Quasi-isometries and the de Rham decomposition

Michael Kapovich? Bruce Kleiner! and Bernhard Leeb?

October 3, 1996

Abstract

We study quasi-isometries ® : [[ X; — [[Y; of product spaces and find con-
ditions on the X;, Y; which guarantee that the product structure is preserved.
The main result applies to universal covers of compact Riemannian manifolds
with nonpositive sectional curvature. We introduce a quasi-isometry invariant
notion of coarse rank for metric spaces which coincides with the geometric rank
for universal covers of closed nonpositively curved manifolds. This shows that
the geometric rank is a quasi-isometry invariant.

1 Introduction

In this paper we will prove that under suitable assumptions, quasi-isometries preserve
product structure. Earlier papers have considered — either implicitly or explicitly —
the problem of showing that quasi-isometries preserve prominent geometric structure:
[KaL1, KaL3] show that a natural decomposition of the universal cover of certain
Haken manifolds is preserved by any quasi-isometry; [Sch]| uses coarse topology to
prove that boundary components are preserved; [KIL| shows that quasi-isometries of
symmetric spaces and Euclidean buildings preserve maximal flats; [Pan2, KIL] show
that quasi-isometries are equivalent to isometries. It is known [St, GH] that splitta-
bility over finite groups is a quasi-isometry invariant property of finitely generated
groups; and [Bo] proves quasi-isometry invariance of splitting of 1-ended hyperbolic
groups over virtually Z subgroups.

We first formulate a version of our main result for Riemannian manifolds with
nonpositive sectional curvature:

Theorem A Suppose M, N are closed nonpositively curved Riemannian manifolds,
and consider the de Rham decompositions of their universal covers M = E™ x
Hle M;, N = E* x Hle N;. Then for every L > 1,A > 0 there is a constant
D so that for each (L, A)-quasi-isometry ¢ : M — N we have: k = ¢, m = n and
after reindexing the factors N; there are quasi-isometries ¢; : M; — N; such that for
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every i the diagram

M X N
i

commutes up to error at most D.

Remark 1.1 The first paper to consider the effect of quasi-isometries on product
structure was [R], which studied quasi-isometries of H? x R.

Another goal of this paper is to prove that two closed nonpositively curved mani-
folds with quasi-isometric universal covers have the same geometric rank (see [Ba, p.
73] for the definition). To prove this we define a quasi-isometry invariant for general
metric spaces, and then verify that it coincides with the geometric rank in the case
of universal covers of closed nonpositively curved manifolds.

Definition 1.2 If X s a topological space, then the topological rank of X s
trank(X) :=inf{k | 3p € X so that H(X, X — {p}) # {0}}.
If M s a metric space, then the coarse rank of M 1is
crank(M) := inf{trank(X,) | X, is an asymptotic cone of X }.

A quasi-isometry M — M’ induces bi-Lipschitz homeomorphisms between corre-
sponding asymptotic cones, so the coarse rank is manifestly a quasi-isometry invari-
ant.

Theorem 1.3 If M is the universal cover of a closed nonpositively curved manifold:
then the coarse rank of M coincides with the geometric rank of M. In particular if
two closed nonpositively curved Riemannian manifolds have quasi-isometric universal
covers, then they have the same geometric rank.

The proof relies on the structure theory of nonpositively curved manifolds [Ba]
and computations of local homology groups of asymptotic cones of Hadamard spaces
of rank 1 and of Euclidean buildings.

Theorem A is a consequence of a more general fact, see section 3 for necessary
definitions:

Theorem B Suppose M = Z x [[*_, M; and N = W x Hle N; are geodesic metric
spaces such that the asymptotic cones of Z and W are homeomorphic to R* and R™
respectively, and the components M;, N; are of coarse type? I and II. Then for every
L >1,A > 0 there is a constant D so that for each (L, A)-quasi-isometry ¢ : M — N

1Or a piecewise Riemannian 2-complex with nonpositive curvature admitting a discrete cocom-
pact isometric action, [BaBr].
2See definition3.5.



we have: k = £, n = m and after reindexing the factors N; there are quasi-isometries
i : M; — N; such that for every i the diagram

M 2 N
i

commutes up to error at most D.

Remark 1.4 If n = m > 1 then in the theorems above one cannot assert that the
quasi-isometry ¢ is uniformly close to a product of quasi-isometries.

The class of metric spaces of coarse type I and II contains universal covers of com-
pact nonpositively curved Riemannian manifolds (which are irreducible and nonflat),
Euclidean buildings, certain piecewise Euclidean complexes with nonpositive curva-
ture [BaBr], 6-hyperbolic metric spaces, nonuniform lattices in rank 1 Lie groups, etc.
The factors Z, W may be simply connected nilpotent Lie groups with left invariant
metrics [Panl]. The universal covers of closed Riemannian manifolds of nonpositive
curvature satisfy the assumptions of Theorem B, see proposition 4.7.

We prove theorem B by using the topology of asymptotic cones of M and N. An
important step is the following topological analogue:

Theorem C Suppose that X;,Y; is a collection of geodesic metric spaces of types® I
and II. Let X := R" x Hle X, and Y := R™ x HleYj. Suppose f : X — Y isa
homeomorphism. Then ¢ = k, m = n and after reindexing the factors Y; there are
homeomorphisms f; : X; — Y; so that the following diagram commutes for every i:

x L vy
fi

The proof of theorem C makes use of topologically defined decompositions of X
and Y into products of metric trees and Euclidean buildings. We show that f must
respect these decompositions, and then we reduce theorem C to topological rigidity
of homeomorphisms between products of Euclidean buildings, see [KIL]. Theorem
C implies that the homeomorphism of asymptotic cones induced by the mapping ¢
(in Theorem B) must respect the product structure. The proof of the implication
(Theorem C = Theorem B) requires only a certain “nontranslatability” property
of the factors M; and Nj;, see definition 2.3 and propositions 2.6, 2.8. If a pair of
metric spaces (X,Y) is nontranslatable, then there is a function D(L, A) so that for
any pair of (L, A)-quasi-isometries f,g : X — Y which are within finite distance
(in the sup-metric) from each other, we have: the distance between f and g is at
most D(L, A). This property is interesting by itself: it allows one to define ineffective
kernels of quasi-actions? in a natural way. Our results imply that the universal cover

3See definitions 3.3 and 3.4.

