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Abstract. We construct isometric actions of fundamental groups of closed Rie-
mann surfaces on the complex hyperbolic plane, which realize all possible values of
Toledo’s invariant τ . For integer values of τ these actions are discrete embeddings.
The quotient complex hyperbolic surfaces are disc bundles over closed Riemann
surfaces, whose topological type is described in terms of τ . We relate our geometric
construction to arithmetic constructions and discuss integrality properties of τ .

1. Introduction

Let Σ denote a closed oriented surface of genus g ≥ 2 and π = π1(Σ) its fundamen-
tal group. Let G = PU(n, 1) denote the group of biholomorphic isometries of complex
hyperbolic n-space Hn

C
. In [15], Domingo Toledo considered the following invariant

associated to a representation ρ : π → PU(n, 1): Let f̃ : Σ̃→ Hn
C
be a ρ-equivariant

smooth mapping of the universal covering of Σ. Then Toledo’s invariant τ(ρ; f̃) is
defined as the (normalized) integral of the pull-back of the Kähler form ω on Hn

C
:

τ(ρ; f̃) :=
1

2π

∫

Ω

f̃ ∗ω

where Ω is a fundamental domain for the action of π on Σ̃. τ(ρ; f̃ ) is independent of

f̃ and depends continuously on the representation ρ. Toledo proved that

(1.1) 2− 2g ≤ τ ≤ 2g − 2

He showed furthermore that |τ | = 2g−2 holds if and only if ρ is an isomorphism onto
a lattice in the stabilizer of a complex geodesic in Hn

C
. By relating τ(ρ) to the first

Chern class of a certain line bundle we show that it satisfies the integrality property:

(1.2) τ ∈ 2

n + 1
Z.

The function

τ : Hom(π,PU(n, 1)) −→ 2

n+ 1
Z

is locally constant and the Toledo invariant takes one value on each connected compo-
nent of the representation space. Xia [16] shows that, vice versa, the Toledo invariant
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distinguishes different connected components. The main results of this paper concern
the values realized by Toledo’s invariant:

Theorem 1.1. For every genus g ≥ 2 and every τ satisfying (1.1) and (1.2) there
exists a representation ρ : π → PU(2, 1) with τ(ρ) = τ .

When τ is not an integer, then ρ is not faithful in our examples (but ρ(π) is discrete
when τ = ±4/3). However, when τ is an even integer, we find discrete embeddings:

Theorem 1.2. For every genus g ≥ 2 and every even integer τ satisfying (1.1) there
exists a convex-cocompact discrete and faithful representation ρ : π → PU(2, 1) with
τ(ρ) = τ . Furthermore, the complex hyperbolic surfaceM = H2

C
/ρ(π) is diffeomorphic

to the total space of an oriented R2-bundle ξ over Σ with the Euler number

(1.3) e(ξ) = χ(Σ) + |τ(ρ)/2|
Generally, for a discrete embedding π → PU(2, 1) the equality (1.3) will fail [8].
Simple examples of complex hyperbolic surfaces arise from representations pre-

serving totally geodesic planes. There are two kinds of totally geodesic submanifolds
W ⊂ H2

C
of real dimension two:

• Complex geodesics (copies ofH1
C
) have constant sectional curvature −1. Their

stabilizers in PU(2, 1) are conjugate to U(1, 1).
• Totally real geodesic 2-planes (copies of H2

R
) have constant sectional curvature

−1/4. Their stabilizers in PU(2, 1) are conjugate to SO(2, 1).

Let W be such a totally geodesic submanifold and G its stabilizer. For a surface group
π, there exist discrete embeddings ρ : π −→ G whose image is a cocompact lattice
in G. When W is a complex line, then |τ(ρ)| = 2g − 2 is maximal; we say that ρ is
complex Fuchsian. When W is a totally real plane, then τ(ρ) = 0; then we say that
ρ is real Fuchsian. These two special cases are building blocks in our constructions.

Quotients of H2
C
by real and complex Fuchsian groups provide two quite different

kinds of complex hyperbolic surfaces. For any manifold M1 which is the quotient
space of the complex Fuchsian group, contains Σ as a totally geodesic complex curve.
In contrast, the quotients M2 of the real Fuchsian groups are Stein manifolds (see
Burns and Shnider [2] or Goldman [5],§5.4.7). Moreover, the surfaces M1 and M2

are not even homeomorphic. They are both diffeomorphic to total spaces of oriented
2-plane bundles over Σ. The Euler number of the bundle equals χ(Σ)/2 for M1 and
χ(Σ) for M2. These two examples are discussed in detail in §§2.3–2.5.

The examples in Theorem 1.2 amalgamate real and complex Fuchsian representa-
tions. The representations in Theorem 1.1 amalgamate pairs of holonomy represen-
tations of hyperbolic cone structures on closed surfaces.

The present paper is an extended and corrected version of the preprint [6].

Acknowledgements. We thank Domingo Toledo for helpful discussions. Conversa-
tions with Igor Belegradek, Jeff Hakim, Steve Kudla, John Millson, Alan Reid, Larry
Triplett and Eugene Xia have also been useful. Finally we would like to thank the
referee for several important suggestions.
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2. Representations of surface groups in PU(2,1) and their
characteristic numbers

2.1. Toledo’s invariant. We refer to [5] and Toledo’s papers [14, 15] for the neces-
sary background for this section. (A general description of characteristic classes asso-
ciated to representations may also be found in Dupont’s paper [3].) Let G := PU(n, 1),
X := Hn

C
and π is the fundamental group of a closed Riemann surface Σ of genus

g ≥ 2. In this paper we will use the unit ball model for Hn
C
, whereby

Hn
C
⊂ C

n ⊂ P
n
C
.

For any ρ ∈ Hom(π,G) we have the associated flat Hn
C
-bundle Xρ over Σ with

holonomy ρ. Its total space is the quotient of Σ̃×X by the action of π = π1(Σ) given
by

γ : (m̃, x) 7→ (γm̃, ρ(γ)x)

The Kähler form on X = Hn
C
defines a closed 2-form ωρ on Xρ. (In the above

description, ωρ satisfies Π∗ωρ = Π∗
Xω where

ΠX : Σ̃×X −→ X

and

Π : Σ̃×X −→ Xρ

are the natural projections.) For any section s : Σ→ Xρ,

τ(ρ; s) =
1

2π

∫

Σ

s∗ωρ

is independent of s and is thus an invariant of ρ.
Conjugating by an antiholomorphic isometry of Hn

C
yields representations with

opposite characteristic number. (An example of an antiholomorphic isometry is the
complex conjugation z 7→ z.) Suppose ρ ∈ Hom(π,G), and ι ∈ Isom(Hn

C
) is an

antiholomorphic isometry. Then ι∗ω = −ω and it follows that τ(ρι) = −τ(ρ).
Recall that ρ is called a discrete embedding if its image is a discrete subgroup of

G and ρ is injective. In case ρ is a discrete embedding, the quotient M = Hn
C
/ρ(π)

is a complex hyperbolic manifold. A section s of the flat bundle Xρ corresponds to
a homotopy equivalence f : Σ −→ M as follows. Lifting everything to the universal
covering Σ̃, the section s of Xρ defines a section s̃ : Σ̃ −→ Σ̃×X which is the graph

of a ρ-equivariant map f̃ : Σ̃ −→ X . Equivariance implies that f̃ covers a map
f : Σ −→M which induces the isomorphism

π1(Σ) −→ ρ(π1(Σ)) ∼= π1(M).

Since both Σ and M are aspherical, f is a homotopy equivalence. Thus

τ(ρ) =
1

2π

∫

Σ

s∗ωρ =
1

2π

∫

Σ

f ∗ωM

2.2. Integrality. Let L→ Hn
C
be a Hermitian complex line bundle, and let G be a

Lie group acting on L by isomorphisms. Let Ω denote the curvature form of L; it is
a G-invariant 2-form on Hn

C
.

Given a representation ρ : π → G and an equivariant smooth map f : Σ̃ → Hn
C
,

the group π acts on the pull-back bundle f ∗L→ Σ̃, and f ∗L descends to a Hermitian
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line bundle Lρ → Σ. The curvature form of f ∗L is given by f ∗Ω and therefore 1
2πi

f ∗Ω
descends to a 2-form αρ on Σ representing the first Chern class c1(Lρ). Hence

∫

Σ

αρ = c1(Lρ) ∈ Z.

