Dynamics on flag manifolds:
domains of proper discontinuity and cocompactness

Michael Kapovich, Bernhard Leeb, Joan Porti

March 3, 2017

To Guiomar

Abstract

For noncompact semisimple Lie groups G with finite center we study the dynamics of
the actions of their discrete subgroups I' < G on the associated partial flag manifolds G/P.
Our study is based on the observation that they exhibit also in higher rank a certain form
of convergence type dynamics. We identify geometrically domains of proper discontinuity
in all partial flag manifolds. Under certain dynamical assumptions equivalent to the
Anosov subgroup condition, we establish the cocompactness of the I'-action on various
domains of proper discontinuity, in particular on domains in the full flag manifold G/B. In
the regular case (e.g. of B-Anosov subgroups) we prove the nonemptiness of such domains
if G has (locally) at least one noncompact simple factor not of the type Ay, By or Ga, by
showing the nonexistence of certain ball packings of the visual boundary.
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1 Introduction

Let G be a noncompact semisimple Lie group with finite center. In this paper, we study the
natural actions

I ~G/P

of discrete subgroups I' < GG on the (partial) flag manifolds G/P associated to G. (Here, P < GG
denotes a parabolic subgroup.) We are interested in aspects of the topological dynamics of the
action of I', notably in domains of proper discontinuity and criteria for the cocompactness on
these (see Theorems 1.6, 1.9 and 1.10 below). Our approach relies on the geometry of the
associated symmetric space X = G/K of noncompact type. The connection is established by
the fact that the flag manifolds occur as the G-orbits in the visual boundary 0,.X, that is,
the boundary at infinity of the visual compactification X = X 1 0,X of X. The results are
essentially generalizations of the main results in the first version of this paper [KLP1], however
we adopt here a more dynamical viewpoint.

If rank(X) = 1, equivalently, if X has strictly negative sectional curvature, then the only
flag manifold is 0, X itself and the transitive action G —~ 0, X has convergence dynamics. This
means that divergent sequences in GG exhibit a certain attraction-repulsion behavior, namely
they subconverge on the complement of one point in 0, X locally uniformly to a constant map.
More precisely, for a sequence g, — o in G there exist a subsequence (g,, ) and (not necessarily
distinct) points &4 € 05, X such that

Gnglowx—(e_y = &+

uniformly on compacta.

As a consequence of convergence dynamics, for a discrete subgroup I' < G, there is a clean
[-invariant dynamical decomposition

&DX = Qdisc uA

into the open domain of discontinuity or wandering set Qg5 and the compact limit set A. The
latter consists of all points occuring as limits £, as above for sequences v, — o0 in I', and the
[-action on g, is even properly discontinuous. In order for this action to be cocompact, one
needs to impose further conditions on the group. The action I' —~ Qg4 is cocompact if (but not
only if) I' is convez-cocompact.

If rank(X') > 2, then the action G —~ 05, X is no longer transitive. The G-orbits are compact
and, as G-spaces, copies of flag manifolds. They are parametrized by the spherical Weyl
chamber 0,,,4 associated to G; a G-orbit for an interior point of a face Toq S Tmoa (Which we
will also refer to as a face type) is naturally identified with the flag manifold Flag, = G/P;, the
conjugacy class of the parabolic subgroup P, corresponding to the face 7,,,4. In particular, the
reqular G-orbits in 0, X, i.e. those corresponding to interior points of 7,,.q itself, are identified
with the full flag manifold, dp X = Flag, = G/B,, the space of Weyl chambers at infinity,
also called the Furstenberg boundary; here, B, denotes a minimal parabolic subgroup of G.



Our study is based on the observation that a weak form of convergence dynamics persists
for the action G —~ 0y, X in higher rank (cf. sections 5.2 and 6): Sequences g, — o in G
subaccumulate outside a compact exceptional subset locally uniformly at another compact
subset, meaning that there exist a subsequence (g,,) and compact subsets AL < 0, X such
that

Gnylo,x—a_ accumulates at A

uniformly on compacta. We briefly say in this case that (gn,) is (A—, A+)-accumulating. There
is a certain flexibility in the choice of the pair of compact subsets (A_, A,) and a trade-off
(“uncertainty relation”): If one shrinks one of the subsets A, one must enlarge the other.

For instance, one can make the following metric choice for the pair of compact subsets: For a
suitable subsequence (g, ) there exist points £+ € 0 X such that (g, ) is (B(¢_, m—7), B(&,,7))-
accumulating for all radii r € (0, 7), where B(,r) denotes a ball in 0, X with respect to the
Tits angle metric. This kind of convergence type dynamical behavior had been observed, in
the general setting of proper CAT(0) spaces, by Karlsson [Kar, Thm. 1] and Papasoglu and
Swenson [PS, Thm. 4], see also the first version of this paper [KLP1, Thm. 1.1 and §6.1].

In our setting of CAT(0) model spaces with their rich geometric structure, one can make
more flexible “combinatorial” choices for the pair of compact subsets which can be described in
terms of the (partial) Bruhat order < on the Weyl group W. These will enable us to construct
larger domains of proper discontinuity for discrete group actions than those obtained from
metric choices. To explain the combinatorial choices, we need some preliminary considerations.

It will be useful for us to interpret the Bruhat order geometrically and we give a geometric
description of it and its generalization as the folding order (see section 3.2).

Since any two Weyl chambers at infinity 0,0’ © 0, X are contained in an apartment, that
is, the visual boundary dF < 0, X of a maximal flat F' < X, we can define a combinatorial
relative position

pos(c’ o) e W

of ¢’ with respect to o (section 3.3). The larger the position is with respect to <, the more
generic it is. We note that the sublevels of pos(-,0) in dpz X are precisely the Schubert cycles
with respect to o, that is, the B,-orbit closures.

We define a thickening
Thc W

of the neutral element inside the Weyl group as a union of sublevels for the Bruhat order
(section 3.4). Each thickening Th < W gives rise to corresponding thickenings of chambers
inside the Furstenberg boundary,

Thpg(o) := {pos(-,0) € Th} < Iy X,

which can also be regarded as thickenings Th(o) < d,, X inside the visual boundary, by taking
the union of the chambers contained in them. The thickenings of chambers in dp; X are finite
unions of Schubert cycles and hence projective subvarieties. Thickenings Thp;(A) < dpz X and



Th(A) < 05X of compact subsets A < dp; X are defined as the union of the thickenings of the
individual chambers o € A; they are again compact.

This discussion generalizes: There is a well-defined W, _\W-valued position pos(-,7) of
chambers relative to a simpler 7 € Flag, . Here, W, = < W denotes the stabilizer of
the face 700 S Omoa. If the thickening Th < W is W, -left invariant, then it yields well-
defined compact thickenings Thp;(A) < 0py X and Th(A) c 0, X of compact subsets A
Flag, . Even more generally, there is a well-defined W, \W/W,  -valued position pos(v, T)
and a W, _ -left and W, _ -right
inside Flag, .

of simplices v € Flag,  relative to simplices 7 € Flag, |

invariant thickening inside W yields thickenings of subsets of Flag,

For every thickening Th < W, there is the complementary thickening Th® = W defined by
W = Th uwg Th®

where wy denotes the longest element of the Weyl group. (This partition of the Weyl group
generalizes the decomposition 7 = r + (7 —r) of the maximal distance in the unit sphere, cf. the
metric choices above.) We call a thickening Th slim, fat or balanced if Th < Th®, Th 2 Th¢,
respectively, Th = Th®. Existence results for balanced thickenings with different invariance
properties are stated in Proposition 1.11 below, examples are given in section 3.4.

Returning to the dynamics of sequences g, — o in G on 0y X, we show (cf. Lemma 4.6 and
Proposition 6.14) that there always exist a subsequence (g, ), a face Timea S Tmoa and a pair of
simplices 74 € Flag,, such that

Gniloery = T+ (1.1)

uniformly on compacta in the open Schubert cell C(7_) < Flag,  of simplices opposite to

d
7_. Here —7,,04 := (Timoq for the canonical involution ¢+ = —wq of 0,,,4q. This locally uniform

convergence property implies (Corollary 6.8) that, more generally,
(gn,) is (Th®(7-), Th(7y))-accumulating on 0, X (1.2)

for all W, -left invariant thickenings Th < W. Note that (1.1) is equivalent to (1.2) for the
slimmest nonempty choice Th = {e}. We call sequences satisfying (1.1) 7,,,q4-contracting (cf.
Definition 6.1). An equivalent notion had been introduced by Benoist in [Be], see in particular
part (5) of his Lemma 3.5, cf. also Remark 1.5.

We now turn to discussing the dynamics of discrete subgroups I' < G on 0, X.

For a face T, C o we define the “small” 7,,,4-limit set
mod mod mod

A,

od

< Flag,

as the set of all simplices in Flag,  which occur as limits 7, as in (1.1) for sequences 7, — o
in I' (cf. Definition 6.9).

Remark 1.3. Benoist introduced in [Be, §3.6] a notion of limit set Ar for Zariski dense sub-
groups I' of reductive algebraic groups over local fields which in the case of real semisimple



omag-- What we call the 7,,04-limit
set A, . for other face types Timod & Omod 18 mentioned in his Remark 3.6(3), and his work

Lie groups is equivalent to our concept of o,,,¢-limit set A

implies that, in the Zariski dense case, A, _, is the image of A, _ under the natural projection

Flag, — Flag_  of flag manifolds.

d

By choosing a W, -left invariant thickening Th < W, we obtain from these small limit
sets the “large” thickened limit sets Th(A, ) © 0,X. Our main results concern the proper
discontinuity and cocompactness of the I'-action on the complements

QO = X — Th(A,, ),

respectively, on their intersections with the G-orbits Gn < 0,.X. We obtain the strongest results
for the dynamics on the Furstenberg boundary. This is reasonable because the latter fibers with
compact fiber over all partial flag manifolds, and cocompact domains of proper discontinuity in
any flag manifold pull back to such domains in dp; X. Our results are of the kind, in the spirit
of Mumford’s Geometric Invariant Theory, that the I'-actions become properly discontinuous
when removing a sufficiently “fat” thickening of A, ., and remain cocompact when removing
a sufficiently “slim” one. (See Example 3.42 and the discussion in section 7.4 for a concrete
connection with configuration spaces and GIT.)

The accumulation property (1.2) is the key step in constructing domains of proper discon-
tinuity for all discrete subgroups (see Propositions 6.21 and 6.23 in section 6.4). We obtain
the most useful results for subgroups which satisfy a certain generalization of the convergence
property (see Definition 6.10):

Definition 1.4 (Weak convergence subgroup). We call a discrete subgroup I' < G a Tye4-
convergence subgroup with respect to a face type Toq S Omod, if every sequence v, — o0 in
' has a subsequence satisfying (1.1) with this particular face type 7,04, equivalently, has a
subsequence satisfying (1.2) for any choice of W, _ -left invariant thickenings Th < W.

Remark 1.5 (Convergence dynamics versus regularity). We note that the 7,,,4-conver-
gence property of a subgroup I' < G, formulated in terms of the dynamics of the action on
the visual boundary 0., X, can be equivalently described in terms of the asymptotic behavior
of T'-orbits in the symmetric space X. Namely, I is a 7,,,4-convergence subgroup if and only if
it is a Tyeq-reqular subgroup of G, see section 6.3. The notion of 7,,,4-regularity was introduced
in our earlier paper [KLP2] where also the equivalence of the two notions was established. In
the present paper we only need (and verify) that 7,,,4-convergence implies 7,,,4-regularity.

The notions of regularity and contraction for sequences and their essential equivalence can
be found in some form already in the work of Benoist, see [Be, §3]. For the sake of completeness
we give independent proofs in our setting of discrete subgroups of semisimple Lie groups. Also
our methods are rather different. We give a geometric treatment and present the material in a
form suitable for the further development of our theory of discrete isometry groups acting on

IBenoist’s limit set Ar is contained in the flag manifold Yy which in the case of real Lie groups is the full
flag manifold G/B, see the beginning of §3 of his paper. It consists of the limit points of sequences contracting
on G/B, cf. his Definitions 3.5 and 3.6.



Riemannian symmetric spaces and euclidean buildings, such as in our papers [KLP3, KL1].

Our main result on proper discontinuity includes (cf. Theorem 6.13):

Theorem 1.6 (Proper discontinuity outside fat thickenings). Let 700 S Omod be -
invariant. If I' < G is a Tpeq-convergence subgroup, then for any fat W,  -left invariant
thickening Th < W the action

I ~ 0,X — Th(A,, )

15 properly discontinuous.

In order to obtain cocompactness for actions of 7,,,4-convergence subgroups, we must impose
further conditions, as it is the case for convergence actions, compare the situation in rank one.
. ., in the
sense of Sullivan [Su, §9], cf. Definition 5.22. Moreover, if 7,,,q is t-invariant, we call the limit
set A,

Our main requirement is that the action I' ~ Flag,  should be expanding at A,

., antipodal if the simplices in it are pairwise opposite (see Definition 2.4(ii)).

Definition 1.7 (CEA subgroup). For a t-invariant face 7,00 S 0moq We call a 7,,,4-conver-

gence subgroup I' < G a Tyeq-CFEA subgroup (convergence, expanding, antipodal) if A is

Tmod

antipodal and if the action I' = Flag,  is expanding at A, .

The restricted action I' —~ A, , is then a convergence action in the traditional sense.
Such subgroups are higher-rank generalizations of convex-cocompact subgroups of rank one Lie
groups. In fact, the CEA condition is only one of various equivalent dynamical and (coarse) geo-
metric conditions which can be used to characterize this class of discrete subgroups, see [KLP2]
and also [KL2, KLP4, KLP5] for a detailed study of these conditions and their equivalence. In

particular:

Remark 1.8 (CEA versus Anosov). The class of 7,,,-CEA subgroups coincides with the
class of P, -Anosov subgroups, see [KLP2, §6.5]. Here, P,
of parabolic subgroups of G corresponding to the face 7,,,¢4 of the spherical Weyl chamber

, refers to the conjugacy class
Omod- We recall that the notion of Anosov subgroup had first been introduced in [La] using the
language of geodesic flows, and further extended in [GW]. We gave the first flow-free definitions
in [KLP2]. We note that Labourie’s original definition did not require 7,,,4 to be t-invariant,
instead he worked with (P, . P,

Tmod? =~ ¢Tmod

)-Anosov subgroups. However, as already observed in
[GW], the general case readily reduces to the t-invariant one.

Our main result regarding cocompactness includes (cf. Theorem 7.8 and Corollary 7.9):

Theorem 1.9 (Cocompactness outside slim thickenings). Suppose that ' < G is a Tynod-
CFEA subgroup. Then for each slim W,  -left invariant thickening Th < W, the action

mod

F — aFUX - ThFﬁ(ATmod)

1§ cocompact.

More generally, suppose that Vieq S Omoq 1S another face type and that the thickening Th
is also W, -right invariant. Then for any G-orbit Gn < 0, X corresponding to an interior

7



point of Vpmed, the action
F - Gn - Th(ATmod>

18 cocompact.

By combining the two theorems, we obtain the central result of this paper:

Theorem 1.10 (Cocompact domains of proper discontinuity). Let I' < G and the data
Timods Vmod, Lh be as in the previous theorem with the additional requirement that the thickening
Th be balanced. Then the respective actions are properly discontinuous and cocompact.

We note that topology of the quotient space (03X — Thpu(A,,,,))/T, in general, depends
on the balanced thickening, see Example 7.15.

Balanced thickenings do not exist for all invariance requirements, but for many they do.
For instance, one can impose arbitrary left invariance and, as a consequence, one has balanced
thickenings of 7,,,4-limits sets inside dp; X for all t-invariant 7,,,4, as the first part of the next
result shows (see section 3.4 for more general results):

Proposition 1.11 (Existence of balanced thickenings). For every t-invariant face type
Tmod there exists a W, -left invariant balanced thickening Th < W.

For an arbitrary face type Vioa, a W, -right invariant balanced thickening exists if and

only if left multiplication by wqy has no fized point on W /W, . This is the case, for instance,

.-
if wo = — 1d, equivalently, if all irreducible factors of the symmetric space are of type Ay, Bpsa,

Doja, E7,8; Ey or Gs.

The nonemptiness of the domains found in Theorem 1.10 (and Theorem 1.6) is an issue.
For instance, uniform lattices in rank one Lie groups have empty domains of discontinuity at
infinity (and such lattices are CEA). See also Example 7.15 for empty domains in the reducible
case. If for a 7,,,4-convergence subgroup I' with antipodal 7,,,4-limit set all domains given by
Theorem 1.6 were empty, it would follow that the visual boundary of X admits a packing by
a compact family (with respect to the visual topology) of Z-balls (with respect to the Tits
metric), cf. Proposition 8.13. However, the existence of such packings can be ruled out for most
Weyl groups (Theorem 8.9), and we conclude (see Theorem 8.14):

Theorem 1.12 (Nonemptiness of domains of proper discontinuity). Suppose that X has
at least one de Rham factor not of the type Ay, By or Ga, and let I' < G be a 0,,04-convergence
subgroup with antipodal limit set A, ,. Then for some balanced thickening Th < W the
domain of proper discontinuity Oz X — Thpy(A,, ) for the I'-action provided by Theorem 1.6
15 nonempty.

Note that the theorem covers the case of CEA subgroups, but is more general.

The possible balanced thickenings can be described more precisely, cf. Theorem 8.14. In
the Bs-case, we have partial nonemptiness results for the groups G = O(2k + 1,2) with k£ > 1
(see Addendum 8.15). The G-case is not discussed in this paper.



The above results yield for the dynamics of CEA subgroups on the Furstenberg boundary:

Corollary 1.13 (Dynamics on the Furstenberg boundary). Suppose that T' < G is a
Tmod-CEA subgroup. There exist W, -left invariant balanced thickenings Th < W, and for
every such thickening the action

'~ (9FuX - ThFﬂ(ATmod>

1s properly discontinuous and cocompact.