“An (L, A) quasi-action of a group I' on a metric space X is a map p : I x X — X so that
p(g,") : X = X is an (L, A) quasi-isometry for every g € T, d(p(g1, p(g2,%)), p(g192,2)) < A for
every g1,92 € I', z € X, and d(p(e, x),z) < A for every = € X.



of any closed nonpositively curved Riemannian manifold, which doesn’t not have flat
factors, is nontranslatable.

The proofs of theorems A, B and 1.3 are in section 6. Theorem C is proven in
section 5.
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2 Quasi-isometries, asymptotic cones and product
structures

In this section, we recall some basic definitions. We also give conditions which allow
us to derive product splitting theorems for quasi-isometries from splitting theorems
for asymptotic cones.

Definition 2.1 A map f: X — Y between two metric spaces is (L, A)-Lipschitz if
L>1,A>0 and:
d(f(z), f(a')) < Ld(z,2") + A

for all z,2' € X. A map is coarse Lipschitz if it is (L, A)-Lipschitz for some
L, A € R. Note that coarse Lipschitz maps needn’t be continuous. A coarse Lipschitz
mapping f is an (L, A)-quasi-isometric embedding if it is (L, A)-Lipschitz and

d(f(z), f(a")) > L7 d(z,2") — A

for all z,2" € X. Finally, f is an (L, A)-quasi-isometry if it is an (L, A)-quasi-
tsometric embedding and the space Y lies in the A-neighborhood of the image of f.



In this paper we will use ultralimits and asymptotic cones of metric spaces and
maps between them. We refer to [KaL1l] and [KIL] for precise definitions. We recall
however that ultralimits and asymptotic cones depend on the choice of: (1) an ultra-
filter, (2) a sequence of base-points, (3) a sequence of scale factors. When referring
to an asymptotic cone of a metric space X we will mean an asymptotic cone defined
using a suitable choice of these data. We shall use the notation X, for an asymptotic
cone of the metric space X and f, for an ultralimit of the mapping f between two
metric spaces.

Definition 2.2 Let (X,Y) be a pair of metric spaces. We say that (X,Y) is topo-
logically nontranslatable if any two homeomorphisms X — Y at finite distance
(with respect to the sup-metric) coincide. Note that this condition is vacuous unless
X and 'Y are homeomorphic.

Definition 2.3 Let (X,Y) be a pair of metric spaces. (X,Y) is nontranslatable
if for every pair of asymptotic cones X, Y, the pair (X,,Y,) is topologically non-
translatable.

Lemma 2.4 Let (X,Y) be a nontranslatable pair of metric spaces. Then there is a
function D(L, A) such that for any L > 1, A > 0, any two (L, A)-quasi-isometries
X =Y at finite distance have distance < D(L, A).

Proof. Otherwise there are pairs of (L, A) quasi-isometries ¢;,1¢; : X — Y with
d(¢i, ;) = D; — oo. Choose points x; € X with y; = ¢;(x;), 2; = 1;(x;) such that

D;
D; > d(y;, z:) > 5

I

an ultrafilter w, and scale factors D; !. We get the sequence of quasi-isometries
¢i+ (DX, %) — (DY, wa), i+ (D' X, %) — (D;'Y, )
Passing to the ultralimit we obtain two different homeomorphisms
Ouw, Uy : Xy — Y,
at distance < 1, contradicting the fact that X, and Y, are nontranslatable. [

Lemma 2.5 Suppose that X,Y are metric spaces and h : X — Y 1is a coarse Lips-
chitz mapping. Then h is a quasi-isometric embedding iff every ultralimit h, : X, —
Y, of h is injective.

Proof. The implication (quasi-isometric embedding = coarse Lipschitz map) is clear,
so we prove the converse. We need to prove that for any sequence z,,z;, € X such
that d(x,, x],) — oo the limit

IUEDNIER)
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If not, then there is a sequence so that the limit is equal to zero. Set y, := h(yn)-
Let r,, := d(zn, x},), consider the sequence

h:(r,'X,z,) — (r,'Y, y,)
The ultralimit of this sequence of mappings is a map
hy : Xy, — Y,

and h,(z,) = hy(z,), but z, # z/,. This contradicts the assumption that h, is
injective. [

Consider direct products® of geodesic metric spaces X := [[", X;, Y :=[[}", ;.
We shall denote by 7x;,7y; the projections from X,Y to the factors X;,Y; respec-
tively. The following two theorems provide the main tool for proving quasi-isometry
invariance of product decompositions of geodesic metric spaces.

Proposition 2.6 Suppose ¢ : X = [[X, Xi = YV = [[[L, Y} is an (L, A)-quasi-
1sometry such that

(a) All ultralimits ¢,, of ¢ preserve the product structures of the asymptotic cones
of X and ' Y;

(b) Each pair (X;,Y;) is nontranslatable.

Then there is a function D(L, A) so that the mapping ¢ is at distance < D(L, A)
from a product of (L, A")-quasi-isometries, where A" depends only on (L, A).

Proof. We call a pair of points z,2' € X i-horizontal iff 7x, (x) = 7x,(2') for all
k #i. Fix Ly > Land € € (0, L7"). We call the i-horizontal pair (z,z') j-compressed

if
d(my; (¢()), 7y, (¢(2")))
d(z,z")

<e€

and j-uncompressed if

d(my; (¢(2)), 7y; (¢(2)))

L—l
LS d(z, =)

< L.

