INDUCED QUASI-ACTIONS: A REMARK

BRUCE KLEINER AND BERNHARD LEEB

1. INTRODUCTION

In this note we observe that the notion of an induced representation
has an analog for quasi-actions, and give some applications.

We will use the definitions and notation from [KLO1].

1.1. Induced quasi-actions and their properties. Let G be a group
and {X;}ier be a finite collection of unbounded metric spaces.

Definition 1.1. A quasi-action G A I, Xi preserves the product
structure if each g € G acts by a product of quasi-isometries, up to
uniformly bounded error. Note that we allow the quasi-isometries p(g)
to permute the factors, i.e. p(g) is uniformly close to a map of the form
(2;) = (G104 (To-1(;))) with a permutation o of I and quasi-isometries
Gi 1 X Xo(i)-

Associated to every quasi-action G A [, X; preserving product

structure is the action G A T corresponding to the induced permuta-
tion of the factors; this is well-defined because the X;’s are unbounded
metric spaces. For each ¢ € I, the stabilizer G; of ¢ with respect to p;
has a quasi-action G; ~ X; by restriction of p. It is well-defined up to
equivalence in the sense of [KLO1, Definition 2.3].

If the permutation action p; is transitive, all factors X; are quasi-
isometric to each other, and the restricted quasi-actions G; ~ X; are
quasi-conjugate (when identifying different stabilizers GG; by inner au-
tomorphisms of G). The main result of this note is that in this case any
of the quasi-actions G; ~ X; determines p up to quasi-conjugacy, and
moreover any quasi-conjugacy class may arise as a restricted action.

Theorem 1.2. Let G be a group, H be a finite index subgroup, and
HA X bea quasi-action of H on an unbounded metric space X.
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Then there exists a quasi-action G fﬁ\v HZEG/H X; preserving product
structure, where

(1) Each factor X; is quasi-isometric to X.

B
(2) The associated action G A G/H s the natural action by left
multiplication.
(3) The restriction of 3 to a quasi-action of H on Xy is quasi-

conjugate to H A X.

Furthermore, there is a unique such quasi-action 3 preserving the prod-
uct structure, up to quasi-conjugacy by a product quasi-isometry. Fi-
nally, if a 1s an isometric action, then the X; may be taken isometric
to X and B may be taken to be an isometric action.

Definition 1.3. Let G, H and H ~ X be as in Theorem 1.2. The
quasi-action 3 is called the quasi-action induced by H ~ X.

As a byproduct of the main construction, we get the following:

Corollary 1.4. If G A X is an (L, A)-quasi-action on an arbitrary
metric space X, then p is (L, 3A)-quasi-conjugate to a canonically de-
fined isometric action G ~ X'.

1.2. Applications. The implication of Theorem 1.2 is that in order to
quasi-conjugate a quasi-action on a product to an isometric action, it
suffices to quasi-conjugate the factor quasi-actions to isometric actions.
We begin with a special case:

Theorem 1.5. Let G A X be a cobounded quasi-action on X =
[1; Xi, where each X; is either an irreducible symmetric space of non-
compact type, or a thick irreducible Fuclidean building of rank at least
two, with cocompact Weyl group. Then p is quasi-conjugate to an iso-
metric action on X, after suitable rescaling of the metrics on the factors
X;.

Remarks

e Theorem 1.5 was stated incorrectly as Corollary 4.5 in [KLO1].
The proof given there was was only valid for quasi-actions which
do not permute the factors.

e Rescaling of the factors is necessary, in general: if one takes
the product of two copies of H? where the factors are scaled
to have different curvature, then a quasi-action which permutes
the factors will not be quasi-conjugate to an isometric action.
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We now consider a more general situation. Let G A [Lic; Xibea
quasi-action, where each X is one of the following four types of spaces:

(1) An irreducible symmetric space of noncompact type.

(2) A thick irreducible Euclidean building of rank/dimension > 2,
with cocompact Weyl group.

(3) A bounded valence bushy tree in the sense of [MSWO03]. We
recall that a tree is bushy if each of its points lies within uni-
formly bounded distance from a vertex having at least three
unbounded complementary components.