If ' < G is a 0eq-CEA subgroup, and if X has at least one de Rham factor not of the
type Ay, By or G, then for some balanced thickening Th < W the cocompact domain of proper
discontinuity Ops X — Thpa(A,, ,,) is nonempty.

Again, the possible thickenings occuring in the o,,,4-case can be described more precisely.

Remark 1.14 (Dynamics on Finsler compactifications). Our results regarding domains
of proper discontinuity and cocompactness for discrete group actions on flag manifolds have
analogs for the actions of the same classes of subgroups on a Finsler compactification X of
X. This is done in our paper [KL1]|. The compactification X" is obtained from X geomet-
rically by applying the horoboundary construction to suitable G-invariant regular polyhedral
Finsler metrics on X rather than to G-invariant Riemannian metrics (which yields the visual
compactification X = X 11 d,X), and it coincides with the maximal Satake compactification
from algebraic group theory, see also [Pa]. Note that the Furstenberg boundary dp3 X naturally
embeds into X " as a G-orbit, namely as the only compact one. Some of the results become
easier in the Finsler setting, for instance, the nonemptiness of domains of proper discontinuity
at infinity is no longer an issue: Each 7,,,4-convergence subgroup with antipodal limit set A,

has a nonempty domain of proper discontinuity in the Finsler ideal boundary (defined using an

arbitrary W, -left invariant balanced thickening), once rank(X) > 2, see [KL1, Lemma 9.19].

mod

Remark 1.15. There is overlap of our results with [GW]. There, cocompact domains of proper
discontinuity are constructed for Anosov subgroups of various semisimple Lie groups acting
on various partial flag manifolds. However, in the general case of arbitrary semisimple Lie
groups G, such domains are constructed only in G-homogeneous spaces fibering over dp; X =
G/B with compact fiber [GW, Thm. 1.9]. Nonemptiness of these domains is proven for P-
Anosov subgroups of small cohomological dimension [GW, Thms. 1.11, 1.12 and 9.10], while
our nonemptiness results apply to o,,,4-convergence subgroups with antipodal o,,,4-limit set,
which includes B-Anosov subgroups, without restriction on the cohomological dimension.

Observe also that our treatment is intrinsic, while in [GW] first a theory for Anosov sub-
groups of Lie groups of the type Aut(F) is developed (where the F’s are certain bilinear and
hermitian forms), and then generalized to other semisimple Lie groups by embedding these
into the groups Aut(F). The intrinsic approach is more uniform and seems to provide better
control, e.g. it allows us to get the domains, for general semisimple Lie groups, in flag manifolds
instead of only in bundles over these as in [GW]. While in some low rank cases the outcomes
of the two constructions of thickened limit sets are the same, our construction appears to be
more general.



The earlier version [KLP1] of this preprint written in 2013 covered only the o,,,4-regular
case. Some of the material of [KLP1], dealing with equivalent characterizations of 7,,,;-CEA
actions, was later moved to our paper [KLP2]. Most of the rest of the material of [KLP1] was
generalized and moved into this paper.
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2 Geometric preliminaries

In this section we collect some standard material on Coxeter complexes, the geometry of non-
positively curved symmetric spaces and associated spherical Tits buildings; we refer the reader
to [KIL] and [Le] for more detailed discussion of symmetric spaces and buildings.

2.1 General notation

We will use the notation B(a,r) and B(a,r) for the open, respectively, closed r-ball, centered
at a in a metric space Z. We will denote the nearest point distance of a point z € Z to a subset
Ac Z by d(z,A) :=infd(z,-)|a. The Hausdorff distance between two subsets A, B < Z will
be denoted dy (A, B). A geodesic in a metric space is an isometric embedding from a (possibly
infinite) interval I < R.

2.2 Coxeter complexes

A spherical Cozeter complex apn,oq is a pair (S, W) consisting of a unit sphere S in a Euclidean
vector space V' and a finite group W which acts isometrically on S and is generated by reflections
at hyperplanes. A Coxeter complex is reducible if W splits as a (nontrivial) direct product
Wi x Wy and V' admits a W-invariant (nontrivial) orthogonal direct sum decomposition V' =
V1 @ V5 such that W; fixes V3_;, ¢ = 1,2. In this case, we obtain two induced Coxeter complexes
(S;, W;) on the unit spheres S; < V;. A Coxeter complex which is not reducible is called
irreducible.

We will use the notation Z for the angular metric on S. Throughout the paper, we assume
that W does not fix a point in S and is associated with a root system R. Spherical Coxeter
complexes will occur as model apartments of spherical buildings, mostly of Tits boundaries of
symmetric spaces, and will in this context usually be denoted by a;,0q4.

A wall m, in S is the fixed point set of a hyperplane reflection p in W. A half-apartment in

10



S is a closed hemisphere bounded by a wall. A point £ € S is called singular if it belongs to a
wall and regular otherwise.

The action W — S determines on S a structure as a simplicial complex whose facets, called
chambers, are the closures of the connected components of

S—Ump
p

where the union is taken over all reflections p in W. We will refer to the simplices in this
complex as faces. (If one allows fixed points for W on S, then S carries only a structure as a
cell complex.) Codimension one faces of this complex are called panels. The interior int(r) of
a face 7 is the complement in 7 to the union of walls not containing 7. The interiors int(7) are
called open simplices. A geodesic sphere in S is called singular if it is simplicial, equivalently,
if it equals an intersection of walls.

Each chamber is a fundamental domain for the action W —~ S. We define the spherical
model Weyl chamber as the quotient g,,,q = S/W. The natural projection 6 : S — 004
restricts to an isometry on every chamber. An important elementary property of the chamber

Omod 18 that its diameter (with respect to the spherical metric) is < 5

For a face 7,04 of 0moq, We define the subgroup W, < W as the stabilizer of 7,,,4 in

mod
W. Accordingly, for a point £ € 0,04, we define We < W as the stabilizer of €in W. Then
We =W,

5 Tmod

point. Note that W,

where Ty,0q is the face of 0,,,¢ spanned by &, i.e. which contains ¢ as an interior
.= land Wg =1 for € € int(Opmoq)-

It is convenient, and we will frequently do so, to identify o,,,¢q with a chamber ¢ < S
(traditionally called the positive chamber). Such an identification determines a generating set
of W, namely the reflections at the walls bounding ¢,,,4, and hence a word metric on W; the
longest element with respect to this metric is denoted wy. This element sends o,,,q to the
opposite chamber in S. We say that two points & ,f e S are Weyl antipodes if é = wp&. We

define the standard or opposition involution
L=15:5—> 8

as the composition —wy. This involution preserves ¢,,,q and equals the identity if and only if
—idg € W because then wy = —idg.

A point £ in S is called a root if the hemisphere centered at £ is simplicial, equivalently, is
bounded by a wall. If (S, W) is associated with a root system R, then £ € S is a root if and only
if it has the direction of a coroot. Note that irreducible root systems correspond to irreducible
Coxeter complexes and vice versa.

Remark 2.1. We will be assuming in what follows that (.S, W) is associated with a root system
R which spans V*. Equivalently, W is isomorphic to the linear part of an affine crystallographic
Coxeter group, i.e., one acting cocompactly on the affine space underlying the vector space V.
The root system R in this situation can be assumed to be reduced, i.e., if roots «, § have the
same kernel then @ = +3. In what follows we will be assuming that R is reduced.

11



Note that each root type ¢ € opoq 1S t-invariant, since the reflection w € W corresponding
to the root ¢ sends ¢ to —C.

Each irreducible root system R has one or two distinct root types, i.e. W acts on R with
one or two orbits. Geometrically speaking, this means that W acts on the set of walls with one
or two orbits. We refer the reader to [Bou] for details.

Suppose that S is identified with the sphere at infinity of a Euclidean space F', S =~ 0, F,
where 0, F' is equipped with the angular metric. For a closed subset A ¢ S and a point z € F
we define V(z, A) ¢ F as the complete cone over A with tip x, that is, as the union of rays
emanating from z and asymptotic to A. If 7 < S is a face, we call the cone V(x,7) a Weyl
sector, and if o < S is a chamber, we call V' (z,0) a euclidean Weyl chamber.

After fixing an origin o € F', the group W lifts to a group of isometries of F' fixing 0. The
euclidean Weyl chambers V (0, 0) are then fundamental domains for the action of W —~ F.

We define the euclidean model Weyl chamber as the quotient V,,,q = F/W; we will also
denote it by A or A.,.. It is canonically isometric to the complete euclidean cone over ,,04.
The natural projection

pI'Oj D F - Vmod = Aeuc =A
restricts to an isometry on every euclidean Weyl chamber V (o, o).

For a closed subset A c 0,,,4 we define V (0, /_1) C Vinoa as the complete cone over A with
tip 0. In particular, a face 7,00 Of 0yn0a corresponds to a face V(0, Tioa) of Vinoa-

We define the A-valued distance function or A-distance da on F' by:

da(z,y) = proj(y —z) € A

Note the symmetry property:
dA(xa y) = LdA(ya I) (22)

The Weyl group is precisely the group of isometries for the A-valued distance on F},,q which
fix the origin.

Lemma 2.3. Suppose that the Cozeter complex (S, W) is irreducible. Then v = id if and only
if the root system of (S, W) is of type A1, Be,Co, Doy, Ers, Fy or Go. If v # id, then Omoq
contains exactly one root which, therefore, is t-invariant.

Proof. The proof is by examination of the irreducible root systems, see e.g. [Bou]: wy = —id
if and only if the root system is of type Ay, By, Cy, Doy, Ergs, Fy or Gy. All the remaining
irreducible root systems are simply-laced; equivalently, W acts transitively on roots. [

2.3 Hadamard manifolds

In this section only, X denotes a Hadamard manifold, i.e. a simply connected complete Rie-
mannian manifold with nonpositive sectional curvature. We will use the notation Isom(X) for
the full isometry group of X.
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Any two points in X are connected by a unique geodesic segment. We will use the notation
xy for the oriented geodesic segment connecting = to y. We will often regard geodesic segments,
geodesic rays and complete geodesics as parameterized with unit speed and treat them as
isometric maps of intervals to X.

We will denote by Z,(y, z) the angle between the geodesic segments xy and xz at the point
x. For x € X we let ¥, X denote the space of directions of X at x, i.e. the unit sphere in the
tangent space T, X, equipped with the angle metric.

The ideal or visual boundary of X, denoted 0, X, is the set of asymptote classes of geodesic
rays in X, where two rays are asymptotic if and only if they have finite Hausdorff distance.
Points in d, X are called ideal points. For £ € 0,X and x € X we denote by x£ the geodesic
ray emanating from z and asymptotic to &, i.e. representing the ideal point &. For x € X we

have a natural map
log, : 0, X — 3. X

sending & € 0, X to the velocity vector at x of the geodesic ray z&. The cone or visual topology
on 0,X is characterized by the property that all the maps log, are homeomorphisms; with
respect to this topology, d,X is homeomorphic to the sphere of dimension dim(X) — 1. The
visual topology extends to X = X U 0,X as follows: A sequence (z,) converges to an ideal
point € € 05, X if the sequence of geodesic segments zz,, emanating from some (any) base point
x converges to the ray x{ pointwise (equivalently, uniformly on compacta in R). This topology
makes X into a closed ball. We define the visual boundary of a subset A < X as the set
OpA = AN 0,X of its accumulation points at infinity.

The visual boundary 0, X carries the natural Tits (angle) metric £y, defined as

LTits (f, 77) = sup Lac (57 77)

zeX

where Z,(&,n) is the angle between the geodesic rays x€ and zn. The Tits boundary Oris X
is the metric space (0 X, L7is). The Tits metric is lower semicontinuous with respect to the
visual topology and, accordingly, the Tits topology induced by the Tits metric is finer than
the visual topology. It is discrete if there is an upper negative curvature bound, and becomes
nontrivial if flat directions occur. For instance, the Tits boundary of flat r-space is the unit
(r—1)-sphere, drysR” =~ S"71(1). An isometric embedding X — Y of Hadamard spaces induces
an isometric embedding 07, X — OpisY of Tits boundaries.

A subset A of dr;s X is called conver if for any two points £, € A with Zp;5(€, 1) < 7, the
(unique) geodesic £n connecting & and 7 in dp;s X is entirely contained in A.

2.4 Symmetric spaces of noncompact type

The standard references for this and the following section are [E] and [He]. Our treatment of
this standard material is more geometric than the one presented in these books.

A symmetric space, denoted by X throughout this paper, is said to be of noncompact type
if it is nonpositively curved, simply connected and has no Euclidean factor. In particular, it
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is a Hadamard manifold. We will identify X with the quotient G/K where G is a semisimple
Lie group with finite center acting isometrically and transitively on X, and K is a maximal
compact subgroup of G. We will assume that G is commensurable with the isometry group
Isom(X) in the sense that we allow compact kernel and finite cokernel for the natural map
G — Isom(X). In particular, the image of G in Isom(X) contains the identity component
Isom(X),. The Lie group G carries a natural structure as a real algebraic group.

A point reflection (also known as a Cartan involution) at a point x € X is an isometry o,
which fixes z and has differential —idy, x in z. In a symmetric space, point reflections exist in
all points (by definition). A transvection of X is an isometry which is the product 0,0, of two
point reflections; it preserves the oriented geodesic through z and z’ and the parallel vector
fields along it. The transvections preserving a unit speed geodesic ¢(t) form a one parameter
subgroup (7f) of Isom(X), where T} denotes the transvection mapping c(s) — c(s +t). A
nontrivial isometry ¢ of X is called axial if it preserves a geodesic [ and shifts along it. (It does
not have to be a transvection.) The geodesic [ is called an axis of ¢. Axes are in general not
unique. They are parallel to each other.

A flat in X is a totally geodesic flat submanifold, equivalently, a convex subset isometric to
a Euclidean space. A maximal flat in X is a flat which is not contained in any larger flat; we
will use the notation F' for maximal flats. The group Isom(X), acts transitively on the set of
maximal flats; the common dimension of maximal flats is called the rank of X. The space X
has rank one if and only if it has strictly negative sectional curvature.

A maximal flat F' is preserved by all transvections along geodesic lines contained in it. In
general, there exist nontrivial isometries of X fixing F' pointwise. The subgroup of isometries
of F' which are induced by elements of GG is isomorphic to a semidirect product R” x W, where
r is the rank of X. The subgroup R" acts simply transitively on F' by translations. The linear
part W is a finite reflection group, called the Weyl group of G and X. Since maximal flats are
equivalent modulo G, the action W —~ F' is well-defined up to isometric conjugacy.

We will think of the Weyl group as acting on a model flat F,,,q = R" and on its visual bound-
ary sphere at infinity, the model apartment a,oq = Orits Frnoa = S"~ 1. The pair (amoeq, W) is the
spherical Cozeter complex associated with X. We identify the spherical model Weyl chamber
Omod With a (fundamental) chamber in the model apartment, 0,00 © Gmoqa. Accordingly, we
identify the euclidean model Weyl chamber V,,,q with the sector in F,,q with tip in the origin
and visual boundary 0,04, Vined < Finod-

The A-valued distance naturally extends from F;,,,q to X because every pair of points lies in
a maximal flat. In order to define the A-distance da(x,y) of two points x,y € X one chooses a
maximal flat ' containing z, y and identifies it isometrically with F},,q so that the Weyl group
actions correspond. The resulting quantity da(z,y) is independent of the choices. We refer the
reader to [KLM] for the detailed discussion of metric properties of da.

For every maximal flat F' < X, we have a Tits isometric embedding 0, F' < 0, X of its visual
boundary sphere. There is an identification 0y F = a,,,¢ With the model apartment, unique up
to composition with elements in W. The Coxeter complex structure on a,,,q induces a simplicial
structure on 0, F. The visual boundaries of maximal flats cover d,, X because every geodesic
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ray in X is contained in a maximal flat. Moreover, their intersections are simplicial. One thus
obtains a G-invariant piecewise spherical simplicial structure on 0, X which makes d, X into a
spherical building and, also taking into account the visual topology, into a topological spherical
building. It is called the spherical or Tits building associated to X. The Tits metric is the path
metric with respect to the piecewise spherical structure. We will refer to the simplices as faces.

The visual boundaries 0, F < 0, X of the maximal flats F' = X are precisely the apartments
with respect to the spherical building structure at infinity, which in turn are precisely the convex
subsets isometric to the unit (r — 1)-sphere with respect to the Tits metric. Any two points in
O X lie in a common apartment.

The action G —~ 0, X on ideal points is not transitive if X has rank > 2. Every G-orbit
meets every chamber exactly once. The quotient can be identified with the spherical model
chamber, 0, X /G = 0,,,q. We call the projection

0 : 00X — 0 X/G = Opmod

the type map. It restricts to an isometry on every chamber ¢ < 0,X. We call the inverse
ko = (0]5)7" : Omoa — o the (chamber) chart for o. Consequently, 6 restricts to an isometry on
every face 7 < 0, X. We call 0(7) < 0,04 the type of the face 7 and k, = (0|,)"' : (1) — T its
chart. We define the type of an ideal point £ € 0, X as its image 0(§) € Tpoa- A point & € 0 X
is called regular if its type is an interior point of 0,,,q, and singular otherwise. We denote by
0 X < 0, X the set of regular ideal boundary points. A point p € 074, X is said to be of root
type if 0(p) is a root in gyeq < S. Equivalently, the closed F-ball centered at p (with respect
to the Tits metric) is simplicial, i.e. is a simplicial subcomplex of Or;;s X. If a < 0, X is an
apartment, we call a type preserving isometry K, : Gmoq — @ an apartment chart for a.