If d is a positive number, Z is a metric space, and z,2z' € Z, then z, 2z’ are called
d-separated if d(z, 2') > d.

Lemma 2.7 There exists dy such that for all i, j either all dy-separated i-horizontal
pairs are j-compressed or all dy-separated i-horizontal pairs are j-uncompressed.

Proof. We first observe that there is a positive number dy such that for all d > d
and every 10d-metric ball B C X we have:

All d-separated i-horizontal pairs x, 2’ € B are simultaneously either j-compressed
or j-uncompressed.

Indeed, otherwise we could find a sequence dy — oo, and balls B,, (dy) which
contain a dg-separated i-horizontal pair which is j-compressed and a dg-separated
1-horizontal pair which is j-uncompressed. Then the ultralimit of the sequence

Ty; 0Q: d,;lX — d,;lY}

5The distance for points in the product space is given by the Pythagorean formula.



with the basepoint %, € d,;lX is the mapping
¢w : Xw - Y}w

which is neither L-biLipschitz nor constant on the intersection of the unit ball B,
with an ¢-horizontal copy of Xj;,. This contradicts assumptions of the proposition.

Now pick two i-horizontal dy-separated pairs z,z’ and y,3' in X. Since X is a
geodesic metric space, we can find a chain of dy-separated i-horizontal pairs connecting
zz' to yy' with the following property: any two successive pairs w,w’ and z, 7’ are
contained in a ball of radius 10 min(d(w, w'), d(z, 2')). Hence the pairs z, 2z’ and y, 3/’
are either both i-compressed or both i-uncompressed. [l

From the above lemma and the fact that all ultralimits of ¢ respect the product
structure of X, Y,,, we see that for each 7 there is a unique j so that all dy-separated
i-horizontal pairs (z,z’) are j-uncompressed. We can reindex the factors Y; so that
for all 7 every dy-separated i-horizontal pair is -uncompressed and j-compressed for
every j # i. Hence the family of maps

{$eilz € [[ Xi}, Goi: Xi — Y
ki

given by
¢m,z(i‘) = ’ﬂ'yi (¢($1, ey i1, .f, Tit1y- - - ,.Tm))

consists of quasi-isometries with uniform constants at pairwise finite distance. By
assumption, the pair (X;,Y;) is non-translatable and hence the quasi-isometries ¢, ;
for fixed 7 have uniformly bounded distance from one quasi-isometry ¢; : X; — Y;
by lemma 2.4. Therefore the product quasi-isometry [] ¢; lies at bounded distance
from ¢. The distance between these quasi-isometries is uniformly bounded in terms
of (L, A) because each pair (X;,Y;) is nontranslatable. O

We will need a modified version of the above result.

Proposition 2.8 Consider metric products X = X x Z,Y =Y x W of geodesic
metric spaces. We assume that: (a) the pair (X,Y) is nontranslatable and (b) that
¢: X =Y is a (L, A)-quasi-isometry such that each ultralimit ¢, of ¢ preserves the
decompositions of X, x Z, and Y, x W,, by the Z,, W, -factors, i.e. there exists a
homeomorphism 1, : X, — Y., such that the diagram

X, 25 v,
X, 2 v,
commutes. Then there is a quasi-isometry ¢ : X — Y such that the diagram
X ¢
— Y
X 4Ly

commutes up to a finite error bounded in terms of (L, A).
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Proof. For each z € Z we consider the mappings
¢ X —Y,0,(2) =75 0 6(, 2)

All ultralimits of ¢, are L-bi-Lipschitz homeomorphisms X, — Y,,. By repeating
the arguments of proposition 2.6 the family {¢, : z € Z} consists of quasi-isometries
with uniform constants. Since the pair (X,Y) is nontranslatable we conclude that
all the mappings ¢, are within a uniformly bounded distance from a quasi-isometry
p: X — Y. O

3 Tree-like decompositions of metric spaces and
topology of irreducible buildings

The goal of this section is to study the topology of factors of the space X of theorem C.
We introduce two types of geodesic metric spaces and establish the nontranslatability
properties for these spaces which will be used in proving theorem C. In the end of the
section we prove a vanishing theorem for local homology groups of type II spaces.

Let X be a geodesic metric space®. We decompose X into maximal “immovable”
trees as follows: say that the points p,q € X satisfy the relation p ~ ¢ if and only if
there is a continuous path v : I — X from p to ¢ whose image is contained in the
image of any other continuous path from p to ¢q. This decomposition is topologically
invariant. If p,q € X, p ~ ¢, and 7y is as above, then I'm(7y) is contained in any
geodesic segment pg from p to g; hence by the connectedness of I'm(y) we have
Im(~) = pg. It follows that there is a unique arc joining p to ¢, and a unique geodesic
segment from p to q. If p ~ q and s € pg, then clearly s ~ p and s ~ g. Also, if p ~ ¢
and p’ ~ ¢', then gp N p'q’ is a closed subsegment of pg and p'q’.

Lemma 3.1 ~ is an equivalence relation. The equivalence classes are metric trees.

Proof. The relation ~ is obviously reflexive and symmetric.

To show that ~ is also transitive, assume that p ~ g and ¢ ~ r. Then gs = pgNqr
for some s € pg N qr; so ps U ST is an arc joining p to r. The image of any path
from p to r must contain this arc, for otherwise v will contradict s ~ p, s ~ r. So
peoT. ]

We will denote the decomposition of X into ~-equivalence classes by D(X) and
refer to the cosets as leaves.

Lemma 3.2 If X is a geodesic metric space then the leaves of D(X) are closed convez
subsets of X.

