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1. Introduction

In this note we observe that the notion of an induced representation
has an analog for quasi-actions, and give some applications.

We will use the definitions and notation from [KL01].

1.1. Induced quasi-actions and their properties. Let G be a group
and {Xi}i∈I be a finite collection of unbounded metric spaces.

Definition 1.1. A quasi-action G
ρ

y
∏

i Xi preserves the product
structure if each g ∈ G acts by a product of quasi-isometries, up to
uniformly bounded error. Note that we allow the quasi-isometries ρ(g)
to permute the factors, i.e. ρ(g) is uniformly close to a map of the form
(xi) 7→

(
φσ−1(i)(xσ−1(i))

)
with a permutation σ of I and quasi-isometries

φi : Xi 7→ Xσ(i).

Associated to every quasi-action G
ρ

y
∏

i Xi preserving product

structure is the action G
ρIy I corresponding to the induced permuta-

tion of the factors; this is well-defined because the Xi’s are unbounded
metric spaces. For each i ∈ I, the stabilizer Gi of i with respect to ρI

has a quasi-action Gi y Xi by restriction of ρ. It is well-defined up to
equivalence in the sense of [KL01, Definition 2.3].

If the permutation action ρI is transitive, all factors Xi are quasi-
isometric to each other, and the restricted quasi-actions Gi y Xi are
quasi-conjugate (when identifying different stabilizers Gi by inner au-
tomorphisms of G). The main result of this note is that in this case any
of the quasi-actions Gi y Xi determines ρ up to quasi-conjugacy, and
moreover any quasi-conjugacy class may arise as a restricted action.

Theorem 1.2. Let G be a group, H be a finite index subgroup, and

H
αy X be a quasi-action of H on an unbounded metric space X.
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Then there exists a quasi-action G
β
y

∏
i∈G/H Xi preserving product

structure, where

(1) Each factor Xi is quasi-isometric to X.

(2) The associated action G
βG/Hy G/H is the natural action by left

multiplication.
(3) The restriction of β to a quasi-action of H on XH is quasi-

conjugate to H
αy X.

Furthermore, there is a unique such quasi-action β preserving the prod-
uct structure, up to quasi-conjugacy by a product quasi-isometry. Fi-
nally, if α is an isometric action, then the Xi may be taken isometric
to X and β may be taken to be an isometric action.

Definition 1.3. Let G, H and H y X be as in Theorem 1.2. The
quasi-action β is called the quasi-action induced by H y X.

As a byproduct of the main construction, we get the following:

Corollary 1.4. If G
ρ

y X is an (L, A)-quasi-action on an arbitrary
metric space X, then ρ is (L, 3A)-quasi-conjugate to a canonically de-
fined isometric action G y X ′.

1.2. Applications. The implication of Theorem 1.2 is that in order to
quasi-conjugate a quasi-action on a product to an isometric action, it
suffices to quasi-conjugate the factor quasi-actions to isometric actions.
We begin with a special case:

Theorem 1.5. Let G
ρ

y X be a cobounded quasi-action on X =∏
i Xi, where each Xi is either an irreducible symmetric space of non-

compact type, or a thick irreducible Euclidean building of rank at least
two, with cocompact Weyl group. Then ρ is quasi-conjugate to an iso-
metric action on X, after suitable rescaling of the metrics on the factors
Xi.

Remarks

• Theorem 1.5 was stated incorrectly as Corollary 4.5 in [KL01].
The proof given there was was only valid for quasi-actions which
do not permute the factors.

• Rescaling of the factors is necessary, in general: if one takes
the product of two copies of H2 where the factors are scaled
to have different curvature, then a quasi-action which permutes
the factors will not be quasi-conjugate to an isometric action.
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We now consider a more general situation. Let G
αy

∏
i∈I Xi be a

quasi-action, where each Xi is one of the following four types of spaces:

(1) An irreducible symmetric space of noncompact type.
(2) A thick irreducible Euclidean building of rank/dimension ≥ 2,

with cocompact Weyl group.
(3) A bounded valence bushy tree in the sense of [MSW03]. We

recall that a tree is bushy if each of its points lies within uni-
formly bounded distance from a vertex having at least three
unbounded complementary components.