We apply this remark now in two concrete situations. Let κ→ Hn
C
be the canonical

line bundle and θ → Hn
C
be the restriction to Hn

C
of the tautological bundle

C
n+1 \ {0} → Pn(C)

over projective n-space. Then θn+1 ∼= κ.
There are canonical actions of SU(n, 1) on θ and of PU(n, 1) on κ. Both bundles

carry invariant Hermitian metrics which are unique up to scaling. The corresponding
curvature forms are given by

Ω(θ) =
1

2i
ω

respectively

Ω(κ) =
n+ 1

2i
ω

where ω denotes the Kähler form on Hn
C
.

Given a representation ρ : π → PU(n, 1) we consider the line bundle Lρ → Σ
associated to κ→ Hn

C
. We obtain

c1(Lρ) =

∫

Σ

αρ =
1

2πi

∫

Σ

f ∗Ω(κ) = −n + 1

4π

∫

Σ

f ∗ω = −n + 1

2
τ(ρ),

so

τ(ρ) ∈ 2

n + 1
· Z.

If ρ lifts to a representation ρ̃ : π → SU(n, 1) consider instead the line bundle Lρ̃ → Σ
associated to θ → Hn

C
, obtaining

c1(Lρ̃) = −
1

2
τ(ρ),

so

τ(ρ) ∈ 2 · Z.

2.3. Example: Complex lines. Basic examples of representations π → PU(n, 1)
arise from compact complex hyperbolic 1-manifolds embedded in complete complex-
hyperbolic surface. We represent complex hyperbolic space Hn

C
by the subset of pro-

jective space of the indefinite Hermitian vector space Cn,1 of index one and dimension
n+1 corresponding to lines whose induced Hermitian form is negative definite. Recall
that a complex geodesic in Hn

C
is a holomorphic totally geodesic complex curve. A

complex geodesic has constant curvature −1, and is equivalent to C = H1
C
embedded

in Hn
C
as {0} ×H1

C
. In terms of the unit ball model, in which Hn

C
is represented by

Bn ⊂ Cn as


z1
...
zn


 7−→




z1
...
zn
1


 ∈ C

n,1.
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Under this identification, a model complex geodesic is the image of

H1
C −→ {0} × B

1 −→ C
n,1z 7−→ (0, . . . , 0, z)←→




0
...
0
z
1




where z ∈ C and |z| < 1. The stabilizer of C is the image of the embedding U(n −
1)×U(1, 1) →֒ PU(n, 1) obtained as the composition of the embedding

U(n− 1)× U(1, 1) →֒ U(n, 1)

(B,A) 7→
[
B 0
0 A

]

with the projectivization P : U(n, 1) −→ PU(n, 1). The kernel of the projectivization
homomorphism P : U(n, 1) −→ PU(n, 1) consists of scalar matrices and is the center
of U(n, 1). There are homomorphisms

SU(1, 1) →֒ SU(n, 1) →֒ U(n, 1)
P−→ PU(n, 1)

The homomorphism SU(1, 1)→ PU(n, 1) is an embedding since the image of U(1, 1)
in U(2, 1) intersects the kernel of P in the trivial subgroup.

The biholomorphic isometries of H1
C
comprise the group PU(1, 1). The action of

PU(1, 1) on H1
C
, however, does not quite extend to Hn

C
. Rather, the group SU(1, 1)

acts on Hn
C
by the embedding SU(1, 1)→ PU(n, 1) above. The restriction homomor-

phism

SU(1, 1)→ Isom(H1
C
)

defines a double covering of SU(1, 1) onto PU(1, 1). The nontrivial element of its
kernel is the reflection in H1

C
given by

(z1, . . . , zn−1, zn) 7−→ (−z1, . . . ,−zn−1, zn)

which we call the inversion with respect toH1
C
. Although the inversion restricts to the

identity on H1
C
, it acts nontrivially on Hn

C
and on the normal bundle to H1

C
⊂ Hn

C
.

This inversion belongs to the maximal compact subgroup K of SU(1, 1) which is
represented by diagonal matrices



In−1 0 0
0 ζ 0
0 0 ζ−1




where |ζ | = 1. It acts on Hn
C
by

(z1, . . . , zn) 7−→ (ζz1, . . . , ζzn−1, ζ
2zn).

Now we specialize to the case n = 2. Let ν1 denote the unit normal bundle to
H1

C
in H2

C
and UT denote the unit tangent bundle of H1

C
. Note that SU(1, 1) acts

simply-transitively on ν1. Both the normal and tangent bundle of H1
C
have Hermitian

connections induced by the Levi-Civita connection on H2
C
. These connections restrict

to connections on the corresponding unit bundles.

Lemma 2.1. There exists a 2-fold covering ν1 → UT which is equivariant with respect
to the homomorphism of Lie groups p : SU(1, 1)→ PU(1, 1).
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Proof. As the group PU(1, 1) acts simply-transitively on UT , the 2-1 projection p :
SU(1, 1)→ PU(1, 1) gives us the required 2-fold covering between corresponding circle
bundles. �

Corollary 2.2. Consider an elliptic isometry θ : H2
C
→ H2

C
which lies in the image

of the standard embedding SU(1, 1) →֒ PU(2, 1), assume that the origin o is a fixed
point of θ. Then the angle of rotation of θ in the tangent line ToH

1
C
is twice the angle

of rotation of θ in the normal line νoH
1
C
.

Note that the curvature of the pull-back of the connection on UT via p to ν1 is
twice the curvature of the connection on UT . Since the induced metric on TH1

C
has

sectional curvature -1, the curvature 2-form of TH1
C
equals i · dA (where dA denotes

the area form). Therefore the curvature 2-form of the normal bundle of H1
C
in H2

C

equals i
2
dA.

Suppose now that Γ is a torsion-free uniform lattice in SU(1, 1),

Σ := H1
C/Γ,

(that is, Γ is a complex Fuchsian group), and

M := H2
C
/Γ

where Γ embeds in PU(2, 1) by the monomorphism SU(1, 1) →֒ PU(2, 1).

Corollary 2.3. The Euler number of the normal bundle νΣ of Σ in M equals 1
2
χ(Σ).

The quotient M = H2
C
/ρ(Γ) is a complete complex hyperbolic manifold containing

a holomorphic totally geodesic submanifold H1
C
/ρ(Γ) ≈ Σ. Orthogonal projection

onto H1
C
defines a fibration ΠM : M −→ H1

C
/Γ whose fibers are totally geodesic

complex hyperplanes. The fibration ΠM is isomorphic to the normal bundle νΣ via
the normal exponential mapping. Thus its Euler number equals χ(Σ)/2.

The Kähler form restricts to the area form on the holomorphic submanifold Σ ⊂
M , hence Toledo’s invariant of the embedding Γ →֒ PU(2, 1) is −χ(Σ) = 2g − 2.

We will need a relative version of Corollary 2.3.

Definition 2.4. A biholomorphic isometry h : H2
C
→ H2

C
will be called a transvec-

tion if it has an invariant geodesic γ ⊂ H2
C
and h acts trivially on the normal bundle

of γ. (Note that an element is a transvection iff it is conjugate to an element of
SU(1, 1) with positive trace.)

Suppose that W1 ⊂ H2
C
is a totally geodesic subspace of the curvature −1. Let

Υ ⊂ PU(1, 1) = Isom(W1) be a nonabelian discrete finitely generated free purely
hyperbolic subgroup, W1/Υ is an open hyperbolic surface. We make the following
assumptions:

• The surface X = W1/Υ has even number of ends;
• λ : Υ = π1(X) → SU(1, 1) ⊂ PU(2, 1) is an embedding such that the image
of any peripheral element is a transvection in H2

C
.

In the next section we prove a technical lemma which implies that the first condition
is necessary and sufficient for the existence of α satisfying the second condition.

Let Σ ⊂ W1/Υ be the convex core, M := H2
C
/λ(Υ) and let ν and ν1 denote

the normal bundle and the unit normal bundle to Σ in M . The second hypothesis
guarantees a parallel section α of the restriction ν1|∂Σ. Following Steenrod [12], the
relative Euler number e(ν, α) is defined as the obstruction to extending α to a nonzero
section of ν over all of Σ.
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Proposition 2.5. The relative Euler number e(ν, α) equals 1
2
χ(Σ).

