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Abstract. We study geodesically complete and locally compact Hadamard spaces
X whose Tits boundary is a connected irreducible spherical building. We show that
X is symmetric iff complete geodesics in X do not branch and a Euclidean building
otherwise. Furthermore, every boundary equivalence (cone topology homeomorphism
preserving the Tits metric) between two such spaces is induced by a homothety. As
an application, we can extend the Mostow and Prasad rigidity theorems to com-
pact singular (orbi)spaces of nonpositive curvature which are homotopy equivalent
to a quotient of a symmetric space or Euclidean building by a cocompact group of
isometries.
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1 Introduction

1.1 Main result, background, motivation and an application

Hadamard manifolds are simply-connected complete Riemannian manifolds of non-
positive sectional curvature. Prominent examples are Riemannian symmetric spaces
of noncompact type, but many more examples occur as universal covers of closed non-
positively curved manifolds. For instance, most Haken 3-manifolds admit metrics of
nonpositive curvature [Le95]. Not the notion of sectional curvature itself, however the
notion of an upper curvature bound can be expressed purely by inequalities involv-
ing the distances between finitely many points but no derivatives of the Riemannian
metric, and hence generalizes from the narrow world of Riemannian manifolds to
a wide class of metric spaces, cf. [A157]. The natural generalization of Hadamard
manifolds are Hadamard spaces, i.e. complete geodesic metric spaces which are non-
positively curved in the (global) sense of distance comparison, see [Ba95, KL96].
Hadamard spaces comprise besides Hadamard manifolds a large class of interesting
singular spaces, among them Euclidean buildings (the discrete cousins of symmetric
spaces), many piecewise Euclidean or Riemannian complexes occuring, for instance,
in geometric group theory, and branched covers of Hadamard manifolds. Hadamard
spaces received much attention in the last decade, notably with view to geometric
group theory, a main impetus coming from Gromov’s work [Gr87, Gr93].

We recall that a fundamental feature of a Hadamard space is the convexity of
its distance function with the drastic consequences such as uniqueness of geodesics
and in particular contractibility. This illustates that already geodesics, undoubtedly
fundamental objects in geometric considerations, are rather well-behaved and their
behavior can be to some extent controlled, which gets the foot in the door for a more
advanced geometric understanding. The importance of the geometry of nonpositive
curvature lies in the coincidence that one has a rich supply of interesting examples
reaching into many different branches of mathematics (like geometric group theory,



representation theory, arithmetic) and, at the same time, these spaces share simple
basic geometric properties which makes them understandable to a certain extent and
in a uniform way.

We will be interested in asymptotic information and the restrictions which it im-
poses on the geometry of a Hadamard space X. This is related to the rigidity ques-
tion, already classical in global Riemannian geometry, how topological properties of a
(for instance closed) Riemannian manifold with certain local (curvature) constraints
are reflected in its geometry! and below (1.3) we will present an application in this
direction.

Let us first describe which asymptotic information we consider. The geometric
or ideal boundary 0,,X of a Hadamard space X is defined as the set of equivalence
classes of asymptotic geodesic rays.2 The topology on X extends to a natural cone
topology on the geometric completion X = X U0 X which is compact iff X is locally
compact. The ideal boundary points £ € 0, X can be thought of as the ways to go
straight to infinity3. It is fair to say that the topological type of 5 X is not a very
strong invariant, for example it is a (n — 1)-sphere for any n-dimensional Hadamard
manifold.

Besides the cone topology there is another interesting structure on d,, X, namely
the Tits angle metric introduced by Gromov in full generality in [BGS85]. For two
points &,& € 0, X at infinity their Tits angle Zpis(&1,&2) measures the maximal
visual angle Z;(&1,&) under which they can be seen from a point z inside X, or
equivalently, it measures the asymptotic linear rate at which unit speed geodesic
rays p; asymptotic to the ideal points &; diverge from each other. If X has a strictly
negative curvature bound the Tits boundary Orius X = (0soX, Zr1its) is a discrete metric
space and only of modest interest. However, if X features substructures of extremal
curvature zero, such as flats, i.e. convex subsets isometric to Euclidean space, then
connected components appear in the Tits boundary and the Tits metric becomes an
interesting structure.* The cone topology together with the Tits metric on 0, X are
the asymptotic data which we consider here. Our results find shelter under the roof
of the following:

Meta-Question 1.1 What are the implications of these asymptotic data for the ge-
ometry of a Hadamard space?

The main result is the following characterization of symmetric spaces and Eu-
clidean buildings of higher rank as Hadamard spaces with spherical building bound-
ary:

1Since the universal cover is contractible, the entire topological information is contained in the
fundamental group and one can ask which of its algebraic properties are visible in the geometry.

2For two unit speed geodesic rays p1, p2 : [0,00) the distance d(p1(t), p2(t)) of travellers along the
rays is a convex function. If it is bounded (and hence non-increasing) the rays are called asymptotic.

3Examples: The geometric completion of hyperbolic plane can be obtained by taking the closure
in the Poincaré disk model; one obtains the Poincaré Compact Disk model. The geometric boundary
of a metric tree is the set of its ends which is a Cantor set if it has no isolated points.

40ritsSL(3,R)/SO(3) is the 1-dimensional spherical building associated to the real projective
plane.



Main Theorem 1.2 Let X be a locally compact Hadamard space with extendible
geodesic segments® and assume that Ory X 1s a connected thick irreducible spherical
buslding. Then X s a Riemannian symmetric space or a Euclidean building.

In the smooth case, i.e. for Hadamard manifolds, 1.2 follows from work of Ball-
mann and Eberlein, cf. [Eb88, Theorem B], or else from arguments of Gromov [BGS85]
and Burns-Spatzier [BS87]. There is a dichotomy into two cases, according to whether
geodesics in X branch or not. In the absence of branching the ideal boundaries are
very symmetric because there is an involution ¢, of 0, X at every point z € X, and
one can adapt arguments from Gromov in the proof of his rigidity theorem [BGS85].
Our main contribution lies in the case of geodesic branching. There the boundary at
infinity admits in general no non-trivial symmetries and another approach is needed.

We show moreover that for the spaces considered in 1.2 the extreme situation
occurs that X is completely determined by its asymptotic data up to a scale factor:

Addendum 1.3 Let X be a symmetric space or a thick Euclidean building, irre-
ducible and of rank > 2, and let X' be another such space. Then any boundary
isomorphism (cone topology homeomorphism preserving the Tits metric)

¢ : 0 X — 0 X' (1)
15 induced by a homothety.

1.3 follows from Tits classification for automorphisms of spherical buildings in the
cases when X has many symmetries, e.g. when it is a Riemannian symmetric space
or a Euclidean building associated to a simple algebraic group over a local field with
non-archimedean valuation. This is in particular true if rank(X) > 3 however it does
not cover the cases when X is a rank 2 Euclidean building with small isometry group.
Our methods provide a uniform proof in all cases and in particular a direct argument
in the symmetric cases.

A main motivation for us was Mostow’s Strong Rigidity Theorem for locally sym-
metric spaces, namely the irreducible case of higher rank:

Theorem 1.4 ([Mos73]) Let M and M' be locally symmetric spaces whose universal
covers are irreducible symmetric spaces of rank > 2. Then any isomorphism 7 (M) —
m(M') of fundamental groups is induced by a homothety M — M'.

It is natural to ask whether locally symmetric spaces are rigid in the wider class
of closed manifolds of nonpositive sectional curvature. This is true and the content
of Gromov’s Rigidity Theorem [BGS85]. As an application of our main results we
present an extension of Mostow’s theorem as well as Prasad’s analogue for compact
quotients of Euclidean buildings [Pra79] to the larger class of singular nonpositively
curved (orbi)spaces:

Application 1.5 Let X be a locally compact Hadamard space with extendible geodesic
segments and let Xoqe be a symmetric space (of noncompact type) or a thick Eu-
clidean building. Suppose furthermore that all irreducible factors of Xoder have rank

5L.e. every geodesic segment is contained in a complete geodesic.
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> 2. If the same finitely generated group I' acts cocompactly and properly discontin-
uwously on X and X,,o4e1 then, after suitably rescaling the metrics on the irreducible
factors of Xpode1, there is a I'-equivariant isometry X — Xpoder-

I.e. among (possibly singular) geodesically complete compact spaces of nonpositive
curvature (in the local sense), quotients of irreducible higher rank symmetric spaces
or Eulidean buildings are determined by their homotopy type.

Example 1.6 On a locally symmetric space with wrreducible higher rank universal
cover there exists no piecewise Fuclidean singular metric of nonpositive curvature.

As we said, 1.5 is due to Gromov [BGS85] in the case that X is smooth Rieman-
nian. Although we extend Gromov’s extension of Mostow Rigidity further to singular
spaces, the news of 1.5 lie mainly in the building case.
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1.2 Around the argument

In this section I attempt to describe the scenery around the proofs of 1.2 and 1.3
for the rank 2 case, i.e. when maximal flats in X have dimension 2 and 07X is
1-dimensional. The rank 2 case is anyway the critical case because there the rigidity
is qualitatively weaker than in the case of rank > 3. This difference is reflected in Tits
classification theorem for spherical buildings [Ti74] which asserts, roughly speaking,
that all thick irreducible spherical buildings of rank > 3 (that is, dimension > 2)
are canonically attached to simple algebraic or classical groups. In contrast there
exist uncountably many absolutely asymmetric 1-dimensional spherical buildings, for
example those corresponding to exotic projective planes, and uncountably many of
them occur as Tits boundaries of rank 2 Euclidean buildings with trivial isometry

group.
For a singular geodesic [ in X, i.e. a geodesic asymptotic to vertices in Op;;s X, we

consider the union P(l) of all geodesics parallel to [ and its cross section C'S(l) which
is a locally compact Hadamard space with discrete Tits boundary (as for a rank 1



space).® For two asymptotic geodesics [ and I’ one can canonically identify the ideal
boundaries 0,,CS(l) and 0CS(l'). A priori this identification of boundaries does
not extend to an isometry between the cross sections, but it extends to an isometry
between their “convex cores”, i.e. between closed convex subsets C C CS(l) and
C’ C CS(I') which are minimal among the closed convex subsets satisfying 0,,C' =
O0soC'S (1) and 05 C' = 05,C'S(I"). Due to a basic rigidity phenomenon in the geometry
of nonpositively curved spaces, the so-called “Flat Strip Theorem”, the convex cores
are unique up to isometry. We see that, essentially due to the connectedness of the
Tits boundary, there are many natural identifications between the various parallel sets
and observe that, by composing them, one can generate large groups of isometries
acting on the cores Cj of the cross sections (see section 3). We denote the closures of
these “holonomy” subgroups in Isom(Cj) by Hol(l). They are large in the sense that
Hol(l) acts 2-fold transitively on 0,,CS(l).” Hence, however unsymmetric X itself
may be, the cross sections of its parallel sets are always highly symmetric, and this is
the key observation at the starting point of our argument.

The high symmetry imposes a substantial restriction on the geometry of the cross
sections and the major step in our proof of 1.2 is a rank-1 analogue for spaces with
high symmetry:

Theorem 1.7 Let Y be a locally compact Hadamard space with extendible rays and
at least 8 points at infinity. Assume that Y contains a closed convex subset C' with
full ideal boundary 0,,C = 0xY so that Isom(C) acts 2-fold transitively on 0xC.
Then the following dichotomy occurs:

1. If some complete geodesics in'Y branch then Y s isometric to the product of a
metric tree (with edges of equal length) and a compact Hadamard space.

2. If complete geodesics in'Y do not branch then there exists a rank-1 Riemannian
symmetric model space Ypoqer, and a boundary homeomorphism O0xY — OsoYmodel
carrying Isom,(C) to Isom,(Ymoeder)-®

In particular, the ideal boundary of every cross section is homeomorphic to a
sphere, a Cantor set or a finite set of cardinality > 3.

As we explained, the geometry of X is rigidified by the various identifications
between cores of cross sections of parallel sets. This can be nicely built in the picture
of the geometric compactification of X as follows: We mentioned that the convex cores
of the cross sections C'S(1) for all lines [ asymptotic to the same vertex £ € Opyus X can
be canonically identified to a Hadamard space C¢. It has rank 1 in the sense that it
satisfies the visibility property, or equivalently, its Tits boundary is discrete. JoC can

6For instance, if X = SL(3,R)/SO(3) then the cross sections of singular geodesics are hyperbolic
planes. More generally, if X is a symmetric space of rank 2 then these cross sections are rank-1
symmetric spaces. If X is a Euclidean building of rank 2 they are rank-1 Euclidean buildings, i.e.
metric trees.

If X is a rank-2 symmetric space, Hol(l) contains the identity component of the isometry group of
the rank-1 symmetric space CS(l). So in the example X = SL(3,R)/SO(3) (X = SL(3,C)/SU(3))
the action of Hol(l) on the boundary of the hyperbolic plane (hyperbolic 3-space) C'S(1) is even 3-
fold transitive (by Mobius transformations). More generally the action is 3-fold transitive if Or;s X
is the spherical building associated to an (abstract) projective plane.