A geodesic segment xy in X is called regular if x # y and for the unique geodesic ray x&
extending zy the point £ € 075X is regular. Equivalently, the vector da(z,y) belongs to the
interior of V,,0q4.

Definition 2.4 (Antipodal). (i) Two ideal points &, € 0, X are antipodal if Z1;s(€,m) = 7.
A subset of 0,X is called antipodal if the points in it are pairwise antipodal.

(ii) Two simplices 71,70 < 0,X are opposite (or antipodal) with respect to a point x € X
if 79 = 0,71, where o, denotes the reflection at the point x. Two simplices 7,75 < dn X are
opposite (or antipodal) if they are opposite simplices in the apartments containing both of them.

Note that the last property holds iff some (every) interior point of 77 has an antipode in the
interior of 79, equivalently, iff 7 and 7 are opposite with respect to some point x € X. Their
types are then related by 0(7) = ¢(0(m1)). We will frequently use the notation 7,7 and 7,,7_
for pairs of antipodal simplices.

A pair of opposite chambers o, ,0_ < 0,X is contained in a unique apartment, which we
will denote by a(o,,0_); the apartment a(o,0_) is the visual boundary of a unique maximal
flat F(o ,0_) in X.

For a point z € X and a simplex 7 € 0,X we define the (Weyl) sector V =V (z,7) < X
as the union of rays x¢ for all ideal points £ € 7. Weyl sectors are contained in flats. They
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are isometric images of faces V' (0, Tpmoa) © Vinoa of the euclidean model Weyl chamber under
isometric embeddings F),,q — X which are type preserving at infinity. More generally, for a
point x € X and a closed subset A © 0, X, we define the Weyl cone V (z, A) as the union of all
rays z€ for £ € A. Weyl cones are in general not flat.

The stabilizers B, < G of the chambers 0 c 0,X are the minimal parabolic subgroups of G.
After choosing a reference chamber oy < 0, X, we call B = B,,, the positive minimal parabolic
subgroup. The group G acts transitively on the set of chambers in 0,X, which we will then
identify with G/B, the full flag manifold of G. The minimal parabolic subgroups are algebraic
subgroups of G, and G/B is a real projective variety. The set dpz X =~ G/B of chambers in
0 X is called the Furstenberg boundary of X; we will equip it with the visual topology (as
opposed to the Zariski topology coming from G/B) which coincides with its manifold topology
as a compact homogeneous G-space. Every regular G-orbit G¢ < 0,X, £ € int(oy), is G-
equivariantly and homeomorphically identified with 0z X by assigning to the (regular) ideal
point g& the unique chamber goy containing it.

The stabilizers P, < G of simplices 7 < 0, X are the parabolic subgroups of G. The group
G acts transitively on simplices of the same type. The set Flag,_ = G/P; , of the simplices
7 of type 0(T) = Timod © Tmoa is called the partial flag manifold of type T,0q. In particular,
Flag, == dpgX. Again, we equip the flag manifolds with the visual topology; it agrees
with their topology as compact homogeneous G-spaces. Every G-orbit G¢ < 0, X of type
0(§) € int(7moa) is G-equivariantly homeomorphic to Flag, .

For a flag manifold Flag, —and a simplex 7 of type ¢7,,0¢ We define the open Schubert

stratum C(7) < Flag,_  as the dsubset of simplices opposite to 7 in the sense of Definition 2.4.
It follows from semicontinuity of the Tits distance that the subset C(7) < Flag,  is indeed
open. Furthermore, this subset is also dense in Flag,_ . We note that for rank 1 symmetric
spaces, the only flag manifold associated to G is 0, X and the open Schubert strata are the

complements of points.

If Tnoa is t-invariant, we say as in Definition 2.4 that a subset of Flag,  is antipodal if the
simplices in it are pairwise opposite.

3 Geometry of visual boundaries

In this section we introduce definitions and prove some properties of symmetric spaces of
noncompact type and their visual boundaries of more specific nature which are needed for our
study of discrete group actions at infinity.

3.1 Stars at infinity and regular points

For a simplex 7 < 0, X, the star st(7) € 0, X is the union of all closed chambers ¢ 2 7. It is
proven in [KLP2, Proposition 2.14] that for each face T < 0, X, the Weyl cone V (z,st(7)) is a
closed convex subset of X.
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For a face type Timod S Omod, We define the open star

OSt<Tmod> C Omod

as the union of all open faces of 7,,,¢ whose closure contains 7,,,4. Its complement

O5t(Timod) = Tmod — 08t (Tinod)

is the union of all (closed) faces of 0,,,¢ Which do not contain 7,,.4.

For a simplex 7 < 0, X, we define the open star
ost(7) < st(1) € 0 X
as the union of all open simplices in 0, X whose closure contains 7. Then
Ost(7) 1= st(1) — ost(T)
is the union of all (closed) simplices in st(7) which do not contain 7,

Definition 3.1. An ideal point £ € 0, X is said to be Tp,q-regular if 0(§) € 0st(Timoq), and
Tmod-Stngular if (&) € 0 st(Tmod)-

We will call 0,,,4-regular points simply regular. Note that 0st(omeq) = int(omeq), and the
regular points in 0, X are precisely the interior points of chambers.

Note that ost(7) is the subset of §(7)-regular points in st(7) and dst(7) is subset of 6(7)-
singular points. The 7,,0q-reqular part

OTmod~TC9 X = Q_I(OSt(Tmod)) < 0 X

of the visual boundary contains all open chambers and is in particular dense in 0., X (also with
respect to the Tits topology). For a 7,,,¢-regular point £ € d,, X there is a unique closest (with
respect to the Tits metric) simplex 7 < 0, X of type Ty,04, namely the one with & € ost(7).

The notion of regularity extends to oriented geodesic segments, rays and lines in X: A
geodesic ray xn < X is Teg-regular if its ideal endpoint 1 € 0, X is. An oriented geodesic
segment xy < X is 7,,.q-regular if the geodesic ray xn extending it is.

The geometric significance of o,,.4-regularity of geodesic segments comes from the fact that
a geodesic segment (or ray) in X is op,eq-regular iff it is contained in a unique maximal flat.

3.2 Folding order

In this section, we discuss natural partial orders on Weyl orbits in the model apartment and
give different equivalent geometric definitions for them.

By a folding map @meq — @moq We mean a type preserving continuous map which sends
chambers isometrically onto chambers.
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We will be working with folding maps which fix some reference face and think of them as
moving points “closer” towards this face. For instance, for a simplicial hemisphere h < @04
(containing the reference face) there is the folding map fixing h and reflecting the complementary
hemisphere onto it, see the discussion of special foldings below.

Definition 3.2 (Folding order). For a face type Tpoq S Omod, We define the 7,,,4-folding
ON Gy0q as follows: For distinct points 51, 52 € Umoq We say that 51 < 52 if and
only if there exists a folding map f : Gmod — Gmoa such that f|, =id, and f(&) =&,

order <

Tmod Tmod

We will use the notation < for <

Omod "
The relations <, are transitive, because the composition of folding maps are folding maps.

Remark 3.3. (o) Our folding order inequalities are non-strict inequalities allowing equality.

(i) The relation <, . is closed. It compares only points which lie in the same Weyl orbit,
le. if 5_1 <Tmod gg then ng = ng

(ii) The relation <,
ones: It holds that 51 <
with & <, &

on singular Weyl orbits is the closure of the relation < on regular

Tmod

& if and only if there exist sequences of regular points &8 — &

Tmod

(iii) Any isometry of a,,0q preserving 7,,,q as a set preserves the relation <

Tmod *
(iv) The relations < ie. if
£ < &then &y <, &. More precisely, note that a folding map f fixing 7,,,4 is the composition

and < are closely related: Clearly, < is stronger than <

Tmod Tmod?

wo f' of a folding map f fixing ,,0q With an element w e W, . Thus & <, & if and only
if there exist & € W, & such that & < &.

mod

(V) If 51 <Tmod 52 then wlél <
folding map fixing 7,,,4. Hence, <, . descends to a relation on the quotient W, \a;,0q which

weés for all wy,wy € W, because wlfwz_1 is again a

Tmod mod’

we also denote by <

Tmod *
There is a metric estimate for the folding order, because folding maps are 1-Lipschitz:

Lemma 3.4. If U € Tyoq, then we have the implication:
W’rmodgl <’Tmod WTmode = LTits(ghﬁ) < LTitS(éQa 1§)

Moreover, if ¥ € int(Tymoq), then equality holds on the right hand side only if meodél = meodé.

W,

m

Proof. Suppose that W, dfl <100 ) d,;?z. Then there exists a folding map dmeq — @mod
fixing Tonoq With f(&) = &. It maps the geodesic segment Y&, to a broken geodesic segment 3

from 9 to & of the same length, whence the implication of inequalities.

Suppose now in addition that ¥ € int(7,,0q¢) and W, & # W, & The initial segments of
3 and Y&, have the same type. Therefore there exists w € Wy = W, such that w3 and 9
have a common initial segment. Since w&; # &, the broken geodesic segment B cannot be a

od

true geodesic segment, and we obtain the strict metric inequality Z7i(&1,9) < Zrus(E2,9). O

As a consequence, we can justify our terminology of “partial order”:
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Corollary 3.5. < is a partial order on W, \mod-

Tmod

Proof. We must verify antisymmetry.

Suppose that W, & <. W, & <. W, &. By Lemma 3.4, we have £ p4,(£;,9) =
L 7its(E2,0) for all § € 7,04 The equality part implies that W, & =W, &, O

We discuss next the structure of folding maps and decompositions into simple ones.

Each wall m splits a,,.q into two hemispheres, the inner hemisphere A containing ,,,¢ and
the outer hemisphere h~. This decomposition gives rise to the folding map which fixes At and
reflects A~ onto it. We call a composition of such folding maps at walls m; a special folding.
The intersection N;h;" of inner hemispheres is fixed by the special folding. In particular, special
foldings fix the model chamber 7,,,4.

In general, there are folding maps fixing o,,,¢ which are not special. However, this makes
no difference for the folding order <:

Lemma 3.6 (Cf. [KM2, page 441, Thm. 4.9]). If for points &,& € Gmoq there exists
a folding map fixing omeqa and mapping & — &1, then there exists a special folding with this
property.

Proof. We may assume that & and &, are regular and different. We connect a point 7 in the
interior of o, to & by a geodesic segment 5 which avoids faces of codimension at least two.
Let f be a folding map fixing 0,0 With f(&) = &. Then 3 = f o7 is a broken geodesic path
which connects 7 to &; and has the same length and initial direction as 7. Its bending points
are interior points of panels and 3 is locally “reflected” at the walls containing these panels.
The assertion follows if we can replace 5 by a broken geodesic path from 7 to &, which is the
image of 4 under a special folding.

Let 7; denote the first bending point of 3 starting from 7. It lies in a wall m,. If 3 crosses m,
again in some point 7, then we replace the subpath 7,7, by its reflection at m;. The modified
broken path 3’ has again reflection folds, the same initial direction and the same endpoint.
Moreover, its initial segment is strictly longer. After finitely many such modifications, we may
assume that 3’ stays inside k. (The wall m; has changed in the process.) We then can obtain
(' as the image of another broken path 3” under the special folding s; at my, i.e. 5/ = s 0 3",
such that 3" has a strictly longer initial segment than 3.

Thus, we can replace 8 by another broken path 3” with reflection bends, with the same
length and initial direction as 7, with a strictly longer initial segment than 3, and such that
some special folding s; maps the endpoint of 5” to the endpoint of 5. It follows by induction
that B can be replaced by another broken path with the same endpoint and which is the image
of 4 under a special folding. [

Corollary 3.7 (Alternative definition of 0,,,4-folding order). &, < & if and only if there
exists a special folding which maps & — &;.

We note that the partial order < had been defined exactly in this way by P. Littelmann,
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see [Li, p. 509].

The folding orders on the Weyl orbits in the model apartment correspond to orders on the
Weyl group and its (double) coset spaces, as we explain now.

We can regard the regular Weyl orbits as copies of W by identifying the orbit point in the
chamber wao,,,q with the element w € W. Under this identification, it holds that

w1 < Wo

for elements wy,ws € W if and only if there exists a folding map .04 — Amoq fiXing 0,4 and
mapping W20 mod — W10 mod, and
wp < Wo

Tmod

if and only if there exists such a folding map fixing only 7,,,4. Again, <,  descends to an

order on W, \W, also denoted <, .

Remark 3.8 (Bruhat order). The corollary shows that the folding order < on W coincides
with the Bruhat order, see [Hu, ch. 5.9] or [BB, ch. 2| for a definition; hence, the folding order
gives a geometric interpretation of the Bruhat order. To verify this, one observes that if the
chambers wo,,,q and w'o,,,q are symmetric with respect to a wall and if wo,,,.4 lies in the inner
hemisphere, then we have the inequality I(w) < [(w’) for word lengths. Here the word length
on W is defined using as generators the reflections at the walls of 7,,04.

More generally, if £ is an interior point of the face Vpmod S Omod, € € int(Vm04), then We =
W, . and W¢ =~ W/W, Under this identification, the order <,  on the Weyl orbit quo-
tient W, \WE < W, \ameq becomes a partial order on the double quotient W, \W /W,
compare Remark 3.3(v). It holds that

'mod *

'mod’

w.

Tmod

w.

W Wymo < TmodeWl,

d Tmod 'mod

if and only if there exist w} € W, w;W,  such that w] < w}, cf. [Mi2] for a slightly different
description of this order.

We next describe the effect of the longest element wy € W on the folding order. Recall that
wy is the involution sending 0,,,q to the opposite chamber 6,04 IN G104

Lemma 3.9. Left multiplication with wqy reverses the o,.q-folding order.

Proof. Suppose that the special folding s,, at the wall m maps & to &, i.e. s,,& = &. When
applying wy, the inner hemisphere bounded by m becomes the outer hemisphere bounded by

wom and vice versa, woht = hT . Hence syomwof1 = woés. The assertion follows by applyin
m wom 0 y ymg

Corollary 3.7 and induction. ]
note that woW, wy' = Wyor,... =

W, and wo maps W, -orbits to W, -orbits. The action of wy therefore induces a natural

Regarding the analogous fact for the orders <, .,

map

WTmod\amOd ﬂ) W”—mod\a’mOCb V[/v'rmoolg = waV[/vaodS = WLTmodwog (310)
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and, correspondingly,

Wieod \W/Woos = Wir ot \W/W,

'mod 'mod (311)
w. W, —  wW. wW, == W,  wwW,

Vmod mod LTmod 'mod?

and the lemma implies that these maps are order reversing:
WTmodgl <Tm0d WTmod€2 Aad WLTmodwogl >LTmod W“—modw0€2 (312)
respectively

w.

Tmod

wW,

Ymod

W,

Tmod

|44

LTmod

/ /
< wWw,, < W, wwW, > wow W, |

Tmod od d LTmod od

3.3 Relative position at infinity

Let 09,0 < 0y X be chambers. There exists an (in general non-unique) apartment a < 0y X
containing these chambers, 0y, < a, and a unique apartment chart « : a,,,g — @ such that
00 = (0 moq). We define the position of o relative to oy as the chamber

pos(c,00) 1= a (7)) € Amod-
Abusing notation, it can be regarded algebraically as the unique element
pos(o,00) € W

such that
o= a(pos(a, O'())O'mod).

The relative position does not depend on the choice of the apartment a. To see this, choose
regular points & € int(og) and £ € int(o) which are not antipodal, Z745(€,&) < m. Then the
segment & is contained in a by convexity, and its image a1(£6€) in dyeq is independent of
the chart a because its initial portion o™ (&€ N 0g) in T peq is.

More generally, we define the position of a chamber o relative to an arbitrary simplex 7
of type Tmoq as follows. Let again a < 0, X be an apartment containing 7y and o, and let
Q : Ameq — @ be a chart such that 70 = a(7meq). It is unique up to precomposition with an
element in W, . We define the position of o relative to 1y as the W,  -orbit of the chamber
a1 (o) © @moq. It can be interpreted algebraically as a coset

pos(o,19) € W, \W.

Even more generally, we define the position of a simplex v c 0, X relative 7y. Let a < 0, X be
an apartment containing 7y and v, and let « : a,,,¢ — a be a chart such that 79 = a(70q). We
define the position of v relative to 7y as the W, _ -orbit of the simplex a Y (V) € ameq. Tt can
be interpreted algebraically as a double coset

pos(v, ) € W, \W /W,

mod
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where v,,,q = 0(v) is the type of v. Finally, we define the position of an ideal point £ € 0, X
relative 7y as the relative position of the simplex v < 0,X spanned by & (i.e. containing § as
an interior point),

pOS(€7 TO) = pOS(V§7 TO) € WTmod\W/Wl’mod
where V04 = 0(v¢). In particular, pos(¢,79) € Wy, \W if £ is regular.

Lemma 3.13. Two ideal points &1,& in the same G-orbit GE < 0, X have the same position
relative to a simplex T < 0 X iff they lie in the same orbit of the parabolic subgroup P, < G,

pOS(fl, T) = pOS(gg, 7—) < PTfl = PT§2‘

Proof. The implication “<” is clear. For “=7, let a; € 0, X be apartments containing 7 and
&;. There exists p € P, such that a; = pas. Then pos(&;,7) = pos(&s, 7) = pos(péa, 7) iff & and
P&y span the same simplex in ay. In view of 6(&;) = 0(&2), the latter is equivalent to & = &. O

The positions relative 7 thus correspond to the orbits of P, and we have the identification

P\GE = P\Flag, = P\G/B, =W, \W/W,

mod
with 700 = 0(7) and vyeq = 0(ve).

In particular, for regular orbits, which are copies of the Furstenberg boundary, we obtain
the identification
PT\ﬁpuX = WTmod\W

The positions relative to a chamber o correspond to the orbits of the minimal parabolic subgroup
B,, and we have

B\G¢ = B,\Flag, = B,\G/P,, =W /W, and  B,\0pz X = W.