Proof. Let p : ν(Σ) → T (Σ) denote the projection from the normal to the tangent
bundle of Σ given above. It is clear that the relative Euler number is independent of
the choice of parallel section (since all parallel sections are homotopic). Thus we may
assume that the projection p(α) is tangent to the boundary of Σ. Then e(T (Σ), p(α))
is the Euler characteristic of Σ (it follows for instance from taking the double of Σ
along its boundary and making a symmetric extension of α to Σ and its mirror image
in the double). On the other hand, since p is a 2-fold covering we conclude that
e(ν, α) = 1

2
χ(Σ). �

2.4. Lifting representations from PU(1, 1) to SU(1, 1). Gluing manifolds with
geometric structures requires that the structures along the common interface agree.
In our particular case, we glue along quotients by cyclic groups of hyperbolic elements.
We restrict ourselves to the case of complex-hyperbolic plane H2

C
.

To construct surfaces M as in Theorem 1.2 we will glue quotients of domains
in H2

C
by subgroups Γ1 stabilizing a complex geodesic W1 and quotients of domains

by subgroups Γ2 stabilizing a totally real geodesic 2-plane W2. The interface along
which we glue is the quotient of a tube around a (real) geodesic W0 = W1 ∩W2 by
a cyclic subgroup. This cyclic subgroup belongs to the intersection G0 := G1 ∩ G2,
where Gj is the stabilizer of Wj in PU(2, 1). In suitable coordinates we may take
W1 = H1

C
, W2 = H2

R
and W0 = H1

R
. The corresponding stabilizers are G1 = U(1, 1),

G2 = SO(2, 1) and G0 = SO(1, 1) respectively.
Figure 1 depicts a “hybrid” surface which is the union of two hyperbolic half-

planes. Figure 2 schematically depicts an embedding of the “hybrid” surface into
H2

C
. The upper half has curvature −1 and represents the Poincaré model; the lower

half has curvature −1/4 and represents the Klein-Beltrami model. Geometrically this
surface is realized in H2

C
as a subset of the union of the totally geodesic subspace H1

C

(the upper half) and H2
R
(the lower half) which meet in H1

R
(the equator). Geodesics

orthogonal to H1
R
are drawn in the two halves, as well as the hypercycles parallel to

H1
R
.
Although G1 is connected, neither G2 nor G0 is connected. In particular any

hyperbolic element represented by a matrix in SO(2, 1) with negative trace does not
lie in the identity component. A typical such matrix is:



1 0 0
0 − cosh(t) − sinh(t)
0 − sinh(t) − cosh(t)




The corresponding isometry of H2
C
is biholomorphic and restricts to an orientation-

preserving isometry of H1
C
(since its restriction to H1

C
is holomorphic). However,

its restriction to H1
R
reverses orientation: it is a glide-reflection, the composition of

transvection along the geodesic H1
R
with “inversion” in H1

C
. A hyperbolic element of

SU(1, 1) is a transvection if and only if it preserves orientation on an invariant real
2-plane; equivalently it lies in a hyperbolic one-parameter subgroup of SU(1, 1).

Proposition 2.6. Let Υ ⊂ PU(1, 1) be a finitely generated nonabelian purely hyper-
bolic discrete group of automorphisms of H1

C
such that H1

C
/Υ has an even number of

ends. Then there exists a lift λ : Υ −→ SU(1, 1) such that for each g ∈ Υ correspond-
ing to a simple loop around an end, λ(g) is a transvection.
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Figure 1. Hybrid surface.

Proof. IfH1
C
/Υ is a closed surface then the subgroup Υ lifts isomorphically to SU(1, 1)

(see Petersson [11] or [4]); otherwise Υ is a free group. The convex core Σ of H1
C
/Υ

is a compact surface whose boundary consists of closed geodesics c1, . . . , cm (see [1]).

Choose lifts of the generators of Υ to SU(1, 1) to obtain a homomorphism λ̃ :
Υ −→ SU(1, 1) lifting the inclusion Υ →֒ SU(1, 1). Denote the elements of Υ corre-

sponding to the ends of H1
C
/Υ by g1, . . . , gm. For each j = 1, . . . , m write λ̃(gj) = fj ĝj

where

fj = ±I ∈ SU(1, 1)

and ĝj lies in a one-parameter subgroup.
Recall that the normal bundle of H1

C
in H2

C
has a canonical Hermitian connec-

tion induced by the Levi-Civita connection on H2
C
. This connection projects to the

connection ∇ on the normal bundle ν of Σ in H2
C
/Υ.

Choose a basepoint and a loop l which starts at the basepoint and traverses
the boundary components c1, . . . , cm. The holonomy of the connection ∇ around l
equals the product (of unit complex numbers)

∏
j fj of the holonomies around each cj .

(Compare Kobayashi-Nomizu [10], §II.) By integrating the connection form around l
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Figure 2. Schematic view of the embedding of hybrid surface into H2
C
.

this equals the integral of the curvature form

exp

(∫

Σ

κ∇

)
= exp

(∫

Σ

i

2
dA

)
= exp(πiχ(Σ)).

Since χ(Σ) ≡ m( mod 2),

(2.1)

m∏

j=1

fj = (−1)m

Since g1, . . . , gm−1 lie in a set ∆ of free generators for Υ, there exists a representation
λ : Υ −→ SU(1, 1) such that

λ(gj) = fjλ̃(gj)

for j < m and

λ(g) = λ̃(g)

for g ∈ ∆− {γ1, . . . , γm}. so that λ(gj) are transvections all for j < m. Apply (2.1)
when m is even to conclude that λ(gm) is also a transvection. This concludes the
proof of the proposition. �

The referee has suggested the following alternative point of view on the ideas in
Proposition 2.6. For a Fuchsian representation into PU(1, 1) whose quotient Σ is a
triply-perforated sphere (a “pair of pants”), the three generators corresponding to the
boundary lift to elements of SU(1, 1) with negative trace, as can be deduced from the
law of cosines for hyperbolic right-angled hexagons (see, for example, Theorem 7.19.2
of Beardon [1]). By changing the lifting, one can assume that two of the generators
have positive trace and the other generator has negative trace.
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If Σ is a compact hyperbolic surface with totally geodesic boundary, then Σ de-
composes into pants. Furthermore the number of pants in the decomposition equals
−χ(Σ) which has the same parity as the number m of components of ∂Σ. Since the
loops corresponding to m − 1 components of ∂Σ can be included in the set of free
generators of H1(Σ,Z), we can lift the generators of the fundamental groups of all but
one of the boundary components C1, . . . , Cm−1 to have positive trace. We show that
the the sign of the trace of λ(Cm) will be (−1)m = (−1)χ(Σ), by induction on −χ(Σ).
Decompose Σ into pants, and choose one pants P in the decomposition which inter-
sects ∂Σ. Apply the induction hypothesis to Σ′ = Σ− P , whose Euler characteristic
equals 1+χ(Σ). Now Σ′ has either one less or one more boundary component than Σ
(depending on how many components of ∂P meet ∂Σ). Suppose first that Σ′ has one
more boundary component than Σ. By induction we assume that one component of
∂Σ′ ∩ ∂P lifts to an element of positive trace, the other component of ∂Σ′ ∩P lifts to
an element whose trace is (−1)m+1 and the components of ∂Σ−P all lift to elements
of positive trace. It follows from the above paragraph that when P is attached to Σ′,
the new boundary component of P will lift to an element of trace (−1)m, retaining
the lifts of all other boundary components. Similarly, if Σ′ has one less boundary
component, then by induction we suppose that all the components of ∂Σ′ have been
lifted to elements of positive trace and that C = ∂Σ′ ∩ ∂P has been lifted to an
element of sign (−1)m+1. By the above description of the pants, we can attach P
and find a lift of the representation of π1(Σ) such that one boundary component of
∂Σ ∩ ∂P has positive trace, the other one has trace of sign (−1)m and all other lifts
of components of ∂Σ are retained.