81t seems unclear whether in this case one should not be able to find an embedded rank-1
symmetric space inside Y.



be reinterpreted as the compact topological space of Weyl chambers (arcs) emanating
from the vertex £&. One can now blow up the geometric boundary d,,X by replacing
each vertex £ by the geometric compactification C¢ and gluing the endpoints of Weyl
arcs to the corresponding boundary points in 0xCe. This generalizes a construction
by Karpelevi¢ for symmetric spaces [Ka]. We denote the resulting refined boundary by
ofine X | and by 8¢9 X the part which one obtains by inserting only the boundaries
0 C¢ instead of the full compactifications (75. The rigidity expresses itself in the
action of the holonomy groupoid which appears on the blown up locus of the refined
boundary 0L" X due to the connectedness of Oryus X : For any two antipodal vertices
£1,& € OrysX, i.e. vertices of Tits distance Zrys(€1,&2) = 7, there is a canonical
isometry

051 <~ ng (2)

because the spaces (¢, embed as minimal convex subsets into the cross section
CS({&1,&}) of the family of parallel geodesics asymptotic to &1,&. We can com-
pose such isometries hopping along finite sequences of successive antipodes. For any
two vertices &, € OrusX we denote by Hol(¢,n) C Isom(Ce, C,) the closure of
the subset of all isometries C¢ — C;, which arise as finite composites of isometries
(2) (cf. section 3). In particular, the holonomy groups Hol(§) := Hol(&,€) act on
the inserted spaces C¢. These actions can be thought of as an additional geometric
structure on the spaces 0,,Ce, namely as the analogue of a conformal structure; for
instance if 0,,C¢ is homeomorphic to a sphere then due to 1.7 it can be identified
with the boundary of a rank-1 symmetric space up to conformal diffeomorphism.

Comment on the proof of 1.2: Tt is easy to see that all cross sections C'S(l) have
extendible geodesic rays if X is geodesically complete (5.3).

If some complete geodesics branch in X then there is a cross section C'S(l) with
branching geodesics (5.6) and, apparently less trivially to verify, even all cross sections
have this property (5.29). The rank-1 result 1.7 then implies that the cross sections of
all parallel sets are metric trees (up to a compact factor). From this point it is fairly
straight-forward to conclude in one way or another that X is a Euclidean building
(section 5.4.3).

If complete geodesics in X do not branch we can adapt arguments of Gromov from
the proof of his Rigidity Theorem [BGS85]. The reflections at points z € X give rise
to involutive automorphisms ¢, : 0 X — OxX of the topological spherical building
O0soX. One obtains a proper map X — Aut(0,X) into the group of boundary au-
tomorphisms and hence finds oneself in the situation that the topological spherical
building Or;s X is highly symmetric. (It satisfies the so-called Moufang property.)
Aut(0xX) is a locally compact topological group [BS87]. Similar to [BS87], estab-
lishing transitivity and contraction properties for the dynamics of Aut(0,X) on 05X
allows to show, using a deep result by Gleason and Yamabe on the approximation of
locally compact topological groups by Lie groups, that Aut(0,X) is a semisimple Lie
group and the isometry group of a Riemannian symmetric model space X,,o4¢;- The
involutions ¢, can be characterized as order 2 elements with compact centralizer and
hence correspond to point reflections in X,,,4¢;. One obtains a map ® : X — X,,0da
which is clearly affine in the sense that it preserves flats. It immediately follows that
® is a homothety, concluding the proof of 1.2.



Comment on the proof of 1.8: Any boundary isomorphism (1) has continuous
differentials

Ye¢ 1 BeOrins X — LgeOrins X' (3)
and hence lifts to a map
a(j:oine,aX - acj:oine,aXl (4)

of partially refined boundaries. The differentials (3) are conformal in the sense that
they preserve the holonomy action, i.e. the induced homeomorphisms

Homeo(0xCe, 05cCyy) = Homeo(0xCoe, 0o Con)

carry the holonomy groupoid HolX to the holonomy groupoid HolX'. This sets us
on the track towards the proof of 1.3: After proving 1.2 we may assume that X is a
symmetric space or a Euclidean building. Then the C¢ are rank-1 symmetric spaces
or metric trees, respectively, and the differentials ¥¢¢ actually extend to homotheties
C¢ — Cye. This means that the lift (4) of ¢ improves to a holonomy equivariant map

glinex __, gline x' (5)

between the full refined geometric boundaries. Since points in the blow ups C¢ are
equivalence classes of strongly asymptotic geodesics, (5) encodes a correspondence
between singular geodesics in X and X'. If X is a Euclidean building then this can
be used in a final step to set up a correspondence between vertices which preserves
apartments and extends to a homothety X — X', hence concluding the proof of 1.3
in this case (section 5.5) . If X is a symmetric space then 1.3 already follows from
the arguments in the proof of 1.2.

The paper is desorganized as follows: In section 2 we discuss preliminaries. In
particular we establish the existence of convex cores for Hadamard spaces under fairly
general conditions (section 2.1.2) and introduce the spaces of strong asymptote classes
which will serve as an important tool in the construction of the holonomy groupoid.
The holonomy groupoid is discussed in section 3 where we explain the symmetries of
parallel sets. In section 4 we prove the rigidity results for “rank 1” spaces with high
symmetry and in section 5 the main results for higher rank spaces.

2 Preliminaries

2.1 Hadamard spaces

For basics on Hadamard spaces and, more generally, spaces with curvature bounded
above we refer to the first two chapters of [Ba95] and section 2 of [KL96]. Spaces
of directions and Tits boundaries are discussed there and it is verified that they are
CAT(1) spaces. Let us emphasize that we mean by the Tits boundary Or;y;s X of the
Hadamard space X the geometric boundary d,, X equipped with the Tits angle metric
Zrits and not with the associated path metric®.

In the following paragraphs we supply a few auxiliary facts needed later in the
text.

9If Orits X is a spherical building then it has diameter 7 with respect to the path metric and
hence the path metric coincides with Z7s.



2.1.1 Filling spheres at infinity by flats

The following result generalizes an observation by Schroeder in the smooth case, cf.
[BGS85].

Proposition 2.1 Let X be a locally compact Hadamard space and let s C Opiys X be
a unit sphere which does not bound a unit hemisphere in Or;;sX. Then there exists a
flat F C X with O F = s.

Proof: Let s be isometric to the unit sphere of dimension d > 0 and pick d + 1 pairs
of antipodes &5, ..., fit so that

ZTits(giiaé-J:'t) =m/2 and 4Tz'ts(§f,ff) = /2 (6)

for all i # j. If for some point z € X and some index 7 holds Z,(§/,&7) =«
then the union X’ = P({&",&}) of geodesics asymptotic to & is non-empty and s
determines a (d — 1)-sphere s’ C OpisX’ which does not bound a unit hemisphere.
Moreover any flat F' C X' filling s’ determines a flat F filling s and we are reduced
to the same question with one dimension less. We can hence proceed by induction on
the dimension d and the claim follows if we can rule out the situation that

Zo(&H &) <m (7)
holds for all x and 4. In this case we obtain a contradiction as follows. Assume
first that for some (and hence any) point zy € X the intersection of the horoballs
Hb(£E, 24) is unbounded and thus contains a complete geodesic ray r. The ideal
endpoint 7 € 0, X of r satisfies éTits(n,ﬁii) < m/2 because the Busemann func-
tions Bgii monotonically non-increase along r. By the triangle inequality follows
Lris(n,EF) = /2 because & are antipodes. The CAT(1) property of d7y, X then
implies that there is a unit hemisphere h C 07X with center n and boundary
s, but this contradicts our assumption. Therefore the intersection of the horoballs
Hb(&F, 1) is compact for all 7y € X and the convex function max Bz is proper

and assumes a minimum in some point . Denote by i : [0,00) — X the ray with
+

r£(0) = z and 7 (00) = &°. (6) implies that B+ non-increases along rj-E for i # j.

Hence, if z; denotes the midpoint of the segment ;" (1)r; (1) then Bz (z;) < Bz ()

for all ¢ and, by (7), B+(2}) < Bex(x) for some point 2 € 7x;. This means that by
J J

replacing x we can decrease the values of one pair of Busemann functions while not

increasing the others. By iterating this procedure at most d+ 1 times we find a point

2’ with max B+ (z') < max Bg+(7), a contradiction. O

2.1.2 Convex cores

For a subset A C 0, Y we denote by C4 the family of closed convex subsets C C Y
with 0,,C D A. C, is non-empty, partially ordered and closed under intersections.

Proposition 2.2 Let Y be a locally compact Hadamard space.
1. Suppose that s C A C 0,Y and s is a unit sphere with respect to the Tits metric
which does not bound a unit hemisphere. Then C4 contains a minimal element.

9



2. Suppose that A C 05Y so that C4 has minimal elements. Then the union Y;
of all minimal elements in C4 is a convex subset of Y. It decomposes as a metric
product

Yo=2CxZ (8)

where Z is a compact Hadamard space and the layers C x{z} are precisely the minimal
elements in Cy.

Proof: According to 2.1, there exists a non-empty family of flats in Y with ideal
boundary s and the family is compact because otherwise s would bound a unit hemi-
sphere. The union P(s) of these flats is a convex subset of Y.

Sublemma 2.3 Let F' be a flat and C a closed convexr subset in'Y so that O, F C
05C. Then C contains a flat F' parallel to F'.

Proof: For any points x € C and y € F there is a point ' € C so that d(z',y) <
d(z, F'). Hence there exists a point " € C which realizes the nearest point distance
of F and C: d(z",F) = d(C,F). Then the union of rays emanating from z” and
asymptotic to points in d, F' forms a flat F’ parallel to F. U

Hence every convex subset C' € C,4 intersects P(s) in a non-empty compact family
of flats and therefore determines a non-empty compact subset U(C) in the compact
cross section C'S(s) (compare definition 3.4). We order the sets C' € C4 by inclusion
and observe that the assignment C' +— U(C) preserves inclusion.

Sublemma 2.4 Let (S,) be an ordered decreasing family of non-empty compact sub-
sets of a compact metric space Z. Then the intersection of the S, is not empty.

Proof: For every n € N we can cover Z by finitely many balls of radius 1/n and
therefore there exists a ball B; /n(zn) which intersects all sets S,. Any accumulation
point of the sequence (z,) is contained in the intersection of the S,. 4

Any decreasing chain of sets C, € C4 yields a decreasing chain of compact cross
sections U(C,) and hence has non-empty intersection. It follows that (§ # (N C, € Ca
and, by Zorn’s lemma or otherwise, we conclude that C4 contains a minimal non-
empty subset.

Now let C,Cy € C4 be minimal. For any y; € C; the closed convex subset {y €
C: : d(y,Cs) < d(y1,Cs)} of Cy contains A in its ideal boundary and, by minimality
of C1, is all of C;. It follows that d(-,C5) is constant on C; and the nearest point
projection pg,c, : C1 — Cs is an isometry. For a decomposition d(Cy, Cs) = dy + ds
as a sum of positive numbers, the set {y € Y : d(y,C;) = d; for i = 1,2} is a minimal
element in C4. Hence Y} is convex.

Sublemma 2.5 For minimal elements C1,Cy, Cs € C4 the self-isometry ¥ = pe,c, ©
Deycs © Posey, of Cy is the identity.
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Proof: 1) preserves the central flat f in C; with ideal boundary s. Furthermore, 1/)| s
preserves all Busemann functions centered at ideal points € s. Thus 9 restricts to
the identity on f. Since 0% = id and C; is minimal it follows that 1 fixes C}
pointwise. Il

Now choose a minimal set C' € C4 and a point y € C'. Then the set Z of points
pcre(y), where C' runs through all minimal elements in Cy, is convex. It is easy to
see that Yj is canonically isometric to C' X Z. Z must be compact because C'S(s) is.
This concludes the proof of 2.2. Il

The compact Hadamard space Z in (8) has a well-defined center z,. We call the
layer C' x {z} the central minimal convex subset in C,.

Definition 2.6 If Cy.y has minimal elements then the convex core core(Y) of Y
15 defined as the central minimal closed convex subset in Cs_y .

If the convex core exists it is preserved by all isometries of Y.

Lemma 2.7 LetY be a locally compact Hadamard space which has a convez core. If
core(Y') has no Euclidean factor then any isometry with trivial action at infinity fizes
core(Y) pointwise.

Proof: Let ¢ be an isometry which acts trivially at infinity. Then its displacement
function is constant on the central convex subset C. It is zero because C does not
split off a Euclidean factor. Il

2.1.3 Spaces of strong asymptote classes

Let X be a Hadamard space. For a point £ € 0,,X let us consider the rays asymptotic
to €. The asymptotic distance of two rays p; : [0,00) — X is given by their nearest
point distance

de(p1, p2) =, inf —d(pi(t1), p2(t2)), (9)
1,l2—00
which equals lim;_,, d(p1(t), p2(t)) when the rays are parametrized so that Bg o p; =
B¢ o p;. We call the rays p; strongly asymptotic if their asymptotic distance is zero.
The asymptotic distance (9) defines a metric on the space X¢ of strong asymptote
classes.

Proposition-Definition 2.8 The metric completion X¢ of X¢ 1s a Hadamard space.

Proof: Any two points in X} are represented by rays pi, py : [0,00) — X asymptotic
to £ and initiating on the same horosphere centered at £. Denote by p; : [s,00) = X
the ray asymptotic to & whose starting point pg(s) is the midpoint of pi(s)ps(s).
The triangle inequality implies that d(p;(t), ps(t)) + d(us(t), p2(t)) — d(p1(t), p2(t)) <
d(pi(s), p2(s)) —d(ps(t), p2(t)) = 0 as s,t — oo with s < ¢. Hence d(us(t), pe(t)) — 0
and dg(ps, p) — 0, ie. (us) is a Cauchy sequence and its limit in X, is a midpoint
for [p1] and [pp]. In this manner we can assign to every pair of points [p1], [p2] € XF
a well-defined midpoint m € X¢. If [p], [05] € X{ is another pair of points so that
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d([pi], [p]) < & then d(m,m') < §. It follows that there exist midpoints for all pairs of
points in X¢. As a consequence, any two points in X, can be connected by a geodesic.