Proof. Tt is obvious that the equivalence classes are convex. Let T C X be the leaf
of p € X, and let ¢ be a point on the frontier of 7. If p; € T and lim;_,,, p; = ¢,
then limy ;o Diam(prgApiq) — 0 (where A denotes the symmetric difference). If
is a path from p to g, Im(y) must contain pp; \ gp;; in particular pp; \ gp; C pq for

6Qur definitions and proofs actually apply to a more general situation, namely when X is a
topological space where any two points can be connected by a topologically embedded interval.



every geodesic segment pg from p to ¢. This implies v D U;(pp; \ ap;) = pg \ {¢} and
v D Ppg. So q ~ p. Il

The leaves of D(X) may be single points, and may have inextendible geodesic
segments. If X is a connected complete Riemannian manifold of dimension dim X # 1
then all equivalence classes are points. The simplest example where the leaves of this
decomposition are not points is when X is a metric tree; in this case any two points
are equivalent. An example where some leaves are proper subsets and non-degenerate
trees can be obtained as follows: Take the disjoint union of two metric trees 71, T, and
the plane R?. Pick two distinct points z1, 2o € R? and a pair of points y; € Ty, y2 € Tb,
then identify z; and y;, xo and yy. Let X denote the resulting metric space. The
leaves of D(X) are:

(1) the trees T1, To,

(2) the one-point sets {z} for z € R? — {y1, y2}-

More generally we can take a continuum of trees T, and attach them to R? at all
points a € R?. Then the leaves of D(X) are the trees T,,.

Definition 3.3 A geodesic metric space X is said to be of type I if all leaves of
D(X) are geodesically complete trees which branch everywhere.

Recall that a point in a tree is a branch point if it separates the tree into at least 3
components. We remark that for the purposes of this paper it would suffice to require
that T has a dense set of branch points.

The spaces of type I considered in this paper arise as asymptotic cones. Examples
of spaces all of whose asymptotic cones are of type I are:

e periodic d-hyperbolic spaces whose ideal boundary has at least 3 points.

e periodic locally compact Hadamard spaces which are not quasi-isometric to R
and which contain periodic rank 1 geodesics (see proposition 4.7).

Definition 3.4 A geodesic metric space X is said to be of type II if it is a thick,
irreducible Fuclidean building with transitive affine Weyl group and rank r > 2 (see
[KIL] for definitions).

Examples of such spaces are asymptotic cones of symmetric spaces and of thick
irreducible Euclidean buildings of rank > 2 with cocompact affine Weyl group, see
[KIL].

Definition 3.5 Let M be a geodesic metric space. We say that M has coarse type
1 if every aymptotic cone of M has type I; M has coarse type II if every asymptotic
cone of M has type II.

As we shall see in proposition 4.8 the universal cover M of any closed Riemannian
nonpositively curved manifold has either coarse type I or type IT unless M is reducible
or flat.



Lemma 3.6 Suppose that L is a metric tree, T C L s a nondegenerate tripod with
the central point ¢ and the terminal points x,y, z. Suppose that T' C L is another
tripod with the terminal points x',y', 2" so that

1 1 1
d(x,.’L") S §d(f13,6), d(yayl) S Ed(yac)a d(zazl) S §d(z,c)

Then the central point ¢ of T" coincides with the central point ¢ of the tripod T.

Proof. Consider the segment zz’. Its intersection with 7" has the length at most %
of d(z,c), the same is true for the intersections yy' N'T, zz' NT. Hence the geodesic
segments

xlyl, ./L',ZI, Zlyl
contain the central point ¢ of the tripod T'. Thus ¢ =¢. O

Lemma 3.7 Suppose T is a metric tree with dense set of branch-points, A is a path-
connected topological space, and Y is a metric space of type 1. Assume that the map
g: T x A—Y is continuous and for each a € A the mapping g(-,a) : T — Y is an
embedding into a leaf of D(Y). Then for each t € T the mapping g(t,-) is constant.

Proof. We first prove that the leaf L, of D(Y) which contains ¢g(7’, a) is constant as
a function of a. Fix a and pick two distinct points ¢,s € T" and a sufficiently small
neighborhood U of a in A such that

d(z,y) > 4-diam(g(z,U)) + 4 - diam(g(y, U))

where we let x = ¢(t,a) and y = g(s,a). For b € U we denote furthermore x' = ¢(t, b)
and y' = g(s,b). Then 2’ ~ y' implies that the path 2’z U Zy U yy' covers z'y’. So
the intersection zy N z'y’ is not empty and therefore L, = L. This shows that L,
is locally constant and hence constant as a function of a. The image of ¢ is thus
contained in a metric tree and lemma 3.6 implies that the mapping ¢(t,-) : A = YV
is locally constant for every branch point ¢ € 7. The claim follows because 7" has a
dense set of branch points. [

_ In what follows we will use singular homology groups with integer coefficients and
H, will denote the reduced homology groups.

Definition 3.8 Let X be an acyclic Hausdorff topological space (i.e. H,(X) = 0),
D = D% < X is a topological embedding of the open d-dimensional disk. We call
D essential if the inclusion D — X induces monomorphisms of the local homology
groups

H.(D,D—1z) — H,(X,X —x)

forallz € D.
Note that since X is acyclic, the disk D is essential iff we have monomorphisms
H,(D—z) — H,(X — 1)

Moreover, the only nonzero local homology groups H,(D, D — x) occur for ¢ = d and
Hy(D,D —2) =7 = H, (D — z).

10



Lemma 3.9 Let X be an acyclic geodesic metric space and let J C X be a home-
omorphic image of an open interval. Then J lies in a single leaf of D(X) iff J is
essential.

Proof. Suppose that J is essential, p,q € J, let pg be the subinterval between p and
g on J. Let’s prove that pg is contained in the image of any path « connecting p to
g- Suppose not, and take x € pg — Im(a). Then the 0-cycle ¢ — p is not a boundary
in J —z, but da = ¢ — p and « is a chain in X — z. This contradicts the assumption
that J is essential.

If we reverse this argument then we conclude that:

J liesin a leaf of D(X) <= J is essential

O
Corollary 3.10 For every space X of type I we have: trank(X) = 1.

Lemma 3.11 Suppose that X s a metric space of type II and rank d > 2. Then any
open d-dimensional embedded disk D¢ is essential in X .