2.5. Example: Totally real geodesic subspaces. At the opposite extreme from
holomorphic totally geodesic submanifolds are totally real totally geodesic submani-
folds. Every such submanifold is equivalent by an automorphism to real hyperbolic
space H2

R
⊂ H2

C
— the subset consisting of points with real coordinates. This sub-

space is the fixed-point-set of the anti-holomorphic isometric involution

(z1, z2) 7−→ (z1, z2)

The induced Riemannian metric on H2
R
has constant negative curvature −1/4. The

stabilizer of H2
R
is the image of the embedding SO(2, 1) →֒ PU(2, 1) obtained by

composing the embedding SO(2, 1) →֒ U(2, 1) with projectivization.
The fibers of the real orthogonal projection ΠR : H2

C
−→ H2

R
are totally real

geodesic subspaces which are orthogonal to H2
R
. (Compare §3.3.6 of Goldman [5].)

Since H2
R
is totally real, the almost complex structure defines an SO(2, 1)-equivariant

isomorphism between its tangent bundle and its normal bundle.
Let Γ ⊂ SO(2, 1)0 be a discrete torsion-free subgroup such that the convex core

Σ of H2
R
/Γ is compact. The composition

ρ : π1(Σ) ∼= Γ →֒ SO(2, 1) ⊂ U(2, 1)→ PU(2, 1)

is a discrete embedding. The quotient M = H2
C
/ρ(Γ) is a complete complex hyper-

bolic surface containing a totally real totally geodesic submanifold

H2
R
/ρ(Γ) ∼= Σ

The corresponding embedding

Σ →֒ H2
R/Γ ⊂M

induces the homomorphism ρ : π1(Σ) ∼= Γ of fundamental groups. From now on
identify Σ with its image under this embedding.
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Suppose Σ has no boundary. The above discussion implies the fibration M → Σ
induced by the orthogonal projection H2

C
−→ H2

R
is diffeomorphic as a fiber bundle

to the tangent bundle of Σ. Hence this fibration has Euler number

e(TΣ) = χ(Σ) = 2− 2g

We will also need a relative version of this statement in the case ∂Σ 6= ∅. Let
ν(Σ) be the normal bundle of Σ in M , α is a unit normal parallel vector-field along
∂Σ in M .

Proposition 2.7. The relative Euler number e(ν(Σ), α) equals the Euler character-
istic χ(Σ).

Proof. We repeat the argument from the proof of Proposition 2.3, replacing the 2-
fold covering by the isomorphism J between the normal and tangent bundle. This
isomorphism will map α to a parallel section J(α) along ∂Σ. Hence

e(ν(Σ), α) = e(T (Σ), J(α)) = χ(Σ)

�

Since Σ is embedded as a totally real submanifold, ω|Σ = 0. Thus Toledo’s
integrand is identically zero so τ(ρ) = 0.

3. Geometric preliminaries

3.1. Orthogonal projections in Hadamard manifolds. Let W be a simply-
connected complete manifold with sectional curvature KW ≤ −1/4. Let W1 and
W2 be totally geodesic submanifolds of W with non-empty intersection W0. Then W0

is a totally geodesic submanifold as well. The angle of intersection of W1 and W2 at
x ∈ W0 is defined to be:

∠x(W1,W2) := min{∠(v1, v2) | v1 ∈ TxW1, v2 ∈ TxW2, v1 ⊥W0, v2 ⊥W0}
∈ [0, π/2]

Since the Wj are totally geodesic, parallel translation along W0 preserves tangency
to Wj . Therefore the angle ∠x(W1,W2) is independent of the point x ∈ W0 and we
simply write ∠(W1,W2) for ∠x(W1,W2).

Denote by Πj : W → Wj the orthogonal projection onto Wj (j = 0, 1, 2). For a
subset S ⊂ X in a metric space X let Nbdr(S) denote the closed r-neighborhood of
S.

Proposition 3.1. Let ǫ(α) := 2 · cosh−1(csc(α/2)) where α := ∠(W1,W2). Then for
all ǫ > ǫ(α) we have:

(3.1) W = Π−1
1 (Nbdǫ(W0)) ∪ Π−1

2 (Nbdǫ(W0))

and the distance between boundary components of

Π−1
1 (Nbdǫ(W0)) ∩ Π−1

2 (Nbdǫ(W0))

is positive.

Proof. Pick a point p ∈ W . Consider the projections pj = Πj(p) to Wj (j = 0, 1, 2)
and let q = Π0(p1) ∈ W0. It suffices to show that d(p1, q) ≤ ǫ or d(p2, q) ≤ ǫ.

Denote by uj ∈ Tq(Wj) the unit tangent vector at q pointing towards pj. Then
u1 ⊥W0. Let u

′
2 ∈ TqW2 be the component of u2 orthogonal to W0. Then

|〈u1, u2〉| = |〈u1, u
′
2〉| ≤ |u′

2| cos(α) ≤ cos(α).
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and we get α ≤ ∠(p1qp2) ≤ ∠(p1qp) + ∠(pqp2). Hence, we assume without loss of
generality that q ∈ W0 satisfies

(3.2) ∠(p1qp) ≥
α

2
.

LetH2
R
be the hyperbolic plane with sectional curvature −1/4. Consider a triangle

△(p̃1q̃p̃) in H2
R
having the same side lengths as △(p1qp). (Compare Figure 3.) Since

W has sectional curvature bounded above by −1/4, angle comparison withH2
R
implies

(see [9])

∠(p̃1q̃p̃) ≥ ∠(p1qp) ≥
α

2
and ∠(q̃p̃1p̃) ≥ ∠(qp1p) =

π

2
.

(by (3.2)). Hence

d(p1, q) = d(p̃1, q̃) ≤ ǫ(α)

where ǫ = ǫ(α) is the length of the finite side of the right ideal triangle in H2
R
with

angle α/2. For such a triangle (see, for example Beardon [1], Theorem 7.9.1)

cosh
( ǫ
2

)
= csc

(α
2

)

whence the first assertion of the proposition follows. In particular for each ǫ > ǫ(α)
we have:

∂Π−1
1 (Nbdǫ(W0)) ∩ ∂Π−1

2 (Nbdǫ(W0)) = ∅
To show that the distance between these hypersurfaces is positive choose δ such that
ǫ(α) < δ < ǫ. Recall that the nearest-point projection in Hadamard spaces does not
increase the distance. Hence for j = 1, 2 the set

Uj,δ := Π−1
j (W0 − Nbdδ(W0))

contains the (ǫ − δ)-neighborhood of the hypersurface ∂Π−1
j (Nbdǫ(W0)) and as we

already proved U1,δ ∩ U2,δ = ∅. The second assertion of the proposition follows. �

Figure 3. The comparison triangle
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3.2. A model for the neck. In this section we discuss the topology of special neigh-
borhoods of closed real geodesics in complex-hyperbolic surfaces; these neighborhoods
are called necks.

First we describe infinitesimal data associated with each neck. Let h be a transvec-
tion in H2

C
along a real geodesic W0. Consider the quotient M := H2

C
/〈h〉: it contains

the closed geodesic γ := W0/〈h〉, let ℓ be the length of γ. The choice of the generator
h of the cyclic group 〈h〉 corresponds to the choice of an orientation on γ. Hence,
pick a point x ∈ γ and a unit tangent vector v1 ∈ Tx(γ) ⊂ Tx(M) pointing in the
positive direction. Then choose a unit tangent vector v2 ∈ Tx(M) which is Hermitian
orthogonal to v1. The pair (v1, v2) can be canonically completed to an orthonormal
basis of Tx(M) over R: let

w1 :=
√
−1v1, w2 :=

√
−1v2.

We call (v1, v2) a normal frame at x. Note that our assumptions on γ imply that the
normal frame canonically extends to a smooth parallel frame field along γ.

Such a normal frame and the number ǫ > 0 uniquely determine a neck N(ǫ, ℓ) in
the manifold M around γ as follows:

• Any lift w̃1 of w1 to T (H2
C
)|W0

is tangent to the unique complex geodesic W1

in H2
C
containing W0.

• Any lift ṽ2 of v2 to T (H2
C
)|W0

is tangent to a totally geodesic real-hyperbolic
plane W2 in H2

C
containing W0.