Any finite configuration F of points in Xi corresponds to a finite set of rays
pi = [0,00) — X asymptotic to £ and synchronized so that for any time ¢ the set
F; of points p;(t) lies on one horosphere centered at £&. The finite metric spaces
(Ft, dx) Hausdorff converge to (F,d¢) and hence distance comparison inequalities are

inherited. It follows that geodesic triangles satisfy the CAT(0) comparison inequality.
O

We will also X¢ call the space of strong asymptote classes at § € 0 X. It had
been considered by Karpelevi¢ in the case of symmetric spaces, see [Ka].

2.1.4 Types of isometries

We recall the standard classification of isometries into axial, elliptic and parabolic
ones: For any isometry ¢ of a Hadamard space X its displacement function d4 :  —
d(z,¢z) is convex. ¢ is called semisimple if d4 attains its infimum. There are two
types of semisimple isometries: ¢ is elliptic if the minimum is zero and has fixed
points in this case. If the minimum is strictly positive then ¢ is azial and there is a
non-empty family of ¢-invariant parallel geodesics, the azes of ¢. If §, does not have
a minimum then ¢ is called parabolic. The fixed point set of a parabolic isometry in
Orits X is non-empty and contained in a closed ball of radius 7 /2.

Definition 2.9 For { € 0, X we define the parabolic stabilizer P; as the group
consisting of all elliptic and parabolic isometries which preserve every horosphere
centered at &.

Note that there are parabolic isometries which fix more than one point at infinity
and do not preserve the horospheres centered at some of their ideal fixed points.

Definition 2.10 An isometry ¢ of a locally compact Hadamard space X is called
purely parabolic iff its conjugacy class accumulates at the identity. If Isom(X)
is cocompact then this is equivalent to the property that for every § > 0 there exist
arbitrarily large balls on which the displacement of ¢ is < 6.

2.2 Visibility Hadamard spaces

Let Y be a locally compact Hadamard space with at least 3 ideal boundary points.
We assume that the Tits metric on 0, Y is discrete, or equivalently, that Y enjoys the
visibility property introduced in [EO73]: any two points at infinity are ideal endpoints
of some complete geodesic. Then any two distinct ideal boundary points £ and 7 have
Tits distance 7 and the family of (parallel) geodesics asymptotic to &, 7 is non-empty
and compact; we denote their union by P({£,n}). The visibility property is clearly
inherited by closed convex subsets. The terminology wisibility is motivated by the
following basic fact:

Lemma 2.11 For every y € Y and every e > 0 there exists R > 0 such that the
following is true: If pq is a geodesic segment not intersecting the ball Bg(y) then

Zy(p,q) <e.
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Proof: See [EOT73]. O

Consequence 2.12 Let A be a compact subset of OxY X OxY \ Diag. Then the set
of all geodesics ¢ C'Y satisfying (c(—00), c(c0)) € A is compact.

Proof: This set B of geodesic is certainly closed. If B would contain an unbounded
sequence of geodesics ¢, then the corresponding sequence of points (¢, (—00), ¢,(0))
in A would accumulate at the diagonal A, contradicting compactness. d

Remark 2.13 Visibility Hadamard spaces with cocompact isometry group are large-
scale hyperbolic in the sense of Gromow.

A sequence (¢,) C P diverges to infinity, ¢, — oo, iff ¢,, converges to the constant
map with value & uniformly on compact subsets of 0 Y \ {£}.

Lemma 2.14 Assume that for different ideal points £,m € 0,Y there are sequences
of parabolics ¢,, € P and v, € P, diverging to infinity. Then ¢nipy, is azial for large
n.

Proof: Let U and V be disjoint neighborhoods of &, respectively. Then ¢! (0,Y \
U) C U and ¥ (0,Y \ V) C V for large n which implies

an(0Y\V)CU and a, (0. Y\U)CV (10)

with a, = ¢n¥,. «a, can’t be elliptic (for large n) because then (0¥ )ren would
subconverge to the identity, contradicting (10). «,, can’t be parabolic either because
then (0s0k)ren would converge to a constant function every where pointwise, which
is also excluded by (10). Therefore o, is axial for large n. O

2.3 Buildings: Definition, vocabulary and examples

A geometric treatment of spherical and Euclidean Tits buildings within the framework
of Aleksandrov spaces with curvature bounded above has to some extent been carried
through in [KL96]. We will use these results and for the convenience of the reader we
briefly recall some of the basic definitions and concepts.

2.3.1 Spherical buildings

A spherical Cozeter complex consists of a unit sphere S and a finite Weyl group
W C Isom(S) generated by reflections at walls, i.e. totally geodesic subspheres of
codimension 1. The walls divide S into open convex subsets whose closures are the
chambers. These are fundamental domains for the action of W on S and project
isometrically to the orbit space, the model Weyl chamber A,,p4e = W\S. A panel is
a codimension-1 face of a chamber.

A spherical building modelled on the Coxeter complex (S, W) is a CAT(1) space'”
B together with an atlas of charts, i.e. isometric embeddings ¢ : S < B. The image

10A CAT(1) space is a complete geodesic metric space with upper curvature bound 1 in the sense
of Aleksandrov.
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of a chart is an apartment in B. We require that any two points are contained
in an apartment and that the coordinate changes between charts are induced by
isometries in W. The notions of wall, chamber, panel etc. transfer from the Coxeter
complex to the building. There is a canonical 1-Lipschitz continuous accordeon map
O : B = Anode folding the building onto the model chamber so that every chamber
projects isometrically. g€ is called the type of a point & € B. £ is reqular if it lies in
the interior of a chamber.

B is thick if every panel is adjacent to at least 3 chanbers. If B has no spherical de
Rham factor, i.e. if W acts without fixed points, then the chambers are simplices and
B carries a natural structure of a piecewise spherical simplicial complex. In this case
we’ll call the faces also simplices. A thick spherical building B is called #rreducible if
the corresponding linear representation of W is irreducible. This is equivalent to the
assertions that B does not decompose as a spherical join, and that A4, does not
decompose.

Tits originally introduced buildings to invert Felix Kleins Erlanger Programm and
to provide geometric interpretations for algebraic groups, i.e. to construct geometries
whose automorphism groups are closely related to these groups. The simplest in-
teresting examples of irreducible spherical buildings are the buildings associated to
projective linear groups. In dimension 1, one can more generally construct a spherical
building for every abstract projective plane, possibly with trivial group of projective
transformations:

Example 2.15 Given an abstract projective plane P one constructs the correspond-
ing 1-dimensional irreducible spherical building B(P) as follows. There are two sorts
of vertices in B(P): red vertices corresponding to points in P and blue vertices corre-
sponding to lines. One draws an edge of length 7/3 between a red and a blue vertex iff
they are incident. The edges in B(P) correspond to lines in P with a marked point.
The apartments in B(P), i.e. closed paths of length 2w and consisting of 6 edges, cor-
respond to tripels of points (respectively lines) in general position. From the incidence
properties of projective planes one easily deduces that any two edges are contained
in an apartment and that there are no closed paths of length < 2w, i.e. B(P) is a
CAT(1) space.

Of course, a topological projective plane yields a topological spherical building.

Remark 2.16 (Exotic smooth projective planes) As Bruce Kleiner pointed out
one can produce exotic (smooth) projective planes by perturbing a smooth projective
plane, for instance one of the standard projective planes PR?, PC? or PH?.

2.3.2 Euclidean buildings

A Fuclidean Cozxeter complex consists of a Euclidean space E and an affine Weyl
group Wesr C Isom(E) generated by reflections at walls, i.e. affine subspaces of
codimension 1, so that the image W of W,s; in Isom(OrusE) is a finite reflection
group and (Oriys F, W) thus a spherical Coxeter complex.

A Fuclidean building is a Hadamard space X with the following additional struc-
ture: There is a canonical maximal atlas of isometric embeddings ¢ : £ — X called
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charts so that the coordinate changes are induced by isometries in W,s¢. Any geodesic
segment, ray and complete geodesic is contained in an apartment, i.e. the image of
a chart. The charts assign to any non-degenrate segment Ty a well-defined direction
6(zy) in the anisotropy polyhedron A,.4e1, the model Weyl chamber of (Ops E, W).
We request that for any two non-degenerate segments Ty and Tz the angle Z,(y, 2)
takes one of the finitely many values which can occur in (O, W) as distance be-
tween a point of type 6(Zy) and a point of type (Tz). (This is called the angle rigidity
property in [KL96).)

The rank of X is dim(FE). The spaces of directions ¥, X and the Tits boundary
Orits X inherite canonical spherical building structures modelled on (O E, W). X
is thick (irreducible) if O X is thick (irreducible). X is called discrete if Wysy is a
discrete subgroup of I'som(FE). Thick locally compact Euclidean buildings are discrete
and they carry a natural structure as a piecewise Euclidean simplicial complex.

Example 2.17 Fuclidean buildings of dimension 1 are metric trees, i.e. spaces of
infinite negative curvature in the sense that all geodesic triangles degenerate to tripods.

Many interesting examples of locally compact irreducible Euclidean buildings arise
from simple algebraic groups over non-Archimedean locally compact fields with a
discrete valuation.

Example 2.18 Let K be a locally compact field with discrete valuation, uniformizer
w, ring of integers O and residue field k. The Euclidean building attached to SL(3, K)
15 constructed as follows: It is a simplicial complex built from isometric equilateral
FEuclidean triangles. The vertices are projective equivalence classes of O-lattices in
the K -vector space K3. Three lattices Ay, A1, Ay represent the vertices of a triangle
if, modulo rescaling and permutation, the inclusion w - Ay C Ay C Ay C Ay holds.
Orits X 1S 1somorphic to the spherical building attached to the projective plane over K,
and for any vertex v € X the space of directions ¥, X 1s isomorphic to the spherical
building attached to the projective plane over the residue field k.

Remark 2.19 (Unsymmetric irreducible rank-2 Euclidean buildings) There
are different locally compact fields with the same residue field, and hence different
buildings as in 2.18 with isometric spaces of directions at their vertices. In fact one
can construct uncountably many buildings such that the spaces of directions at their
vertices are isometric to the spherical building attached to a given projective plane. In
this way one can obtain buildings with no non-trivial symmetry and their boundaries
are spherical buildings attached to “exotic” topological projective planes.

2.4 Locally compact topological groups

We will make essential use of a deep result due to Gleason and Yamabe on the
approximation of locally compact topological groups by Lie groups:

Theorem 2.20 (cf. [MZ55, p. 153]) Every locally compact topological group G has
an open subgroup G' such that G' can be approrimated by Lie groups in the following
sense: Fvery neighborhood of the identity in G' contains an invariant subgroup H
such that G'/H is isomorphic to a Lie group.
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Here is a typical example of a non-Lie locally compact group: Let 7" be a lo-
cally finite simplicial tree and G its isometry group equipped with the compact-open
topology. Vertex stabilizers Stab(v) are open compact subgroups homeomorphic to
the Cantor set and can be approximated by finite groups; namely every neighbor-
hood of the identity in Stab(v) contains the stabilizer of a finite set V' of vertices,
v € V C T, as normal subgroup of finite index. Other interesting examples are
provided by isometry groups of Euclidean and hyperbolic buildings or more general
classes of piecewise Riemannian complexes.

3 Holonomy

Assumption 3.1 X is a locally compact Hadamard space. Orys X 18 a thick spherical
building of dimensionr —1 > 1.

For a unit sphere s C Oy X, 0 < dim(s) < r — 1, we denote by Link(s) the
intersection of all closed balls B;/>(£) centered at points £ € s. Link(s) is a closed
convex subset and consists of the centers of the unit hemispheres A C Or;, X with
boundary s. Note that any two of these hemispheres intersect precisely in s because
Orits X is a CAT(1) space. It won’t be essential for us but is worth pointing out that
Link(s) carries a natural spherical building structure of dimension dim(Link(s)) =
dim(OrusX) — dim(s) — 1, compare Lemma 3.10.1 in [KL96].

For any point £ € s we have the natural map

LZTL]C(S) — EgaTitsX (11)

sending ( to g{ . Both spaces Link(s) and X¢0rys X inherit a metric and a topology
from the Tits metric and cone topology on Or;;s X, and the injective map (11) is a
monomorphism in the sense that it preserves both structures, i.e. it is continuous and
a Tits isometric embedding!®.

Lemma 3.2 (11) maps Link(s) onto Link(X¢s).

