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Jan 23, 2007

1 Compactness revisited

In a topological space a fundamental property is the compactness (Kompaktheit). We
recall the definition:

Definition 1.1 A subset K ⊂ X of a topological space is compact, if from any open covering
one can always select a finite covering, i.e. whenever

K ⊂
⋃
α∈A

Oα

(the index set A is of arbitrary cardinality), then there exist finitely many α1, . . . αm such that

K ⊂
m⋃

j=1

Oαj

Lemma 1.2 The continuous image of a compact set is compact

We remark, that the compactness is an internal property, while closedness is not. Being
internal means the following. Suppose we have a topological space Y and let X ⊂ Y . Then
X inherits a natural topology from Y (called subspace topology (Unterraumtopologie) – but
there is no vectorspace here), namely one can simply define

OX := {O ∩ X : O ∈ OY }

i.e. the open sets in X are declared to be the traces (intersections with X) of the open sets in
Y . One can easily check that this collection satisfies (i)–(iii) above. Now if K ⊂ X, then K
is also a subset of Y , so K lies in two different topological spaces. When one asks a question
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whether K is closed, open or compact, in principle one has to specify in which space K lies. A
property of K is called internal, if the answer does not depend on whether we consider K as
a subset of Y or X. Check that compactness is such a property, but closedness and openness
are not, i.e. these two concepts depend on the ambient space. Also think over whether the
concept of convergent sequences and continuous functions are internal or not.

Compactness in many (most) cases are used in a somewhat different form: instead of
selecting an open cover, one would like to select a convergent subsequence from any sequence.

Definition 1.3 A subset K ⊂ X of a topological space X is called sequentially compact
(Folgenkompakt) if for any sequence {xn} ⊂ K there exists a convergent subsequence with
limit in K, i.e. there is a sequence nk, k = 1, 2, . . . and x ∈ K such that xnk

→ x.

Compactness and sequential compactness are not the same in general topological spaces,
but in real applications they usually coincide.

Theorem 1.4 In every metric space compactness and sequential compactness are the same.

The easy direction (compactness implies sequential compactness) goes exactly as in the
real case (Bolzano-Weierstrass). The other direction takes a bit more effort, see Werner Satz
B.1.7.

In real applications one would like to check compactness. This is hard, since the definition
itself is almost uncheckable directly. In Rn we know that compact is the same as closed and
bounded, and we know that this does not hold in infinite dimensional normed spaces. The
hope is that one can still save this characterization, but maybe in a different topology. This
will be the main message of the various versions of the Banach-Alaoglu theorem.

2 Tychonov theorem

2.1 Direct product

Let Xα, α ∈ A be a family of sets, parametrized by a set A which can have arbitrary cardinality.

Definition 2.1 The direct product of Xα nonempty sets is given by

×α∈AXα = {f : A →
⋃
α∈A

Xα, f(α) ∈ Xα}

i.e. it is the set of maps with domain A such that for each α ∈ A the map selects an element
of Xα.
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It is a nontrivial claim that ×α∈AXα is not empty (if Xα is not empty for all α). It is
so nontrivial, that (surprisingly) one cannot even prove it from the standard axioms of set
theory. It is an additional axiom:

Axiom of choice (Auswahlaxiom): If Xα is not empty for all α ∈ A, then ×α∈AXα is
not empty.

It is fairly easy to show the axiom of choice is equivalent to the Zorn lemma.

Now suppose that all Xα are topological spaces. We would like to define a “natural”
topology on the direct product. Our requirement is that all projection maps

Πα : ×α∈AXα → Xα, Πα(f) := f(α)

be continuous, but we want to do it as “economically” as possible. This construction works in
general; given a set and a family of maps from the set to topological spaces, there is a natural
way to define an “economical” topology on the set so that all functions be continuous.