• The vectors w̃1, ṽ2 determine half-planes in

W+
1 ⊂ W1,W

+
2 ⊂W2

bounded by W0. (The vectors point outside these half-planes).

We denote by Xj the union of the open half-plane W+
j and the closed ǫ-neighborhood

of W0 in Wj. Then Sj := Xj −W+
j is a strip bounded by W0 and a hypercycle hj

equidistant from W0. Denote by Yj the inverse image of Xj under the orthogonal
projection Πj : H

2
C
→Wj . The next lemma follows directly from Proposition 3.1.

Lemma 3.2. Let

(3.3) ǫ > ǫ0 = ǫ(π/2) = 2 ln(1 +
√
2) = ln(3 + 2

√
2).

Then Y1 ∪ Y2 = W and moreover the distance between the boundary components of
Y1 ∩ Y2 is positive.

Let ǫ1 := ln(6) > ǫ0 and suppose in the following that ǫ > ǫ1. The 1-parameter
group O(1, 1)0 of transvections along the geodesic W0 acts on the intersection Y (ǫ) =
Y = Y1 ∩ Y2. We call the intersection Y a tube.

We describe the topology of the tube Y in an O(1, 1)0-invariant way. The group
O(1, 1)0 acts freely on the smooth manifold with boundary H2

C
∪∂∞H2

C
−∂∞W0 which

can be thought of as the total space of an R-principal bundle E whose base is the
closed 3-ball B3. Let Y be the closure of Y in H2

C
∪ ∂∞H2

C
− ∂∞W0. It is invariant

under the O(1, 1)0-action. The frontier ∂Y of Y in H2
C
∪ ∂∞H2

C
− ∂∞W0 projects

to a union of two disjoint smoothly properly embedded 2-discs in B3. Hence, by the
smooth Schönflies Theorem in dimension three, the projection of Y is diffeomorphic to
D2× [1, 2]. Since E is a trivial bundle it has a smooth trivialization. It can be chosen
to extend the canonical trivializations of ∂Y whose horizontal sections are totally
geodesic 2-planes. This allows us to extend the fibration of ∂Y by totally geodesic
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2-planes in an O(1, 1)0-invariant manner to a smooth fibration of Y by closed 2-discs.
As base for this bundle we can use the strip S1 ∪ S2. The above discussion shows:

Proposition 3.3. The quotient Ȳ /〈h〉 is diffeomorphic to the total space of a trivial
disk bundle over the annulus A. The restriction of this fibration to the two components
of ∂Y/〈γ〉 corresponds to the restriction of the nearest-point projections Πj to Π−1(hj),
j = 1, 2.

We call the quotient N(ǫ, ℓ) = N := Y/〈h〉 a model neck. Its isometry type
depends on two parameters: ǫ (the width) and ℓ (the length).

3.3. Collars of geodesics. In this section we determine ℓ = ℓ(D) > 0 such that
a closed geodesic of length ℓ in a hyperbolic surface of curvature −k−2 is contained
in an regular tubular neighborhood (a “collar”) of width at least D and distinct
neighborhoods are disjoint. This will enable us to find a neck along which to glue the
two complex hyperbolic surfaces with holomorphic and totally real spines respectively.
For simplicity we consider only surfaces where all boundary geodesics have the same
length.

Let Wk be a complete simply connected Riemannian 2-manifold of constant cur-
vature −k−2 and Γk a purely hyperbolic discrete group of isometries. Suppose that
f, g are nontrivial elements of Γk which are transvections along geodesics Af , Ag in
Wk. The geodesics Af , Ag are called the axes of f, g.
We assume that:

• The geodesics Af , Ag are disjoint.
• The geodesics Af/〈f〉, Ag/〈g〉 have the same length ℓ.

Lemma 3.4.

sinh

(
ℓ

2k

)
sinh

(
d(Af , Ag)

2k

)
≥ 1/2

Proof. This assertion quantifies the Margulis Lemma for the hyperbolic plane and
slightly modifies Corollary 11.6.10 of Beardon [1]. Beardon considers the case of
curvature −1 but the formulas remain valid for constant curvature K < 0 if the
lengths are multiplied by

√
−K. �

Let S be a complete hyperbolic surface and γ a simple closed geodesic in S. Let
Sγ → S denote the locally isometric covering of S corresponding to the subgroup of
π1(S) generated by γ. Let γ̂ denote the simple closed geodesic in Sγ covering γ. We
say that the ǫ-neighborhood Nbdǫ(γ) of γ in S is injective if the projection

Nbdǫ(γ̂)→ Nbdǫ(γ)

is a diffeomorphism. Equivalently, α is contained in γ for every geodesic arc α in S
with both end-points on γ and ℓ(α) ≤ 2ǫ. Suppose that Γk is a finitely-generated
group as in Lemma 3.4, Σk is the compact convex core of the surface Sk = Wk/Γk.
We assume that all boundary geodesics of Σk have the same length ℓ. Lemma 3.4
implies:

Lemma 3.5. Let ǫ > 0 and suppose that ℓ satisfies

(3.4) sinh

(
ℓ

2k

)
sinh

( ǫ

k

)
≤ 1

2
,

Then the ǫ–neighborhood of each boundary geodesic of Σk is injective and ǫ–neighborhoods
of distinct geodesics are disjoint.
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Remark 3.6. In the case of equality in (3.4)

sinh

(
ℓk
2k

)
sinh

( ǫ

k

)
=

1

2
,

then ℓ1 < ℓ2. If ǫ = ǫ1 = ln(6) then sinh(ℓ1/2) = 6/35.

3.4. Neck neighborhoods. Now we combine the results of the previous three sec-
tions to construct neck neighborhoods around certain geodesics in complex-hyperbolic
surfaces.

Definition 3.7. Let M be a complex-hyperbolic surface and γ ⊂ M be a simple
closed geodesic of length ℓ. We say that γ admits an (ǫ, l)-neck neighborhood

Neckǫ(γ) of width ǫ in M if it has a neighborhood in M which is isometric to the
model neck N(ǫ, ℓ).

Suppose that Wk ⊂ W = H2
C
is a totally geodesic plane of the curvature −k−2 and

Γk is a finitely-generated purely loxodromic discrete subgroup of PU(2, 1) stabilizing
Wk. We assume that Sk = Wk/Γk is not compact and Σk ⊂ Sk is the compact convex
core so that the length of each boundary geodesic equals the same number ℓ. We
also assome that each element of Γk representing a boundary geodesic γ of Σk is a
transvection.

To construct the infinitesimal data for the neck around each boundary geodesic γ
of Σk choose a normal frame at γ ⊂ H2

C
/Γk (see subsection 3.2):

• Pick a base point x at γ.
• The vector v1 tangent to γ at x is determined by the choice of orientation on
γ, we let w1 :=

√
−1v1. If k = 1 then the vector w1 is tangent to Σ1 and is

directed inwards Σ1.
• If k = 2 then the second vector v2 is chosen tangent to Σ2 and directed inwards
Σ2.

Lemma 3.8. Suppose that ℓ < ℓ1, where ℓ1 is given by

sinh(ℓ1/2) = 6/35

Then for ǫ = ǫ1 = ln(6) we have:

• Each boundary geodesic γ ⊂ Σk ⊂ H2
C
/Γk is contained in a neck neighborhood

Neckǫ(γ) with the normal frame as above.
• If γ, β ⊂ ∂Σk are distinct boundary geodesics then Neckǫ(γ) ∩ Neckǫ(β) = ∅.

Proof. The condition ǫ = ǫ1 > ǫ0 = 2 ln(1+
√
2) implies the existence of a model neck

of the width ǫ (Lemma 3.2). Let γ be a boundary geodesic of Σk and let

Mγ →M = H2
C/Γk, Σk,γ → Σk

denote the coverings defined by the subgroups

π1(γ) ⊂ π1(M), π1(γ) ⊂ π1(Σk).