(4) A quasi-isometrically rigid Gromov hyperbolic space which is
of coarse type I in the sense of [KKL9S8, sec. 3] (see the remarks
below). A space is quasi-isometrically rigid if every (L, A)-
quasi-isometry is at distance at most D = D(L,A) from a
unique isometry. Examples include rank 1 symmetric spaces
other than hyperbolic and complex hyperbolic spaces [Pan89],
Fuchsian buildings [BP00, Xie06], and fundamental groups of
hyperbolic n-manifolds with nonempty totally geodesic bound-
ary, n > 3 [KKLS, BKM].

By [KKL98, Theorem B|, the quasi-action preserves product structure,
and hence we have an induced permutation action G ~ I. Let J C I
be the set of indices ¢ € I such that X; is either a real hyperbolic space
H* for some k > 4, a complex hyperbolic space CH' for some | > 2, or
a bounded valence bushy tree. Generalizing Theorem 1.5 we obtain:

Theorem 1.6. If the quasi-action G; ~ X is cobounded for each j €
J, then a 1s quasi-conjugate by a product quasi-isometry to an isometric
action G ™~ [Lic; Xi, where for every i, Xj is quasi-isometric to X;,
and precisely one of the following holds:

(1) If X; is not a bounded valence bushy tree, then X! is isometric
to Xy for some i in the G-orbit G(i) of i.
(2) If X; is a bounded valence bushy tree, then so is X|.

As in the previous corollary, it is necessary to permit X/ to be noni-
sometric to X;. Moreover, there may be factors X; and X; of type (4)
lying in the same G-orbit, but which are not even homothetic, so it is
not sufficient to allow rescaling of factors.

Proof. We first assume that the action G ~ [ is transitive. Pick n € I.
Then the quasi-action G,, ~ X, is quasi-conjugate to an isometric
action G,, »~ X, where X/ is isometric to X,, unless X,, is a bounded
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valence bushy tree, in which case X/ is a bounded valence bushy tree
but not necessarily isometric to X,,; this follows from:

e [Hin90, Gab92, CJ94, Mar06] when X, is H?. Note that any quasi-
action on H? is quasi-conjugate to an isometric action.

e [Sul81, Gro, Tuk86, Pan89, Cho96] when X, is a rank 1 symmetric
space other than H2. Note that Sullivan’s theorem implies that any
quasi-action on H? is quasi-conjugate to an isometric action. Also, the
proof given in Chow’s paper on the complex hyperbolic case covers
arbitrary cobounded quasi-actions, even though it is only stated for
discrete cobounded quasi-actions.

e [KLI7, Lee00] when X, is an irreducible symmetric space or Eu-
clidean building of rank at least 2.

e [MSWO03] when X, is a bounded valence bushy tree.

By Theorem 1.2, the associated induced quasi-action of G is quasi-
conjugate to the original quasi-action G ~ [] X, by a product
quasi-isometry, and we are done.

i€l

In the general case, for each orbit G(i) C I of the action G ~ I, we
have a well-defined associated quasi-action G ~ [] jec@ Xj for which
the theorem has already been established, and we obtain the desired

isometric action G ~ [[,., X; by taking products. O

Corollary 1.7. Let {X;}icsr be as above, and suppose G is a finitely
generated group quasi-isometric to the product [[.., X;. Then G ad-
mits a discrete, cocompact, isometric action on a product Hiel X/,
where for every i, X| is quasi-isometric to X;, and precisely one of the

following holds:

(1) X; is not a bounded valence bushy tree, and X! is isometric to
Xy for some i’ in the G-orbit G(i) C I of i.
(2) Both X; and X| are bounded valence bushy trees.