(4) A quasi-isometrically rigid Gromov hyperbolic space which is
of coarse type I in the sense of [KKL98, sec. 3] (see the remarks
below). A space is quasi-isometrically rigid if every (L, A)-
quasi-isometry is at distance at most D = D(L, A) from a
unique isometry. Examples include rank 1 symmetric spaces
other than hyperbolic and complex hyperbolic spaces [Pan89],
Fuchsian buildings [BP00, Xie06], and fundamental groups of
hyperbolic n-manifolds with nonempty totally geodesic bound-
ary, n ≥ 3 [KKLS, BKM].

By [KKL98, Theorem B], the quasi-action preserves product structure,
and hence we have an induced permutation action G y I. Let J ⊂ I
be the set of indices i ∈ I such that Xi is either a real hyperbolic space
Hk for some k ≥ 4, a complex hyperbolic space CHl for some l ≥ 2, or
a bounded valence bushy tree. Generalizing Theorem 1.5 we obtain:

Theorem 1.6. If the quasi-action Gj y Xj is cobounded for each j ∈
J , then α is quasi-conjugate by a product quasi-isometry to an isometric

action G
α′y

∏
i∈I X ′

i, where for every i, X ′
i is quasi-isometric to Xi,

and precisely one of the following holds:

(1) If Xi is not a bounded valence bushy tree, then X ′
i is isometric

to Xi′ for some i′ in the G-orbit G(i) of i.
(2) If Xi is a bounded valence bushy tree, then so is X ′

i.

As in the previous corollary, it is necessary to permit X ′
i to be noni-

sometric to Xi. Moreover, there may be factors Xi and Xj of type (4)
lying in the same G-orbit, but which are not even homothetic, so it is
not sufficient to allow rescaling of factors.

Proof. We first assume that the action G y I is transitive. Pick n ∈ I.
Then the quasi-action Gn y Xn is quasi-conjugate to an isometric
action Gn y X ′

n, where X ′
n is isometric to Xn unless Xn is a bounded
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valence bushy tree, in which case X ′
n is a bounded valence bushy tree

but not necessarily isometric to Xn; this follows from:

• [Hin90, Gab92, CJ94, Mar06] when Xn is H2. Note that any quasi-
action on H2 is quasi-conjugate to an isometric action.

• [Sul81, Gro, Tuk86, Pan89, Cho96] when Xn is a rank 1 symmetric
space other than H2. Note that Sullivan’s theorem implies that any
quasi-action on H3 is quasi-conjugate to an isometric action. Also, the
proof given in Chow’s paper on the complex hyperbolic case covers
arbitrary cobounded quasi-actions, even though it is only stated for
discrete cobounded quasi-actions.

• [KL97, Lee00] when Xn is an irreducible symmetric space or Eu-
clidean building of rank at least 2.

• [MSW03] when Xn is a bounded valence bushy tree.

By Theorem 1.2, the associated induced quasi-action of G is quasi-
conjugate to the original quasi-action G y

∏
i∈I Xi by a product

quasi-isometry, and we are done.

In the general case, for each orbit G(i) ⊂ I of the action G y I, we
have a well-defined associated quasi-action G y

∏
j∈G(i) Xj for which

the theorem has already been established, and we obtain the desired
isometric action G y

∏
i∈I X ′

i by taking products. �

Corollary 1.7. Let {Xi}i∈I be as above, and suppose G is a finitely
generated group quasi-isometric to the product

∏
i∈I Xi. Then G ad-

mits a discrete, cocompact, isometric action on a product
∏

i∈I X ′
i,

where for every i, X ′
i is quasi-isometric to Xi, and precisely one of the

following holds:

(1) Xi is not a bounded valence bushy tree, and X ′
i is isometric to

Xi′ for some i′ in the G-orbit G(i) ⊂ I of i.
(2) Both Xi and X ′

i are bounded valence bushy trees.

Proof. Such a group G admits a discrete, cobounded quasi-action on∏
i∈I Xi. Theorem 1.6 furnishes the desired isometric action G y∏
i X ′

i. �

Remarks.

• Corollary 1.7 refines earlier results [Ahl02, KL01, MSW03].
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• A proper Gromov hyperbolic space with cocompact isometry
group is of coarse type I unless it is quasi-isometric to R [KKL98,
Sec. 3].