Proof. This is proven in lemma 6.2.1 of [KIL]. O

Lemma 3.12 Let Y,Y' be metric spaces of type II, and let A be a connected topolog-
tcal space.

(1) Then the pair (Y,Y") is topologically nontranslatable.

(2) Assume furthermore that a map g : Y x A — Y’ is continuous and for each
a € A the mapping g(-,a) : Y — Y' is a homeomorphism. Then for each y € Y the
mapping g(y,-) : A = Y' is constant.

Proof. Recall that according to [KIL] the only homeomorphisms between type II
metric spaces are homotheties. If two top-dimensional flats in Y’ have finite Hausdorff
distance then they coincide; therefore if f,h : ¥ — Y’ are homeomorphisms at
finite distance from one another, then for each top-dimensional flat ' C Y we have
f(F) = h(F). Since Y,Y" are thick buildings with transitive affine Weyl group, this
implies that f = g and hence the pair (Y, Y”) is topologically nontranslatable.

We use similar arguments to verify (2). For a continuous map f: R¢ x A — Y/,
so that f(-,a) are homothetic embeddings, and a point ¢’ € Y’ we consider the subset
S(y') C A consisting of all parameters a € A so that 3’ € f(R%, a). This set is closed
by trivial reasons. It is open because top-dimensional flats in Euclidean buildings
are essential. Thus S(y') = A and the images of all mappings f(-,a) coincide for all
a € A. In particular, for every Weyl chamber F' C Y the sets g(F, a) coincide for all
a € A. The lemma follows. []

Lemma 3.13 Suppose that Y is a complete geodesic metric space of type I and L', L"

are leaves of D(Y') which are Hausdorff-close and have infinite diameter. Then L' =
L".

11



Proof. Suppose L' # L". Since L', L" are unbounded we can find a pair of points
€ L'y € L' so that 3d(y', L") < d(z',y") > 3d(2',L"). Let 2" € L",y" € Y"
be points such that d(z',2") < d(2',y")/3,d(y',y") < d(2',y')/3. Then the curve
'z U z"y" U y"y' connecting =’ to 3’ doesn’t contain z'y’ since the segments x'y’,
2"y" are disjoint. Contradiction. O]

Lemma 3.14 Suppose that X,Y is a pair of metric spaces of type I or II. Then the
pair (X,Y) is topologically nontranslatable.

Proof. If X is homeomorphic to Y then they have the same type, since any two points
in a type II space lie in an r-flat (where » > 2). Suppose that X,Y have type II.
Then the assertion was proven in lemma 3.12. Now consider the case of the spaces
of type I, f,g: X — Y are Hausdorff-close homeomorphisms. These mappings must
carry the decomposition D(X) to the decomposition D(Y) . Let L € D(X) be a leaf.
Then by lemma 3.13 the leaves f(L), g(L) coincide with a leaf 7" C Y. The mappings
f,9: L — T must be equal by Lemma 3.6. [

Proposition 3.15 Suppose that X is a metric space of the type II and rank d (as a
Euclidean building). Then for any point p € X the local homology groups H;(X, X —p)
vanish for all i # d.

Proof. We will use the notation and terminology from [KIL].

Hy(X, X — {p}) = {0} since rank(X) > 0. As X is contractible, 0 : Hy(X, X —
{p}) — Hy_1(X — {p}) is an isomorphism when k > 1; so it suffices to prove that
H; (X —{p}) = {0} unless k = d. Consider the logarithm map logy x : X —{p} —
¥pX. We will show that H.(logy, x) : H.(X—{p}) — H.(logys, x) is an isomorphism.
In the case when the affine Weyl group of X is discrete, B,(r) is isometric to a
truncated metric cone over ¥, X for sufficiently small > 0 ([KIL, proposition 4.5.1]);
hence H,(logs, x) is an isomorpism because By(r) — {p} — X — {p} is a homotopy
equivalence (use geodesic segments to contract X to B,(r)). In the general case we
will need the following facts:

1. ([KIL, Corollary 4.4.3]) Let S C ¥X,X be a finite union of apartments, and
let CS C C,X be the corresponding metric cone in the tangent cone at p.
Then there is a subset ¥ C X so that for sufficiently small 7, Y N B,(r) is
mapped isometrically by logg x to CS N By(r), 0 € C,X denotes the vertex of
the cone C,X. Furthermore, any two subsets Y, Y’ with this property satisfy
Y N B,(r) = Y' N B,(7) for sufficiently small 7 > 0.

2. (a) If [o] € Hg(X,X), there is a finite union of apartments S C ¥, X so
that [a] € Im(Hg(S) — H(X,X)), and (b) If S is a finite union of apart-
ments in ¥, X and [a] € Hg(S) is in Ker(Hy(S) — H(X,X)), then [o] €
Ker(Hg(S) — Hg(S")) for some finite union of apartments S’ O S.

Surjectivity of logs x. Pick [ag] € Hg(3,X). By fact 2a there is a finite union

of apartments S C X,X and [oq] € Hg(S) so that [ag] = (ig)«([ca]) where ig :
S — ¥, X is the inclusion. By fact 1, we have a subset ¥ C X which is mapped
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isometrically by logc x to C'S N B,(r). But then the inverse of this isometry can be
used to push [a1] to [an] € H(Y — {p}). Clearly (logs x).([az]) = [a].

Injectivity of logs x. Pick [ap] € Hi(X — {p}). By the simplex straightening
argument of [KIL, section 6.1], there is a finite union of apartments P C X and
[a] € Hy(P — {p}) so that [ag] = (ip—{p})s[1]. Moreover by [KIL, corollary 4.6.8]
we may assume that for every x € P, the segment pr C P. P determines a finite
union of apartments S C ¥, X, and logy, x maps [oq] to a cycle ap in S C ¥, X. If
[ap] € Ker(logy, ) then [ay] € Hi(S) isin Ker(Hy(S) — Hy(3,X)). By fact 2b, we
have a finite union of apartments S’ C £,X so that [a] € Ker(Hg(S) — Hg(5")).
Applying fact 1 to 5", we get Y’ C X and an r > 0 so that log, x induces an isometry

Y' N B,(r) — CS' N B,(r)

and
PN By(r) =Y Nlogg x (CS) N By(r).