If dim(s) = 0 then X¢s is empty and Link(X¢s) is the full space of directions
EfaTitsX-

Proof: A direction ve Link(X¢s) corresponds to a hemisphere h C Y¢O0pys X with
boundary Y¢s. Let é be the antipode of £ in s. Then the union of geodesics of length
7w with endpoints & ,{3 and initial directions in A is a hemisphere whose center ( lies in
Link(s) and maps to v. O

If 51,59 C Orits X are unit spheres with dim(s;) = dim(se) = dim(s; N'sg) > 0
then for any point £ in the interior of s; N sy holds Y¢s; = Yesy = Ye(s1 N s2) and
the identifications

Link(s1) = Link(X¢(s1 N s3)) < Link(sz)

1Recall that the topology induced by the Tits metric is finer than the cone topology.
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yield an isomorphism
Link(s;) <> Link(ss) (12)

i.e. a cone topology homeomorphism preserving the Tits metric. The following lemma
shows that the identification (12) does not depend on &:

Lemma 3.3 For the points (; € Link(s;) let h; C OrusX be the unit hemispheres
with center (; and boundary s;. Then the points (; correspond to one another under
(12) iff the interiors of the hemispheres h; have non-trivial intersection.

- = _
Proof: If the points (; correspond to one another, i.e. £(;=£(5, then the segments £(;
initially coincide and the interiors of the h; intersect. Vice versa, if the interiors of
the h; intersect then for any point & in the interior of s; N s, their intersection hq N hy

_ — —
is a neighborhood of £ in both closed hemispheres h; and therefore £(;=£(,. O

We'll now “fill in” the isomorphisms (12) by identifications of convex cores of
cross sections of parallel sets in X. This will be acheived by placing different cross
sections into the same auxiliary ambient Hadamard space, namely a space of strong
asymptote classes, so that their ideal boundaries coincide.

Note that since X has spherical building boundary, 2.2 implies that any apartment
a C Orys X can be filled by a r-flat FF C X, i.e. 0o F = a. If s C Op;j1s X is isometric
to a unit sphere then s is contained in an apartment (by [KL96, Proposition 3.9.1])
and hence can be filled by a flat f C X: 0, f = s. This verifies that the parallel sets
defined next are non-empty:

Definition-Description 3.4 For a unit sphere s C OrysX we denote by P(s) =
PX(s) the union of all flats with ideal boundary s. P(s) is a non-empty convez subset
and splits metrically as

P(s) = R™ms 5 CS(s). (13)

The subsets R\Y4ms x Inoint} are the flats with ideal boundary s. CS(s) is again a
locally compact Hadamard space which we call the cross section of P(s). For any
flat f € X, P(f) := P(Orasf) denotes its parallel set, i.e. the union of all flats
parallel to f, and CS(f) := CS(Oritsf) denotes the cross section.

Observe that Or;sCS(s) = Link(s). Namely a ray in CS(s) determines a flat
half space in X whose ideal boundary is a hemisphere h in Opy, X with 0h = s; vice
versa, any such hemisphere in d7;sX can be filled by a half-flat in X. For any point
¢ € s the natural map C'S(s) — X, assigning to a point x the ray z¢ is an isometric
embedding because for z1,2, € CS(s) the triangle with vertices z;,x9,£ has right
angles at the z;.

Lemma 3.5 Let s1,89 C Oris X be unit spheres with dim(s;) = dim(sy) = dim(s; N
S9) > 0. If€ is an interior point of s1N sy then the images of the isometric embeddings

CS(s;) — X (14)

have the same ideal boundary. Furthermore the resulting identification of ideal bound-
aries coincides with the earlier identification (12).
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Proof: Let (; € 0rysCS(s;) = Link(s;) be points corresponding to each other under
— —

(12), i.e. £1=£€(s. The segments £(; initially coincide, i.e. they share a non-degenerate
segment £n. Let 7; be a ray in CS(s;) asymptotic to ¢; and 7 C CS(s;) be the ray
with same initial point but asymptotic to 7. Then r; and r, have the same image
in X, under (14) because they lie in a flat half-plane whose boundary geodesic is
asymptotic to £. Since the rays r] and 7, are asymptotic this shows that the images
of r1 and ry in X, are asymptotic rays. 0

The Tits boundaries 074sCS(s) = Link(s) contain top-dimensional unit spheres
and 2.2 implies that the cross sections C'S(s) have a convex core.

Lemma 3.6 If s C OpysX is a singular sphere then Link(s) does not splitt off a
spherical join factor. As a consequence, the conver core of CS(s) has no Euclidean
factor.

Proof: If Link(s) would have a spherical join factor then this factor would be con-
tained in all maximal unit spheres in Link(s). Hence the intersection of all apartments
a C OritsX with a D s would contain a larger sphere than s. This is impossible be-
cause Opys X is a thick spherical building and the singular sphere s is therefore an
intersection of apartments. U

Fix a simplex 7 C 074X and choose a point ¢ in the interior of 7. Then the cross
sections C'S(s) for all singular spheres s D 7 with dim(s) = dim(7) isometrically
embed into the same ambient Hadamard space X¢. By 3.5 their images have equal
ideal boundaries and the boundary identification is given by (12). According to the
proof of part 2 of 2.2, the convex cores of the C'S(s) are mapped to parallel layers of a
flat strip and their boundary identifications (12) can be induced by isometries which
are unique in view of 2.7 and 3.6. In this way we can compatibly identify the convex
cores in consideration to a Hadamard space C, and there is a canonical isomorphism

8Tz'ts(j'r i ETaTitSX' (15)

If 0,7 are top-dimensional simplices in the same singular sphere s C Or;;s X then
there is a canonical perspectivity isometry

perspyr 1 Cy < Cr 1 persp,4 (16)

because both sets are identified with the convex core of C'S(s). The map of ideal
boundaries induced by (16) turns via (15) into an isomorphism

EO'aTitSX A4 E7' aTitsX (1 7)

(of topological buildings) which can be described inside the Tits boundary as follows:
ue Yo O0risX and Ve >, 0ris X correspond to each other if they are tangent to the
same hemisphere in 0pys X with boundary s. (17) is independent of the choice of
sDOoUT.

Let 7,7 C OrysX be simplices of equal dimension and suppose that they are
projectively equivalent, i.e. there exists a sequence 7 = 7y, ..., T, = 7 of simplices of
the same dimension so that any two successive simplices 7;, 7,41 are top-dimensional
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simplices in a singular sphere. By composing the natural isometries (16), C;, = C,, |,
we obtain an isometry

C, — C; (18)
Definition 3.7 The topological space
HolX(1,7) C Isom(C,, C;)
is defined as the closure of the subset of isometries (18). The holonomy group
Hol(1) = Hol™ (1) C Isom(C,)
at the simplex T is defined as the topological group Hol™ (t,T).

For a face 7 C 074, X we’d now like to relate the holonomy groupoid on the space
C, to the holonomy groupoid on X. This will be useful in the proof of 3.8 because it
allows to reduce the study of the holonomy action to the rank 2 case.

Let 5,5 C OrysX be unit spheres so that s C S. Let us denote by s+ C S the
subsphere complementary to s, i.e. s* = Linkg(s) and S = so s*. There are natural
inclusions Link(S) C Link(s) and P(S) C P(s). More precisely holds

Link(S) & Linkrins)(s™) (19)
and
CS(S) = 856 (sh). (20)

Assume now that the spheres s,S are singular and that 7 C s and 7 C § are
top-dimensional simplices in these spheres so that 7 is a face of 7. The identifi-
cation Link(s) & X,0py, X carries st to X.S and Linkpikes (s) to Link(X,S).
core(CS(s)) 2 C, carries core(CS(S)) & Cr to core(CS(2,5)) = Cgrr and hence
induces a canonical identification

Cr — CSo. (21)

Two faces 71,75 D 7 are top-dimensional simplices in the same singular sphere S iff
the 3, 7; are top-dimensional simplices in the same singular sphere in ¥,07;,X. Let
us assume that this were the case. Then the perspectivity C7; <+ C7; induces the
perspectivity Cg:frl « C’g:fﬁz . We obtain an embedding

Hol% (S, T) < Hol™(T). (22)

We come to the main result of this section, namely that in the irreducible case
the holonomy groups are non-trivial, even large:

Proposition 3.8 Suppose that, in addition to 3.1, the spherical building Orys X s

wrreducible of dimension > 1. Then for any panel T C Orys X and any n € 05,C;, the
parabolic stabilizer P, in Hol(T) acts transitively on 0,,C; \ {n}.
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Proof: Let us first consider the case dim 0r;;s X = 1. The panel 7 is then a vertex &.
The action of Hol(§) at infinity on 0xCe = X¢0ris X can be analysed inside Opjs X

Sublemma 3.9 For every vertex &, Hol(§) acts 2-fold transitively on X¢Opits X

Proof: Denote by [ the length of Weyl chambers. Irreducibility implies [ < /3.
Consider two vertices & and & of distance 2/ and let p be the midpoint of &&.
Extend & pés in an arbitrary way to a (not necessarily globally minimizing) geodesic
mé& puéans of length 4. By irreducibility, this geodesic is contained in an apartment o
for any choice of 7, and 7,. Denote by fi the antipode of i in o and let { & a be some
neighboring vertex of p. Then Zru5((, &) = m and we can form the composition of
natural maps (17):

Y, 0rits X — XeOrits X — X, Origs X

Varylng nl,nz,g We get plenty of maps X¢, Orits X — 2¢,0rits X sending §1§2 §1u
to §2§1—§2u and §1m to §2n2 We can compose these and their inverses to obtain
%
selfmaps of X¢ Oris X and see that the stabilizer of ;& in Hol(&;) acts transitively
_),

on the complement of £;&,. Since Ory, X is thick, X¢0pi, X contains at least three
points and it follows that Hol(£) acts 2-fold transitively. O

Proof of 3.8 continued: If P, does not act transitively on 0,C \ {n} then, by 3.9,
there is a non-trivial axial isometry o € Hol(€) (fixing 1), and for any ¢ € 0,C; \ {n}
there is a conjugate o, of a with attractive fixed point 7 and repulsive fixed point ¢.
For (1,(s # n the isometries o@” o ag, € P, subconverge to § € P, with 8¢ = (.
This concludes the proof in the 1-dimensional case.

The general case dim O7;;s X > 1 can be derived: Thanks to irreducibility, we can
find for every panel 7 an adjacent panel 7 so that p := 7N 7 has codimension 2 and
Z,(7,7) < m/2. The building 07sC,, = ¥,0risX is 1-dimensional irreducible. ¥,
is a vertex and Hol% (X,7) acts by isometries on CEC:T & (C,. We get an embedding
Hol®(3,7) < HolX(7) as in (22). Our result in the 1-dimensional case implies the
assertion. U

Example 3.10 If 0rys X is the spherical building associated to a projective plane
(with more than three points) then Hol(€) acts 3-fold transitive on Ye0rusX (by
“Mébius transformations”).

4 Rank one: Rigidity of highly symmetric visibil-
ity spaces

Assumption 4.1 Let Y be a locally compact Hadamard space with at least three

tdeal boundary points, with extendible rays, and which is minimal in the sense that

Y = core(Y). Suppose furthermore that H C Isom(Y') is a closed subgroup so that for
each ideal boundary point § € OxY the parabolic stabilizer Pr in H acts transitively

on 0 Y \ {£}.
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In particular, Y has the visibility property. For any complete geodesic ¢ we denote
by P(c) the parallel set of ¢, that is, the union of all geodesics parallel to c. It splits
as ¢ X cpt and contains a distinguished central geodesic. By 2.14 there exist axial
elements in H, and hence the stabilizer of any central geodesic contains axial elements.
In particular, H acts cocompactly on Y and Y is large-scale hyperbolic (in the sense
of Gromov). For any oriented central geodesic ¢ there is a canonical homomorphism

trans : Stab(c) - R (23)

given by the translational part. Its image is non-trivial closed, so either infinite cyclic
or R. The main result of this section is:

Theorem 4.2 1. (23) is surjective iff complete geodesics in'Y do not branch. In this
case, H 1s a simple Lie group, there exists a negatively curved symmetric space Ymoder
and a homeomorphism

5 : aooY i) aooYmodel

which carries Hy to Isomy,(Ymeder): BHB ™Y = Isomo(Ymoeder) € Homeo(Ooo Yinodet)-

2. The image of (23) is cyclic iff Y splits metrically as tree x cpt.

3. If Ty, T, are two geodesically complete locally compact metric trees (with at least
three ideal boundary points), and if there are embeddings of topological groups H —
Isom(T;) satisfying 4.1, then there is an H -equivariant homothety T} — T.

4.2 is a combination of the results 4.24, 4.15 and 4.20.

4.1 General properties

Lemma 4.3 Let p : [0,00) = Y be a ray asymptotic to the geodesic c. Then p is
strongly asymptotic to P(c), i.e. d(p(t), P(c)) — 0.

Proof: Assume that p has strictly positive distance d from P(c). The stabilizer of
P(c) contains axial elements with repulsive fixed point p(co). Applying them to p we
can construct a geodesic at positive distance from P(c), contradicting the definition
of parallel set. 1

Lemma 4.4 Let ¢ be a geodesic and B+ Busemann functions centered at the ideal
endpoints c¢(£oc). Then the set where the 2-Lipschitz function By + B_ attains its
minimum 1s precisely P(c).

Proof: Clear. O

Lemma 4.5 For every h > 0 there exists o = a(h) < 7 so that the following impli-
cation holds: If c: R — 'Y is a geodesic, y a point with Z,(c(—00), c(+00)) > « then
d(y, P(c)) < h.