• The classification of the four different types of spaces above is
quasi-isometry invariant, with one exception: a space of type
(1) will also be a space of type (4) iff it is a quasi-isometrically
rigid rank 1 symmetric space (i.e. a quaternionic hyperbolic
space or the Cayley hyperbolic plane [Pan89]). See Lemma 3.1.

• Two irreducible symmetric spaces are quasi-isometric iff they
are isometric, up to rescaling [Mos73, Pan89, KL97]. Two Eu-
clidean buildings as in (2) above are quasi-isometric iff they are
isometric up to rescaling [KL97, Lee00].

2. The construction of induced quasi-actions

The construction of induced quasi-actions is a direct imitation of
one of the standard constructions of induced representations. We now
review this for the convenience of the reader.

Let H be a subgroup of some group G, and suppose α : H y V is
a linear representation. Then we have an action H y G × V where
(h, (g, v)) = (gh−1, hv). Let E := (G×V )/H be the quotient. There is
a natural projection map π : E → G/H whose fibers are copies of V ;
this would be a vector bundle over the discrete space G/H if V were
endowed with a topology. The action G y G × V by left translation
on the first factor descends to E, and commutes with the projection
map π. Moreover, it preserves the linear structure on the fibers. Hence
there is a representation of G on the vector space of sections Γ(E), and
this is the representation of G induced by α.

We use the terminology of [KL01, Sec. 2]. (However, we replace
quasi-isometrically conjugate by the shorter and more accurate term
quasi-conjugate.)

We will work with generalized metrics taking values in [0, +∞]. A
finite component of a generalized metric space is an equivalence class of
points with pairwise finite distances. Clearly, quasi-isometries respect
finite components.

Let {Xi}i∈I be a finite collection of unbounded metric spaces in the
usual sense, i.e. the metric on each Xi takes only finite values. On their
product

∏
i∈I Xi we consider the natural (L2-)product metric. On their

disjoint union ti∈I Xi we consider the generalized metric which induces
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the original metric on each component Xi and gives distance +∞ to
any pair of points in different components.

We observe that a quasi-isometry
∏

i∈I Xi →
∏

i∈I X ′
i preserving

the product structure gives rise to a quasi-isometry ti∈I Xi → ti∈I X ′
i,

well-defined up to bounded error, and vice versa. Thus equivalence
classes of quasi-actions α : G y

∏
i∈I Xi preserving the product struc-

ture correspond one-to-one to quasi-actions β : G y ti∈I Xi. In what
follows we will prove the disjoint union analog of Theorem 1.2. (The
index of H can be arbitrary from now on.)

Lemma 2.1. Suppose that Y is a generalized metric space and that
G y Y is a quasi-action such that G acts transitively on the set of
finite components of Y . Let Y0 be one of the finite components and H
its stabilizer in G. Then the restricted action H y Y0 determines the
action G y Y up to quasi-conjugacy.

Proof. If G y Y ′ is another quasi-action, Y ′
0 is a finite component with

stabilizer H, then any quasi-conjugacy between H y Y0 and H y Y ′
0

extends in a straightforward way to a quasi-conjugacy between G y Y
and G y Y ′. �

We will now show how to recover the G-quasi-action from the H-
quasi-action by quasifying the construction of induced actions as de-
scribed above.

Definition 2.2. An (L, A)-coarse fibration (Y,F) consists of a (gen-
eralized) metric space Y and a family F of subsets F ⊂ Y , the coarse
fibers, with the following properties:

(1) The union ∪F∈FF of all fibers has Hausdorff distance ≤ A from
Y .

(2) For any fibers F1, F2 ∈ F we have

dH(F1, F2) ≤ L · d(y1, F2) + A ∀ y1 ∈ F1.

We also say that F is a coarse fibration of Y .

Note that the coarse fibers are not required to be disjoint.

It follows from part (2) of the definition that dH(F1, F2) < +∞ if
and only if F1 and F2 meet the same finite component of Y . We will
equip the “base space” F with the Hausdorff metric.

Lemma 2.3. If H y Y is an (L, A)-quasi-action then the collection
of quasi-orbits Oy := H · y forms an (L, 3A)-coarse fibration of Y .
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Proof. For h, h1, h2 ∈ H and y1, y2 ∈ Y we have

d
(
hy1, (hh−1

1 h2)y2

)
) ≤ d

(
(hh−1

1 )(h1y1), (hh−1
1 )(h2y2)

)
) + 2A

≤ L · d(h1y1, h2y2) + 3A

and so

d(Oy1 , Oy2) ≤ L · d(h1y1, Oy2) + 3A.