Proof. Such a group G admits a discrete, cobounded quasi-action on
[Lic; Xi- Theorem 1.6 furnishes the desired isometric action G ~
I X/ O

Remarks.

e Corollary 1.7 refines earlier results [Ahl02, KL0O1, MSWO03].
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e A proper Gromov hyperbolic space with cocompact isometry
group is of coarse type I unless it is quasi-isometric to R [KKL9S,
Sec. 3].

e The classification of the four different types of spaces above is
quasi-isometry invariant, with one exception: a space of type
(1) will also be a space of type (4) iff it is a quasi-isometrically
rigid rank 1 symmetric space (i.e. a quaternionic hyperbolic
space or the Cayley hyperbolic plane [Pan89]). See Lemma 3.1.

e Two irreducible symmetric spaces are quasi-isometric iff they
are isometric, up to rescaling [Mos73, Pan89, KL97|. Two Eu-
clidean buildings as in (2) above are quasi-isometric iff they are
isometric up to rescaling [KL97, Lee00].

2. THE CONSTRUCTION OF INDUCED QUASI-ACTIONS

The construction of induced quasi-actions is a direct imitation of
one of the standard constructions of induced representations. We now
review this for the convenience of the reader.

Let H be a subgroup of some group G, and suppose a : H ~ V' is
a linear representation. Then we have an action H ~ G X V where
(h,(g,v)) = (gh™', hw). Let E := (G x V)/H be the quotient. There is
a natural projection map 7 : F — G/H whose fibers are copies of V;
this would be a vector bundle over the discrete space G/H if V' were
endowed with a topology. The action G ~ G x V' by left translation
on the first factor descends to E, and commutes with the projection
map w. Moreover, it preserves the linear structure on the fibers. Hence
there is a representation of G on the vector space of sections I'(E), and
this is the representation of GG induced by «.

We use the terminology of [KLO1, Sec. 2]. (However, we replace
quasi-isometrically conjugate by the shorter and more accurate term
quasi-conjugate.)

We will work with generalized metrics taking values in [0, +00]. A
finite component of a generalized metric space is an equivalence class of
points with pairwise finite distances. Clearly, quasi-isometries respect
finite components.

Let {X,}icr be a finite collection of unbounded metric spaces in the
usual sense, i.e. the metric on each X; takes only finite values. On their
product [],.; X; we consider the natural (L?-)product metric. On their
disjoint union L;c; X; we consider the generalized metric which induces
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the original metric on each component X; and gives distance +oo to
any pair of points in different components.

We observe that a quasi-isometry [[,.; Xi — [[,c; X preserving
the product structure gives rise to a quasi-isometry U;e; X; — Uier X7,
well-defined up to bounded error, and vice versa. Thus equivalence
classes of quasi-actions o : G ~ [],., X; preserving the product struc-
ture correspond one-to-one to quasi-actions 3 : G ~ U;e; X;. In what
follows we will prove the disjoint union analog of Theorem 1.2. (The
index of H can be arbitrary from now on.)

Lemma 2.1. Suppose that Y is a generalized metric space and that
G ~ Y is a quasi-action such that G acts transitively on the set of
finite components of Y. Let Yy be one of the finite components and H
its stabilizer in GG. Then the restricted action H ~ Yy determines the
action G Y up to quasi-conjugacy.

Proof. If G ~ Y" is another quasi-action, Y is a finite component with
stabilizer H, then any quasi-conjugacy between H ~ Yy and H ~ Y]
extends in a straightforward way to a quasi-conjugacy between G ~ Y
and G Y. O

We will now show how to recover the GG-quasi-action from the H-
quasi-action by quasifying the construction of induced actions as de-
scribed above.

Definition 2.2. An (L, A)-coarse fibration (Y, F) consists of a (gen-
eralized) metric space Y and a family F of subsets F' C Y, the coarse
fibers, with the following properties:

(1) The union UpczF of all fibers has Hausdorff distance < A from
Y.
(2) For any fibers Fy, Fy € F we have

dH<F1,F2)§Ld(y1,F2)+A ‘v’yleFl

We also say that F is a coarse fibration of Y.

Note that the coarse fibers are not required to be disjoint.

It follows from part (2) of the definition that dg(Fi, Fy) < +oo if
and only if | and F, meet the same finite component of Y. We will
equip the “base space” F with the Hausdorff metric.