Proof: Suppose that for some positive h there is no o < 7 with this property. Then
there exist points y, of distance > h from P(c) so that o, = £, (¢(—00,+00)) — 7.
(All central geodesics are equivalent modulo the action of H.) This implies that there
exist points ¥, (on y,7p(e)(¥n)) so that d(y,,, P(c)) = h and Zy (c(£00), Tp()(Yn)) —
m/2'2. Since H acts cocompactly, we may assume that the gy’ subconverge. Taking a

12For a closed convex subset C of a Hadamard space X, m¢ : X — C denotes the closest point
projection.
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limit, we can construct a geodesic parallel to ¢ and at positive distance h from P(c),
a contradiction. U

4.2 Butterfly construction of small axial isometries

Consider two rays p; : [0,00) — Y emanating from the same point y and assume that
Zy(p1, p2) < m. Let ¢; : R = Y be extensions of the rays p; to complete geodesics. We
produce an isometry 1 preserving the parallel set P(c;) by composing four parabolic
isometries: Let p; + € P(c;(£00)) be the isometry which moves ¢;(F00) to c3—;(F00).
Then

Y=y L pe Dy D1

preserves P(c;) and translates it by the displacement
511, = (Z Bz,i(y)) — min(BL_}_ =+ BQ,,) — min(BL, + B27_|_) Z 0

towards c;(+00). The displacement d, is positive and ¢ axial iff one of the angles
Zy(c1(£00), c2(F00)) is smaller than 7. On the other hand, &, is bounded from above
by twice the sum of the distances from y to the parallel sets Y (¢;(d00), co(F00)).

Lemma 4.6 If Z,(p1, p2) < 7 — a(h) then oy < 4h.

Proof: Since Z,(c1(£00), c2(Foo)) > a(h), 4.5 implies d(y, P(c1(£00), c2(Fo0))) < h.
Hence B 4 (y) + Bo +=(y) — min(B + + By +) < 2h and the claim follows. O

4.3 The discrete case

Assumption 4.7 (23) has cyclic image: The stabilizer in H of any central geodesic
has a discrete orbit on the central geodesic.

Then there is a positive lower bound for the displacement of axial isometries in
H. By 4.6 there exists ay > 0 such that: If the rays p; and ps initiate in the same
point y and have angle Z,(p1, p2) < g then p;(co) have the same y-antipodes (i.e.
for a third ray initiating in y we have Z,(p, p1) = m iff Z,(p, p2) = 7).

Lemma 4.8 (No small angles between rays) If the rays p; and py initiate in the
same point y and have angle < aq then they initially coincide, i.e. pi(t) = po(t) for
small positive t.

Proof: For small positive ¢ holds Z,, ) (p1(00), p2(00)) < ag, so p;(co) have the same
p(t)-antipodes™® and py(t) = p1(2). O

Lemma 4.9 (Bounded Diving Time) If p: [0,00) — Y is a ray asymptotic to c
and if d(p(0), P(c)) < h then p(t) € P(c) for all t > h/sin(wy).

13Let o be a point in the Hadamard space X. Then £,1 € 05X are z-antipodal to each other if
there exists a geodesic passing through z and asymptotic to &, 7.
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Proof: We extend p to a geodesic ¢’. p is strongly asymptotic to P(c) (4.3). Hence
there exist y, € P(c) tending to p(oco) so that the rays p, = y,'(—oo0) Hausdorff
converge to ¢'. Z,, (c(—00),c(—o0)) — 0 and p, therefore initially lies in P(c) for
large n (4.8). Outside P(c) the derivative of d(p,(t), P(c)) is < —sin(ap) whence the
estimate. U

Corollary 4.10 (Discrete Branching) There exist branching complete geodesics:
Any two strongly asymptotic geodesics share a ray. Furthermore, the set of branching
points on any geodesic c 18 discrete.

Proof: The first assertion is clear from 4.9. The second follows from local compactness:
Let ¢, be a sequence of geodesics so that ¢, N ¢ = ¢,((—00,0]) and the branching
points ¢, (0) are pairwise distinct and converge. Then, for large n, the points ¢,(1)
are uniformly separated (by 4.8) but they form a bounded subset, contradiction. [J

Proposition 4.11 (Local Conicality) Let p : Rt — Y be a geodesic ray, o :
[0,{]] = Y a segment so that p(0) = o(0). Then there exists to > 0 so that the
triangle with vertices 0(0),0(tg), p(c0) spans a flat half-strip and is contained in a
flat strip.

Proof: Denote by p; : Rt — Y the ray emanating from o(¢) and asymptotic to p. p;
can be extended to a geodesic ¢; and there is a parallel geodesic ¢} strongly asymptotic
to p. The branch point of ¢, and p tends to p(0) as ¢ — 0. Discreteness of branching
points on geodesics (and hence rays) implies that ¢/(t) passes through p(0) for small
t, and 0|[0’t] lies in the flat strip bounded by ¢; and c;. U

Consequence 4.12 Let pi,ps : Rt — Y be rays emanating from the same point y
and with angle Z,(p1,p2) = a. Then p; can be extended to a complete geodesic ¢,
such that Z,(pa(00),c1(—0)) =7 — .

Consequence 4.13 (Fattening half-strips) Let n € 0,Y and suppose that o :
0,0) = Y, 0 < b, is a segment which is contained in a complete geodesic (ray).
Assume that the ideal triangle A(o(0),0(b),n) bounds a flat half-strip. Then we can
extend the segment o to a longer segment o : [a,b] — Y, a < 0, so that the ideal
triangle A(o(a),o(b),n) bounds a flat half-strip.

Proof: We assume 0 < Z,(0)(c(b),n) < 7 because otherwise the claim holds trivially.
Let p: Rt — Y be a ray extending o, i.e. p|[0 =0 By 4.12, we can find a geodesic

¢ extending p and a flat strip S bounded by ¢ so that the ray o(0)n is initially
contained in S. Then Z,(g)(c(—00),n) + Zo(0)(c(+00),n) = 7. For a < 0 sufficiently
close to 0 the ideal triangle A(c(a),c(0) = 0(0),n) bounds a flat half-strip, hence
L@y (c(b),n) + Lewy(c(a),n) = 7 and A(c(a), c(b),n) bounds a flat half-strip. O

Corollary 4.14 The angle between any two rays emanating from the same point is
0 orm.
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Proof: Suppose that pi, ps : Rt — Y are two rays emanating from the same point
y with angle Z,(p1, p2) = a. For small ¢, the ideal triangle A(p;(0), p1(2), p2(0))
bounds a flat half-strip (4.11). By 4.13 and local compactness we can extend p; to
a complete geodesic ¢; : R = Y so that Z. s (p1(00), p2(00)) = « for all —t < 0.
Since Y is large-scale hyperbolic this implies that « = 0 or 7. U

Proposition 4.15 Y splits as tree X compact.

Proof: According to 4.14, for every y € Y the union Sun, of all rays initiating in y is a
minimal closed convex subset isometric to a metric tree. 2.2 implies the assertion. [

Proposition 4.16 Let Y' be a locally compact Hadamard space with extendible rays
and suppose that T = core(Y') exists and is a metric tree. Then Y' =T x cpt.

Proof: The tree T is locally compact and geodesically complete, so it is also discrete.

Sublemma 4.17 The nearest point projection nr : Y' — T restricts to an isometry
on every ray r in Y.

Proof: We can extend r to a complete geodesic | and observe that the distance d(-,T)
from T is constant on [ because [(£00) € 05T It follows that 7 restricts on [ to an
isometry. ]

Sublemma 4.18 Let y € Y' and &,& € 0Y' so that Zppy(&1,&) = m. Then
Zy(&1,8) = .

Proof: For points y; on the rays y&; we have

d(y1,y2) > d(mryr, mry2) = d(mrys, 7ry) + d(71Y, TTY>2)

=d(y1,y) + d(y, y2) > d(y1,y2)-

Thus equality holds and Z,(y1, y2) = 7. O

Sublemma 4.19 Let £ € 0,Y' and ¢ be a geodesic in Y' not asymptotic to &. Then
there is a point y € ¢ with Z,(l(+00),§) = .

Proof: Let y be the point which projects via mp to the center of the tripod in 7T
spanned by the ideal points [(+00), & and apply 4.18. O

Thus any two rays in Y’ with same initial point have angle 0 or 7 and 4.16 follows.

H
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4.3.1 Equivariant rigidity for trees

Suppose that T} and T, are geodesically complete locally compact metric trees with
at least three boundary points, that the locally compact topological group H is em-
bedded into their isometry groups, H C Isom(T;), and that the induced boundary
actions of H on 0,.7; satisfy 4.1.

Proposition 4.20 Every H-equivariant homeomorphism OsoT1 — OsoTo 1S induced
by an H -equivariant homothety T7 — T5.

Proof: Maximal compact subgroups K C H whose fixed point set on T} is a vertex
(and not the midpoint of an edge) can be recognized from their dynamics at infinity:
There exist three ideal boundary points so that one can map anyone to any other
of them by isometries in K while fixing the third. Adjacency of vertices can be
characterised in terms of stabilizers: The vertices v,v’ € T; are adjacent iff Stab(v) N
Stab(v') is contained in precisely two maximal compact vertex stabilizers. It follows
that there is a H-equivariant combinatorial isomorphism 77 — T5. It is a homothety
because all edges in T; have equal length. O

4.4 The non-discrete case

Assumption 4.21 (28) is surjective: The stabilizer in H of any central geodesic c
acts transitively on c.

Lemma 4.22 Let G be an open subgroup of H and c a central geodesic. Then
Stabg(c) acts transitively on c.

Proof: We choose elements h,, € Staby(c) with trans(h,) = 1/n. They form a
bounded sequence and subconverge to an elliptic element k € Fizg(c). Then (k™th,)
subconverges to e and there exist arbitrarily large m # n so that h_'h, is axial and
contained in G. This shows that Stabg(c) contains axial elements with arbitrarily
small non-vanishing translational part. O

Consequence 4.23 Any open subgroup of H acts cocompactly on Y .

Proposition 4.24 There exist a negatively curved symmetric space Yoder, a0 1S0-
morphism Hy = Isomy(Ymoeder) and an equivariant homeomorphism 0sY — 0o Ymodel -

Proof: Suppose that G’ C H is an open subgroup and that K is an invariant compact
subgroup of G’. 4.22 shows that the G'-invariant non-empty closed convex subset
Fiz(K) has full boundary at infinity: O Fiz(K) = 0xY. The minimality of ¥
implies Fiz(K) =Y and K = {e}. Applying 2.20 we conclude that H is a Lie group.

Sublemma 4.25 H has no non-trivial invariant abelian subgroup A.
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Proof: A would have a non-empty fixed point set in the geometric compactification
Y. If A fixes points in Y itself then Fiz(A) =Y and A = {e} by the cocompactness
of H and the minimality of Y. If all fixed points of A lie at infinity then there are at
most two. This leads to a contradiction because the fixed point set of A on 0,Y is
H-invariant, hence full or empty. O

So H is a semisimple Lie group with trivial center and H, = Isom,(Y.04e1) for a
symmetric space Y04 0f noncompact type and without Euclidean factor.

Sublemma 4.26 Y, 4 has rank one.

Proof: Tf rank(Yeder) > 2 then the subgroup of translations along a maximal flat
in Y040 acts on Y as a parabolic subgroup (because no subgroup = R? in I'som(Y)
can contain axial isometries) and fixes exactly one point on 0w Y. Maximal flats in
Y h0der cOntaining parallel singular geodesics yield the same fixed point in d,Y and it
follows that H, would have a fixed point on 0,Y, contradiction. U

It remains to construct the equivariant homeomorphism of boundaries. Axial
isometries in Isom(Y') have the property that their conjugacy class never accumulates
at the identity. Therefore if h € H, acts as a pure parabolic (see definition 2.10) on
Yioder then it acts as a parabolic on Y. Hence the stabilizer of £y € OuoYimoder in H,
fixes a unique point £ € 0, Y and we obtain an H,-equivariant, and hence continuous
surjective map Oue Yinoder — OsoY - It must be injective, too, because any two stabilizers
of distinct points in O Ymoder generate H, but H, has no fixed point on 0, Y. This
concludes the proof of 4.24. O

Proposition 4.27 Complete geodesics in'Y don’t branch.

Proof: h € H, acts as a pure parabolic on Y iff it does so on Y,,,4¢;. The purely
parabolic stabilizer N C H, of £ € 0Y is a simply connected nilpotent Lie group
and acts simply transitively on 0,.Y \ {¢}. Let 7 € H, be any axial isometry acting
on Y with attractive fixed point £. Then

lim 7 "¢1" =e. (24)
n—oo
for all ¢ € N¢. Let c be a geodesic in Y asymptotic to both fixed points of 7 at

infinity and let ¢ € N be non-trivial. 7 acts as an isometry on the compact cross
section of P(c) and we can choose a sequence ny — 0o so that d(c, 7™c) — 0.

d(p1™c(0), 7" ¢c(0)) = d(T "1™ c(0),c(0)) — 0

implies that ¢c is strongly asymptotic to c. These two geodesics can’t intersect
because ¢ is not elliptic. (/N has no non-trivial elliptic elements!) The argument
shows that distinct stronlgy asymptotic geodesics are disjoint and hence geodesics in
Y don’t branch. Il

Proof of 1.7: 1.7 is not much more than a reformulation of 4.2. As in the proof of
3.8 we deduce from the 2-fold transitivity of the action of Isom(C) on 0 C that the
parabolic stabilizer of any 1 € 0,C acts transitively on 0C \ {n}. Then C and
Isom(C') satisfy assumption 4.1 and assertion follows from 4.2 and 4.16. U
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5 (Geodesically complete Hadamard spaces with
building boundary

5.1 Basic properties of parallel sets

Assumption 5.1 X s a locally compact Hadamard space with extendible rays and
Orits X 18 a spherical building of dimension r —1 > 1.