'mod

The G-orbits G¢, respectively, the flag manifolds Flag,  thus decompose into finitely
many P, -orbits which we call Schubert strata relative 7 or 7-Schubert strata, and their closures
(generalized) Schubert cycles. (We will see below that the cycles are unions of strata.) The
level sets of pos(+,0), i.e. the B,-orbits, are called Schubert cells relative o.

Note that the Schubert cycles in the flag manifolds are projective subvarieties.

We will use the following notation. For a simplex 7_ € Flag,, . we denote by

C

Tmod

(1) := {7 : 7 opposite to 7_} < Flag,
the open Schubert stratum associated with 7_ in Flag,_ |

We can now use the folding order to compare the positions of points in a G-orbit G§ < 0, X,
respectively, a flag manifold Flag,  relative to simplices 7 of a fixed type Ty04-

We begin by proving a useful monotonicity property for the folding order under folding maps.
It is a direct consequence of the definition of the folding order that folding maps @,meq — Gmod
decrease the relative positions of pairs of simplices. We will need the same fact for folding maps
(mod — O X and 0, X — 0, X by which we mean, as before, type preserving continuous maps
sending chambers isometrically onto chambers.
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Lemma 3.14 (Monotonicity). (i) For a folding map [ : 0, X — 05X and simplices T,v <
O X it holds that
pos(f(v), f(1)) <o) pos(v, 7).

(i1) For a folding map « : ameq — 0 X, a face type Timoq and a simplex U C apoq it holds
that

pos((), A(Tmod)) <700 POS(V, Tmod)-

Proof. Part (i) reduces to (ii) by choosing an apartment a > 7 U v and a chart K : Gmeq — @
with k(Tmeq) = 7 for the face type Tpog = 0(7). Then apply (i) to a = for and v = k().

To verify (ii), consider the composition
amOd i) aOOX - aOo‘>(/BO‘(O'm,od) = amOd

where the second map is the natural projection. It is a folding map & : dmed — Gmoq fixing
Omod, and therefore

pos(d(ﬁ), Tmod) <Tm0d pOS(ga 7—mod)-

Since the By, ,)-action on 0, X preserves positions relative to faces of a(o,04), we also have

pos(a(ﬂ), a(Tmod)) = pOS(@(D), Tmod)-
The assertion follows. O

Lemma 3.15 (Semicontinuity of relative position). If ¢, — & in G¢ € 0, X and 1, > T
in Flag,  are sequences such that the sequence of relative positions pos(&n, 7,) is constant,
pos(&n, Tn) = p € W AW /W) for all n, then pos(§,7) <7, P-

In particular, the sublevels of pos(-,7) in GE are closed.

Proof. There exist apartment charts o, : Gmed — 00X With ay,|,, , = k5, and a,(§) = &,. The

charts subconverge to a folding map a with af, , = k, and «(§) = €. The assertion follows
from monotonicity, cf. Lemma 3.14(ii). O

It follows that the suplevels {pos(-,7) >,  p}in G are open, because their complements
are finite unions of sublevels {pos(-,7) <, p'}.

We show now that the folding order coincides with the inclusion order on Schubert cycles.

We start with the chamber case, where the relation between closures and the Bruhat order
is well known: In the case of complex Lie groups, it goes back to the work of Chevalley in 1950s
[Ch]; for the proofs in the general case (including reductive groups over local fields), see [BT]
and [Mil]. (We are grateful to James Humphreys and Shrawan Kumar for the references.)

Proposition 3.16. For a chamber o < 0, X and ideal points &1,& in the same G-orbit G <
O X, we have:
pos(&1,0) < pos(&2,0) = By&i € By
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Proof. We denote by &; € a,,0q the point of type 6() with pos(&;, 0ymea) = pos(&i, o).

Suppose first that & € B,&. Then there exists a sequence (b,) in B, such that b,& — &;.
Let a, be apartments containing ¢ and b,&, and let «y, @ @moq — a, be the apartment charts
which restrict to the chamber chart of o, apls,.., = Ko @ Omed — 0. Then a, (&) = b,&. The
Tits isometric embeddings «,, subconverge (with respect to the visual topology) to a limit map
Q : Gmod — OxX. The map « is, in general, not an isometric embedding (chart), but only
a folding map extending r,. It satisfies (&) = &;. Monotonicity, cf. Lemma 3.14(ii), yields
pos(&1,0) < pos(&a, Omed) = POS(E2,0).

Vice versa, suppose now that & < &. By definition of the partial order < there exists
a folding map of Gmeg fixing omeq and carrying & — & . Furthermore there is an isometric
embedding d,eq — 05X which extends the chamber chart x, and maps & — &. By compo-
sition we obtain a folding map « : @eq — 0»X which extends x, and maps a(&) = &. We
want to find a sequence of isometric embeddings «,, : Gmeq — OxpX extending k., such that
(&) — (&) = & This will then imply that &, € B,&. (Note that in general folding maps
are not limits of isometric embeddings.)

We may assume that the relative positions & are regular. (Otherwise, we may perturb
them keeping the inequality & < & and perturb the & accordingly.) We choose in ap.q a
geodesic 7 of length 7 starting in an interior point 7y of o,.¢ and passing through & while
avoiding simplices of codimension > 2. It crosses successively a sequence (gallery) of chambers
00 = Omods 01, - - -, Ok = Omogq and intersects the intermediate panels 7, = 5; n 7;_; transversally
in interior points 7;. When applying the folding map «, it may happen that successive chambers
of the folded gallery coincide, i.e. that a(d;) = «(d;_1) for some i. (This happens if and only if
« is not an isometric embedding.) One can arbitrarily well approximate (in the visual topology)
the folded gallery by an embedded gallery with the same initial chamber . To obtain such
approximations it is convenient to use the G-action as follows. If «(d;) = «(7,;-1) then one may
pick an element g € G close to the identity, which fixes «(7;) and moves «(7;) = a(d;-1) away
from itself, and apply it to the “tail” a(g;),...,a(dy) of the gallery. Doing this inductively
along the gallery, one obtains an arbitrarily good approximation of the folded gallery a(ay) =
0,...,a(0%) by an embedded gallery og = o, ..., 0y, that is a sequence of chambers such that
0; N o;_1 is precisely a panel for all 7. This yields at the same time an approximation of the
broken geodesic (%) in 0, X by a true geodesic 7y such that v no; and 5 N g; are corresponding
subsegments of the same type. Now we use the path 4 as a “guiding line” to extend the
correspondence G; — o; of galleries to an isometric embedding o : @meq — 00X extending
Ko: Since 7 connects two antipodal regular points there exists a unique such o’ extending the
isometry 4 — 7 and hence mapping &; to ;. By construction, o/(£;) approximates a(&) = &
arbitrarily well. So we find a sequence of apartment charts «,, with the desired properties. [

The proposition readily generalizes to the simplex case (in the case when G is a complex
semisimple Lie group, a proof of the following proposition can be found in [Mi2, Prop. 3.13]):

Proposition 3.17. For simplices T € 0, X and ideal points &1,& in the same G-orbit GE <
0 X, we have:
pos(&1,7) <6(r) pos(&e, 7) & P& < P
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Proof. Let 0 © 7 be a chamber. Since the quotient space P,/B, is compact (it is the space of
chambers containing 7 as a face), the condition & € P.&; is equivalent to the existence of an
element p € P, such that p& < B,&. According to Proposition 3.16, this is equivalent to the
existence of p € P, such that pos(péi,0) < pos(§2,0). Since P; acts transitively on chambers
containing 7, we have that Upep, pos(p&i,0) = Wy pos(&,0) = pos(&1, 7). This completes
the proof. ]

In other words, the proposition says that the 7-Schubert cycles in G/P, correspond to the
on W, A\W/W, . where Tyoq = 0(7) and vieq = 0(v).

Tmod

sublevels of the folding order <

Tmod

Recall that the simplices opposite to simplices of type 7,04 have type (7,4, and that the
action of wy induces the natural maps

w,
meod \amod o WLTmod \amoda

and hence the maps
WTmod\W/WV ﬂ) LTmod\W/WV

mod ‘mod

of relative positions, compare (3.10) and (3.11).

Definition 3.18 (Complementary position). We define the complementary position by
C-pos 1= Wy POs .

This terminology is justified by (cf. Def. 2.4(ii) for the notion of antipodality):

Lemma 3.19. Let 7,7,v € 0,X be simplices contained in an apartment a, and suppose that
T and T are antipodal. Then pos(v,T) = c-pos(v, T).

Proof. Let @ @moqa — a be a chart such that «|,, , = k;. Then 7 = a(Tmea) = (@ 0 wo)(tTmod)
with the simplex Ty04 = WolTimod S Gmod OpPOSite to Tp0q. Using the reparametrized chart
a © wy, we obtain pos(v,7) = (a0 wy) (V) = wea (V) = wy pos(v, 7). O

The relation of “complementarity” is clearly symmetric, c-c-pos = pos. Passing to comple-
mentary relative position reverses the partial order, cf. Lemma 3.9:

pos(§1,7) <g(r) POs(§2,7) = c-pos(&1, T) >ug(r) c-POs(§2, T) (3.20)

Points with smaller position relative to a simplex are closer to it in a metric sense. Namely,
according to Lemma 3.4 we have the inequality of Tits distances

pos(&1, T) <6(r) pos(&,7) = ZLrus(&r,)|r < Lois(as )| (3.21)

respectively, for simplices 7, and 75 of the same type 7,04,

pos(é-lJ Tl) <Tmod pOS<§27 T2) = ATZ'tS (517 ) o ’%7'1 < LTits (52, ) O K/q—z. (322)
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If 7, and 7, are simplices of opposite types, (1) = t0(72), and if the relative positions pos(&;, 1)
and pos(&,, 7o) are complementary, then

Lrits(&1,°) 0 gy + Lries(§2,-) 0Ok ot =T (3.23)

on 6(71) = t0(m). To see this, note that the formula reduces to the case when the simplices 7
and 7y are opposite to each other and & = & lies in an apartment containing them.

The following triangle inequality extends Lemma 3.19:

Lemma 3.24. Let 7,7 < 0, X be a pair of antipodal simplices and let v < 0, X be an arbitrary
simplex. Then

pos(v, 7) >9(r) ¢-pos(v,T)

with equality iff 7,7, v are contained in an apartment.?

Proof. Let a € 0,X be an apartment containing 7,7 and let
O X — a

be a folding retraction, i.e. a folding map such that r|, = id,. Such a retraction is given e.g.
by the natural projection 0, X — 0w X /B, = a for a chamber ¢ < a. By monotonicity, cf.
Lemma 3.14(i), we have

pos(v, T) >g(ry pos(rv, )

and
pos(v, 7) >9(r) pos(rv,7) = c-pos(rv, ),

cf. Lemma 3.19. Since complementing position reverses the folding order, see (3.20), we obtain
the desired inequality.

Suppose that equality holds, pos(v,7) = c-pos(v, 7). Let &, ¢,n be interior points of 7,7, v
such that &, ¢ are antipodal. Then

~

Lras(§,m) + Lrus(n, &) =,

cf. Lemma 3.19 again, i.e. n lies on a geodesic segment fé. It follows that there exists an
apartment containing &, &, n7 and hence also the simplices spanned by these points. [

3.4 Thickenings
3.4.1 Thickenings in the Weyl group
A thickening (of the neutral element) in W is a subset

Thc W

2Equivalently, v lies in the spherical subbuilding B(7,7) < 05X consisting of all apartments containing 7, 7.
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which is a union of sublevels for the folding order, i.e. which contains with every element w
also every element w’ satisfying w’ < w. In the theory of posets, such subsets are called ideals.

Unions and intersections of thickenings are again thickenings, and removing a maximal
element from a thickening yields a thickening. Furthermore, note that

The := WQ(W - Th) =W — Wo Th

is again a thickening, because left multiplication with w reverses the folding order, cf. Lemma 3.9.
It holds that
W = Th uwy Th®

and we therefore call Th® the thickening complementary to Th.
Definition 3.25 (Fat and slim). The thickening Th < W is called fat if Th vwyTh = W,

equivalently, Th © Th®. It is called slim if Th nwy Th = &F, equivalently, Th < Th®. It is called
balanced if it is both fat and slim, equivalently, Th = Th®.

For types ¥y, ¥ € Omoq and a radius r € [0, 7] we define the metric thickening
Thy, 5, = {we W : d(wd, d) <7}, (3.26)

using the natural W-invariant spherical metric d on a,,,0q. It is indeed a thickening by Lemma 3.4.
Recall that for a face type Tyod S Oimod, Wwe denote by W, its stabilizer in W. Furthermore,

L= —Wp : Omoed — Omoaq denotes the canonical involution of the model spherical Weyl chamber.

Lemma 3.27. (i) If Ug € Tipoa, then Thy, 5, is W, -left invariant, W, , Thg, 5, = Thg, ...
(it) If also 10y = Vg, then Thg, 5, is fat for r = % and slim for r < Z.

(iti) If in addition d(w?, Vo) #  for all we W, then Thg, 5,z is balanced.

Proof. (i) For w' € W, we have that wdy = 9y and hence

Tmod?

d(w'wd, 9y) = d(wd, w' " y).
——

Yo
(ii) Since wody = —dy = —y, we have

d(wowd, =) = d(wd, —wody)
——

)
and
d(wow?d, Jg) = m — d(wd, Jy).
Hence
Th, 5, =W —woThy, g, :={we W: d(wd,dy) <7 — 71}

which yields the assertion.

(iii) Slimness holds because Thy, 5 = = Thy, 5, for radii r slightly below 7. O

™
)

The metric examples provide balanced thickenings with arbitrary left invariance:
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Corollary 3.28 (Existence of balanced thickenings I). For every c-invariant face type
Tmod there exists a W, -left invariant balanced thickening Th < W.

Proof. Since tTimed = Timod, there exists Uy € Tynoq such that 1y = ¥y. Moreover, the set of types
0 € Omoq SUuch that d(-1§, 1%) # 5 on W is the complement of a finite union of great spheres in
(mod, and hence open and dense. O

In order to obtain balanced thickenings with additional right invariance, we modify the
metric thickenings (3.26) at their “boundaries”. The rigidity part of Lemma 3.4 implies that
the elements of

5Th1§0ﬂ§’r = {w eW: d(wﬁ, lgo) = 7“},

are pairwise <-incomparable and maximal in Thy, 5,.. Therefore every subset Th < W with
{we W : d(wd,d) < r} < Th < Thy, 5,

is a thickening.

Using these modified metric thickenings, we can generalize our last existence result:

Proposition 3.29 (Existence of balanced thickenings II). Let Tyod; Vinod S Omoa be face

types and suppose that Tyeq 1S Lt-itnvariant. Then a W, -left invariant and W, -right invari-

mod

ant balanced thickening Th < W exists if and only if (left multiplication by) wo has no fized
point on W, \W /W, . cf (3.11).

‘mod

Proof. 1f a balanced thickening exists, then wy cannot have a fixed point as a consequence of
the definition of balancedness.

Vice versa, let us assume that wy has no fixed point. We choose ¥y € Tpmoq With tdy = 9
and U € V,,,9. Then the fat thickening Thgo’lj,% is W, -left and W, _ -right invariant, and so
is the “great sphere” 8Th7§07l-,,g. The latter is moreover preserved by the involution wg while
the “hemispheres bounded by it”, Thﬁo,z‘/,g —0 Th@o,f/,g and W — Thﬁo,z‘agv are exchanged, cf.
the proof of Lemma 3.27(ii). Since wy has no fixed point, é’Tth% decomposes as a union of
pairs of double cosets W~ ,wW,,,, which are swapped by wg. By removing from Thg, ; = one
double coset of each pair, we therefore obtain a balanced thickening as desired. O

For instance, we can deduce:

Corollary 3.30. If wy = —id,,,,,, then a W, -right invariant balanced thickening exists for
every face type Vpod.

Proof. We equivariantly identify the coset space W /W, with an orbit W < @, for some

U € int(Vmoq). By assumption, wy has no fixed point on @04, and hence none on W /W, O

‘'mod *

Remark 3.31. (i) Note that wy = —id,,,, if and only if all irreducible factors of W are of
type A1, Bnsa, Dogsa, Erg, Fy or Gy, see [Bou].

(ii) W, _,-left and W,  -right invariant balanced thickenings do not always exist. For
instance, in the Bs-case there are no W, -biinvariant thickenings for 7,,,q a vertex type.
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In rank two, the balanced thickenings are easy to describe:

Example 3.32 (Balanced thickenings in rank 2). (i) If W = W,,, then 0,,,q is an arc
of length Z. There is a unique balanced thickening Th < W described by the property that
Th 0pmed © @mod 1s the F-ball centered at the midpoint of 0,04

(i) If W = Wpg, or Wg,, then 0,04 is an arc of length 7 or ¢. In these cases, there are

two balanced thickenings. Namely, for each vertex £ of 0,,,¢ we have the We-left invariant

thickening Th < W for which Th-0y,,¢ = B(&, 3).

Below, we give two examples in higher rank. First in the irreducible case:

Example 3.33 (Some balanced thickenings of type A,). The spherical Coxeter complex
(moq can be modelled as the unit sphere in the hyperplane

To+...+x,=0

in R**!. The Weyl group W = S, acts by permuting the coordinates, and we choose the
fundamental chamber 0,,0g © Gmoq4 as given by the inequalities xg > ... > x,,. It holds that

(z0,...,2n) 5 (20, ..., 20),
There are the t-invariant edge midpoints Og € Opmog for 1 < k < 5 represented by the vectors

(1,...,1,0,...,0,—1,...,—1)
| S— e ——
k k

and the unique ¢-invariant vertex TgnT-H € Omoq if 1 is odd. The type ¥, is the unique root type.

