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The ordering

[A<B = A<(B) vV (A)<B A (A) < (B))]

(A) — sequence of immediate subtrees

A < (B) A < some immediate subtree of B
(A) < B all immediate subtrees of A are < B
{

A) < (B) lexicographical ordering
» Length of sequences
» Rightmost element where they differ
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Elementary properties

A<B o A<(B) Vv ((A)<B A (A) < (B))]

» Decidable
» Transitive
» Linear

» Equality is the usual tree equality
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Some ordinal functions

Zero:
=0
Successor:
«
" +1
Exponentiation:
. «
NS LW

where ~ means we jump over fix points.
In general we get the fix point free n-ary Veblen functions.
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This gives all trees less than [g. To get a cofinal set we only need
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Wellfoundedness

» Minimal bad argument
» Minimal height

» Induction over wellfounded trees

Both arguments are straightforward.
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Further work

Linear extensions of embeddings

» Diana Schmidt
» Linear extensions of topological embeddings of trees

> |A| maximal ordertype

A B

Al 1Bl (Bl |A]
N
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This gives Higmans lemma. Further work gives Kruskals theorem.
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Finite trees with labels

Wellordered set of labels

Each node has a label

(A); — sequence of i-subtrees

Defines <; and <

A<iB& A< (B)iV((A)i<BVA< B)
A <o B — lexicographical ordering

Linear wellfounded preorderings
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Takeutis ordinal diagrams