Lemma 5.2 FEvery flat half-plane h in X 1s contained in a flat plane.

Proof: Let ¢ be the boundary geodesic of the flat half-plane h and denote £y :=
c(£o0). Let n € Oxh be so close to &, that the arc E in OrsX is contained in
a closed chamber, and extend the ray nc(0) to a geodesic ¢. ¢ bounds a flat half-
plane h’ which contains £, in its ideal boundary. The canonical isometric embedding
CS({&;,€ }) — X, sends h to a ray and &' to a geodesic extending this ray. This
implies that h is contained in a flat plane. Il

Corollary 5.3 For any flat f C X the cross section CS(f) is again a locally com-
pact Hadamard space with extendible rays, and OrysCS(f) is a spherical building of
dimension dim(0pitsX) — dim(f).

Proof: 5.2 implies that for any geodesic [ the cross section C'S([) has extendible rays.
Now we proceed by induction on the dimension of f using

CSX(f) = 08I (CS! (1)

for flats f' C f. O

Corollary 5.4 FEvery flat is contained in a r-flat.

Proposition 5.5 Suppose the geodesics ci,co C X have a ray p in common. Then
there are two maximal flats whose intersection s a halfapartment.

Proof: Denote £ := p(co) = ¢;(00) and & := ¢;(—o0). There exist geodesics ; of
length 7 in Or;;s X joining € and &; so that their intersection y; Ny, is a non-degenerate
arc £n. The geodesics ¢; project to geodesics ¢ in the space of strong asymptote
classes X, and for any p(0)-antipode 7 of n the geodesics ¢; are in fact contained
in the projection to X, of the cross section CS({n,n}). The geodesics ¢; share a

ray but do not coincide because they have different ideal endpoints ¢;(—o0) =77_§>Z~€
E,0rits X = 0,,CS({n,7}). We may proceed by induction on the dimension of the
Tits boundary of the cross section until we find a flat f so that C'S(f) has discrete
Tits boundary and contains two geodesics whose intersection is a ray. These geodesics
correspond to maximal flats in P(f) with the desired property. O

Reformulation 5.6 If there are branching geodesics in X then there exists a flat
f C X so that Orisf is a wall in Orits X and CS(f) contains branching geodesics.
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5.2 Boundary isomorphisms

Definition 5.7 Let X' be another space satisfying 5.1. A boundary isomorphism
18 a cone topology homeomorphism

¢t 0o X — 0o X' (25)

which at the same time is a Tits isometry, i.e. it is an isomorphism of topological
spherical buildings, cf. [BS87]. We denote by Is0(0xX, 0o X') the space of all bound-
ary isomorphisms 0 X — 05 X' equipped with the compact-open topology, and by
Aut(0xX) the topological group Iso(0xX, 0xX).

A boundary isomorphism (25) induces for all simplices 7 C Or;sX an isomorphism
of topological buildings

Y, 0rite X — EquaTitsXI- (26)
The induced homeomorphisms
I50(X;0pits X, £:0rits X ) — 150(E4:0rits X, Xz Oris X )

carry HolX(r,7) to Hol™ (¢7,$7) and thereby induce isomorphisms of topological
groups

Hol* (1) —s Hol™X (¢7). (27)
Assumption 5.8 In addition to 5.1 the building Orys X s thick and irreducible.

According to 5.3, C; has extendible rays. (Extendibility of rays is inherited by
subsets with full ideal boundary.) If 7 C Or4sX is a panel then by 3.8 the action
of Hol(r) on C; by isometries satisfies 4.1 and therefore 4.2 applies. In the case
that X, 07:4sX = 0,,C, is homeomorphic to a sphere, it can be identified with the
boundary of a rank-one symmetric space canonically up to conformal diffeomorphism,
and X4, X' as well. In this situation the “differentials” (26) are conformal diffeomor-
phisms because they are equivariant with respect to (27). In the second case that
Y, 0rits X = 00,C; is disconnected, C; and Cy, are metric trees and (26) is conformal
in the sense that it is induced by a homothety (4.20).

The ideal boundary 0., X, equipped with the cone topology and Tits metric, is
a compact topological spherical building. The cone topology can be induced by a
metric and this allows us to apply the results from [BS87] on automorphism groups
of topological spherical buildings. In particular, [BS87, theorem 2.1] implies:

Theorem 5.9 (Burns-Spatzier) Aut(0,X) is locally compact.

We denote by F' the space of chambers in d74,X. The cone topology induces a
topology on F' which makes F' a compact space.

Lemma 5.10 There exist finitely many chambers o, ...,o0s such that the map
Aut(0oX) — F?®\ Diag; ¢ — (¢o1,...,¢0s) (28)

is proper™®.

4 Diag denotes the generalized diagonal consisting of tupels with at least two equal entries.
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Proof: Choose 0,41,...,0s as the chambers of an apartment a, and let 7,... 7,
be the panels of ¢,,1;. An automorphism ¢ is determined by its effect on a and
the spaces X, 0ris X, because Ori;s X is the convex hull of the apartment a and all
chambers adjacent to its chamber o,,,'5. Choose for each panel 7; a chamber o; ¢ a
with o; N o, 41 = 7. Clearly (28) is continuous. Let (¢,) be a sequence in Aut(0xX)
whose image under (28) is bounded, i.e. does not accumulate at Diag. We have to
show that (¢,) is bounded, respectively it suffices to show that there is a bounded
subsequence. After passing to a subsequence, we may assume that ¢,0; — 7; with
pairwise different limits ;. Denote 7; := lim¢,7;. For each ¢ < r the sequence
of conformal homeomorphisms X, 0rys X — X4, .,0ris X converges on a triple of
points (namely on X, (a U 0;)) to an injective limit map and hence subconverges
uniformly to a (conformal) homeomorphism X, 0ris X — X7 074X . It follows that
(¢n) subconverges uniformly to a building automorphism. O

Consequence 5.11 The sequence (¢,) C Aut(0xX) is unbounded iff there exist
adjacent chambers 0,0’ such that ¢,o and ¢,0' converge in F to the same chamber.

5.3 The case of no branching

A major part of the arguments in this section follows the lines of Gromov’s proof
of his Rigidity Theorem [BGS85] and the study of topological spherical buildings in
[BS87].

Assumption 5.12 X is a locally compact Hadamard space with extendible rays and
Orits X 18 a thick irreducible spherical building of dimension r — 1 > 1. Moreover we
assume in this section that complete geodesics in X do not branch.

For every point x € X there is an involution
by @ O X — OseX

which maps § € 9, X to the other boundary point of the unique geodesic extending
the ray z€&.

Lemma 5.13 1, € Aut(0,X).

Proof: The absence of branching implies that ¢, is continuous. By 5.6, each ray
emanating from z is contained in a maximal flat F'. ¢, restricts on the unit sphere
Oris F' to the antipodal involution. Hence ¢, maps every chamber isometrically to
a chamber and is therefore 1-Lipschitz continuous with respect to the Tits distance.
The claim follows because ¢! = ¢,. O

5.13 shows that the group Aut(0,,X) is large. Our aim is to unmask it as the
isometry group of a symmetric space. Denote by Inv the subgroup consisting of all
products of an even number of involutions ¢, .

15Proof: The convex hull is a subbuilding B’ of maximal dimension [KL96, prop. 3.10.3]. Since any
panel is projectively equivalent to a panel 7;, B’ is a neighborhood of int(r) for any panel 7 C B’.
We can connect an interior point of any chamber to a point in a by a geodesic avoiding simplices of
codimension > 2. It follows that all chambers are contained in B’ and B’ = 075 X.
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Lemma 5.14 Inv is path connected and it is contained in every open subgroup of
Aut(05X).

Proof: The map X X X — Aut(0xX); (x1,%2) + g, Ly, is continuous and hence Inwv is
path connected. The second assertion follows in view of (i4,%2,)(testay,) = taylay. O

Lemma 5.15 For any two chambers o1, 09 in a thick spherical building B there is a
common antipodal chamber. Refinement: For any two simplices of the same type's
there 1s a common antipodal simplez.

Proof: Let ¢ be a chamber antipodal to ¢y and « : [0,7] — B a unit speed geodesic
avoiding codimension-2 faces with v(0) € int(oy) and which intersects int(g). If
v(m) € 6 then we are done. Otherwise let 7 C 06 be the panel where v exits 6.
Since B is thick, there exists a chamber &' opposite to o1 so that 6' "o = 7. Let
7' : [0, 7] — B be a unit speed geodesic with 7/(0) = v(0), 4/(0) = 4(0), which agrees
with v up to 6 and then turns through 7 into the interior of 6. We repeat this
procedure until it terminates after finitely steps and yields a chamber opposite to oy
and oy. The refinement follows directly. ]

Consequence 5.16 For any simplex T, Inv acts transitively on the compact space
F. of simplices of same type as 7. In particular, Inv acts transitively on the compact
space F of Weyl chambers'”.

Now we investigate the dynamics on 0,, X of elements which correspond to trans-
lations (transvections) along geodesics in symmetric spaces.

Lemma 5.17 Suppose that p : [0,00) — X is a ray asymptotic to & and that U C
Orits X 1s a compact set of {-antipodes. Then 1)U — {£} ast — oo.

Proof: In every ¥,0ris X, n € U, we choose an apartment o, so that the apartments
OooPETSPpety C YeOpits X coincide. Consider sequences t, — oo and (n,) C U. We
have to show that ¢y, — £. Let F,, be a maximal flat containing the ray p(t,)nn
and satisfying 3, O Fp = oy, .

Sublemma 5.18 The family of flats F,, is bounded.

Proof: Assume the contrary and, after passing to a subsequence, that n, — n € U.
Denote by a the unique apartment in Or;, X containing &,n and so that ¥,a = a,.
Let R > 0 be large. F, depends continuously on ¢, (by “no branching”), and by
decreasing the ¢, we can acheive that d(F,, p(0)) = R for almost all n. Still ¢, — oo
if R is chosen sufficiently large; namely d(p(t)n, p(0)) is bounded because there exists
a geodesic asymptotic to & and n. The F,, subconverge to a maximal flat F' with
d(F, p(0)) = R and O F = a. This can’t be possible for arbitrarily large R because
the family of flats with ideal boundary a is compact, a contradiction. ]

All flats arising as limits of (F,,) are asymptotic to &, 7 and the antipodes ¢,y
of 1, in 0, F;, converge to an antipode of 7, i.e. they converge to &. U

16The type of a simplex is its image under the canonical (accordeon) projection to the model Weyl
chamber Ay,odei-
17F is the analog of Fiirstenberg boundary in the symmetric space case.
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Consequence 5.19 Let c: R — X be a geodesic, {4 1= c(£00) and a; := teylo(—1)-
Then limy oo ayn = & iff Zrus(n, &) = m. The convergence is uniform on compact
sets of E_-antipodes.

Proof: By 5.17, t,(—ym — & uniformly. Then for large ¢, 1,(yn and & are antipodes.
Applying 5.17 again yields the claim. 1

Denote by B(£,,€-) C Orits X the subbuilding defined as the union of all min-
imizing geodesics with endpoints &4, or equivalently, the union of all apartments
containing &;. There is a folding map (building morphism, see [KL96, sec. 3.10])
fold : Orius X — B(&4,& ) which is uniquely determined by the property that

— —
Lris(foldn,§-) = Lyis(n, €-) and §_(foldn)=¢_n
for all n € Opys X with Zyus(n,€-) < 7 and foldn = &y if Lyus(n, &) = 7.

Refinement 5.20 lim; ., a; = fold.

Proof: By 5.19 and because all a; fix the Tits neighborhood B(£,,£ ) of £ pointwise.
]

Proposition 5.21 Aut(0,,X) is a semisimple Lie group whose identity component
has trivial center.

Proof: 1. Aut(0xX) is a Lie group: Let G' C Aut(0,X) be an open subgroup, c a
geodesic, &4 = ¢(+o0) and U, a neighborhood of &, which is chosen so small that
all points in U, with the same A,,y4¢-direction (type) as £, are {_-antipodes (using
the lower semicontinuity of Tits distance). Suppose H C G’ is an invariant subgroup
contained in the neighborhood {¢ € G’ : ¢p&, € U,} of e. Then HE, consists of
¢_-antipodes. Hence HE, = a,Ha, '€, = a,HE, — {4} as t — oo, thus HE, = &,
Since Fiz(H) is G'-invariant and convex with respect to the Tits metric it follows
from 5.16 that Fiz(H) = 0,X and H = {e}. So there are neighborhoods of the
identity in G’ which don’t contain non-trivial invariant subgroups. 2.20 implies that
Aut(0xX) is a Lie group.

Sublemma 5.22 FEvery non-trivial isometry ¢ of a thick spherical building B differ-
ent from a sphere carries some point to an antipode.