2.2 Topology generated by maps

So far we have seen that if somebody gives us a topology (collection of open sets) we can
decide whether a function is continuous. We can reverse this argument. Suppose we have a
collection F of functions defined on Y with range in some topological space:

F ⊂ {f : Y → X}

or even it can happen that the target space for each f is different

F ⊂ {f : Y → Xf}

where Xf is a topological space.
We would like to define a topology on Y such that all f ∈ F be continuous. We thus need

to specify the collection of open sets, OY . This is not hard, if we choose OY = P (Y ) (power
set), then we are done, but this is a useless definition. In this topology nothing will converge
(apart from the constant sequence), it is too strong.

So we aim at the weakest (=least number of open sets) topology so that all f ∈ F are still
continuous. To construct such a topology is not straightforward. Of course every preimage
f−1(O) of every open set O ∈ Xf under any f ∈ F must be included in OY , but we need
many more sets to satisfy (i)–(iii), so we can keep on adding finite intersections and arbitrary
unions of elements of OY . But it is very easy to see that such topology exists. Simply take all
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families O that satisfy (i)–(iii) and that contain all sets of the form f−1(O), O ∈ Xf , open,
f ∈ F . There is at least such family, namely O = P (Y ). Now take the intersection of all
these families. This is a family, that still satisfies (i)–(iii) (think over) and still contains all
f−1(O), and it is the smallest for these properties.

The upshot is that for any given collection of functions, there is the weakest topology so
that all these functions are continuous. Of course it does not mean that only these functions
are continous, clearly the sums, products etc. of such functions are still continuous.

Finally a definition that will be used in the general version of the Banach-Alaoglu theorem:

Definition 2.2 X is a Banach space, then the weak* topology on its dual, X∗ is the weakest
topology that makes all functionals of the form

x : ` 7→ `(x)

from X∗ to the scalars, continuous.

2.3 Direct product of compact sets

The best example to see the concept of the topology of the direct product is the space L∞(X),
which is the set of everywhere defined bounded functions. Note that there is no measure on
X, there is no “almost everywhere”. With the usual supremum norm it is a normed space,
hence metric, in particular continuity can be checked via sequences.

We can define a topology different from the norm topology on this set L∞(X) by requiring
that all functions x : f 7→ f(x) be continuous (and consider the weakest such topology). Don’t
get misled by the letters, here x denotes the function (on the space of functions f) and f is
its variable. For example the following sets are open

Sx,c,ε := {f ∈ L∞(X) : |f(x) − c| < ε}

and by (i)–(iii) all finite intersections and arbitrary unions of such sets are also open.
When restricted to the unit ball, [−1, 1]X , you can see that this is weakest topology on the

direct product that makes all projections continuous, because the map

x : f ∈ [−1, 1]X 7→ f(x)

is exactly the projection map onto the x-component of the direct product.
This new topology is not the norm topology. This is not easy to see directly. One argument

is that in the norm topology the unit ball is not compact, while in the new topology the unit
ball is compact. To see this, we need Tychonoff theorem:
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Theorem [Tychonoff] Let Kα, α ∈ A be a family of compact topological spaces. Then
their direct product, ×α∈AKα is compact in the product topology, i.e. in the weakest topology
that makes all projections continuous.

An equivalent version is:
Theorem [Tychonoff], second version Let Xα, α ∈ A be topological spaces and

Kα ⊂ Xα be compact. Then ×α∈AKα is a compact subset of ×α∈AXα in the product topology,
i.e. in the weakest topology that makes all projections continuous.

This theorem is proved in Reed-Simon (Thm IV.5 and at the end: Supplement to IV.3)
or in Werner Thm. B. 2.10, but it is not short. For countable direct product a Cantor
diagonalization trick works (EXERCISE).

3 Banach-Alaoglu Theorem

The goal is to find a checkable characterization of compact sets. Actually, for applications, we
will rather need the sequential compactness, because eventually we want to select convergent
subsequence.

We will mention three versions of Banach-Alaoglu Theorem of different generality (and
difficulty). We will prove only the simplest version (Version II), which is actually the most
often used. We start presenting the version on the “middle” level, which does not require the
concept of w∗-convergence.