As we may homotope o] radially until it lies in P N B,(r), we clearly have [ap] = 0.

We now claim that Hy_;(X,X) = {0} unless k¥ = d. To see this note’ that if
v € XpX is a regular point and V' C X, X is the set of antipodes of v, then V' is
discrete, ¥, X — V' is contractible since it is the open 7-ball centered at v, and each
v' € V has a neighborhood homeomorphic to R~!. The assertion follows by applying
excision and the exact sequence of the pair (X,X,U) where U is the complement of
an appropriate neighborhood of V. This proves the lemma. O

Corollary 3.16 Suppose that X is a space of type II which has rank r (as a building).
Then the rank of X equals its topological rank: trank(X) = r. So the topological rank
of every asymptotic cone of an irreducible symmetric space coincides with its geometric
rank.

4 Examples of spaces of coarse type I

Definition 4.1 A metric space X is called periodic if the action of the isometry
group Isom(X) on X is cobounded, i.e. there is a metric ball in X whose orbit
under Isom(X) equals X (we do not require this action to be properly discontinuous).
A geodesic vy in a metric space X 1is called periodic if the action on v of its stabilizer
in Isom(X) is cobounded.

We recall the definition of the divergence of a complete minimizing geodesic vy :
R — X in a geodesic metric space X (see [Ger|, [KaL2]). All geodesics will be
assumed to be nonconstant. Consider the complement of the open metric R-ball
B(R) centered at v(0) equipped with the path metric dx\p , (r). For each R > 0,
we measure the distance div(R) between the points v(£R) € X \ B,)(R) using
dx\ B0 (R)- The growth rate of the function div is called the divergence of . (Recall
that if f(t), g(t) are positive functions on R, then the growth rate of f is less than
the growth rate of ¢ iff limsup,_, ., f(t)/g(t) =0.)

The following proposition explains why this notion can be useful for proving that
certain spaces have coarse type I.

"Spherical buildings (with the topology induced from the CAT(1) metric) are homotopy equiva-
lent to a wedge of spheres, as follows from the argument in [Br, p. 94].
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Proposition 4.2 Suppose that v : R — X is a distance-minimizing periodic geodesic
in a geodesic metric space X which has superlinear divergence. Then for every asymp-
totic cone X, of X taken with basepoints in Im(~y), the ultralimit v, : R — X, has
image in a single leaf of the decomposition D(X,).

Remark 4.3 There are examples of spaces where the conclusion of this proposition
fails for certain nonperiodic geodesics which have superlinear divergence.

Proof. Suppose that the conclusion of the proposition fails. Then we can find a real
number ¢, a piecewise-geodesic path P, := Z1,T2, U ... U T(;p—1)uTme in X, between
distinct points 1, Ty, € L, so that P, is disjoint from ~,(¢) and the points z1,,, T,
are equidistant from ~y,(¢). Since + is periodic we can assume that ¢ = 0. Therefore
we can represent the path P, by a sequence of picewise-geodesic paths P, in X
connecting points 7,z = v(+R) so that for w-all n the path P, lies outside of the

nr'n

metric ball B,)(R/c) for the positive constant
¢ = 2d(7,(0), P,)™!

The length of P, grows as a linear function of R which contradicts the assumption
about superlinear divergence of . [J

Definition 4.4 A Hadamard space is a complete (not necessarily locally compact)
simply-connected geodesic metric space which has nonpositive curvature in the sense
of triangle comparisons [Ba, KIL].

The following proposition was proven in [KaL2|, we repeat the proof for conve-
nience of the reader.

Proposition 4.5 Let X be a locally-compact Hadamard space and let v be a periodic
geodesic in X which doesn’t bound a flat half-plane. Then v has at least quadratic
divergence.

Proof. Suppose that divergence of 7 is subquadratic. Pick § > 0. Let ag denote
a curve in X \ Bg(7(0)) connecting v(—R) to y(R) so that the length of ap is <
div(R)+ 4. Subquadratic divergence means that the length of ar equals € - R? where
limg o €g = 0. Fix h > 0. Denote by 7 : X — 7(R) the nearest-point-projection.
For sufficiently large R, we can find a subsegment a1as C v(—R/2, R/2) of length h
so that the portion of ag which projects on @jas via 7 has length at most eghR. Pick
points b; € ag with 7(b;) = a;. Let p; : [0, L;] — X be the unit speed geodesic joining
a; = pi(0) to b;. We have L; > R/2. The function ¢(t) := d(pi(t), p2(t)) is convex,
monotonically increasing on [0, R/2] and satisfies

»(0)=h,  P(R/2) < erRh.

Therefore
h <(h) < (1 4+ 2¢egh) - h.

The quadrilateral with vertices a; and p;(h) has three sides of length h, one side of
length < (1 4 2egh) - h and angles > 7/2 at a;. We have a family of such quadri-
laterals Qr parametrized by R. Using the translations along v(R), we transport the

14



quadrilaterals Qg to a fixed compact subset of X. The Hausdorff limit (as R tends
to infinity) of a convergent subsequence of the translated quadrilaterals is isometric
to a square of the side-length A in R?. Hence for each h, we obtain a flat square of

side-length h in X adjacent to . The local compactness of X implies existence of a
flat half-plane bounded by . [

Corollary 4.6 Let X be a locally-compact Hadamard space and let v be a periodic
geodesic which doesn’t bound a flat half-plane. Then for every asymptotic cone X, of
X taken with basepoints in Im(vy), the ultralimit ~y, : R — X, has image in a single
leaf of the decomposition D(X,).