Lemma 2.3. If H ~ Y is an (L, A)-quasi-action then the collection
of quasi-orbits O, == H -y forms an (L,3A)-coarse fibration of Y.
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Proof. ¥or h,hi,hy € H and y;,y2 € Y we have

d(hyr, (hhithe)ya)) < d((hhi)(hayn), (hhy*)(haya))) + 24
< L-d(hyys, hoya) + 3A

and so
d(OZJl? Oy2) S L- d(hlylv Oy2) + 3A.
O

Let (Y, F) and (Y',F’) be coarse fibrations. We say that a map
¢ Y — Y’ quasi-respects the coarse fibrations if the image of each fiber
F € F is uniformly Hausdorff close to a fiber F' € F', dg(¢(F), F') <
C'. The map ¢ then induces a map ¢ : F — F’ which is well-defined up
to bounded error < 2C. Observe that if ¢ is an (L, A)-quasi-isometry
then ¢ is an (L, A + 2C)-quasi-isometry.

We say that a quasi-action p : G ~ Y quasi-respects a coarse fibra-
tion F if all maps p(g) quasi-respect F with uniformly bounded error.
The quasi-action p then descends to a quasi-action p : G ~ F which
is unique up to equivalence (cf. [KLO1, Definition 2.3]).

We apply these general remarks to the following situation in order
to obtain our main construction.

Let G be a group, H < G a subgroup (of arbitrary index) and

H A X an (L, A)-quasi-action. Let Y = G x X where G is given the
metric d(gy, g2) = +00 unless g; = go. That is, Y consists of |G| finite
components each of which is a copy of X. The quasi-action « gives rise

to a product quasi-action H A Y via

PH (h7 (97 SL’)) = (gh717 hx)

We denote by Fp the coarse fibration of Y by H-quasi-orbits. The
isometric G-action given by

ﬁG(g/7 (g7x)) = (g/g,l‘)

commutes with pg. As a consequence, pg descends to an isometric
action

(2.4) 3:=pe: G Fu.
If H = G then « is quasi-conjugate to 3 via the quasi-isometry x —
pu(H)-(e,z). This case is used to prove Corollary 1.4, where X' = Fy.

In general, the finite components of Fy correspond to the left H-
cosets in G. More precisely, gH corresponds to Uge xpu(H)- (g, x), that
is, to the union of py-quasi-orbits contained in gH x X. H stabilizes
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the finite component Ugexpy(H) - (e,x). The action of H on this
component is quasi-conjugate to «.

As remarked in the beginning of this section, B is the unique G-quasi-
action up to quasi-conjugacy such that G acts transitively on finite
components and such that H is the stabilizer of a finite component
and the restricted H-quasi-action is quasi-isometrically conjugate to a.

Passing back from disjoint unions to products we obtain Theorem
1.2.

3. QUASI-ISOMETRIES AND THE CLASSIFICATION INTO TYPES

(1)-(4)

We now prove:

Lemma 3.1. Suppose Y and Y’ are spaces of one of types (1)-(4) as
in Theorem 1.6. If Y is quasi-isometric to Y', then they have the same
type, unless one is a quasi-isometrically rigid rank 1 symmetric space,
and the other is of type (4).

Proof. First suppose one of the spaces is not Gromov hyperbolic. Since
Gromov hyperbolicity is quasi-isometry invariant, both spaces must be
higher rank space of either of type (1) or (2). But by [KL97], two
irreducible symmetric spaces or Euclidean buildings of rank at least
two are quasi-isometric iff they are homothetic. Thus in this case they
must have the same type.

Now assume both spaces are Gromov hyperbolic. Then 9Y and 9Y”’
are homeomorphic.

If Y is a bounded valence bushy tree, then it is well-known that Y
is quasi-isometric to a trivalent tree, and 0Y is homeomorphic to a
Cantor set. Therefore Y cannot be quasi-isometric to a space of type
(1), since the boundary of a Gromov hyperbolic symmetric space is a
sphere. Also, the quasi-isometry group of a trivalent tree 7" has an
induced action on the space of triples in 01" which is not proper, and
hence it cannot be quasi-isometric to a space of type (4).

If Y is a hyperbolic or complex hyperbolic space, then the induced
action of QI(X) on the space of triples in 90X is not proper, and hence
Y cannot be quasi-isometric to a space of type (4).

The lemma follows. O
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