Finite trees as ordinals

Herman Ruge Jervell University of Oslo

Honouring Wilfried München April 5, 2008

$$0 = .$$

$$0 = .$$
 $1 = .$

$$0 = .$$
 $1 = .$ $2 = .$

$$0 = .$$
 $1 = \frac{1}{2}$ $2 = \frac{1}{2}$ $3 = \frac{1}{2}$

The natural numbers:

$$0 = .$$
 $1 = \frac{1}{2}$ $2 = \frac{1}{2}$ $3 = \frac{1}{2}$

The natural numbers:

$$0 = .$$
 $1 = \frac{1}{2}$ $2 = \frac{1}{2}$ $3 = \frac{1}{2}$

$$\omega = \dot{\Sigma}$$

The natural numbers:

$$0 = .$$
 $1 = \frac{1}{2}$ $2 = \frac{1}{2}$ $3 = \frac{1}{2}$

$$\omega = \sum_{i=1}^{N} \omega_{i} = \sum_{i=1}^{N} \omega_{i}$$

The natural numbers:

$$0 = .$$
 $1 = \frac{1}{2}$ $2 = \frac{1}{2}$ $3 = \frac{1}{2}$

$$\omega = \sum_{\omega} \omega = \omega = \omega$$

The natural numbers:

$$0 = .$$
 $1 = \frac{1}{2}$ $2 = \frac{1}{2}$ $3 = \frac{1}{2}$

$$\omega = \dot{} \qquad \dot{} \qquad$$

$$\boxed{ \textbf{A} < \textbf{B} \; \Leftrightarrow \; \textbf{A} \leq \langle \textbf{B} \rangle \; \vee \; \big(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \big) }$$

▶ ⟨**A**⟩ — sequence of immediate subtrees

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ightharpoonup $A \leq \langle B \rangle$

$$\boxed{ \textbf{A} < \textbf{B} \; \Leftrightarrow \; \textbf{A} \leq \langle \textbf{B} \rangle \; \vee \; \big(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \big) }$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ightharpoonup $A \leq \langle B \rangle$

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle \mathbf{A}
 angle < \mathbf{B}$

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle \mathbf{A}
 angle < \mathbf{B}$

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle A \rangle < B$ all immediate subtrees of A are < B

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle A \rangle < B$ all immediate subtrees of A are < B
- $ightharpoonup \langle \mathbf{A}
 angle < \langle \mathbf{B}
 angle$

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle A \rangle < B$ all immediate subtrees of A are < B
- $ightharpoonup \langle \mathbf{A}
 angle < \langle \mathbf{B}
 angle$

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ▶ ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle A \rangle < B$ all immediate subtrees of A are < B
- $ightharpoonup \langle A \rangle < \langle B \rangle$ lexicographical ordering

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ► ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle A \rangle < B$ all immediate subtrees of A are < B
- $ightharpoonup \langle A \rangle < \langle B \rangle$ lexicographical ordering
 - Length of sequences

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- ► ⟨**A**⟩ sequence of immediate subtrees
- ▶ $A \le \langle B \rangle$ $A \le$ some immediate subtree of B
- $ightharpoonup \langle A \rangle < B$ all immediate subtrees of A are < B
- $ightharpoonup \langle A \rangle < \langle B \rangle$ lexicographical ordering
 - Length of sequences
 - Rightmost element where they differ

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

Decidable

$$\boxed{ \textbf{A} < \textbf{B} \; \Leftrightarrow \; \textbf{A} \leq \langle \textbf{B} \rangle \; \vee \; \big(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \big) }$$

- Decidable
- Transitive

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- Decidable
- ▶ Transitive
- ▶ Linear

$$\textbf{A} < \textbf{B} \;\; \Leftrightarrow \;\; \textbf{A} \leq \langle \textbf{B} \rangle \;\; \vee \; \left(\langle \textbf{A} \rangle < \textbf{B} \; \wedge \; \langle \textbf{A} \rangle < \langle \textbf{B} \rangle \right)$$

- Decidable
- ▶ Transitive
- ▶ Linear
- ► Equality is the usual tree equality

Zero:

$$.\,=0$$

Zero:

$$. = 0$$

Successor:

$$\stackrel{\alpha}{!} = \alpha + 1$$

Zero:

$$. = 0$$

Successor:

$$\overset{\alpha}{!} = \alpha + 1$$

Exponentiation:

$$\sim \alpha \sim \omega^{\omega^{\alpha}}$$

where \sim means we jump over fix points.

Zero:

$$. = 0$$

Successor:

$$\stackrel{\alpha}{!} = \alpha + 1$$

Exponentiation:

$$\sim \omega^{\omega^{\alpha}}$$

where \sim means we jump over fix points. In general we get the fix point free $\emph{n}\text{-}$ ary Veblen functions.