In incidence geometric terms, the Coxeter complex a,,.4 is the spherical building associated
to the finite projective n-space P? . = {ep,...,e,} consisting of n + 1 points. Every subset is
a projective subspace (of dimension on less than the number of points in it) and corresponds
to a vertex of a,,.q. Vertices are adjacent iff the corresponding subspaces are incident, i.e. one
contains the other. The element w, € W corresponding to the permutation 7 € S, 1 acts by

e; 3 ex@)- We let the fundamental chamber 0,04 © @moq correspond to the full flag

{eo} = ...c{eg,...,ei} = ...c{eg,. ., €n_1}

The edge spanned by 9, then has the vertices {eo, ... ex_1} and {eqg, ..., e 1}

We determine the metric thickenings Thy nx: for regular types ¥ € int(cmeq): The type 9 is
represented by a vector (;) with tg > ... > t,. The element w, € W carries (t;) to the vector
(tr1(s)). Thus, Lpigs(wed, 01) < 2 if and only if t,-1() > tz—1(n) if and only if 771(0) < 77'(n),
and we obtain the balanced thickening:

Thy, 5z = {wz e W : 7 10) < 71 (n)} (3.34)

Similarly, one can describe the thickenings T hgkﬁ% for k > 2. They depend on the type ¥ and
are balanced for a dense open set of values.
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To give an incidence geometric description of the thickening (3.34), note that 7—!(7) is the
dimension of the smallest subspace in the flag w,0,,,¢ which contains e;. Hence w, € Thglﬂg’g if
and only if to the flag w,0,,,q belongs a subspace U which contains eq but not e,, equivalently

{60} cUc {60, ceey en,l}. (335)
Another interesting example is the W -biinvariant thickening Th@mﬁm,g for n = 2m — 1.
We observe that Zpis(wem, ) < 7 if and only if
m
}wﬂ{eo,...,em_l} o) {eo,...,em_1}| > 5} (3.36)

with the equality cases corresponding to each other. Equality cannot occur if m is odd, and in

this case the thickening Thy 5 = is balanced.

i
Remark 3.37. With a bit more work one can classify all balanced thickenings in the A3 case:

There are 10 balanced thickenings. Two of them are W, -left invariant for the unique t-invariant
vertex Uy € Opmoq, annd one is W, .-left invariant for the unique ¢-invariant edge €004 < Omod-

The next example concerns the reducible case:

Example 3.38 (Some balanced thickenings of type A7}). The spherical Coxeter complex
Amoq can be modelled as the unit sphere in R™. The Weyl group W =~ ZI =~ {£1}" acts by
changing the signs of the coordinates x;, i.e. its canonical generators act by reflections at the
coordinate hyperplanes. We choose the fundamental chamber ¢,,,q © @moq as given by the
inequalities zq,...,z, = 0.

The longest element wy = (—1,...,—1) acts as —id. The Bruhat order on W is given by

we < wg = =¢€ Vi

where we denote the elements in W by w, with € = (¢;).

The (k — 1)-simplices of the spherical Coxeter complex d,,,q correspond to the {+1}-valued
maps defined on subsets of {1,...,n} of cardinality k. In particular, the chambers can be
interpreted as the ordered n-point configurations on {+1}.

Let ¢ € 0moa be the central type represented by the vector (1,...,1). We determine the
metric thickenings of the form Thc’,ﬁ,g for the regular types ¥ € int(gm.q): The type 9 is
represented by a vector t = (¢;) with ¢; > 0. The element w, € W carries ¢ to the vector (€t;).

Thus, Zzis(wd, () < 5 ifand only if -t = €1ty + ... + 6,1, > 0, and

Th; = {w.e W :e-t >0}, Th;={w.eW :e-t=0}
are metric thickenings. The thickening Th; is slim, while Th, is fat. We have that Th; = Th,
is balanced, iff € - t # 0 for all sign choices €, which is the case for “generic” values of .

To phrase it in terms of configurations, we consider weighted n-point configurations on {£1}
with weights t;. Then the thickenings Th, and Th, correspond to the sets of configurations
with at least, respectively, strictly more than half of the total mass placed on +1.
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3.4.2 Thickenings at infinity

From thickenings in the Weyl group, we derive thickenings at infinity as follows.

Given a W, -left invariant thickening Th < W, the induced thickening of a simplex 7 €
Flag, inside the Furstenberg boundary

Thpy(7) := {pos(-,7) e W, \Th} < 0pz X

is well-defined. Furthermore, we define the thickening of 7 inside the visual boundary as the
union of the corresponding (closed) chambers

Th(r):= |J ocd.X (3.39)

o€Thpy (1)

Due to the semicontinuity of relative position, c¢f. Lemma 3.15, the thickenings Thp;(7) and
Th(7) are compact. The intersections Th(7) n G& with G-orbits G¢ < 0, X are finite unions
of Schubert cycles and hence projective subvarieties. For regular G-orbits G¢, the intersection
Th(7) N G¢ is naturally identified with Thg;(7).

Note that if the thickening Th < W is W,
then the thickenings of simplices are unions of stars of simplices of type V04

-right invariant for a face type Vmod S Omod,

mod

For a subset A < Flag, , we define the induced thickenings

Thpi(A) = | J Thea(r) and  Th(A) = | ] Th(r).
TEA TEA

If A is compact, then its thickenings are compact as well.

Below are several examples of thickenings, based on the examples in the previous section.

Example 3.40 (Rank 2). We continue with Example 3.32.

(i) If W = Wy,, then chambers in the visual boundary are arcs of Tits length %. For the
unique balanced thickening Th < W, the associated thickening Th(c) < 0, X of a chamber
0 C 0 X with midpoint ¢ is the ball B((, 7). In incidence geometric terms, regarding Opi X
as the spherical building associated to a projective plane II, the chamber o corresponds to a
flag (I, p) consisting of a line [ < Il and a point p € . The thickening Thp;(0) < Oz X inside
the Furstenberg boundary consists of all flags (I, p’) such that I’ =1 or p/ = p.

(ii) If W = Wpg, or Wg,, then chambers have length T or Z. For a vertex type & € 0o
and the unique We-left invariant balanced thickening Th < T, the associated thickening of a
vertex £ € 0 X of type 0(€) = £ inside 0,,X is given by Th(¢) = B(&, Z). The thickening of a

chamber 0 < 0, X equals Th(o) = B(&,, ) where &, is the vertex of o with type €.

For instance, if G = O(n,2) with n > 2 and hence X has type Bs, then 0pysX can
be regarded from the incidence geometry perspective as the spherical building arising from
isotropic flags in R™? = R" @ R?2. A chamber corresponds to a flag (L, P) consisting of an
isotropic plane P — R™? and a(n isotropic) line L = P. If £ is the vertex type corresponding
to isotropic lines, then the thickening Thp;(L) = 0pz X of an isotropic line L € Flagg consists
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of all flags (L', P') such that P’ > L. On the other hand, if £ is the vertex type corresponding
to isotropic planes, then the thickening Thpry(P) of an isotropic plane P € Flagg consists of all
flags (L', P’) € 0pyX such that L' < P.

Example 3.41 (Type A,). We continue with Example 3.33.
Let G = SL(n+1,F). We regard 075X as the spherical building associated to the projective
n-space FP".

Let Toa(U1) © Omoa denote the edge type with midpoint ¥;. Then F lag. @) = Fin,
the manifold of 2-flags (L, H) consisting of a hyperplane H < F"*! and a line L < H. For
the W, ,(,-left invariant balanced thickening Thy, 5= = W given by (3.34), the thickening
Thgﬁgvg((L,H)) of the flag (L, H) € F;,, in the full flag manifold dp; X consists of all flags
Uyc...cU c...cU,in F"*! such that

L<cU;,c H forsome 1,

compare (3.35).

If n = 4l + 1, then Flagy, = = Fu41 is the middle Grassmannian of (2] + 2)-dimensional

linear subspaces of F"*!. The balanced Wy,  -biinvariant thickening Thgﬁaﬁmn%(U ) of a

subspace U € Fy 41 inside Foyq1 consists of all subspaces U’ € Fy41 such that
dim({U' nU) =1+ 1,
compare (3.36).
Example 3.42 (Type A}, configuration spaces and stability in the sense of Geometric

Invariant Theory). We continue with Example 3.38.

Let X = Y™ be the n-fold product of a rank one symmetric space Y, e.g. Y = H2. Then
OraX = (0Y)™ and we will view chambers as ordered n-point configurations £ = (7;) on 0, Y.
The relative position of two configurations &, &' € dp; X is given by:

Thus, it records the entries ¢ where the configurations agree.

We fix a regular vector ¢ = (¢;) € int(A) = R? and assign the weight ¢; > 0 to the i-th
point of a configuration. Then a chamber &, regarded now as a weighted configuration on 0, Y,
defines the finite measure

He = tlém + ...+ tndnn
on 0y Y, where §,, denotes the Dirac measure concentrated in the point 7;. (Masses add when
points 7; “collide”). The total mass |pe| of pe equals

M=t +...+t,.

In the language of Geometric Invariant Theory, the finite measure p¢ (and the corresponding
weighted configuration &) is called stable if p1¢(n) < M /2 for all points 7 € d,,Y, and semistable
if pe(n) < M2 for all .
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Let (n) := (n,...,n) denote the configuration concentrated in the point 7. According to
Example 3.38, the thickenings (Th;)rs((n)) and (Thy)z4((n)) of (1) consist of the weighted con-
figurations where at least, respectively, strictly more than half of the total mass is concentrated
in the point 7.

Choose now A < dp; X as the “diagonal”, that is, as the compact antipodal subset of all
configurations (n) concentrated in one point. Then the thickenings (Th;)rz(A) and (Th)pg(A)
of A inside dr; X equal the subsets of weighted configurations which are not semistable, respec-
tively, not stable. In the case when Th; is balanced, both notions agree: “stable=semistable”.

The sets of stable and semistable configurations depend on the weights ¢. For instance, if
t; > M /2 for some i, then there are no semistable weighted configurations, equivalently,

(Thy) pi(A) = OpsX.

For instance, for n = 2 and any t; # t5, there are no semistable configurations.

In contrast, if n = 3 and t; < M /2 for all i, then there are always stable configurations, for
instance, the configurations where no two point coincide. Equivalently,

(Thy) pi(A) # Opa X
in this case.

We return to the general discussion of thickenings in d,,X. Our motivation for introducing
the notion of slimness is the following observation:

Lemma 3.43 (Disjointness of slim thickenings). (i) Let Tioqa S Omoa be an t-invariant
face type, and let Th < W be a slim W _ -left invariant thickening. Then for any two antipodal
simplices 7,7 € Flag,_ it holds that

(i) More generally, suppose that Vieq S Omea 1S another face type and that the slim thick-
-right invariant. Then for any G-orbit G¢ < 0, X of type & = 0(§) €
int(Vimoa) and any two antipodal simplices 7,7 € Flag, it holds that

ening Th is also W,

mod

Th(r) n Th(?) n GE = &.

Proof. Part (i) follows from Lemma 3.24 and the definition of slimness. Indeed, suppose
that Thp;(7) N Thps(7) contains a chamber o. Then pos(o,7),pos(o,7) € W, \Th. By
Lemma 3.24, pos(o,7) >, . c-pos(o,7). Hence also c-pos(o,7) € W, \Th, equivalently,
pos(o,7) € W, A\wp Th. It follows that Th nwy Th # &, contradicting slimness.

Part (ii) follows because the thickenings are unions of stars of simplices of type V4. Indeed,
by (i), the intersection Th(7) n Th(7) contains no chamber, and hence it cannot contain the
star of a simplex of type Vyo4- O
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4 Asymptotic geometric notions in symmetric spaces

4.1 Shadows at infinity and strong asymptoticity of Weyl cones

For a simplex 7 < 05, X of type (T4 and a point x € X, we consider the function
T d(z, P(T_,T)) (4.1)
on the open Schubert stratum C(7-) < Flag, . We denote by 7, € C(7_) the chamber

r-opposite to 7_.

Lemma 4.2. The function (4.1) is continuous and proper.

Proof. This follows from the fact that C'(7_) and X are homogeneous spaces for the parabolic
subgroup P, . Indeed, continuity follows from the continuity of the function

g d(a:? P(T_,gT+)) = d(g_lx7p(7_—77—+))
on P, which factors through the orbit map P, — C(7_),g — g7y4.

Regarding properness, note that a simplex 7 € C(7_) is determined by any point y contained
in the parallel set P(7_,7), namely as the simplex y-opposite to 7_. Thus, if P(7_,7) n
B(z, R) # & for some fixed R > 0, then there exists g € P._ such that 7 = g7, and d(z, gz) <
R. In particular, g is bounded. This implies properness. O

Moreover, the function (4.1) has a unique minimum zero in 7.

We define the following open subsets of C'(7_) which can be regarded as shadows of balls in
X with respect to 7_. For x € X and r > 0, we put

Ur wpi={7€C(r)|d(z, P(T_,T)) <r1}.
The next fact expresses the uniform strong asymptoticity of asymptotic Weyl cones.

Lemma 4.3. Forr, R > 0 exists d = d(r, R) > 0 such that:
If y e V(x,st(r_)) with d(y, oV (x,st(r-))) = d(r, R), then U, . r < U, ..
Proof. U, . g4 U, ,, then there exists 2’ € B(z, R) such that d(y, V(2/,st(7_))) = r. Thus,

if the assertion is wrong, there exist a sequence x,, — 4, in B(z, R) and a sequence 7, — o0 in
V(x,st(7_)) such that d(y,,V (x,st(7_))) — 400 and d(yy,, V (xn,st(1-))) = r.

Let p : [0,+20) — V(x,7_) be a geodesic ray with initial point x and asymptotic to an
interior point of 7_. Then the sequence (y,) eventually enters every Weyl cone V (p(t), st(7_)).
Since the distance function d(-, V(x,,st(7_))) is convex and bounded, and hence non-increasing
along rays asymptotic to st(7_), we have that

R = d(z,V(z,,st(12))) = d(p(t), V(x,,st(72))) = d(yn, V(zn,st(12))) = r
for n = n(t). It follows that
R=d(p(t),V(ve,st(r2))) =7

for all t. However, the ray p is strongly asymptotic to V (x4, st(7_)), a contradiction. O
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4.2 Asymptotic properties of sequences and subgroups

We first consider sequences in the model euclidean Weyl chamber A.

Definition 4.4. We say that a sequence (9,,) in A is

(1) Tmoa-pure if it is contained in a tubular neighborhood of the sector V (0, 7,,04) and drifts
away from its boundary oV (0, Tyea) = V (0, 0Timod),

d(5n7 V(O, aTmod)) — +00.

(ii) Timoa-regular if

d(6,,V(0,0st(Tmoa))) — +0.

These properties are stable under bounded perturbation of the sequence, due to the triangle
inequality |da(x,y) — da(a’,y')| < d(z,2’) + d(y,y’). Therefore the following definitions for
sequences in X and G are sensible:

Definition 4.5 (Pure and weakly regular). (i) We say that a sequence (z,) in X is Tpeq-
pure, respectively, T,,.q-reqular if for some (any) base point 0 € X the sequence of A-distances
da (0, x,,) has this property.

(il) We say that a sequence (g,,) in G i8S Tpeq-pure, respectively, 7,,.q4-reqular if for some (any)
point = € X the orbit sequence (g,z) in X has this property.

(iii) We say that a subgroup I' < G is Ty,q-regular if all sequences of pairwise distinct
elements in I" have this property.

The face type of a pure sequence is uniquely determined. Moreover, a 7,,,q-regular sequence
. / / /
is 7/ sregular for every face type 7/, S Tmoed, because ost(7),,,) 2 0St(Tiod)-

Note that 7,,.,¢-regular subgroups are in particular discrete. If rank(X) = 1, then dis-
creteness is equivalent to (0,,04-)regularity. In higher rank, regularity can be considered as a
strengthening of discreteness: A discrete subgroup I' < G may not be 7,,,4-regular for any face
type Tmoq; this can happen e.g. for free abelian subgroups of transvections of rank > 2.

We observe furthermore:

Lemma 4.6. (i) T,q-pure sequences are Tpoq-regular.

(i1) Every sequence, which diverges to infinity, contains a Tyeq-pure subsequence for some

fCLC@ type Tmod S Tmod-

Proof. Assertion (i) is a direct consequence of the definitions, and (ii) follows by induction on
face types. ]

Note also that a sequence, which diverges to infinity, is 7,,,¢-regular if and only if it contains
Umod-pure subsequences only for face types Vioq 2 Timoa- (We will not use this fact.)

Remark 4.7 (Relation to Finsler compactifications). There is a close relation between
the regularity of sequences and the asymptotic geometry of certain G-invariant Finsler metrics
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on X, see [KL1, §8.1.2]. For instance, a sequence in X is (o04-)regular if and only if it
accumulates at the Furstenberg boundary inside the regular Finsler compactification.

5 Some topological dynamics

5.1 (Proper) discontinuity and dynamical relation

Let Z be a compact metrizable space, and let I' € Homeo(Z) be a countably infinite subgroup.
We consider the action I' —~ Z.

Definition 5.1 (Discontinuous). A point z € Z is called wandering with respect to the I'-
action if the action is discontinuous at z, i.e. if z has a neighborhood U such that U nyU # &
for at most finitely many v € I'.

Nonwandering points are called recurrent.

Definition 5.2 (Domain of discontinuity). We call the set
Qdisc cZ
of wandering points the wandering set or domain of discontinuity for the action I' —~ Z.

Note that 4, is open and I'-invariant.

Definition 5.3 (Proper). The action of I' on an open subset U < Z is called proper if for
every compact subset K < U it holds that K n vK # ¢ for at most finitely many ~ € I'.

In particular, the action of I' on U is then discontinuous, U < 4., and is therefore called
properly discontinuous.