Proposition 4.7 Let X be a locally-compact Hadamard space containing a periodic
geodesic which doesn’t bound a flat half-plane. Suppose also that X s periodic and
not quasi-tsometric to R. Then X has coarse type I.

Proof. Since X is periodic, the isometry type of the asymptotic cones X, is indepen-
dent of the sequence of base points and we may choose it to be constant. Furthermore,
X, is a homogeneous metric space and it therefore suffices to check that one leaf of
the decomposition D(X,) contains a complete geodesic and a branch point.

Let 7(R) = L C X be a nonconstant periodic geodesic which doesn’t bound a flat
half-plane. If there is an isometry g € I'som(X) for which L and gL are not parallel
then we may proceed as follows: The distance d(y(t), gL) is a convex unbounded func-
tion of ¢ and, after reversing the sign of t if necessary, the limit lim; ., d(7(¢),gL)/t
is strictly positive. This implies that L, and (gL), are different complete geodesics
in the same leaf of D(X,,). Thus the leaves of D(X,,) are geodesically complete trees
which branch everywhere and X has coarse type I.

Suppose now that the geodesics L and gL are parallel for all isometries g €
Isom(X). Then Isom(X) preserves the parallel set P(L) of L which is the union of
all geodesics parallel to L. The periodicity of X implies that P(L) has finite Hausdorff
distance from X. P(L) in turn has bounded Hausdorff distance from L because L
does not bound a flat half-plane. This contradicts our assumption that X is not
quasi-isometric to R. [

Proposition 4.8 Let M be a periodic Hadamard manifold, and assume that the isom-
etry group of M satisfies the duality condition® ([Ba, p. 5-6]). Then every nonflat de
Rham factor of M has coarse type I or coarse type II.

Proof. As the periodicity and duality conditions project to de Rham factors, we may
assume that M is de Rham indecomposable. By [Ba, Theorems B,C|, M is either an
irreducible symmetric space of noncompact type of rank at least two, or M contains
a periodic geodesic which doesn’t bound a flat half-plane. In the former case M has
coarse type II by [KIL]; in the latter M has coarse type I by proposition 4.7. O

8This will be true, for example, if M admits a discrete cocompact group of isometries.

15



5 Topological splitting

The goal of this section is to prove the following result about the invariance of product
splittings under homeomorphisms:

Theorem 5.1 Suppose X; and Y} are geodesic metric spaces of types I and II. Let
X =R foZl X, andY :=R™ ><H§:1 Y;. Suppose f : X — Y is a homeomorphism.
Then £ = k, m = n and after reindexing the factors Y; there are homeomorphisms
fi : X; = Y, so that the following diagrams commute:

x Ly
X, 5 v,

The rigidity theorem for homeomorphisms of Euclidean buildings proven in [KIL,
Theorem 1.2.2] covers theorem 5.1 when all type I factors are trees:

Theorem 5.2 Suppose that X;,Y; is a collection of geodesic metric spaces of types
I and II, where all type I factors are trees. Let X := R" X Hle X, and Y =
R™ x HleYJ Suppose that f : X — Y s a homeomorphism. Then £ =k, m =n
and after reindexing the factors Y; there are homeomorphisms f; : X; — Y; so that
the following diagrams commute:

x Ly
i

To apply this result to the general case, we will construct a topologically invari-
ant decomposition of the spaces X and Y into cosets which are homeomorphic to
Euclidean buildings. This is done as follows:

Let X be as in theorem 5.1, i.e. let X = R” x HleXi be a product of metric
spaces where each X; has either type I or II, and let d; := 1 if X, is a type I space,
d; := rank(X;) if X; is type II. We let X; := R® and X := HleX,-. We define the
decomposition F(X) of X as follows:

Definition 5.3 The leaves of F(X) are product subspaces R* x [[t_,T; C R* x
Hle X; where T; is a leaf of the decomposition D(X;) if X; has type I and T; = X;
otherwise.

To prove that the decomposition F(X) is topologically invariant, we characterize
the leaves of F(X) using essential disks (cf. definition 3.8). The following observation
shows that any two points in the same leaf of (X)) lie in an essential disk:

Lemma 5.4 In each type I factor X; pick an open interval I; contained in a leaf of
the decomposition D(X;). In each type II factor X; of rank d; > 2 pick an embedded
open d;-disk D;. Finally take an open disk Dy C R™. Then the product of these disks
15 an essential disk in X.
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Proof. The 1-disks I; contained in leaves of the type I factors X; are essential due to
lemma 3.9. According to lemma 6.2.1 of [KIL], the disks D; are essential in X,. The
Kiinneth formula implies the assertion of the lemma:

Hy(D,D —p) = DBlaj=d ®; Ha;(Dj, Dj — pj)

J

!

where p = (p;) € X is a point contained in D. [
The next result shows that, conversely, any essential disk lies in a leaf of F(X).

Proposition 5.5 Suppose D¢ < X is an essential disk. Then:

(1) The projection of each compact subdisk D¢ c D? o every type I factor X; of
X is contained in a finite number of geodesic segments lying within a single leaf of
the decomposition D(Xj;).

(2) The projection of each compact subdisk D¢ c D? to every type 11 factor in X
1s contained in a finite number of top-dimensional flats.

(3) The projection of D to the factor R* is an open map.

Proof. Consider an essential d-disk D — X and p € D. Choose a compact
subdisk D ¢ D containing p in its interior and choose a closed metric polydisk
B :=[], Bi C X centered at p with dD N B = . The relative fundamental class of
(D, dD) determines an element [D] of Hy(X, X — B). Then by the Kunneth formula
we have

Hd(X, X — B) &= @‘04:(1 ®] Haj (XZ, Xz — BZ)

where o = (@, g, ...) is a multiindex. By the dimension assumption
Hk(XzaXz —p,) = 0, for all k£ < d,

(see proposition 3.15). Hence after shrinking (if necessary) the polydisk B we get:
[D] = Z ®i[6:] € ®iHa, (Xi, Xi — By)

where [ﬁz] S Hdi (Xu X, — Bz)

Using an approximation argument we may take each relative cycle ; to be a linear
combination of geodesic segments for each type I factor X;, a PL-chain in X, and
for each of remaining factors X; we may represent 3; by a singular chain contained
in a finite number of flats, cf. [KIL]. Since D is an essential disk we conclude that
DN B C P :=1]], P, where each P, is a finite union of d;-flats in X;. In particular
each P, is a polyhedron (see [KIL]).