Start with immediate subtrees:

Start with immediate subtrees:

Start with immediate subtrees:

$$0 = .$$
 $0 = .$ $1 =$

Use function with smaller arity:

Start with immediate subtrees:

$$0 = .$$
 $0 = .$ $1 = \dot{0}$

Use function with smaller arity:

$$\alpha$$
 β γ

$$\Gamma_0 = \frac{1}{2}$$

Start with immediate subtrees:

$$0 = .$$
 $0 = .$ $1 = \dot{0}$

Use function with smaller arity:

$$\alpha \beta \gamma$$

$$\Gamma_0 = \frac{1}{2} \left[\frac{1}{2} \right]$$

Less in lexicographical ordering:

Approximating from below 2

$$\Gamma_0 = \frac{1}{2} \left[\frac{1}{2} \right]^{\frac{1}{2}}$$

Less in lexicographical ordering:

$$\alpha \beta$$
.

Approximating from below 2

$$\Gamma_0 = \frac{1}{2} \left[\frac{1}{2} \right]^{\frac{1}{2}}$$

Less in lexicographical ordering:

$$\alpha \searrow_{!}^{\beta}$$
.

This gives all trees less than Γ_0 .

Approximating from below 2

$$\Gamma_0 = \frac{1}{2}$$

Less in lexicographical ordering:

$$\alpha \beta$$
.

This gives all trees less than Γ_0 . To get a cofinal set we only need

► Minimal bad argument

- ► Minimal bad argument
 - ▶ Minimal height

- ► Minimal bad argument
 - ▶ Minimal height
- Induction over wellfounded trees

- ► Minimal bad argument
 - ▶ Minimal height
- Induction over wellfounded trees

- ► Minimal bad argument
 - ▶ Minimal height
- Induction over wellfounded trees

Both arguments are straightforward.

Linear extensions of embeddings

▶ Diana Schmidt

Linear extensions of embeddings

- ▶ Diana Schmidt
- ▶ Linear extensions of topological embeddings of trees

Linear extensions of embeddings

- Diana Schmidt
- ▶ Linear extensions of topological embeddings of trees
- ► |A| maximal ordertype

Linear extensions of embeddings

- Diana Schmidt
- ▶ Linear extensions of topological embeddings of trees
- ► |A| maximal ordertype

Linear extensions of embeddings

- Diana Schmidt
- ▶ Linear extensions of topological embeddings of trees
- ► |A| maximal ordertype

$$\begin{vmatrix} A & B \\ & \cdot & B \end{vmatrix} \leq \begin{vmatrix} |A| & |B| & |B| & |A| \\ & \cdot & \cdot & \oplus \end{vmatrix}$$

This gives Higmans lemma. Further work gives Kruskals theorem.

Finite trees with labels

► Wellordered set of labels

- Wellordered set of labels
- ► Each node has a label

- ▶ Wellordered set of labels
- ► Each node has a label
- ▶ $\langle A \rangle_i$ sequence of *i*-subtrees

- Wellordered set of labels
- ► Each node has a label
- ▶ $\langle A \rangle_i$ sequence of *i*-subtrees
- ▶ Defines $<_i$ and $<_\infty$

- Wellordered set of labels
- ► Each node has a label
- ▶ $\langle A \rangle_i$ sequence of *i*-subtrees
- ▶ Defines $<_i$ and $<_\infty$
- $\blacktriangleright A <_i B \Leftrightarrow A \leq_i \langle B \rangle_i \vee (\langle A \rangle_i < B \vee A <_{i+} B)$

- Wellordered set of labels
- Each node has a label
- ▶ $\langle A \rangle_i$ sequence of *i*-subtrees
- ▶ Defines $<_i$ and $<_\infty$
- $A <_i B \Leftrightarrow A \leq_i \langle B \rangle_i \vee (\langle A \rangle_i < B \vee A <_{i+} B)$
- ▶ $A <_{\infty} B$ lexicographical ordering

- Wellordered set of labels
- Each node has a label
- ▶ $\langle A \rangle_i$ sequence of *i*-subtrees
- ▶ Defines $<_i$ and $<_\infty$
- $A <_i B \Leftrightarrow A \leq_i \langle B \rangle_i \vee (\langle A \rangle_i < B \vee A <_{i+} B)$
- ▶ $A <_{\infty} B$ lexicographical ordering
- Linear wellfounded preorderings

- Wellordered set of labels
- Each node has a label
- ▶ $\langle A \rangle_i$ sequence of *i*-subtrees
- ▶ Defines $<_i$ and $<_\infty$
- $A <_i B \Leftrightarrow A \leq_i \langle B \rangle_i \vee (\langle A \rangle_i < B \vee A <_{i+} B)$
- ▶ $A <_{\infty} B$ lexicographical ordering
- Linear wellfounded preorderings
- Takeutis ordinal diagrams