Definition 5.4 (Domain of proper discontinuity). If I" is a group, we call a I'-invariant
open subset €2 < Q. on which I' acts properly a domain of proper discontinuity for I'.

The orbit space Q/T" is then Hausdorff. Note that in general there is no unique maximal
proper domain of discontinuity.

Example 5.5 (Nonunique maximal domain of proper discontinuity). Consider the
infinite cyclic group I' = Z acting projectively on Z = RP?, so that a generator v of I" acts
as the projectivization of a diagonal matrix with distinct positive eigenvalues A\; > Ay > A3.
Let ey, eq,e3 € Z be the three fixed points of v (eigenspaces for Aj, Ay, A3 respectively). Let
E;; © Z denote the projective lines spanned by e; and e;, i < j. Then Qgsc = Z — {€1, €2, €3},
and both sets Uy = Z — (Ea3 U {e1}) and Us = Z — (E12 U {e3}) are maximal domains of
proper discontinuity for I'. (The maximality follows from the fact that the points on Fiy are
dynamically related to the points on FEs3.) Observe also that in this example both U;/I" and
Us/T" are compact.
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Discontinuity and proper discontinuity can be nicely expressed using the notion of dynamical
relation. The following definition is due to Frances [Fr, Def. 1]:

Definition 5.6 (Dynamically related). Two points z, 2’ € Z are called dynamically related
with respect to a sequence (h,) in Homeo(Z7),

(hn) s
z ~z

if there exists a sequence z, — z in Z such that h,z, — 2.

The points z, 2" are called dynamically related with respect to the I'-action,

r
Z~Z

if there exists a sequence v, — o in ' such that z Cn) 1,

Here, for a sequence (7,) in I' we write ~,, — o0 if every element of I" occurs at most finitely
many times in the sequence.

One verifies (see e.g. [KL2]):
(i) Dynamical relation is a closed relation in Z x Z.

(ii) Points in different [-orbits are dynamically related if and only if their orbits cannot be
separated by disjoint I'-invariant open subsets.

The concept of dynamical relation is useful for our discussion of discontinuity, because:
(i) A point is nonwandering if and only if it is dynamically related to itself.

(ii) The action is proper on an open subset U < Z if and only if no two points in U are
dynamically related.

5.2 Accumulation and proper discontinuity

In this paper, we derive proper discontinuity of actions from a certain accumulation behavior
which is a relaxation of convergence dynamics.

Let Z and I be as above. Let (Y;,) be a sequence of subsets of Z. We denote by Acc((Y,)) <
Z the closed subset consisting of the accumulation points of all sequences (y,,) of points ¥, € Y,,.

Definition 5.7 (Accumulation). We say that the sequence of subsets Y,, = Z accumulates
at a subset S c 7,
Y, acc S,

if Acc((Yy)) < S.

If S © Z is closed, then the sequence (Y;,) accumulates at S if and only if every neighborhood
U of S contains all but finitely many of the subsets Y,.

We first consider the dynamics of a sequence (h,,) in Homeo(Z).
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Definition 5.8 (Accumulating sequence). For compact subsets Ay < Z we say that the
sequence (hy) accumulates at Ay outside A_, briefly, (A_, A, )-accumulates, if

h, K acc A, (5.9)
for all compacta K disjoint from A_.

Property (5.9) is a statement about the locally uniform accumulation of the (h,,)-orbits
initiating outside the exceptional subset A_ and can be rephrased in terms of dynamical rela-
tions between points in Z with respect to the (h,)-action. Namely, equivalently, for all points
2,7 € Z it holds that:

hn
2 "% o for some subsequence (h,,) = z€eA_orzeA, (5.10)

hn : : . hiig
Note that the dynamical relation condition z (o) 7' is equivalent to the dual condition 2’ () z,

and consequently we have the symmetry:
(hy) is (A_, A})-accumulating <  (h;!)is (A,, A_)-accumulating
Note that if Ay < A, then (A_, A, )-accumulation implies (A’ , A, )-accumulation.

Now we consider the action I' —~ Z.

Definition 5.11 (Accumulating action I). We say that the action I' ~ Z is (A_, A, )-ac-
cumulating if every sequence v, — o in I" has an (A_, A, )-accumulating subsequence.

According to (5.10) we obtain for dynamical relations:

Lemma 5.12 (Dynamical relations I). If the action ' —~ Z is (A_, A} )-accumulating, then
for any two points z, 2z € Z it holds that:

2R = zeA orieA, (5.13)

Proof. This is a direct consequence of (5.10). O
We conclude:

Proposition 5.14 (Proper discontinuity I). If the subsets Ay are I'-invariant and if the
action I' —~ Z is (A_, Ay)-accumulating, then the action

F — Z - (A_ U A+)
15 properly discontinuous.

Proof. By the lemma, there are no dynamical relations between points outside A_ v A,. O

Suppose that AL are [-invariant compact (with respect to the Hausdorff topology) families
of compact subsets A, < Z.
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Definition 5.15 (Limit family). The forward limit family of T with respect to (A_,A,)
is the family £, < A, consisting of all subsets A, € A, for which there exists a sequence
Yn — o0 in I which is (A_, A, )-accumulating for some subset A_ € A_. Similarly, we define
the backward limit family L < A_.

The limit families £ are I'-invariant. Due to the compactness of the families A, they are
closed and hence compact themselves:

Lemma 5.16. L is closed.

Proof. Suppose, for instance, that (A¥) is a sequence in £, such that A* — A, € A,. There
exist sequences 7% — o0 in I' which (A%, A% )-accumulate for some A* € A_ (in fact € £_).
After passing to a subsequence, we may assume that A* — A_ e A_. A diagonal argument

yields an (A_, A, )-accumulating sequence (%’?EZ;)m inI". Hence A, € £, and L, is closed. [
As a consequence of the lemma, the I'-invariant subsets

Ty := U A cZ
Ately

are compact.

Definition 5.17 (Accumulating action IT). We say that the action I' ~ Z is (A_, A, )-ac-
cumulating if every sequence 7, — o0 in ' has a subsequence which is (A_, A, )-accumulating
for some subsets Ay € A,.

For such accumulating actions, the limit families are closely related to their dynamics:

Lemma 5.18 (Dynamical relations II). If the action T' —~ Z is (A_, A,)-accumulating,
then for any two points z,z' € Z it holds that:

r
2~z = zeT_orieT,

Proof. If two points are dynamically related with respect to the I'-action, then they are dy-
namically related with respect to an (A_, A )-accumulating sequence in I' with Ay € L4 and,
hence, Ay < T4. The assertion therefore follows from (5.10). [

We conclude as before:

Proposition 5.19 (Proper discontinuity II). Ifthe actionT —~ Z is (A_, A, )-accumulating,
then the action
T —~Z—(T_uT,)

15 properly discontinuous.

Remark 5.20 (Convergence actions). The action I' —~ Z is a convergence action (see e.g.
[Bow]) if and only if it is (A_, A, )-accumulating with A, the family of one point subsets. The
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limit families £, then become the limit set A — Z of the action. The action on its complement
is properly discontinuous, compare Proposition 5.19. We recover the dynamical decomposition

Z = Qdisc I_IA

and that the action on the domain of discontinuity is proper. Hence, for convergence actions
there exists a unique maximal domain of proper discontinuity.

The main example of convergence actions comes from the following fact: Every discrete
group [' of isometries of a proper Gromov hyperbolic geodesic metric space Y acts as a con-
vergence group on the visual compactification Y = Y U d,,Y, and in particular on the Gromov
boundary 0, Y of Y.

Remark 5.21 (Accumulation phenomena in nonpositive curvature). Convergence type
behavior in the sense of accumulation has been studied by Karlsson, Papasoglu and Swenson
in the general context of nonpositive curvature. They showed that for proper isometric actions
[' =Y on CAT(0) spaces the induced action I' ~ 0, Y on the visual boundary is (B(6), B(w —
0))-accumulating for 0 < 6 < m, where B(f) is the family of closed balls of Tits radius € in
OxY , see [Kar, Thm. 1] and [PS, Thm. 4]. Some of our results can be viewed as combinatorial
versions of this (Tits) metric result for actions on CAT(0) model spaces of higher rank, see e.g.
Corollary 6.8 and Lemma 6.20 below.

5.3 Expansion and cocompactness

In this section, let (Z,d) be a compact metric space and let I' —~ Z be a continuous action of
a discrete group.

The following notion is due to Sullivan [Su, §9]:

Definition 5.22 (Expanding action). We say that the action I' —~ Z is ezpanding at the
point z € Z if there exists an element ~ € I' which is uniformly expanding on a neighborhood U
of z, i.e. for some constant ¢ > 1 and all points 21, 2o € U we have

d(vz1,722) = ¢ - d(z1, 22).

We say that the action of I is expanding at a compact I'-invariant subset E' < Z if it is expanding
at all points z € E.

Remark 5.23. If the action I' —~ Z is expanding at F, then it is arbitrarily strongly expanding
there, i.e. for every point z € F exist a sequence (7,) in I' and a sequence of (shrinking)
neighborhoods U, of z such that the 7,|y, are uniformly expanding with expansion factors
¢n — +00. This follows directly from the definition by iterating locally expanding elements.
Note that, as a consequence, the action is expanding at E also with respect to any bilipschitz
equivalent metric on Z.

We will need the following more general notion of partial expansion. We suppose that the
action I' —~ Z has the following structure: There is a I'-invariant compact subset £ < Z and a
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continuous map 7 : £ — A onto a compact topological space A (e.g. a fiber bundle), such that
the restricted action I' —~ FE is fiber preserving, i.e. it descends to a continuous action I' —~ A.
We set E := 7 1()\).

Definition 5.24 (Transversely expanding action I). We say that the action I' —~ Z is
expanding transversely to w at the fiber E, if there exist an element v € I' and a neighborhood
U < Z of E, such that for some constant ¢ > 1 we have

d(vz, Eyx) = c-d(z, Ey) (5.25)
for all points z € U and fibers Fy < U.

We say that the action I' —~ Z is expanding at E transversely to m if it is expanding at all
fibers E.

The action I' —~ 7 is expanding at F if and only if it is expanding at E transversely to idg.
The concept of expansion is important to us due to the following observation:
Proposition 5.26 (Transversely expanding implies cocompact on the complement

I). If the action T' —~ Z is expanding at E transversely to w, then the action T' —~ Z — E is
cocompact.

Proof. We claim that for some constant ¢ > 1,
supd(-, E)|r, > c-d(z, E) (5.27)

for all z € Z — E sufficiently close to E. Otherwise, there would exist a sequence (z,) in Z — E
accumulating at F and a sequence of constants ¢,, — 1 such that

d(vzn, E) < ¢, - d(2p, E)

for all n € N and v € I'. Since E is compact, we may assume, after passing to a subsequence,
that (z,) accumulates at a fiber, z, — F). Due to expansion, there exists an element v, € T’
which satisfies the expansion property (5.25) on a neighborhood Uy < Z of E) with some
expansion factor ¢y > 1. Let E,, ), be the fiber closest to Va2, d(Vazn, Evyyr,) = d(7a%n, E).
Then A\, — A. Since z, € Uy and E,, < U, for large n, it follows that

Cx - d(zn’ E) S Ch- d('Zm E>\n) < d(7A2n7 E’\o\)\n) = d(’)/)\zm E) S d(zm E),

a contradiction confirming our claim.

Let U c Z be an open tubular neighborhood of E where (5.27) holds. Thus, no I'-orbit is
entirely contained in U — E and, therefore, every I'-orbit in Z — E meets the compact subset

Z—-UcZ—-FE. ]

The above argument (from [KLP1, sec. 2.2]) leads actually to a more general result.

Let us suppose, more generally, that the action I' —~ Z has the following structure: There
is a [-invariant compact subset E — Z which is represented as the (not necessarily disjoint)
union of a T-invariant collection € = {E) : A € A} of compact subsets E\ c Z parametrized by
some set A.
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Definition 5.28 (Transversely expanding action II). We say that the action I' —~ 7 is
expanding transversely to € at a point z if there exist an element v € I', a neighborhood U < Z
of z and a constant ¢ > 1 such that we have

d(yu,vE)) = ¢+ d(u, E)) (5.29)

for all points w € U — E and all F/, which have nonempty intersection with U. We say that the
action I' —~ 7 is expanding transversely to £ if it is expanding at all points z € F.

Proposition 5.30 (Transversely expanding implies cocompact on the complement
IT). If the action ' —~ Z is expanding transversely to &, then the action I' —~ Z — E is
cocompact.

Proof. We claim that for some constant ¢ > 1,
supd(-, E)|ry > ¢+ d(u, E) (5.31)

for all u e Z — E sufficiently close to E. Otherwise, there would exist a sequence (u,,) in Z — E
accumulating at E and a sequence of constants ¢, — 1 such that

d(yun, E) < ¢, - d(u,, E)

for all n € N and v € I'. Since E is compact, we may assume, after passing to a subsequence,
that (u,) converges to some point z € F) for some A € A. Due to expansion, there exists an
element v, € I" which satisfies the expansion property (5.29) on a neighborhood U < Z of z
with some expansion factor ¢ > 1. Let 7, F), € £ be the set in the collection &£ closest to v,u,,

d(")/zum E) = d(f)/zuna ’YzEz\n) = d(’yzuna P)/Z’Zn)

with z, € F),_ . Then z, — z because v,u,, — v,z € E/, which implies that E) n U # & for all
sufficiently large n. It follows that (for large n),

¢ d(up, E) < c-d(uy, Ey,) < d(Vatn, V.Ey,) = d(ytn, E) < ¢, - d(un, E),

a contradiction confirming our claim.

Let U < Z be an open tubular neighborhood of £ where (5.31) holds. Thus, no I'-orbit is
entirely contained in U — E and, therefore, every I'-orbit in Z — E meets the compact subset
Z—-UcZ-E. O

6 Accumulation dynamics on flag manifolds and proper
discontinuity

We now study the dynamics of G and its discrete subgroups I' < G on its associated flag

manifolds, equivalently, on (the G-orbits in) the visual boundary d,, X . In this section, we will

discuss a certain dynamical behavior, which is a relaxed version of convergence dynamics, and
use it to construct domains of proper discontinuity for discrete subgroups.
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6.1 Weakly contracting sequences

Let (gn) be a sequence in G, and let 7,00 S 0moq be a face type.
We consider the following contraction property for the dynamics of (g,) on Flag, . An

equivalent notion had been studied in [Be], see §3.5 there.

Definition 6.1 (7,,,;-Contracting sequence). We say that the sequence (g,) is Timea-con-
tracting if there exist simplices 71 of type +7,,04 such that

Inloey — 74 (6.2)

uniformly on compacta as n — +o0.

We recall that C(7_) is a dense open subset of Flag,_ .

Property (6.2) means that (g,) is (Flag, —C(7_),7,)-accumulating, cf. Definition 5.8. It

can be rephrased in terms of dynamical relations between points in Flag,  with respect to

the (g,)-action. Namely, equivalently, for all simplices 7,7’ € Flag, it holds that, cf. (5.10):

79 2 for some subsequence (g,,) = 7¢C(r_)or7 =7, (6.3)

The conclusion of the last implication can be expressed in terms of relative positions:
pos(7,7_) maximal = pos(7’, 7, ) minimal
We observe that the last implication follows from the combinatorial inequality
pos(7’, 74 ) < c-pos(T, 7). (6.4)

The next result shows that this inequality holds for dynamically related points on all flag
manifolds, thought of as G-orbits in 0, X. It is the key step in our study of proper discontinuity.

Proposition 6.5 (Dynamical relation inequality). The following are equivalent:
(i) Property (6.2)
(ii) For any two points &,&' € 0,X it holds that:

(gik)

§

¢ for some subsequence (g,,) = pos(&,7y) < c-pos(&, ) (6.6)

Proof. Suppose first that property (6.2) holds and that £ (92) &, Then & and & lie in the
same G-orbit, G§¢ = G¢', and there exists a sequence (&,) in this G-orbit such that &, — &
and ¢,&, — &. Let a € 0, X be an apartment containing 7_ and £. Nearby apartments a,
containing &, can be obtained by using isometries h, — e in G with &, = h,{ and putting
a, = hpa. Let 7_ < a be the simplex opposite to 7_, and let 7,, = h,7— < a,. Then 7, — 7_.
Since 7_ € C(7-), the locally uniform convergence (6.2) implies that g,7, — 7. We obtain

pOS(fl, 7-+) < pOS(gnfm gnTn) = pOS(Sn, Tn) = pOS(hnf, hn%—) = pos({, 72—) = C—pOS(f, T—)
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where the first inequality follows from the semicontinuity of relative position (Lemma 3.15).
Conversely, suppose that (ii) holds. Since inequality (6.4) is a special case of the inequality
in the implication of (6.6), it follows that (6.3) holds, equivalently, (6.2). O

We observe a symmetry: Condition (6.6) is equivalent to the dual condition

—1
¢ (97) ¢ for some subsequence (g;kl) of (¢;) = pos({, 1) < cpos(€,1y) (6.7)

because both dynamical relation hypotheses are equivalent, as are the combinatorial inequality
conclusions. Therefore the proposition implies that (6.2) is equivalent to the dual property on
Flag . that

—1
In |C(T+) - 7-
uniformly on compacta as n — +o0.

Note that the simplices 74 in (6.2) are well-defined, because this is clear for 7, and follows
for 7_ by symmetry.

Inequality (6.6) can be (re)converted into a statement about the asymptotic behavior of
arbitrary (g,)-orbits in d,,X. We can in general not expect that these orbits converge, but we
obtain information where they accumulate. For individual orbits, it follows that for a point
£ € 05X the orbit (g,£) accumulates in G§ < 0, X at the Schubert cycle

{pOS(', T—‘r) < C-pOS(f, T—>}
A locally uniform statement can be conveniently formulated using the language of thickenings:

Corollary 6.8 (Orbit accumulation). If property (6.2) holds, and if Th ¢ W is a W, -left

invariant thickening, then the sequence (g,) is (Th®(r_), Th(ry))-accumulating (cf. Def. 5.8).