Proof: We may assume without loss of generality that B has no spherical join factor.
If the assertion were not true then ¢ would be homotopic to the identity and therefore
preserve every apartment and hence every simplex, so ¢ = ud. 0

2. Semisimplicity: Suppose that A is an invariant abelian subgroup of Aut,(0xX).-
Let a € A be a non-trivial element and choose a simplex 7_ such that 7_ and ar_
are opposite (using 5.22). 7_ then has involution-invariant'® type. Let ¢ : R — X

18The type of a simplex is snvolution-invariant if its antipodal simplices have the same type, or
equivalently, if the type is fixed by the self-isometry of A;,o4e; Which is induced by the involution of
the spherical Coxeter complex.
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be a geodesic with ¢(—o0) € int(7_) and 7, the simplex containing c(+o00). Set
An = Lle(n)le(—n) € IV and b, := ayaa_, € A. 5.19 implies lim, o b,7 = 7 for all
simplices in the open subset W = {7 € F,_ : 7 and 7, are opposite} of F._. In view
of 5.15, W and the attractor 7, are uniquely determined by the dynamics of (b,) and
therefore are preserved by the centralizer of (b,) in Aut,(0xX). Thus A has fixed
points on F,_. 5.16 implies that the action of A on F,_ is trivial. The fixed point set
of A on 07X includes the convex hull of all simplices in F,_ and this is the whole
building d7;;, X by irreducibility'®. So A = {e}. This shows that all abelian invariant
subgroups of Aut,(0xX ) are trivial, hence also the solvable invariant subgroups. This
finishes the proof of 5.21. U

As a consequence of the proposition, there is a symmetric space X,,04e; Of non-
compact type and an isomorphism

At (050 X) — 150m0(X moder) (29)
of Lie groups.

Lemma 5.23 The centralizer of every involutive boundary automorphism i, is com-
pact.

Proof: Suppose that (¢,) is an unbounded sequence in the centralizer of ¢,. Then
there are adjacent chambers o, 0’ so that lim ¢,0 = lim ¢,,0’ (by 5.11). The sequence
of conformal diffeomorphisms (differentials) YgnqOrits X — Xy, (ono)Orits X is un-
bounded and converges everywhere except in at most one point to a constant map
Yoo’ Orits X — Liim ¢, (on0")Orits X - Denote by s C Ory, X the wall spanned by the
opposite panels cNo’ and 1,(cNo’). It follows that for all half-apartments h C Oris X
with 0h = s with the exception of at most one half-apartment hg, the limits lim qﬁn‘ b
exist and have the same half apartment h as image. Since Or;;; X is thick, we find an
Lz-invariant apartment a containing s but not hg. So ¢, |a converges to a non-injective
map a — h commuting with ¢, i.e. sending antipodes to antipodes. Such a map can’t
exist and we reach a contradiction. ([l

Sublemma 5.24 Let X, be an irreducible symmetric space. Every automorphism of
Isom,(Xy) is the conjugation by an isometry, i.e. Isom(Xy) = Aut(Isom,(Xy)).

Proof: Xy = G/K. O

The involution i, € Aut(0xX) induces by conjugation an involutive automor-
phism of Aut,(0,X), hence an involutive isomorphism of I'som,(Xmoder) via (29),
and as a consequence of 5.23, the corresponding involutive isometry of X,,,q4e; is the
reflection at a point ®(x) € X,04e. We obtain a proper continuous map

o: X — Xmodel- (30)

Another direct consequence is that products t,t,s of two involutions correspond to
translations (or the identity) in I'som(Xy4e). For any flat F C X whose ideal
boundary 0 F is a singular sphere we denote by Tr C Aut,(0xX) the subset of all
Lgly With z,2' € F.

19The convex hull of simplices of the same involution-invariant type in the spherical Coxeter
complex is a subsphere, hence everything by irreducibility.
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Lemma 5.25 As a subset of Isom(Xmoger), Tr is the group of translations along a
flat F® of the same dimension as F. Moreover rank(Xmoder) = -

Proof: Let a C OpysX be an apartment containing O, F, ¢ a chamber in a and
&1, ..., & the vertices of 0. Moreover denote by 7; the panel of o opposite to &;, and
by &, 7;,&; the respective antipodal objects in a. An automorphism ¢ of Or;;s X which
fixes a pointwise is determined by its actions on the spaces ¥, 0r;s X. We therefore
obtain an embedding

Stab aus(as, x)(a) — H Homeo(3,,0rits X ).

=1

An automorphism which fixes the subbuilding aT,-tSP({gi,éi}) is determined by its
action on X, 0r;s X alone and we get an embedding

Stab aus(on, x) (Orits P({&:, &) — Homeo(E,, Oris X).

Each X, 0risX is identified with boundary of a rank-one symmetric space. ¢ €
Stab aut(as x)(@) acts on X, 0rius X by a conformal diffeomorphism (compare the dis-
cussion in section 5.2) which fixes at least the two point set 3., a. This diffeomorphism
is hence contained in a subgroup of the conformal group isomorphic to R x cpt. As
a consequence, Stabui(s.,x) (a) topologically embeds into a group = R" x ¢pt and
the subgroups H; = Stabau(a., x)(Orits P({&is 51})) embed into R x ¢pt. Moreover H;
centralises H; for i # j. It follows that all translations in Isom(X,eq4er), Which corre-
spond to products ¢t such that z, 2’ lie on a geodesic asymptotic to & and éi, lie in
the same 1-parameter subgroup 7;. Moreover the 7T; commute with each other. Since
T > 1, is proper, the first assertion follows.

If F'is a maximal flat with 0, F = a then the centralizer of T is contained in
Stabsu(a., x)(a) and thus contains no subgroup = R™*'. Hence rank(Xmoder) can’t be
greater than r. O

Consequently, (30) sends maximal flats to maximal flats. Flats whose ideal bound-
aries are singular spheres arise as intersections of maximal flats and hence go to sin-
gular flats. It follows from irreducibility that & restricts to a homothety on every
flat and clearly the scale factors for restrictions to different flats agree. Since X is
geodesically complete by assumption, every pair of points lies in a maximal flat (5.4)
and it follows that ® is a homothety. This concludes the proof of the main result of
this section:

Theorem 5.26 Let X be a locally compact Hadamard space with extendible geodesics
and whose Tits boundary 1s a thick irreducible spherical building of dimensionr—1 >
1. If complete geodesics in X don’t branch then X 1is a Riemannian symmetric space
of rank r.

The argument above also shows that, for an irreducible symmetric space X, of
rank > 2, the Lie groups Isom(Xy) and Aut(0,Xo) have equal dimension and hence
the natural embedding I'som(X,) < Aut(0xXo) is open and induces an isomorphism
of identity components. Of course, more is true:
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Theorem 5.27 (Tits) Let X, be an irreducible symmetric space of rank > 2. Then
the natural embedding

Isom(Xy) — Aut(0sXo) (31)

1S an tsomorphism.

Proof: Let 1 be an automorphism of 0, Xy. We have to show that ¢ is induced
by an isometry of X,. ¢ induces an automorphism « of Aut,(0,Xo) = Isom,(Xo)
which sends the stabilizer of an apartment a to the stabilizer of a, i.e. it sends the
group of translations along the flat Fj filling in the apartment a (05 F, = a) to the
translations along Fy,. The isometry ¥ inducing o« (5.24) thus satisfies WF, = F,,
i.e. 0,V (a) = va for all apartments a and it follows 0¥ = ). O

5.27 implies 1.3 in the smooth case.

5.4 The case of branching

Assumption 5.28 X is a locally compact Hadamard space with extendible rays and
OritsX 18 a thick irreducible spherical building of dimension r — 1 > 1. Moreover we
assume in this section that some complete geodesics branch in X.

Note that now we can’t expect a big group Aut(0,X) of boundary automor-
phisms. There exist completely asymmetric Euclidean buildings of rank 2. Our ap-
proach is based on the observation that nevertheless the cross sections of all parallel
sets are highly symmetric (3.8).

5.4.1 Disconnectivity of Fiirstenberg boundary

The aim of this section is:

Proposition 5.29 If for some panel o of B = Ori;s X the space X, B is totally dis-
connected, then this is true for all panels.

Proof: We first consider the case when B is one-dimensional. [ denotes the length of
a Weyl arc and irreducibility implies 7/l > 3. The vertices (singular points) of B can
be two-coloured, say blue and red, so that adjacent vertices have different colours.
The distance of two vertices is an even multiple of [ iff they have the same colour.
According to 3.8, the Hadamard spaces C¢ satisfy 4.1 for all vertices £ € B. 4.2
tells that 3¢ B is homeomorphic to a sphere of dimension > 1, a Cantor set or a finite
set with at least 3 elements (because B is thick). Vertices £;,& € B of the same
colour are projectively equivalent®® and therefore the spaces of directions ¢, B are
homeomorphic. If 7/l is odd then any two antipodal vertices have different colours
and the X¢B are homeomorphic for all vertices £. If 7/l is even (and hence > 4 by
irreducibility), we have to rule out the possibility that ¥.B is disconnected for blue
vertices & and connected for red vertices. Let us assume that this were the case.

20For 1-dimensional spherical buildings projective equivalence is the equivalence relation for vertices
generated by antipodality.
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Sublemma 5.30 If ¥:B s a sphere for red vertices § then X,B can’t be finite for
blue vertices 7.

Proof: Assume that X.B is a sphere for red vertices { and X,B is finite for blue
vertices 7).

1. Red vertices £,&' of distance 4l lie in the same path component of the singular
set Sing(B): There exists a red vertex n with d(&,n) = d(&',n) = 2l. &,&,n lie in
an apartment a (because 4] < m). Let 7 be the antipode of 1 in a. Since ¥,B is
path-connected we can continuously deform the geodesic nén to the geodesic nf’n, SO
¢ and & can be connected by a red path.

2. For every red vertex &, the (red) distance sphere So(&y) is path-connected: Let
&1,& be red vertices with d(&;,&) = 2. There is a vertex &, in the same path
component of Sy (&p) as & such that d(&;, &) = 4. (Deform as in 1. using an antipode
of &.)

3. Su(&) is a manifold of the same dimension as ¢, B: We introduce local co-
ordinates on Sy (&) near £ as follows. Let n be the midpoint of &¢, i.e. d(&,n) =
d(n, &) = 1. Choose antipodes & of & and 7 of n. For & € Sy (&) near 5 the mldpomt

1’ of &€ is close to n and d(if, 7)) = =, d(f, &) = d(€',7) = 7 — L. 5077 and nf’ are
continuous local coordinates for & and it follows that Sg(&y) is a manifold of the same

dimension as ¢, B.
4. Since X¢, B embeds into Sy (&) it follows that Sy (&) = ¢, B via the map

— ~
€ &€, and Sy (&) is contained in the suspension B(&p,&). This implies that the
cardinality of ¥, B is 2 and contradicts thickness. U

For the rest of the proof of 5.29 we assume that ¥,B is a Cantor set for blue
vertices 77 and X¢B is a sphere for red &.

Sublemma 5.31 Let &, n,n' € B be distinct vertices (of the same color) with d(§,n) =
d(&,m') =7 — 21 and let U be a neighborhood of £&. Then there ezists a vertex &' € U
satisfying

d§',m) =m—2 and  d(&,n) =T. (32)

Proof: Let ¢ be the vertex with ﬁﬂ_ﬁ? = £C and w the vertex on (7 adjacent to (.

Extend wé beyond £ to a geodesic ww of length 7. ¥, B has no isolated points and

we can pick a geodesic vy connecting w and w so that the initial vector ¥, is close
—

to w( and the vertex & € v with d(¢',w) = d(&,w) lies in U. By construction, (32)
holds. ([l

Sublemma 5.32 Let v : (—¢€,€) — Sing(B) be a continuous path in the red singular
set and & be a red verter so that d(§,v(0)) = m — 2l. Then d(&,y(t)) =7 — 2l fort

close to 0.

Proof: Let n be a blue vertex adjacent to £ so that d(n,v(0)) = m — . The set of
vertices at distance m — [ from 7 is open in the singular set and so d(n,y(t)) =7 —{
— =

for ¢ close to 0. Since X, B is totally disconnected we have 1y(t)=n¢ for small ¢, hence
the claim holds. O
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Sublemma 5.33 The path v is constant.

Proof: 1t suffices to show that 7y is locally constant. There are neighborhoods U of
¢ and V of n := «(0) so that d(¢',n') > m — 2[ for all vertices ¢ € U and f € V
(because the Tits distance is upper semicontinuous). We assume without loss of
generality that v does not leave V. Then 5.32 implies that d(&,v(-)) = 7 — 2. If v
were not locally constant we could choose t so that n' := ~(t) # n. Applying 5.31
there exists ¢ € U so that (32) holds. But 5.32 implies also that d(¢',v(-)) =7 — 2L.
Hence d(&',n') = m — 21, contradicting (32). Thus 7 is locally constant. O

Hence, the set of red vertices has trivial path components. But since 7/l > 2, the
space of directions X¢B for any vertex ¢ continuously embeds into the blue singular
set as well as into the red singular set. Therefore ¥:B can’t be connected for any
vertex ¢, contradiction. Hence Y¢B must be a Cantor set for all vertices (. This
concludes the proof of 5.29 in the 1-dimensional case.

Without much transpiration one can deduce the assertion in the general case
dim(B) > 1: Let 0,7 be panels of the same chamber with angle Z(o,7) < 7/2. Then
the 1-dimensional topological spherical building ¥,~,B is irreducible and we have
canonical homeomorphisms:

EO'B = EzngO'EUﬂTB’ ETB = EEUnTTEO'ﬂTB’

Moreover, >, B is the ideal boundary of a Hadamard space satisfying 5.28 with
r = 2, namely of the cross section C'S(f) for any (r — 2)-flat f with Of D o N 7.
Therefore we can apply our assertion in the 1-dimensional case and see that ¥,B is
a Cantor set if and only if >, B is.