Define γ̂ as the simple closed geodesic on Σk,γ ⊂ Mγ covering γ. Lift of the normal
frame along γ from M to a normal frame along γ̂ in Mγ determines an neck neighbor-
hood Neckǫ(γ̂) ⊂ Mγ . We first show that the restriction of the projection Mγ → M

to Neckǫ(γ̂) is injective. Let P̃ : Mγ → Σ̃k denote the nearest-point projection to the

lift Σ̃k of Σk into Mγ . Then Neckǫ(γ̂) is contained in the inverse image P̃−1(Nbdǫ(γ̂))

where the ǫ-neighborhood is taken within the surface Σ̃k. Recall that by Lemma 3.5
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and Remark 3.6 the geodesic γ in Σk has an injective ǫ-neighborhood. Thus the re-
striction of the covering Σk,γ → Σk to Nbdǫ(γ̂) is injective and the restriction of the

covering Mγ → M to P̃−1(Nbdǫ(γ̂)) is injective as well. This implies that we have
a neck neighborhood Neckǫ(γ) of the geodesic γ in M . Finally we show that neck
neighborhoods of distinct geodesics are disjoint. Let P : M = H2

C
/Γk → Σk denote

the orthogonal projection. Then again

Neckǫ(γ) ⊂ P−1(Nbdǫ(γ))

for every boundary geodesic γ ⊂ Σk. Let β, γ ⊂ ∂Σk are distinct boundary compo-
nents. Then their ǫ-neighborhoods Nbdǫ(β),Nbdǫ(γ) in Σk are disjoint by Lemma 3.5.
Hence P−1(Nbdǫ(γ))∩P−1(Nbdǫ(β)) = ∅ and Neckǫ(γ)∩Neckǫ(β) = ∅ as desired. �

4. Proof of the Main Theorem

We begin with an oriented closed surface Σ with a piecewise hyperbolic structure
of the following kind. There is a collection B of disjoint simple closed geodesics on Σ
such that on each component of Σ − B the metric either has constant curvature −1
or constant curvature −1/4. Let Σk (k = 1, 2) denote the subsurface of Σ−B where
the curvature equals −k−2. The surfaces Σk could be disconnected. We assume that
each loop β ∈ B is adjacent to both Σ1,Σ2. Thus we orient B so that the surface Σ1

lies to the left from B.
Our construction involves two assumptions:

• The boundary of each component of Σ1 has an even number of components.
• All components of B have the same length ℓ < ℓ1 = sinh−1(6/35).

Theorem 4.1. There exists a complete complex hyperbolic surface M together with
a piecewise totally geodesic isometric embedding f : Σ→M such that

• f is a homotopy equivalence.
• The Toledo invariant of M equals −χ(Σ1).
• M is diffeomorphic to the total space of an oriented disc bundle which has the
Euler number χ(Σ1)/2 + χ(Σ2).

Outline of proof. We embed Σ2 (respectively Σ1 ) as a totally real (respectively holo-
morphic) totally geodesic submanifold inside a complete complex hyperbolic surface
X2 (respectively X1) so that:

(1) The embeddings fk : Σk → Xk, k = 1, 2 are homotopy equivalences.

(2) The homotopy-inverse to fk is the nearest-point projection Π̂k : Xk → fk(Σk).
(3) The numbers ǫ, ℓ are chosen so that ǫ-neighborhoods of distinct boundary

components of Σk are injective and disjoint.
(4) Each component fk(γki) of fk(∂Σk) is contained in a neck Nki := Neckǫ(γki)

and necks around distinct geodesics are disjoint.
(5) If two annular components

A1i ⊂ Nbdǫ(∂Σ1), A2i ⊂ Nbdǫ(∂Σ2)

are adjacent in the surface Σ then there is a canonical isometry ξi between
the corresponding necks N1i, N2i.

To guarantee the properties 3-5, we need “enough room” around the boundary geodesics
of fk(∂Σk) in Xk. This is achieved by the choice of ℓ and ǫ as above.

Now the construction of M proceeds as follows. Remove from the manifolds Xk

(k = 1, 2) all points in Π̂−1
k (∂Σk) that do not belong to the union of necks Nki.
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The resulting complex hyperbolic manifolds with boundaries M1 and M2 are glued
together along their necks via the isometries ξi. Then we prove that the resulting
complex hyperbolic surface M satisfies the assertions of Theorem 4.1. �

The following two sections contain the details of the proof.

4.1. Construction of the complex hyperbolic surface. We consider a surface
Σ as in the previous section. For each component Σkj of the surface Σk we have the

action of Γkj = π1(Σkj) on its Nielsen region Σ̃kj in the hyperbolic plane H2(−k−2)

with curvature −k−2. Recall that Σ̃kj is the convex hull of the limit set of Γkj =
π1(Σkj) and is a convex domain with totally geodesic boundary. Furthermore Σkj =

Σ̃kj/Γkj is a compact geodesically convex hyperbolic surface with geodesic boundary
— the convex core of a the complete hyperbolic manifold Σkj = Wk/Γkj. According
to Proposition 2.6 for each k, j there exists an equivariant totally geodesic embedding
of the hyperbolic plane H2(−k−2) in H2

C
which satisfies the following properties:

(1) For k = 1 the image is the complex hyperbolic line H1
C
= W1, for k = 2 the

image is a totally real hyperbolic plane H2
R
= W2.

(2) Each component β of B is represented by a transvection hβ in H2
C
.

(3) The canonical orientation on W1 agrees with the orientation on Σ1.

Thus representatives hβ of all the components of B are conjugate in SU(2, 1). We
let Xk be the disjoint union of quotients of H2

C
/Γkj. It is clear that we have totally

geodesic embeddings fk : Σk →֒ Xk which are homotopy equivalences. The property 2
implies that for each boundary geodesic β of Σk we can choose a normal frame at
fk(β) ⊂ Xk, see section 3.4:

These normal frames determine necks Neckǫ(β) ⊂ Xk around the geodesics fk(β)
so that necks around distinct geodesics are disjoint (see Lemma 3.8). We define
submanifolds Mk ⊂ Xk as in the previous section, and denote by Mkj the component
of Mk containing Σkj . Each neck has a canonical fibration over an annulus, this
R

2-fibration extends to the fibration of

Mk −
⋃

β⊂∂Σk

Neckǫ(β)

given by the nearest-point projection to fk(Σk), see section 3.2. Suppose now that
βk ⊂ ∂Σk (k = 1, 2) are boundary geodesics identified in the surface Σ. Then there
exists a unique biholomorphic isometry ξ : Neckǫ(β1) → Neckǫ(β2) that preserves
the normal frames and carries base points to base points. We let M be the complex
hyperbolic surface obtained via performing these gluings. Clearly the mappings fk
can be combined to define a piecewise totally geodesic embedding

(4.1) f : Σ →֒ M

which we call a spine. Similarly R2-fibrations of the components Mk define a smooth
R2-fibration Π̂ : M → Σ. This fibration is a homotopy inverse to f . Moreover,
Π̂ ◦ f = id. In the next section we shall compute the Euler number of this fibration.

Lemma 4.2. The complex hyperbolic structure on M is geodesically complete.

Proof. Assume that M is not complete and σ : [0, T )→ M is a nonextendable finite
geodesic ray. Each component Mkj of Mk is metrically complete by the construction
and there is δ > 0 such that boundary components of each neck of M are δ-separated
according to Proposition 3.1. Therefore there are infinitely many disjoint intervals
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[t−n , t
+
n ] on [0, T ) such that the segment σ([t−n , t

+
n ]) connects different boundary com-

ponents of necks in M . Each segment has length at least δ. This contradicts the
finiteness of T . �

As a consequence of the lemma, the corresponding holonomy representations π →
PU(2, 1) are discrete and faithful. The pleated surface f̃ : Σ̃→ H2

C
has bending angles

equal to π/2 and the bending locus consists of 2ǫ-separated geodesics. According to
(3.4), we can make ǫ arbitrarily large if we choose l sufficiently small. Since H2

C
has

pinched negative curvature, it follows that for sufficiently large ǫ, the image of f̃ is
quasi-convex and Hausdorff close to its convex hull. Thus, the action of G = π1(M)
onH2

C
by deck transformations is convex cocompact. The action of G onH2

C
preserves

a nonempty closed convex subset on which G acts cocompactly.
Therefore the manifold

M = (H2
C
∪ Ω(G))/G

is compact. This compactification of M is consistent with the open disk bundle
structure of M and therefore M is diffeomorphic to the closed disk bundle over Σ
having the same Euler number as the bundle M → Σ.