Proof. Otherwise, there is a dynamical relation ¢ “% ¢ with ¢ ¢ Th*(r_) and & ¢ Th(r,),
compare (5.10), i.e. pos(§,7-) ¢ Th® and pos(¢’,7,) ¢ Th. Moreover (6.2) implies (6.6), and
hence the inequality pos(¢’, 7)) < c-pos(§, 7—). It follows that

pos(&', ) < c-pos(&,7_) = wopos(§,7_) € Th

and hence pos(¢’,7,) € Th, a contradiction. ]

6.2 Weak convergence subgroups

Let I' < G be a discrete subgroup.

Definition 6.9 (7,,,¢-Limit set). We define the forward/backward Teq-limit set of T' as the
set
Afmod = Afmod (F) — FlagiTmod

of all simplices 74+ as in (6.2) for all 7,,,4-contracting sequences ~,, — o0 in I'.
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Note that passing to a finite index subgroup does not change the limit sets.

The limit sets AT
symmetry

., are I'-invariant and compact, cf. Lemma 5.16. Moreover, one has the

A%Tmod (P) = Af’mod (F>
In particular, if 7,,,4 is t-invariant we can define the 7,,,4-limit set

A, (T):=AL (D).

Tmod
To any W, _ -left invariant thickening Th < W, we associate the I'-invariant compact families
of compact subsets

A =1{Th(r_):7_ €A } and AF

m

orn = ATh(ry) e AT}

Tmod

The structure of the dynamics of the action I' ~ 0., X is closely related to the limit sets if it
enjoys contraction behavior in the following sense:

Definition 6.10 (7,,,¢-Convergence action). The action I' ~ 0., X is called a 7,,,4-conver-
gence action if every sequence 7, — o0 in ' has a 7,,,4-contracting subsequence. The subgroup
[' < G is then called a 7,,,q-convergence subgroup.

Remark 6.11 (Rank one). If rank(X) = 1, this property is equivalent to being a convergence
action and is satisfied for all discrete subgroups I' < GG, compare Remark 5.20.

Corollary 6.8 implies:

Proposition 6.12 (Weak contraction implies accumulation). If ' < G is a Ty,0q-conver-
gence subgroup and if Th < W is a W,

mod

-left invariant thickening, then the action I' —~ 0, X
is (A, s AL pn)-accumulating.

We obtain our main result for proper discontinuity:

Theorem 6.13 (Domains of proper discontinuity for 7,,,;-convergence subgroups).
If ' < G is a Tyea-convergence subgroup, then for any W, -left invariant thickening Th ¢ W
the action

D 0,X - (TH(A7,,) U Th(AL )

od

is properly discontinuous. In particular, if Tmoq 1S t-invariant and Th is fat, then the action
F — an - Th(ATmod)
18 properly discontinuous.

Proof. The first assertion follows from the last proposition by applying Proposition 5.19 with

Ly = Aiwmm. The second assertion follows because Th® < Th due to fatness. [

Note that the thickenings of limit sets Th(AL (I")) are I-invariant and compact.

For examples of thickenings, we refer to section 3.4.2.
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6.3 Weakly regular subgroups

The properties of contraction, defined in terms of the dynamics at infinity (Definition 6.1), and
regularity, defined in terms of the asymptotics of orbits in X (Definition 4.4), are equivalent
in a suitable sense, compare the discussion in [KLP2, §5.2]. The most relevant aspect for the
purposes of this paper is that regularity implies contraction in a suitable sense.

We first consider sequences of isometries:

Proposition 6.14. Every 7,,.q-reqular sequence in G contains a Tyeq-contracting subsequence.

Proof. Compare the proof of [KLP2, Proposition 5.14].
Suppose that the sequence (g,) in G is Tpeg-regular. Let z € X. There exist simplices
77 € Flag,  (unique for large n) such that
g tr e V(x,st(t))).
After passing to a subsequence, we may assume convergence

+
Tn — Tx

in Flag, ., because the flag manifolds are compact.

Since = € g,V (z,st(,,)) = V(gnx,st(gn7, )), it follows together with g,z € V(x,st(7,))
that the Weyl cones V (g,z,st(g,7, )) and V (z,st(7,})) lie in the same parallel set, namely in
P(g,7,,7,7), and face in opposite directions. In particular, the simplices g,7, and 7,7 are

n»'n

x-opposite, and thus g, 7, converges to the simplex 7, z-opposite to 7,
InTp — Tt
Since the sequence (g,z) is Tog-regular, it holds that
d(g; w,, OV (x,st(7;,))) — +0
According to Lemma 4.3, for any r, R > 0 the inclusion of shadows

U n ST, R - UT

E—
T’ﬂ n 7977« x7r

holds for n = n(r, R). Therefore there exist positive numbers R,, — +oo and r,, — 0 such that

U c U -

— 1
Tn »Z,Rn Tn ;9n T,T'n

for large n, equivalently
gnUTEJ,Rn - UgnTE,x,rn' (615)

Since 7,, — 7_ and R, — +00, the sequence of shadows U -  » < C(7,) < Flag,  ezhausts
C(7-) in the sense that every compactum in C(7_) is contained in U_- for large n. Indeed,
for fixed R > 0 we have Hausdorff convergence U - p — U, , pinFlag_ . which immediately

follows e.g. using symmetry, i.e. from the transitivity of the action K, —~ Flag,  of the
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maximal compact stabilizer K, < G of x. Furthermore, the shadows U, , r exhaust C'(7_) as
R — +00, cf. the continuity part of Lemma 4.2.

On the other hand, since g, 7, — 74 and r,, — 0, the shadows U, shrink, i.e. Hausdorff

InTn ,ZT,Tn

converge to the point 7. Indeed, U, — Uz, 2 inFlag, forfixedr >0, and Uz, o, — 74

nTn LT

as 7 — 0, using again the continuity part of Lemma 4.2 and the fact that the function (4.1)
assumes the value zero only in 7.

Together with these observations on exhaustion and shrinking of shadows, (6.15) shows that

gn|C’(7L) — T+

uniformly on compacta, i.e. the (sub)sequence (g,) iS Tyeq-contracting. O

Remark 6.16. The converse, that 7,,,4-contracting sequences in G are 7,,,4-regular, was shown
in [KLP2, Theorem 5.23].

We conclude for groups of isometries:
Corollary 6.17. 7,,,4-Reqular subgroups are T,,.q-convergence subgroups.

Remark 6.18. For 7,,,4-regular subgroups, the notion of 7,,,4-limit set introduced in Defi-
nition 6.9 is equivalent to the notion of 7,,,¢-limit set introduced in [KLP2, Def. 5.32], see
Proposition 5.29 of [KLP2].

Based on the corollary, we can translate our proper discontinuity result for convergence
subgroups (Theorem 6.13) into one for regular subgroups:

Theorem 6.19 (Domains of proper discontinuity for 7,,,,-regular subgroups). Let
Tmod S Omoa be an arbitrary face type. If I' < G is a Tyoq-reqular subgroup, then for every
W, -left invariant thickening Th < W the action

D 2,X = (Th(A;,,,) U Th(AZ, )

nod Tmod

is properly discontinuous. In particular, if Tmoq 1S t-invariant and Th s fat, then the action
' =~ 0,X —Th(A,,,,)

15 properly discontinuous.

6.4 Discrete subgroups

The general construction of domains of proper discontinuity in section 5.2 applies equally to
arbitrary discrete subgroups I' < GG. There are several ways to proceed. The most immediate
possibility is the following.

Choose for every face type Timed S Omoa & W, ,-left invariant thickening Th, . and define
the I'-invariant compact families

- +
Ai T U ATmodvTh‘rmo .

d
Tmod SO mod
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Lemma 6.20. The action T' —~ 0, X is (A_, A} )-accumulating.

Proof. According to Lemma 4.6, every sequence 7, — o0 in [' contains a 7,,,¢-regular (even
Tmod-PUre) subsequence, and hence a 7,,,,4-contracting subsequence for some face type 7,,04. The
assertion follows therefore from Corollary 6.8. O

Thus Proposition 5.19 yields in this case:

Proposition 6.21 (Domains of proper discontinuity for discrete subgroups I). If
I' < G is a discrete subgroup, then the action

I~ 0, X — | J(The,,

Tmod

(A7) © The (AT ) (6.22)

d Tmod Tmod

15 properly discontinuous.

In general, this domain of proper discontinuity can be further enlarged by only removing
the thickenings of the limit simplices arising from pure sequences in the group: Define the pure

forward/backward Tpeq-limit set

pure,+ c +
AT’mod - ATmcd

as the closure of the set of all simplices 74 as in (6.2) for all 7,,,,4-pure 7,,,4-contracting sequences
(vn) in T'. As above, we conclude:

Proposition 6.23 (Domains of proper discontinuity for discrete subgroups II). If
I' < G is a discrete subgroup, then the action

T~ 0,X — | J(ThS  (AZ7%7) U Thy,,, (AP7%F)) (6.24)

od Tmod
Tmod

15 properly discontinuous.

Since the domain in (6.22) is in general smaller than the domain in (6.24), one cannot expect
the I'-action on it to be cocompact.

On the other hand, if I' is 7,,0,¢4-regular, then it contains v,,,4-pure sequences only for the face
< W

Tmod?

tYPES Vmod 2 Tmod, and hence only these limit sets Afmod can be nonempty. Since W,, .

we may choose Th,, = = Th,  for these face types, and then the domain in (6.24) coincides
with the domain in Theorem 6.19.

7 Cocompactness

7.1 Nearby simplex thickenings

For incident faces v € 7 < 0, X, the parabolic subgroups fixing them are contained in each
other, P, o P,. Correspondingly, for incident face types Umod S Tmod & Omod there is the
natural forgetful map

: Flag, ~ — Flag,

7T'Umod7—mod
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assigning to a face 7 of type T4 its face v of type v,,04. It is a G-equivariant smooth fibration
with compact base and fiber.

We fix auxiliary Riemannian metrics on all partial flag manifolds Flag,_ . Thereby also the
G-orbits G¢ < 0, X are equipped with Riemannian metrics by equivariantly identifying them
with the appropriate flag manifolds.

The fibrations 7, - . are then Lipschitz continuous by compactness. Vice versa, we have:

Lemma 7.1 (Controlled lifts). Let T and v' be simplices of types Tmoa aNd Umod, Umod S Timods
and let v < T be the face of type Umoq. Then there exists a simplex 7/ D V' of type Timoq Such
that

d(t',7) < Cy - d(v',v)

with a uniform constant Cy = 1 only depending on the chosen Riemannian metrics.

Proof. The Riemannian metrics on Flag,  — and Flag,  can be chosen so that m, 7.
becomes a Riemannian submersion. With respect to these metrics, there exists 7/ so that
d(1,7") = d(v,v"). For other choices of the metrics, a multiplicative constant enters. O

The lemma generalizes (by induction along galleries) to:

Lemma 7.2. Let 7,7 be simplices of type Timoq and let T be a simplex of type Tmoqa. Then there
exists another simplex 7' of type Tmoq with relative position pos(7/, ') = pos(T,T) such that

d(7,7) < Cy-d(7,7)
with a uniform constant Cy = 1 only depending on the chosen Riemannian metrics.

Let now G¢ < 0,X be a G-orbit at infinity, which we think of as identified with the
appropriate flag manifold. We fix a W, -left invariant thickening Th < W. Then the distance
between simplices 7 in Flag, and the Hausdorff distance between their thickenings Th(7)NG¢
in G¢ control each other, and through an ideal point in G¢ outside a simplex thickening exists
a simplex thickening at controlled distance:

Lemma 7.3 (Nearby simplex thickenings). The following assertions hold with a uniform
constant C' = 1 only depending on the chosen Riemannian metrics:

(i) The Hausdorff distance between the thickenings of any two simplices 7',7 € Flag_ s
controlled by
dg(Th(7') n GE, Th(r) n GE) < C - d(7', 7).

(ii) For a point &' € GE and a simpler T € Flag,  there exists a simplex 7' € Flag,_  such
that ¢ € Th(r') and
d(t',7) < C-d(£, Th(r) n GE).

Proof. (i) If n € Th(7)nG¢ is arbitrary, then applying Lemma 7.2 (to the flag manifold identified
with G¢) yields a point 7' € G§ with pos(n/,7') = pos(n,7) € Th(7im0a), i.6. ' € Th(7'), and
controlled distance d(n',n) < C -d(r,7').
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(ii) Suppose that £ € Th(7) n G¢ is the point closest to &', i.e. d(¢', &) = d(&', Th(T) n GE).
Lemma 7.2 yields a simplex 7" € Flag,  with pos(¢’,7) = pos(§,7) € Th and controlled
distance d(7',7) < C - d(£, &), whence the second inequality. O

7.2 From expansion to transverse expansion

Let Timoa S Omoa be a face type, and let Th < W be a W, _ -left invariant thickening. In this
section, we work on a fixed but arbitrary G-orbit Gn < 0, X.

We start with an observation concerning the topology of thickenings in flag manifolds.

Lemma 7.4 (Fibration of thickenings). Let A < Flag,_  be compact, and suppose that the
thickenings Th(7) n Gn of the simplices T € A are pairwise disjoint. Then the natural map

Th(A) nGn — A
is a continuous fibration with compact fiber.

Proof. Suppose that &, — £ in Th(A) nGn and 7, — 7 in A with &, € Th(7,). Then £ € Th(r)
by semicontinuity of relative position, cf. Lemma 3.15. The assumption on the disjointness of
fibers implies that 7(§) = 7. Thus, 7 is continuous.

In order to show that 7 is a fiber bundle, we need to construct local trivializations. Fix
To € A. There exists a compact subset S < G which is mapped by s — s75 homeomorphically
onto a compact neighborhood of 75 in A. (Such a subset can be found in a slice through e
transverse to P, .) Restricting the action G —~ 0, X, we obtain a topological embedding

S x (Th(m) n Gn) — Th(A) n Gn
and a local trivialization of m over a neighborhood of 7y in A. ]

Now we turn to dynamics.

Let (g,) be a sequence of isometries in G which preserve A, g,A = A. We consider the
action of (g,) on Gn and derive transverse expansion from expansion on Flag,_ -

Lemma 7.5 (Expansion implies transverse expansion). Suppose that (g,) is on Flag,_
arbitrarily expanding at T, € A, i.e. there exist neighborhoods V,, of 7, in Flag,_  and constants
¢, — +00 such that g,|y, is expanding with expansion factor c,.

Then there exist neighborhoods W,, of Th(r,) n Gn and constants C,, — +o such that
d(gn&; gn Th(7) N Gn) = Cy, - d(€, Th(7) N Gn) (7.6)
for all £ e W, and T € A with Th(r) n Gn < W,,, compare inequality (5.25).

Proof. To simplify notation, we write (only in this proof) Th(-) instead of Th(-) n Gn.
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Let W,, be some (small) neighborhood of the compact subset Th(7,), and let &, 7 be as
in inequality (7.6). We work near Th(g,7:). According to Lemma 7.3(ii), we can choose
gn7' € Flag,  such that g,{ € Th(g,7’), and g,7" has controlled distance from g,,

d(gnTlu gnT) < O ’ d(gn§7 Th(gnT))

with a uniform constant.

After shrinking the neighborhood ¢, W,, of Th(g,7,), we may assume that g,7 is close to
gnT+, using that Th(A) fibers over A, cf. Lemma 7.4. Moreover, that g,¢ is close to Th(g,).
Thus, after shrinking W,, sufficiently, we may assume that 7,7 € V,.

Then
d(gnT's gnT) = Cp - d(T', 7).

Since we also have uniform control
d(&, Th(7)) < dyg(Th(r"), Th(7)) < C - d(7', 1)
by Lemma 7.3(ii), it follows that
d(gn€, Th(gn7)) = C "¢, - d(&, Th(r)),
that is, our assertion with C,, = C2¢,,. H

We apply the above discussion to discrete group actions on flag manifolds.

Proposition 7.7 (Transverse expansion at slim thickenings). Let I' < G be a discrete
subgroup and suppose that:

(i) The action I' = Flag,
(ii) The thickenings Th(r) n Gn of the simplices T € A}

is expanding at A .

are pairwise disjoint.
d

Then the action I" = G is exzpanding at Th(A] ~)nGn transversely to the natural fibration
Th(A; )nGn— A]  given by Lemma 7.4.

Proof. Since the action I' = Flag, s expanding at A} it is arbitrarily strongly expanding
there, cf. Remark 5.23, i.e. for every limit simplex 7, € AT exists a sequence (7,) in I' and a
sequence of neighborhoods V,, of 7, such that the v,|y;, are uniformly expanding with expansion
factors ¢,, —» +0o0. Lemma 7.5 then implies that the action I' —~ G7 is (arbitrarily) expanding
at Th(AS ) n G transversely to . O

Using that transverse expansion implies cocompactness on the complement (Proposition 5.26),
we derive our main cocompactness result:

Theorem 7.8 (Cocompact domains). Let ' and Th be as in the previous proposition. Then

the action
I = Gn— Th(Ajmod)

18 cocompact.
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The following is a special case of the theorem. Here, for t-invariant 7,,,,4, a subset of Flag,_
is called antipodal if the simplices in it are pairwise opposite, cf. Definition 2.4(ii).

Corollary 7.9 (Cocompactness outside slim thickenings). Let T,,00 S Omoa be an t-

invariant face type. Suppose that I' < G is a discrete subgroup such that A s antipodal and

Tmod

the action I" —~ Flag_  is expanding at A
(i) Then for any slim W,

mod

Tmod *

-left invariant thickening Th < W the action
'~ 8FuX - ThFﬁ(ATmod)

18 cocompact.

