n+1] := 22[n]
.

Why?
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Impractical matters cont’d

• For a theory T define
χT (n)

to be the least integer k such that if ∃x A(x) is any Σ0
1

statement provable in T using ≤ n symbols, then A(m) is
true for some m ≤ k .

• Let
χ
λ

(n)

be the least integer k such that if ∃x A(x) is any Σ0
1

statement provable in

PA +
⋃
α<λ

TI(α)

using ≤ n symbols, then A(m) is true for some m ≤ k .
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Impractical matters finale

1 Theorem. The proof in [RW] of the 1-consistency of
T := Π1

2-BI0 in PA + TI(θΩω0) can be carried out by a proof
shorter than 21000 symbols.

2 Corollary. χT(n) ≤ χ
θΩω0(22(n+1)·1000

)

3 (Friedman: in [Smith] Lemma 22) χ
θΩω0(2[1000]) ≤ ΨQ(1).

4 χT(n) ≤ χ
θΩω0(22(n+1)·1000

)

5 χT(2[900]) ≤ χ
θΩω0(2[1000]) ≤ ΨQ(1)
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The End

Thank you!
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