We are already done as far as type II factors of X are concerned. Now consider
factors of type 1. By restricting ourselves to a smaller polydisk B we may assume that
for each type I factor X; we have 7x,(D N B) C P;, where P; is a collection of radial
segments emanating from 7y, (p) = p;. If ¢ € DN B and 7x,(g) is not the vertex of P,
then the Kunneth formula applied to (DN B, (D—q)NB) — (P,P—q) — (X, X —q)
implies that the interior of each radial segment of 7x, (DN B) is essential. By Lemma
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3.9 it follows that each of these segments lies in a single leaf of the decomposition
D(X;). Since leaves of D(X;) are closed and disjoint we conclude that wx, (D N B) is
contained in a single leaf of D(X;). Finally we note that the compact subdisk D is
covered by a finite number of the intersections with small polydisks B N D.

Similar arguments applied to the factor X, imply that the projection of D? to X,
is open. [J

Lemma 5.4 and proposition 5.5 yield:

Corollary 5.6 The relation
r =2y & x,y liein an open essential disk.
is an equivalence relation, and the equivalence classes are the leaves of F(X).

Since essential disks are defined purely topologically, the previous corollary pro-
vides a topological characterization for the leaves of the decomposition F(X) and
shows that they are preserved under homeomorphisms:

Corollary 5.7 Let f : X — Y be a homeomorphism where X,Y are product spaces
as in theorem 5.5. Then f carries the decomposition F(X) to the decomposition

F(Y).

Proof of Theorem 5.1. By Corollary 5.7, f carries a leaf F' = R® x Hle U; of the
decomposition F(X) to a leaf G = R™ x Hé’:1 V; of F(Y). Theorem 5.2 applies to
the restricted homeomorphism f|r : FF — G and we see that m = n and k = I.

Set f; := my; o f. For each p € X',- =R x Xy x oo x X X X X X X
there is a unique index j(U;, p) such that

Filoixipy 100 X - Pic1 X U X pig1 X -+ X pp = Y, p)

is a homeomorphism onto a leaf Ly, , of F(Yjw,p)) and fj|v,xp} is constant for j #
Jj (Ui, p). The sets X
S; :=1{p € Xi: fj|lu,x{p} is not constant}

are open and disjoint subsets of X;. Since X; is connected we conclude that 7 (Ui, p)
does not depend on the point p: j(U;, p) = j(U;). The sequence of indices j(U1), ...,
j(Uy) forms a permutation of 1,..., k. This implies that, if we exchange one of the
leaf factors U; by U], we have j(U;) = j(U]). Hence j(U;) depends only on i and,
after rearranging the factors Y;, we can assume that j(U;) = i and X;, Y; have the

A

same type for every i. We apply Lemmas 3.7 and 3.12 (with A := X;) to conclude
that for each x; € U; the mapping fi(..., @i+, ...) : X; = Y; is constant. Hence
fi(z1,...,x) depends only on z; and f; descends to a homeomorphism f; : X; — Y]

as desired. [

Corollary 5.8 Suppose X and Y are metric spaces which are products of finitely
many geodesic metric spaces of types I and II. Then the pair (X,Y") is topologically
nontranslatable.

Proof. Let f,g : X — Y are homeomorphisms. They must be product homeomor-

phisms by theorem 5.1. Now the assertion follows from Lemma 3.14. [
As another application we get
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Corollary 5.9 Suppose X and Y are metric spaces which are products of finitely
many of metric spaces of coarse types I and II. Then the pair (X,Y) is nontrans-
latable.

6 Geometric splitting

In this section we prove the main results of this paper (theorems A and B from the
introduction).

Proof of Theorem B. We let M := Hle M;, N := Hle N;. According to theorem 5.1
all ultralimits ¢,, of ¢ preserve the foliations of the asymptotic cones M,,, N, by copies
of Z,, and W, factors. The pair (M, N) is nontranslatable according to Corollary 5.9.
Therefore we apply theorem 5.1 and proposition 2.8 to conclude that m =n, k = £,
and there is a quasi-isometry ¢ : M — N such that the diagram

M 2 N

Lo

M 2 N

commutes up to a finite error bounded in terms of (L, A). Now we apply theorem 5.1
and proposition 2.6 to the quasi-isometry ¢ to conclude the proof of the theorem. [

As a direct corollary of the above theorem and proposition 4.8 we obtain theorem
A about quasi-isometry invariance of de Rham decomposition of universal covers of
nonpositively curved Riemannian manifolds.

Now we prove the equality between coarse rank and geometric rank for universal
covers of compact nonpositively curved Riemannian manifolds.

Proposition 6.1 Let X = [[. X; be a finite product of Hausdorff topological spaces.
Then
trank(X) = Z trank(X;)

Proof. Directly follows from Kunneth formula (as in proposition 5.5). O

Proof of Theorem 1.3. Let M = R™ x [ M; be the de Rham decomposition of
the universal cover of a closed Riemannian manifold of nonpositive curvature. By
proposition 4.7 each factor M; with geometric rank 1 has coarse type I, and each
factor with geometric rank » > 1 is an irreducible symmetric space of rank r. Since
the topological rank of every asymptotic cone of a space with coarse type I is 1
by corollary 3.10, and the topological rank of every asymptotic cone of any rank r

symmetric space is r (corollary 3.16), proposition 6.1 implies the theorem. ]
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