Lineare Algebra und analytische Geometrie I 3. Zentralübungsblatt

Man kreuze richtig an:

1) Seien $A, B \in \mathbb{R}^{n \times n}$ inv	vertierbar. Dann	sind ebenfalls	invertierbar:
---	------------------	----------------	---------------

a) A^2 b) $A \cdot B^{-1}$ c) A + B d) λA für alle $\lambda \in \mathbb{R}$

e) A^{T}

2) Sei $A \in \mathbb{R}^{n \times n}$ mit $A^2 = E_n$. Dann ist ...

a) A invertierbar b) $A = A^{-1}$ c) $A^{\mathsf{T}} = (A^{\mathsf{T}})^{-1}$ d) $A = E_n \text{ oder } A = -E_n$

3) Es seien $A, B, P, Q \in \mathbb{R}^{n \times n}$ mit $Q \cdot A \cdot P = B$. Die Matrizen Q und P seien invertierbar. Dann gilt:

a) $A=Q\cdot B\cdot P$ b) $A=P^{-1}\cdot B\cdot Q^{-1}$ c) $A=Q^{-1}\cdot B\cdot P^{-1}$ d) A invertierbar $\iff B$ invertierbar

4) Die folgende Kette von elementaren Zeilenumformungen

bewirkt dasselbe wie ...

a) wenn man gar nichts macht. b) ... $\overset{(-1)\cdot II}{\frown}$... $\overset{II+II}{\frown}$... $\overset{II-II}{\frown}$... $\overset{II+II}{\frown}$...

c) ... $\overset{I\leftrightarrow II}{\curvearrowleft}$...

5) Es sei $A \in \mathbb{R}^{3\times 4}$ und $F = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$. Dann wird beim Bilden von $F \cdot A \dots$

a) die zweite Zeile von A mit 5 multipliziert.

b) das 5-Fache der zweiten Zeile zur dritten Zeile von A addiert.

c) das 5-Fache der dritten Zeile zur zweiten Zeile von A addiert.

d) das 5-Fache der zweiten Spalte zur dritten Spalte von A addiert.

e) das 5-Fache der dritten Spalte zur zweiten Spalte von A addiert.

Aufgaben:

1) Bringe die Matrix

$$A = \begin{pmatrix} 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 2 & 1 & 5 \end{pmatrix}$$

mittels elementarer Zeilen- und Spaltenumformungen auf Äquivalenznormalform.

Zur Erinnerung: Eine Äquivalenznormalform ist eine Matrix, die links oben eine "Einheitsmatrix" beliebiger Größe enthält und ansonsten nur Nullen:

$$\begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \end{pmatrix}$$

Die Größe dieser Einheitsmatrix (also die Anzahl der Einsen) ist genau die Zahl, die wir später als den Rang der Ausgangsmatrix bezeichnen werden.