Since B is irreducible, for any two panels o, 0’ exists a finite sequence of panels
oy = 0,01,...,0, = 0 so that any two successive o; are adjacent with angle less
than /22!, This finishes the proof of 5.29. O

5.4.2 The structure of parallel sets

Consider a (r — 1)-flat w C X whose boundary at infinity is a wall in the spherical
building 07y, X. For any panel 7 C 0, w, C; is canonically isometric to the convex
core of CS(w). By 4.2 and 4.16, the following three statements are equivalent:

e C'S(w) is the product of a metric tree times a compact Hadamard space.
e 0,,CS(w) is homeomorphic to a Cantor set.

e Some geodesics branch in C'S(w)*.

By 5.28 and 5.6, there exists a (r — 1)-flat w so that C'S(w) contains branching
geodesics. Oyw is a wall in Op;, X and for any panel ¢ C J,w we have that
Yo0rits X = 0,CS(w) is a Cantor set. 5.29 implies that ¥,0r;s X is a Cantor set for
all panels ¢ in J74,X and hence:

Lemma 5.34 0,CS(w) is tree x compact for all (r — 1)-flats w.

21Otherwise we could subdivide the panels of the model Weyl chamber into two families so that
panels in different families are orthogonal; this would imply reducibility.
22This equivalent to branching of geodesics in C..
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5.4.3 Proof of the main result 1.2

Theorem 5.35 Let X be a locally compact Hadamard space with extendible rays and
whose Tits boundary is a thick irreducible spherical building of dimension r —1 > 1.
If there are branching complete geodesics in X then X splits as the product of a
FEuclidean building of rank r times a compact Hadamard space.

Proof: We first investigate the local structure of X. For every point x € X we have
the canonical 1-Lipschitz continuous projection

9.’E : (9Tz~tsX — EEX

which assigns to & € Opyu, X the direction ::fe Yz X. Therefore, if f,é € OrisX are
z-antipodes, i.e. Zy(€,€) = m, then 6, restricts to an isometry on every geodesic in
OritsX of length 7 connecting ¢ and {A . By our assumption of extendible rays, every
¢ has z-antipodes, and it follows that 8, restricts to an isometry on every simplex. If
0,6 are open chambers in Op;;s X which are z-opposite in the sense that there exist
z-antipodes £ € o and é € 0, then 0, restricts to an isometry on the unique apartment
in Oy, X containing o, & and we call its image an apartmentin ¥, X. If o1, 09 are open
simplices whose 6,-images intersect then there exists a simplex ¢ which is z-opposite
to both o;. It follows that the 6,-images of the spheres span(o;, ) and therefore the
6,0; coincide. Hence the ,-images of open simplices in Or;;; X are disjoint or they
coincide and we call them simplices or faces in ¥, X.

Sublemma 5.36 The 0,-images of adjacent chambers 1,09 C Ori1s X are contained
in an apartment. (They may coincide.)

Proof: Let £ be a point in the open panel o; Moy and é an z-antipode. 6, is isometric
on the half-apartments h; = span(€, ;) because it is isometric on o; and Z4(€,€) = .
The union H; of the rays with initial point z and ideal endpoint € h; is a half-r-flat
in X. The (r — 1)-flats 0H; coincide and our assumption on cross sections of parallel
sets allows two possibilities: Either H; U Hs is a r-flat and the 6,0; are adjacent
chambers in an apartment. Or the H; N H, is a non-degenerate flat strip and the 6,0;
coincide. O

As a consequence, the centers of adjacent chambers in ¥, X are uniformly sepa-
rated and the compactness of ¥, X implies that the number of simplices in ¥,X is
finite.

Sublemma 5.37 Any two simplices in X, X are contained in an apartment.

Proof: Since in Or;s X any two simplices are contained in an apartment it suffices to
prove the following statement: (%) If ¢; is a chamber contained in an apartment a and
co 18 a chamber so that coNa 1s a panel, then there exists an apartment a' containing
the chambers ¢, and cy. The rest then follows by induction. To prove (x) we consider
the hemisphere A C a with ¢; C h and ¢; Na C Oh. Applying 5.36 to the chamber
¢ and the adjacent chamber in h we see that there is a geodesic v : [0, 7] — 3, X
contained in ¢m(6,) which starts in int(cy), passes through cs Na into h and stays in
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h for the rest of the time and intersects int(c;) on its way. The regular endpoints of
v span a unique apartment o’ in X, X, and a’ D ¢; U ¢s. O

As a consequence, im(6,) is a convex, compact subset of ¥, X and hence itself a
CAT(1)-space. The spherical building structure on dr;s X induces a spherical building
structure on im(f,).

Consequence 5.38 For any two points &,& € 0,X the angle Z,(&1,&) can take
only finitely many values which depend on the types Os,.,. x& € Amodei-

Let us denote by Sun, the union of all rays emanating from z.

Lemma 5.39 Any two sets Sun, and Sun, are disjoint or coincide.

Proof: Assume that z # y and y € Sun,. We pick an ideal point £ € 0, X and show
that the ray y¢ is contained in Sun,: First we extend yz to a ray yxzn. Then we

5
choose a minimal geodesic connecting y_}: and y¢ inside im(6,) and extend it beyond

N
y& to a geodesic « of length 7. Denote the endpoint by u. There is a chamber ¢ in
¥, X which contains the end of a near u, and we lift o to a chamber ¢ in 07y X.
6, restricts to an isometry on any apartment a C Oris X which contains ¢ and 7.

N
Therefore @ bounds a flat F' which contains z and a ray y&’ with y&’ :y_é in ¥, X. The
rays y& and y€ initially coincide (by 5.38) and therefore Sun, N y¢ is half-open in
y€ towards €. Since it is clearly closed, it follows that Sun, contains the ray y& and
hence Sun, C Sun,. Now the segment 7y is contained in a geodesic. Le. z € Sun,
and analoguously Sun, C Sun,. This shows that y € Sun, iff Sun, = Sun,. It
follows that if z € Sun, N Sun, then Sun, = Sun, = Sun,, hence the claim. O

It follows that the subsets Sun, are minimal closed convex with full ideal boundary
OsoSuUn; = 05X . Consequently they are parallel and, by the second part of 2.2, X
decomposes as a product of Z x compact. Z is a geodesically complete Hadamard
space and it remains to verify that it carries a Euclidean building structure. Its
Tits boundary Or;sZ = OrisX and the spaces of directions X,Z carry spherical
building structures modelled on the same Coxeter complex (S, W) so that the maps
0, : OritsZ — ¥, Z are building morphisms, i.e. they are compatible with the direction
maps to the model Weyl chamber A, q4e1-

93TitsZ = OEZZ of,. (33)

(The buildings 3,7 are in general not thick.) Choose a Euclidean r-space F, identify
Orius B = S and let Wy C Isom(E) be the full inverse image of W under the
canonical surjection rot : Isom(E) — Isom(S). Up to isometries in W,s; we can
pick a canonical chart £ — F' for every maximal flat F' C Z. The coordinate changes
will be induced by W,s. Since geodesic segments are extendible they are contained
in maximal flats and in view of (33) we can assign to them well-defined A,,pge1-
directions. The directions clearly satisfy the angle rigidity property (cf. section 2.3.2)
and we hence have a Euclidean building structure on Z modelled on the Euclidean
Coxeter complex (E, Wess). (If one wishes, one can reduce the affine Weyl group and
obtain a canonical thick Euclidean building structure.) This concludes the proof of
5.35. O

Proof of 1.2: Put in 5.26 and 5.35. Stir gently. O
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5.5 Inducing boundary isomorphisms by homotheties: Proof
of 1.3

Proof of 1.3: By 1.2, X and X' are symmetric spaces or Euclidean buildings. The
Fiirstenberg boundary of X is a Cantor set iff X is a Euclidean building. Hence X, X’
are either both symmetric or both buildings. The assertion in the symmetric case is
the content of 5.27.

We may therefore assume that X and X’ are thick irreducible Euclidean buildings
of rank r > 2. Then for any flat f the cross section CS(f) is a Euclidean building
of rank r — dim(f), and has no Euclidean factor if f is singular. For all geodesics
[ the canonical embeddings CS(l) — Xj(+c0) Of cross sections into spaces of strong
asymptote classes are now surjective isometries, and for every § € 0 X, Cr = X;
is a FEuclidean building of rank r — 1 which splitts off a Euclidean de Rham factor
of dimension dim(7¢) where 7¢ denotes the simplex containing £ as interior point. In
particular, for all panels 7 C O07;sX, C; is a metric tree. As explained in section 5.2,
the differentials (26) of (1) are boundary maps of homotheties

C, — C¢T (34)

and these commute with the system of natural perspectivity identifications (16). The
assertion of 1.3 follows if we can pin down every vertex of X by data at infinity. This is
acheived by the following bowtie construction suggested by Bruce Kleiner: A bowtie
< consists of a pair of opposite chambers o, and 6., of vertices y; € C;, for each panel
7; C 0w and vertices g; € C;, for the opposite panels 7; so that persp..+y; = y; holds.
> determines a vertex in X as follows: 0., and 6, are contained in the ideal boundary
of a unique maximal flat F., C X and every pair y;,y; determines a wall w; C F.
The r walls w; intersect in a unique vertex z,,. We say loosely that 0 is contained
in the flat Fl.. We call two bowties b and <’ pre-adjacent if o N0, = 7, 6y = 6.,
and g; = gy, for all i. (Then also y, = v/ holds.) There is an obvious involution on the
space of bowties and an equally obvious action of the permutation group S, and we
call two bowties adjacent if they are pre-adjacent modulo these operations. Adjacent
bowties determine the same vertex. Adjacency spans an equivalence relation on the
set of bowties which we denote by “~”.

Lemma 5.40 >~ iff 2oy = Toy .

Proof: Clearly >xi~p<t' implies ., = Z.v. To prove the converse, let us assume that
Toq = Tn- We start with a special case:

Sublemma 5.41 If > and <’ lie in the same apartment then dxi~p<t

Proof: 1t is enough to check the case when o, and o,y share a panel, i.e. without
loss of generality 7 = 7, 71 = 7{, y1 = y; and g; = ¢. Since y;, §; are vertices there
exists a half-r-flat H C X so that HNF = 0H = w;. If <" is adjacent to < and
<" is adjacent to ' so that owy = 0wyr C O H then <’ and <’ are adjacent. So
DD O

Sublemma 5.42 Let 6 be a chamber in Ory,X. Then there exists a bowtie >~
so that 6y = 0.
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Proof: It is enough to treat the case when & is adjacent to G, in Opys,X. After
replacing > by an equivalent bowtie (e.g. contained in the same maximal flat) we
may assume that 6, 0 and 6,_0., are opposite chambers in >, X. Then we can
choose <’ adjacent to . a

We refine the previous sublemma:

Sublemma 5.43 Let F' be a mazimal flat and < a bowtie with 0y, C OxF and
Tee € F. Let 6 be any chamber in Ory, X. Then there exists another bowtie <''~pq
50 that Guyr = 0 and Osyr C OxoF.

Proof: Again, we may assume without loss of generality that the chamber & is adjacent
to 0w If 6,0 is opposite to the chamber 6, 0. in 3, X then we can choose <"
adjacent to . Otherwise let ¢ C O, F' be the chamber adjacent to oy so that 6,0 is
opposite to 6,6 and denote by <" the bowtie with ouy = 0, 6oy = 6 and Zpyr = Ty
Then <’ is equivalent to a bowtie contained in F,, and hence to p<. O

To finish the proof of 5.40 we can first replace <’ by an equivalent bowtie so that
O, = Ope (5.42) and then replace it in a second step so that <’ and < lie in the same
apartment (5.43). Hence b’ and < are equivalent (5.41). O

It follows that equivalence classes of bowties in X correspond to vertices. Since
(1) induces a map between the spaces of bowties in X and X' which preserves the
equivalence relation “~”, it thereby induces a map ® : Vert(X) — Vert(X’) on
vertices. @ maps all vertices in a singular flat f C X to the vertices of a singular
flat f® C X' so that ¢(0sf) = O f®. Since X and X' are irreducible buildings, ®
extends to a homothety ® : X — X' and 0,® = ¢. This concludes the proof of
1.3. O

5.6 Extension of Mostow and Prasad Rigidity to singular
spaces of nonpositive curvature: Proof of 1.5

Proof of 1.5: We argue as Mostow [Mos73]. A TI'-periodic flat is a maximal flat
whose stabilizer in I' acts cocompactly. Due to results of Borel and Ballmann-Brin,
[-periodic flats lie dense in the space of all flats in X,,,4.;. By our assumption, there
is a ['-equivariant continuous map

D X, 000 — X.

It is a quasi-isometry and carries I'-periodic flats in X,,,4¢; to ['-periodic quasi-flats in
X with uniform quasi-isometry constants. If a quasi-flat is Hausdorff close to a flat
then it lies in a tubular neighborhood of this flat whose radius is uniformly bounded
in terms of the quasi-isometry constants ([Mos73, Lemma 13.2] for symmetric spaces
and [KL96] for buildings). Density and uniformity imply that ® maps every flat in
Xmoder uniformly close to a flat in X and with this information one can construct a
['-equivariant boundary isomorphism

(I)OO : aooXmodel — OOOX

By 1.2 X is a symmetric space or Euclidean building, and by 1.3, after suitably
rescaling the irreducible factors of X401, Poo is induced by a I'-equivariant isometry
Xmodel — X. O
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