�

Let (Y,F) and (Y ′,F ′) be coarse fibrations. We say that a map
φ : Y → Y ′ quasi-respects the coarse fibrations if the image of each fiber
F ∈ F is uniformly Hausdorff close to a fiber F ′ ∈ F ′, dH(φ(F ), F ′) ≤
C. The map φ then induces a map φ̄ : F → F ′ which is well-defined up
to bounded error ≤ 2C. Observe that if φ is an (L, A)-quasi-isometry
then φ̄ is an (L, A + 2C)-quasi-isometry.

We say that a quasi-action ρ : G y Y quasi-respects a coarse fibra-
tion F if all maps ρ(g) quasi-respect F with uniformly bounded error.
The quasi-action ρ then descends to a quasi-action ρ̄ : G y F which
is unique up to equivalence (cf. [KL01, Definition 2.3]).

We apply these general remarks to the following situation in order
to obtain our main construction.

Let G be a group, H < G a subgroup (of arbitrary index) and

H
αy X an (L, A)-quasi-action. Let Y = G×X where G is given the

metric d(g1, g2) = +∞ unless g1 = g2. That is, Y consists of |G| finite
components each of which is a copy of X. The quasi-action α gives rise

to a product quasi-action H
ρHy Y via

ρH

(
h, (g, x)

)
= (gh−1, hx).

We denote by FH the coarse fibration of Y by H-quasi-orbits. The
isometric G-action given by

ρ̃G

(
g′, (g, x)

)
= (g′g, x)

commutes with ρH . As a consequence, ρ̃G descends to an isometric
action

(2.4) β̂ := ρ̄G : G y FH .

If H = G then α is quasi-conjugate to β̂ via the quasi-isometry x 7→
ρH(H)·(e, x). This case is used to prove Corollary 1.4, where X ′ = FH .

In general, the finite components of FH correspond to the left H-
cosets in G. More precisely, gH corresponds to ∪x∈XρH(H)·(g, x), that
is, to the union of ρH-quasi-orbits contained in gH ×X. H stabilizes
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the finite component ∪x∈XρH(H) · (e, x). The action of H on this
component is quasi-conjugate to α.

As remarked in the beginning of this section, β̂ is the unique G-quasi-
action up to quasi-conjugacy such that G acts transitively on finite
components and such that H is the stabilizer of a finite component
and the restricted H-quasi-action is quasi-isometrically conjugate to α.

Passing back from disjoint unions to products we obtain Theorem
1.2.

3. Quasi-isometries and the classification into types
(1)-(4)

We now prove:

Lemma 3.1. Suppose Y and Y ′ are spaces of one of types (1)-(4) as
in Theorem 1.6. If Y is quasi-isometric to Y ′, then they have the same
type, unless one is a quasi-isometrically rigid rank 1 symmetric space,
and the other is of type (4).

Proof. First suppose one of the spaces is not Gromov hyperbolic. Since
Gromov hyperbolicity is quasi-isometry invariant, both spaces must be
higher rank space of either of type (1) or (2). But by [KL97], two
irreducible symmetric spaces or Euclidean buildings of rank at least
two are quasi-isometric iff they are homothetic. Thus in this case they
must have the same type.

Now assume both spaces are Gromov hyperbolic. Then ∂Y and ∂Y ′

are homeomorphic.

If Y is a bounded valence bushy tree, then it is well-known that Y
is quasi-isometric to a trivalent tree, and ∂Y is homeomorphic to a
Cantor set. Therefore Y cannot be quasi-isometric to a space of type
(1), since the boundary of a Gromov hyperbolic symmetric space is a
sphere. Also, the quasi-isometry group of a trivalent tree T has an
induced action on the space of triples in ∂T which is not proper, and
hence it cannot be quasi-isometric to a space of type (4).

If Y is a hyperbolic or complex hyperbolic space, then the induced
action of QI(X) on the space of triples in ∂X is not proper, and hence
Y cannot be quasi-isometric to a space of type (4).

The lemma follows. �
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