3.1 Banach-Alaoglu theorem for reflexive spaces

We first need a natural definition, it is self-explanatory:

Definition 3.1 A subset K of a Banach space is weakly sequentially compact (in short,
w.s.c.) if for any sequence {xn} ⊂ K there is a weakly convergent subsequence with limit in
K, i.e. there is nk numerical sequence and x ∈ K such that xnk

⇀ x.

Theorem 3.2 (Version I.) Let X be a reflexive Banach space (i.e. X = X∗∗). Let B =
{x ∈ X : ‖x‖ ≤ 1} be its closed unit ball. Then B is w.s.c.

The proof is in Werner III.3.7. and it is based on the Cantor diagonalization trick. A
similar, but somewhat simpler proof will be presented that will prove Version II (Helly’s
theorem).
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The most important application is when X = Lp(M, µ) for any measure space M , if
1 < p < ∞.

It sounds that the unit ball plays a special role, but it is not really the case. First, by
scaling it is clear that the same holds for any closed ball of radius R, i.e. for BR = {x ∈
X : ‖x‖ ≤ R}. More importantly, the ball itself plays no role, but its convexity does. The
following corollary is really a trivial generalization of the above theorem:

Corollary 3.3 (to Version I.) Let X be a reflexive Banach space and let K ⊂ X be closed,
bounded and convex. Then K is w.s.c.

This Corollary trivially follows from Version I. plus Mazur’s theorem (recall: closed and
convex sets are weakly closed). Simply take a sufficiently big R such that K ⊂ BR (by
boundedness). If (xn) ⊂ K, then (xn) ⊂ BR, so there is a weakly convergent subsequence.
But the limit stays in K since K is weakly closed by Mazur.

The reflexivity requirement is not really the optimal one. The “right” concept is to intro-
duce the weak* convergence.

3.2 Weak* convergence

We already defined the weak* topology on the dual of a Banach space (Definition 2.2). Here
we explicitly show what the convergence in the weak* topology means:

Definition 3.4 Suppose that the normed space where we want to work, U , itself is the dual
of some Banach space, i.e. U = X∗ (recall that not everything is a dual space). A sequence
(un) ⊂ U converges in weak*-sense or in the weak* topology to u ∈ U , if un(x) → u(x)
for any x ∈ X.

Viewing x as an element x̂ ∈ X∗∗ by the canonical embedding x̂(u) = u(x), we see that
weak and weak* convergences are equivalent for reflexive spaces, but in general this is not the
case.

An example, when they are different, is an approximate Dirac delta function viewed as a
measure. More precisely, let K = [−1, 1] and consider the set of continuous functions, C(K).
We need the following theorem (without proof, see Reed-Simon IV.14 and the supplement of
RS for a special case).

Theorem 3.5 (Riesz-Markov) If K is a compact (Hausdorff) topological space, then the
dual of C(K) is isomorphic to the space M(K) of (complex) measures on K, equipped with
the total variation norm.
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(Note: A topological space is Hausdorff if any two different points can be separated, i.e.
for any x 6= y there are disjoint open neighborhoods Ux and Uy of x and y, respectively.)

Armed with this theorem, we consider the measure µn on [−1, 1] with density function
fn(x) := n

2
1(|x| ≤ 1/n). The action of the measure on elements of C(K) is simply integration:

µn(f) :=

∫
fdµn

It is clear that µn converges in weak∗-sense to the Dirac-delta measure at the origin, since for
any continuous function

µn(f) =

∫
fdµn → f(0) = δ(f)

However, µn does not converge to δ weakly. To see this, check that L∞(K) ⊂ M∗(K) (again,
L∞ is understood as functions defined at all points not just for almost all points, since there
is no canonical measure on K anyway) and test the presumed weak convergence µn ⇀ δ on
the characteristic function of the point zero (as element of L∞ ⊂ M∗).

Since X ⊂ X∗∗, it is clear that weak* convergence (on U = X∗) weaker than weak conver-
gence, it requires checking less limits. The standard boundedness theorems are nevertheless
true:

Theorem 3.6 (i) Every weak* convergent sequence (un) ⊂ U = X∗ is bounded.
(ii) If un converges to u in w∗-sense, then ‖u‖ ≤ lim inf ‖un‖.