Corollary 4.3. The manifold Ω(G)/G is diffeomorphic to the total space of an S1–
bundle over the surface Σ which has the same Euler number as the R2-fibration of
M .

4.2. Calculation of Euler number and Toledo invariant. The contribution of
the totally real components of f to the integral

τ =
1

2π

∫

Σ

f ∗ωM

is zero. Thus the integral τ equals −χ(Σ1) (see Section 2.3). This finishes the proof
of the first and second assertions of Theorem 4.1.

We construct a continuous vector field V along the piecewise totally geodesically
embedded spine surface (4.1) as follows: Along the folding loops f(B) we choose V
to be a parallel unit vector field orthogonal to both f(Σk). This is possible because
the holonomy along all loops f(B) is trivial. Next we extend V to sections of the
normal bundles of the surfaces f(Σk) which are smooth on f(Σk) and have isolated
zeros. By the computation in §2.3 and §2.5, the sum of the multiplicities for the zeros
of V equals χ(Σ1)/2 on the complex portion f(Σ1) and χ(Σ2) on the totally real part
f(Σ2). We use the vector field V to homotope f(Σ) off itself to a nearby surface g(Σ)
which intersects f(Σ) transversally in finitely many points. The multiplicities of the
intersection points sum to the Euler number e(M → Σ) of the oriented D2-fibration
M −→ Σ, which equals

χ(Σ1)/2 + χ(Σ2)

as desired. This concludes the proof of Theorem 4.1.

Proof of Theorem 1.1. If τ = 2g − 2, 0, 2 − 2g then discrete embeddings of π into
SU(1, 1) or SO(2, 1) give the desired representations. Thus let τ be an even integer
satisfying

0 < τ < 2g − 2.

Then

t = g − 1− τ

2
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satisfies
0 < t < g − 1.

Let Σ denote a closed orientable surface of genus g. Then there exist two disjoint
simple closed curves decomposing Σ as

Σ = Σ1 ∪ Σ2

where Σ1 is a surface of genus g − t− 1 with two boundary components and Σ2 is a
surface of genus t with two boundary components.

Thus the complex hyperbolic surface M in Theorem 4.1 achieves Toledo invariant
τ . The negative values of τ can be obtained by conjugating these representations by
an anti-holomorphic isometry of H2

C
. Finally,

e(M → Σ)− χ(Σ) = |τ |/2
follows from direct computation. �

Using degree one maps between hyperbolic surfaces and complex Fuchsian rep-
resentations one can easily construct nonfaithful discrete representations of π1(Σg)
realizing all even integer values of Toledo’s invariant. These representations will have
images in SU(1, 1).

5. Examples with nonintegral Toledo invariant

In this section we construct representations of the fundamental group π = π1(Σ)
that realize all possible fractional values of the invariant τ(ρ). We start with the case
of surfaces of genus 2.

Proposition 5.1. Suppose that Σ is a closed oriented surface of genus 2. Then there
are representations ρj : π = π1(Σ)→ PU(2, 1) so that τ(ρj) = 2j/3 (j = 1, 2).

Proof. Consider a family of regular quadrilaterals

Qδ, 0 < δ < π/2

inH1
C
⊂ H2

C
such that all angles of Qδ equal δ. Let Aδ, Bδ be transvections in PU(2, 1)

pairing the opposite sides of Qδ. The commutator Cδ = [Aδ, Bδ] is an elliptic element
fixing a corner of Qδ. It rotates by the angle 4δ inside H1

C
and by the angle π+2δ in

the normal direction. Indeed, according to Corollary 2.2 the speed of rotation in the
normal direction is half of the speed of rotation in H1

C
, thus it is either π + 2δ or 2δ.

Since
lim

δ→π/2
Cδ = id,

the rotation angle equals π + 2δ. We now restrict to the special value δ = π/6, then
the angles of rotation in H1

C
and in the normal direction are 2π/3 and

2δ + π = 4π/3,

respectively. The elliptic element Cδ has order 3. We similarly define hyperbolic
elements A′

δ, B
′
δ ∈ SO(2, 1) whose commutator C ′

δ has order 3. The eigenvalues of the
derivative of C ′

δ at its fixed point are e2π/3i and e−2π/3i. We consider the corresponding
(discrete and non-faithful) representation

φ : F2 = 〈α, β〉 → SU(1, 1) ⊂ PU(2, 1)

of the free group on two generators given by φ(α) = Aδ and φ(β) = Bδ. The
normalizer of the order 3 element Cδ in PU(2, 1) contains an involution θ with which
it anticommutes: θCδθ

−1 = C−1
δ . The involution θ interchanges the eigenspaces of
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the derivative of Cδ at its fixed point, i.e. the direction tangent to H1
C
and the normal

direction. Similarly we have the representation

(5.1) φ′ : F2 = 〈α, β〉 → SO(2, 1) ⊂ PU(2, 1)

given by φ′(α) = A′
δ and φ′(β) = B′

δ, which preserves a totally real geodesic plane.
We use the representation φ as a building block to construct a representation

ρ2 : π = π1(Σ) = 〈α1, β1, α2, β2 | [α1, β1][α2, β2] = 1〉 → PU(2, 1)

by sending

α1 7−→ φ(α),

β1 7−→ φ(β),

α2 7−→ θφ(α)θ−1

β2 7−→ θφ(β)θ−1.

Now we compute Toledo’s invariant for the representation ρ2. Identifying the sides
of Qδ via the transformations Aδ, Bδ gives a hyperbolic cone structure on the 2-
torus T with a single cone point k with total angle 4δ = 2π/3, see [13]. (This
cone structure is actually an orbifold structure.) The punctured surface S = T −
{k} has an incomplete hyperbolic structure whose developing map d : S̃ → H1

C

maps a fundamental domain in S̃ to Qδ. The homomorphism φ is the holonomy
of this hyperbolic cone structure. We decompose Σ along a simple loop c into two
punctured tori Σj so that π1(Σj) is identified with the subgroup in π1(Σ) generated
by αj , βj. We choose orientation preserving diffeomorphisms hj : Σj → S which
map a neighborhood of c to a neighborhood of k. These diffeomorphisms give rise to
equivariant developing maps

f1 = d ◦ h̃1 : Σ̃1 →W1, f2 = θ ◦ d ◦ h̃2 : Σ̃2 → θ(W1).

The complex lines W1 and θ(W1) are orthogonal and intersect in the fixed point of
the elliptic isometry

ρ2([α1, β1]) = ρ2([α2, β2])
−1.

The equivariant maps f1, f2 extend uniquely to a ρ2-equivariant map f̃ : Σ̃ → H2
C
.

There is a fundamental domain Ω for the action of π on Σ̃ which maps onto the union
Qδ ∪ θ(Qδ) preserving orientation. Thus

τ(ρ2) =
1

2π

∫

Ω

f̃ ∗ω =
1

π
· area(S) = 1

π

(
2π − 4δ

)
=

4

3
.

Now we find a representation ρ1 with τ(ρ1) = 2
3
by a similar construction. We

leave

ρ1|π1(Σ1) = ρ2|π1(Σ1)

as above and replace ρ2|π1(Σ2) by setting ρ1 on π1(Σ2) by

ρ1 : α2 7→ gφ′(α)g−1

ρ1 : β2 7→ gφ′(β)g−1.(5.2)

where φ′ is defined as in (5.1) and g is defined as follows. Since φ([α, β]) and
φ′([α, β])−1 have the same eigenvalues, there exists an isometry g of H2

C
which con-

jugates φ′([α, β]) to φ([α, β])−1. By (5.2),

ρ1([α1, β1]) = ρ1([α2, β2])
−1,
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so ρ1 is a representation ρ1 : π → PU(2, 1). Now

τ(ρ1) =
2

3
,

because the totally real part ρ1|π1(Σ2) does not contribute to the Toledo invariant.
This completes the proof of the proposition. �

Note that no representation ρ : π → PU(2, 1) with non-integer Toledo invariant
preserves a complex geodesic. The stabilizer of a complex geodesic in PU(2, 1) is
conjugate to SU(1, 1) and therefore lifts canonically to SU(2, 1).

Proposition 5.2. The image of ρ2 is a discrete subgroup of PU(2, 1).

Proof. We shall embed the image of ρ2 in an arithmetic lattice Γ ⊂ PU(2, 1). Consider
the Hermitian form

H(z) = z1z̄1 + z2z̄2 −
√
3z3z̄3

on C3 and let G be the group of all linear transformations C3 −→ C3 unitary with
respect to H .

The group G is the group of R-points in an R-algebraic group. Let GO be the
subgroup of G with entries from the subring O = Z[exp(πi/12)] where i =

√
−1.

Let σ be the embedding O →֒ C defined by the Galois conjugation

exp(πi/12)) 7−→ exp(π5i/12)).

Note that σ(i) = i and σ(
√
3) = −

√
3. Then σ transforms GO into the unitary group

Gσ
O
of the definite Hermitian form

Hσ(z) = z1z̄1 + z2z̄2 +
√
3z3z̄3.

Let Gσ denote the unitary group fo Hσ with entries from C.
The graph (I, σ) of σ embeds O as a lattice in C × C and realizes GO as an

arithmetic lattice in the product G×Gσ. Since Gσ is compact, the projection

G×Gσ −→ G

is proper, hence GO is a lattice in G.
To realize ρ2 in G, we first note that the involution θ is contained in GO. Next we

will show that a (2, 4, 12)-triangle group Γ2,4,12 could be embedded in PU(1, 1) so that
the image is commensurable with GO∩PU(1, 1). (Figure 4 depicts the tessellation of
H1

C
corresponding to the reflection group which contains Γ2,4,12 as a subgroup of index

2). Finally, the group φ(π1(Σ1)) is contained in Γ2,4,12 as a finite index subgroup.
Here is the detailed construction. Consider a triangle ∆ ⊂ H1

C
with a vertex p

at the origin, with angle π/12, another vertex q with angle π/4 and a third vertex r
with right angle. The products of reflections in the lines ←→pq , ←→qr , ←→rp , are rotations
P,Q,R in the points p, q, r respectively. These isometries of H1

C
satisfy

P 12 = Q4 = R2 = PQR = I

and any triple (P,Q,R) satisfying these relations, where P (respectively Q, R) rep-
resents elliptic rotation through angle π/6 (respectively π/2, π) corresponds to a
triangle ∆. Explicitly, such a group is represented by the matrices

P =

[
exp(−πi/12) 0

0 exp(πi/12)

]
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and

Q =

[
1 + i(2 +

√
3) −i(1 +

√
3)

i
√
3(1 +

√
3) 1− i(2 +

√
3)

]

and

R =


 i(1 +

√
3) 1

2

(
1− (2 +

√
3)
)

√
3
2

(
1 + i(2 +

√
3)
)

−i(1 +
√
3)




where

ω = e2πi/3 = (−1 + i
√
3)/2

exp(3πi/4) =
1− i√

2

exp(πi/12) = − exp(3πi/4)ω̄ =
(1 +

√
3) + i(−1 +

√
3)

2
√
2

.

Since the projection from 2 × 2 matrices to PU(1, 1) is not faithful, an isometry of
even order 2m lifts to a matrix whose 2m-th power is −I (not I). One can easily
check that the above matrices satisfy relations

P 12 = Q4 = R2 = PQR = −I.
Thus Γ2,4,12 ⊂ GO. We now realize φ(π1(Σ1)) in Γ2,4,12. We find the generators

α̃ = φ(α), β̃ = φ(β) for a finite index subgroup of Γ2,4,12 as follows. Begin with the
free product

Z/4 ⋆ Z/2 = 〈X〉 ∗ 〈Y 〉 = 〈X, Y | X2 = Y 4 = I〉
and consider the homomorphism

η : Z/2 ⋆ Z/4 −→ Z/4

X 7−→ 2 mod 4

Y 7−→ 1 mod 4.

Then Y XY and XY 2 generate the kernel of η. To see this, replace

〈X, Y | X2 = Y 4 = I〉
by the equivalent presentation

〈Y,A,B | Y 4 = I, Y AY −1 = B−1, Y BY −1 = A〉,
where X corresponds to BY 2 and A (respectively B) corresponds to Y XY (respec-
tively XY 2). In the new presentation η maps Y to a generator of Z/4 and annihilates
A,B, so A,B generate ker(η). Their commutator is easily computed to be:

(5.3) [Y XY,XY 2] = (Y X)4.

Now apply this to the homomorphism

Z/2 ⋆ Z/4 −→ Γ2,4,12

which maps X to Q, Y to R and XY to P . The homomorphism η projects to an
epimorphism

η̃ : Γ2,4,12 −→ Z/4

and we obtain elements α̃, β̃ ∈ ker(η̃) as

α̃ = QRQ, β̃ = RQ2.
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Since χ(Γ2,4,12) = −1/4, the index four subgroup ker(η̃) satisfies χ(ker(η̃)) = −1 and

thus is free of rank two. It follows that α̃, β̃ generate ker(η̃)).
Now define the homomorphism φ on the free group F2 = 〈α, β〉 by

φ(α) = α̃ = QRQ =

[
(1 +

√
3)ω̄ −ω̄ + i

−
√
3(ω + i) (1 +

√
3)ω

]

and

φ(α) = α̃ = QRQ =

[
(1 +

√
3)ω −ω − i

−
√
3(ω̄ − i) (1 +

√
3)ω̄

]

Then the commutator

φ([α, β]) = P−4 =

[
ω 0
0 ω̄

]

is the desired elliptic element of order 3.
Applying the construction of the proof of Proposition 5.1, we see that θ ∈ GO and

thus the image of ρ2 lies in the arithmetic lattice GO and is therefore discrete. �

Figure 4. The (2,4,12) Schwarz triangle group

Proof of Theorem 1.1. We modify the construction in the proof of Proposition 5.1 by
amalgamating representations coming from holonomy representations of hyperbolic
cone structures on surfaces of higher genus. Let Σ be a closed surface of genus g ≥ 2
which is split along a separating simple loop c into two subsurfaces Σ1 and Σ2 of
genera g1 = g − 1 and g2 = 1, respectively. We pick singular hyperbolic surfaces
Tj (j = 1, 2) of genus gj with one cone point kj of angle σ; such surfaces can be
constructed by suitably identifying the sides of a regular hyperbolic 4gj-gon with
angles σ/4gj. Since π1(Tj − {kj}) is a free group, the holonomy representation

holj : π1(Tj − {kj})→ PU(1, 1)

for the singular hyperbolic structure on Tj lifts to a representation

h̃olj : π1(Tj − {kj})→ SU(1, 1) ⊂ PU(2, 1)
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Let W be the complex geodesic preserved by SU(1, 1). An element γ representing a
small simple loop around kj is carried by holj to a rotation in W by angle σ around

a point o ∈ W . The lifted holonomy h̃olj(γ) acts as a rotation by angle π + σ/2 in
the normal direction to W at the point o. For the genus one case this was already
discussed in the proof of Proposition 5.1. The angle of rotation in the normal direction
is either σ/2 or π + σ/2. To exclude the first possibility, we note that the hyperbolic
cone structure of Tj can be continuously deformed so that σ increases to 2π. The
limit is a nonsingular hyperbolic structure whose holonomy can be lifted to SU(1, 1),
see [11, 4]. Hence the assertion follows by continuity.

Now we restrict σ to the special value 2π/3 and proceed as in the proof of Propo-

sition 5.1. By combining h̃ol1 and h̃ol2 we construct a representation with Toledo

invariant −χ(Σ) − 2/3. By combining h̃ol1 with the appropriate conjugate of the
representation φ′ we get a representation with Toledo invariant −χ(Σ) − 4/3. Thus
we can realize the extremal positive non-integer values

−χ(Σ)− 2/3, −χ(Σ)− 4/3

for Toledo’s invariant. To realize the values 2k−2/3 and 2k−4/3 for k = 1, . . . , g−2
choose a degree-one map of Σ onto a surface Σ′ of genus k + 1. Take representations
ρ′ : Σ′ → PU(2, 1) with Toledo’s invariant 2k − 2/3 and 2k − 4/3 as constructed
above and compose them with the induced map π1(Σ) → π1(Σ

′) of fundamental
groups. This yields all positive fractional values for Toledo’s invariant. The negative
values are obtained by conjugating the above representations with an antiholomorphic
isometry of H2

C
. �
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