Proof (i) follows directly from Banach-Steinhaus. For part (ii), for any δ > 0 take x ∈ X,
‖x‖ = 1 with |u(x)| ≥ ‖u‖ − δ (by the def. of the norm). Since un(x) → u(x), we have

‖u‖ − δ ≤ |u(x)| ≤ lim inf |un(x)| ≤ lim inf ‖un‖

and this is true for any δ > 0. �

Definition 3.7 Thet set K ⊂ U = X∗ is weak* sequentially compact (w*sc) if from any
sequence {un} ⊂ K one can select a weak*-convergent subsequence with limit in K.

3.3 Banach-Alaoglu in duals of separable spaces

We have the following, easiest version of Banach-Alaoglu.

Theorem 3.8 (Helly’s theorem: Version II of Banach-Alaoglu) . Let X be a separa-
ble Banach space, let U = X∗. Then the closed unit ball B of U is w*sc.
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(Note the difference with version I: here we do not assume reflexivity but assume separa-
bility. In particular this version works for U = L∞(M, µ) = (L1(M, µ))∗ as well, while the
previous one did not.)

Proof. Let {un} ⊂ U , ‖un‖ ≤ 1. Let xk be a dense subset of X. By the Cantor procedure,
there is a subsequence, unk

such that unm
(xk) converges for every fixed k as m → ∞. Call

v(xk) := lim
m→∞

unm
(xk)

note that
|v(xk)| = lim

m
|unm

(xk)| ≤ lim inf
m

‖unm
‖‖xk‖ ≤ ‖xk‖

i.e. v is a bounded (linear) map on a dense subset of X (namely on the linear span of xk’s).
By the bounded extension principle, v extends to all X and

lim
m

unm
(x) = v(x)

holds for all x ∈ X. This is the weak* limit map. �

Theorem 3.9 (Banach-Alaoglu theorem: the original version) Let X be a Banach space.
Then the unit ball B of X∗ is compact in the w∗ topology.

Note that the statement is compactness and not w*sc. If X is separarable, then it is known
that B with the w* topology is metrizable (interestingly enough, not the whole space X∗),
hence compactness implies sequential compactness (Theorem 1.4). But this we already knew
in Version II.

Sketch of the proof. Note that

B ⊂ Y := ×x∈X{λ ∈ C : |λ| ≤ ‖x‖}

because every element of B is an assignment b of a number b(x) ∈ C to every x ∈ X satisfying
|b(x)| ≤ ‖x‖. So B canonically sits in the direct product (indexed by x ∈ X) of closed disks
with radii ‖x‖. Of course B is much smaller than the direct product Y , since elements of B
must also be linear maps.

What is the topology induced on B by the topology of Y ? This is exactly the weakest
topology on B that makes all maps b → b(x) (for every x ∈ X) continuous, i.e. the w*
topology. (Here one needs to think it over that in the subset B there is no even weaker
topology to do the job than the one inherited from Y ).

From Tychonov we know that Y is compact. To conclude that B is compact, we need
to show that B is closed (in the product topology), because the closed subset of a compact
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set is compact. I.e. we need to show that the linearity (the property specifying B within Y )
survives the limit. If we knew that it is sufficient to check closedness by sequences, then we
would only need to argue that if `n ∈ B is a sequence converging to ` ∈ Y , then ` ∈ B, i.e. if
all `n are linear than so is the limit. But this is obvious, for any x, y ∈ X and scalars α, β ∈ C

`(αx + βy) = lim
n

`n(αx + βy) = lim
n

α`n(x) + β`n(y) = α`(x) + β`(y)

The only problem is that if the space too big, then closedness cannot be checked by showing
that limits of sequences lie in the set. To overcome this problem, one introduces the concept
of nets, i.e. generalized sequences, where the label set is not the natural numbers, but an
arbitrary ordered set. We skipped to introduce them, so we leave to proof as it is, if you are
interested, you can learn nets from Reed-Simon IV.2.
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