(ii) More generally, suppose that Vieq S Omeq is another face type and that the thickening
Th is also W, -right invariant. Then for any G-orbit Gn < 0,X of type 7 = 0(n) € int(Vimod)
the action

I' -~ Gn—Th(A,, )

18 cocompact.

Proof. We have that AL = A

. roogs Decause Tpoq is t-invariant. Since Th is slim and the

simplices 7 in A, . are pairwise antipodal, their thickenings Thp;(7) in dpz X are pairwise
disjoint, cf. Lemma 3.43. Thus, the hypotheses of the theorem are satisfied. ]

Remark 7.10 (Rank one). Ifrank(X) = 1, this follows from part of a basic result for Kleinian
groups characterizing convex-cocompactness. Namely, the following properties are equivalent
for a discrete subgroup I' < G:

(i) ' is convex-cocompact.
(ii) The action I' ~ X, equivalently, the action I' ~ 0,,X, is expanding at A.
(iii) The (properly discontinuous) action I' ~ X — A is cocompact.

In particular, then the action I' ~ 0,X — A is cocompact.

7.3 Cocompact domains of proper discontinuity

We consider the following class of discrete subgroups (see Definition 1.7 in the introduction):

Definition 7.11 (CEA subgroup). For a (-invariant face type Timod S Tmoqd We call a Ty00-
convergence subgroup I' < G a 7,,,4- CEA subgroup (convergence, expanding, antipodal) if A,

is antipodal and if the action I' — Flag,_ is expanding at A, .

Remark 7.12 (CEA versus Anosov). The class of 7,,,¢-CEA subgroups coincides with the
-Anosov subgroups, see [KLP2, §6.5]. Here, P;

mod

class of P,

Tmod

parabolic subgroups of G corresponding to the face 7,,,q of the spherical Weyl chamber 7,,.4.

refers to the conjugacy class of

Combining our main results on proper discontinuity (Theorem 6.13) and cocompactness
(Corollary 7.9), we obtain:
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Theorem 7.13 (Cocompact domains of proper discontinuity). Suppose that I' < G is
a Tmoa-CEA subgroup.

(1) Then for any balanced W -left invariant thickening Th < W the action
'~ é’FuX - ThFu'(ATmod)

15 properly discontinuous and cocompact.

(i1) More generally, suppose that Vimeq S Oimoa 1S another face type and that the thickening Th
is also W, -right invariant. Then for every G-orbit Gn < 0,X of type 1 = 6(n) € Int(Vioa)
the action

I' -~ Gn—Th(A,, )
1s properly discontinuous and cocompact.

Remark 7.14. According to Corollary 3.28, balanced W,

mod

-left invariant thickenings always
exist, and Theorem 7.13 therefore provides cocompact domains of discontinuity at least in the
Furstenberg boundary 0p; X .

The question whether these domains are nonempty will be addressed in section 8.

7.4 A relation with Mumford’s Geometric Invariant Theory

We continue the discussion in Example 3.42, now looking at actions (of Lie subgroups) on
configuration spaces. (See [KM1, KLM] for a more detailed discussion of Geometric Invariant
Theory in the context of weighted configurations.)

Let H = Isom,(Y). We consider the diagonal action H —~ 0z X on configurations. As we
discussed in Example 3.42, the choice of a regular vector t = (¢;) € int(A) determines subsets

(aFﬁX)st,t = OpaX — (ﬂt)Fu(A) and (aFﬁX)sst,t = OpuX — (Tht)Fu(A)

of stable, respectively, semistable weighted configurations in 0, Y. Mumford’s GIT [Mu] defines
the Mumford quotient
OriX//tH = (OpaX)sste//H.

by suitably extended orbit equivalence. In the case when the thickening Th, is balanced, all
semistable points are even stable, and one has

aFuX//tH = (aFilX>sst,t//H = (aF’iLX)St,t/Ha

the latter being a quotient in the usual sense.

A nice exercise is to prove directly that the space dp; X//iH is compact and Hausdorff in
this case. For instance, if H = PSL(2,R), Y = H?* n =3 and t = (1,1,1), then dpz X//;H
consists of exactly two points represented by configurations of three distinct points on the
circle with different cyclic orders. Continuing with Y = H? and letting n = 4, one verifies that
for t = (2,1,1,1) the Mumford quotient is homeomorphic to S1, while for ¢t = (5,4,3,1) the
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Mumford quotient is homeomorphic to the disjoint union of two circles. Taking n = 5, one
obtains that for ¢ = (1, 1,1, 1, 1) the Mumford quotient is the genus 4 oriented surface, while for
t = (5,4,1,1,1) the quotient is the disjoint union of two 2-spheres. Thus, we see that quotients
are not homeomorphic for distinct choices of t’s.

More generally, one can describe dependence of the topology of the Mumford quotient
OraX//itH on the parameter ¢ as follows.

The hyperplanes »,._;t; = > ier tj (also called interior walls), where I runs over subsets of
{1,...,n}, partition the chamber

A={(t,... .t)):t; >0}

into open convex subsets, also called chambers. The topology of dp; X //iH does not change
as long as t varies in a single chamber; permuting the chambers does not change the topology
either; however, crossing through a wall amounts to a certain Morse surgery on the manifold.
This can be seen by identifying the quotients dp; X //; H with certain moduli spaces of polygons
with fixed side-length: In the case when H = PSL(2,R), these are polygons in the Euclidean
plane, cf. [KM1].

It was conjectured by Kevin Walker that if ¢,¢' belong to chambers in distinct S,-orbits
then the Mumford quotients are not homeomorphic. This conjecture was proven 20 years later
in “most” cases by Farber, Hausmann and Schiitz [FHS| and in full generality by Schiitz [Sch].
Similar results hold when the circle is replaced by a k-sphere. In fact, different quotients are
distinguished by their cohomology rings.

We will now see how the dependence of the topology of 0r; X//H on the parameter t
described above leads to the change of the topology of quotients by discrete group actions.

Example 7.15. We continue with the notation of Example 3.42. For concreteness, we assume
that Y = H?, H = PSL(2,R) and I < H is a torsion-free uniform lattice (a closed hyperbolic
surface subgroup). The embedding H < G = H x ... x H is diagonal and we view I" as a
subgroup of GG. Then I' preserves the diagonally embedded totally-geodesic hyperbolic plane
H? < X and acts cocompactly on it. Thus, Ao, = OoH? < 03X, the diagonally embedded
circle, and A = 0,,H? = 0, X for the visual limit set. The ideal boundary points in 0, H? = 0, X
are contained in the central regular G-orbit 071({) < 0, X of type ¢ € int(o,,0q4) represented
by the vector (1,...,1) € int(A). It follows that the subgroup I' < G is uniformly o,,,4-regular
(see [KLP2] for the precise definition). More precisely, it is {C}-regular. Moreover, the group T
is obviously quasi-isometrically embedded in H, and hence also in G. We conclude that I' < G
is & 0,,0a-CEA subgroup (e.g. as a consequence of [KLP3, Theorem 1.5]).

Given a balanced metric thickening Th = Th; € W, the domain Qry, = 0z X — Thpg (A
considered in Theorem 7.13(1) equals the set (0p; X ) g of stable weighted n-point configurations

Umod)

on 0,Y =~ S' (stability being defined with respect to the weights ¢). The group H acts on
(OraX)sts freely and we have a principal H-bundle

H — (8FiiX)st,t - (aFiiX)st,t/H = aFilX//tH~
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Dividing (0pyX)sts by I' instead of H we obtain a fiber bundle
H/F - (aFﬁX>st,t/F - (aFilX)st,t/H‘

In particular, by taking non-homeomorphic Mumford quotients, we obtain non-homeomorphic
quotients Qy,/I". For instance, for n = 4 we obtain three distinct topological types of quotients:
The empty quotient, a connected nonempty quotient (a bundle over the circle with the fiber
H/T') and a disconnected quotient which is the disjoint union of two copies of an H/T-bundle
over St

8 Nonemptiness

8.1 Thickenings and packings

We will use the following notion of ball packing for the visual boundary (using its structure as
a topological spherical building).

Definition 8.1 (Packing). A packing of 0,,X by -balls is a family B of disjoint open 7-balls
(with respect to the Tits metric) the union of whose closures equals 0, X. We call the packing
compact if the set of centers of these balls is compact with respect to the visual topology.

Note that the set of centers of the balls is necessarily antipodal, cf. Definition 2.4(i), and
hence the centers must have the same ¢-invariant type. We call it the type of the packing. We
call the packing simplicial if the balls are simplicial subcomplexes of 0, X. The simplicial 7-
balls are precisely the 7-balls centered at points of root type, and hence a packing is simplicial
if and only if it is of root type.

We will show that compact packings often do not exist.

Definition 8.2 (Non-packing type). We say that the symmetric space X is of
(i) non-packing type if 0, X admits no compact packing by 7-balls.

(ii) non-9-packing type for an t-invariant type ¥ € 0,04 if 0, X admits no compact packing
by 5-balls of type 0.

(iii) non-root packing type if it is of non-v-packing type for some root type ¥ € Gpmod.

Our motivation for proving the nonexistence of packings is that it implies via the nonfullness
of thickenings, as is made precise by the next result, the nonemptiness of domains of proper
discontinuity, see Proposition 8.13 below.

Let 704 S 0moq be an t-invariant face type. Suppose that
A c Flag,

is an antipodal compact subset. It determines for every t-invariant type 9¢ € Tynoq the antipodal
compact subset C' < 0, X consisting of the points ¢, 5, = 7N 61 () of type ¥y in the simplices
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7 € A, and hence the family of disjoint open 7-balls

— s
B(AJo) = {B (G 5) i 7€ Af.
Note that the union of the closed balls is a compact subset of 0, X.

Proposition 8.3 (Full thickenings yield packings). Let 7,4 and Yo € Tmoa be t-invariant,
and let A < Flag,  be an antipodal compact subset. Suppose that

Thpy(A) = 0psX

for all balanced W, -left invariant thickenings Th < W of the form Th = Thgoyg’% (as defined

by (5.26)). Then the family of balls B(A, Vo) is a packing of 0 X.

Proof. Suppose that B(A,v,) is not a packing. The union of the corresponding closed balls
is compact in d, X (with respect to the visual topology), and its complement therefore open.
Let & be a point in the complement, and denote §(¢) = 9. After perturbing &, we may assume
that ¢ is regular and that the (always fat) W,

is balanced, cf. Lemma 3.27 and the proof of Corollary 3.28. By the construction of metric
thickenings, see (3.26) and (3.39),

-left invariant metric thickening Thgoﬂgg cW

— T
Thy, 5,2 () 0 GE = B((rg,s 5) N GE
for 7 € A. It follows that £ ¢ Th%ﬂg’g(A) and hence (Th@o,g%)pu(A) # OpuX. O

Remark 8.4 (Full thickenings yield fibrations). Note that the hypothesis of the propo-
sition implies in particular the existence of the following kind of fibrations of the Furstenberg
boundary: In view of Lemma 7.4, it follows from Thp;(A) = 0r; X that there is a fiber bundle

whose fibers are finite unions of Schubert cycles (namely the thickenings Th(7) for 7 € A). Any

two fibers are equivalent modulo the G-action on dp; X. If A = A for a subgroup I' < G,

Tmod

then the fibration is I'-equivariant.

8.2 Nonexistence of packings

We show in this section that compact packings of the visual boundary by Z-balls do not exist
for most Weyl groups. Note that the discussion applies more generally to packings of compact
topological spherical buildings.

8.2.1 Type A,

Suppose that the symmetric space X has type Ay;. The spherical model chamber o,,,4 is then
3, With
reflection at the midpoint ¢, which is therefore the only ¢-invariant type. We denote by

an arc £77 of length %, with £,7 € 0,04 the two vertex types. The involution ¢ of g4 is the

Flag, % Flags =6'(€) and Flag, " Flag, = 67'(7)
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the canonical projections from the full flag manifold (of chambers) to the partial flag manifolds
(of vertices of fixed type).

A packing B of 0, X by 7-balls is necessarily of type ¢ and hence simplicial. A Z-ball in 0, X
with center of type ¢ consists of a central chamber and all chambers adjacent to it, i.e. it is the

I
of pairwise opposite chambers such that every other chamber is adjacent to a chamber in C'

We denote by Cz = m¢(C) and Cj; = 7m5(C) the sets of vertices of the chambers in C', and
by Og = Flagg —C¢ and O; = Flag; —Cj; their complements. The complement of the union of

neighborhood of its central chamber. Thus, the packing corresponds to a set C' < Flag,

the chambers in C' is the union of the open Z-balls centered at the points in Og U Oy, i.e. the
chambers not in C' are the chambers with a vertex in Og or Oy. We therefore have the disjoint
decomposition
-1 -1
Flag,  =Cumg; (Og) b, (Og).

We observe that, if a chamber has a vertex in Og, then its other vertex lies in Cj. Vice versa,
every vertex in Cy belongs to a chamber whose other vertex lies in Og. This means that

Cy = my(me (Og)) (8.5)

So far, our discussion applies to packings of arbitrary spherical buildings of type As. Now we
take into account the visual topology.

Theorem 8.6. If X has type As, then it is of non-packing type.

Proof. We keep the notation from the previous discussion. Suppose that B is a compact packing
of d,X, i.e. C is compact and therefore also its images Cg and Cj under the projections g
and m;. Then Of is open. Since the projection m; is open, (8.5) implies that Cj is also open,
Le. it is clopen. Since it is a nonempty proper subset, it follows that Flag, is disconnected,

and consequently also Flag, . This is absurd, because Flag,  is a homogeneous space of

d
Isom,(X) and therefore connected. O

8.2.2 Irreducible case of rank > 3

For most irreducible Weyl groups, the question of the nonexistence of simplicial packings can
be reduced to the As-case.

Theorem 8.7 (Nonexistence of simplicial packings in rank > 3). If X is irreducible of
rank(X) = 3, then it is of non-root packing type.

Proof. We make use of the spherical building geometry of 07;sX, see [KIL] for a detailed
discussion. The question of nonexistence can be reduced to lower rank by observing that
packings of spherical buildings by F-balls induce such packings of their spaces of directions.

The space of directions Y¢0pisX of a point & € 0, X carries again a natural spherical
building structure. We will use the notation (S, We) for the associated Coxeter complex. More
precisely, YX¢0rysX is naturally identified with the Tits building of the symmetric subspace
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/

X' ¢ X, which appears in the decomposition P(l) = X’ x [ of the parallel set of a geodesic
[ < X asymptotic to &.

Furthermore, the spaces of directions of closed Z-balls B((,Z) at boundary points ¢ €

o 27 )
0B(¢, §) are again F-balls,

SeB(C ) = BE, ).

This follows from the first variation formula in S?, because for any point 7 sufficiently close to
¢ the three points &, 7, ¢ are the vertices of an embedded spherical triangle. If two open balls
B((;, 5) are disjoint and if £ is a point in the intersection of their boundaries, then the spaces

of directions ¢ B((;, 5) have disjoint interiors.

Let now B be a compact packing of ., X by Z-balls. Then B induces packings B¢ by 7-balls
of the spaces of directions ¥¢0p;s X for all boundary points £ of the packing balls; the family
Be consists of the balls B(E_C), %) for which B((,5) € B and § € 0B((, 7). If the packing B is
simplicial, then so are the packings Be.

To see that the compactness of B implies the compactness of the induced families Be, consider
a convergent sequence ¢, — ¢ of centers of packing balls in B such that Zri(&,(,) = 5 for
all n. Then Z7y4(€,¢) < 5 by the semicontinuity of Tits distance. However, strict inequality
is impossible, because then £ would be an interior point if) the [ia;cking ball B((, %), Whi_C? is
absurd. Thus also Zrus(§,¢) = % and it follows that {(, — £(. Hence the centers £(, of
packing balls in B, converge to the center of such a ball. Thus the families B¢ are compact.

Let us now focus on simplicial packings. Suppose that 0, X admits compact simplicial
packings by 7-balls for all (at most two) root types. Consider for all such packings of 0,,X the
induced simplicial packings by 7-balls of the spaces of directions X¢drys X for all vertices £ in
the boundaries of packing balls. Then for these, the type 0() € 0,04 runs through all possible
vertex types, and for every fixed vertex type 0(¢) the type of the packing B¢ runs through
all possible root types. (The vertex type 6(¢) and the root type of the packing B¢ uniquely

determine the root type of the packing B which has to be used.)

The type 0(&) of a vertex £ corresponds to a wall of the fundamental Weyl chamber, and
the Dynkin diagram for the link ¥¢074,X is obtained from the Dynkin diagram for o7 X by
removing the corresponding node. By examining Dynkin diagrams of irreducible root systems,
we note that every irreducible root system of rank > 3 has a simple edge and can hence be
reduced to the As root system by successively removing nodes without disconnecting it. Thus,
if rank(X) > 3, it follows that there exists a symmetric space X’ of type Ay whose visual
boundary admits a compact packing by Z-balls. This contradicts Theorem 8.6. O

Note that root types are (-invariant.

Regarding the irreducible case, Theorems 8.6 and 8.7 leave open the cases of type By and
(G5 in rank 2. We will prove some partial results for the Bs-case in section 8.2.4.

8.2.3 Reducible case

We reduce to the irreducible case using the observation:
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Lemma 8.8. Suppose that X decomposes as the product X = X1 x Xy of symmetric spaces.
If X1 is of non-root packing type, then so is X.

Proof. The model chamber o,,,5 of X splits as the spherical join
Tmod = Tpod © Tmod
of the model chambers of the factors. The same applies to the visual boundaries:
O X = 0 X1 0 0 X2

A root type ¥ € 0}, remains a root type in oy,0q under the inclusion o;,,; © Fmoq, and a -ball

Eamx((’l, 5) © 0o X centered at a point (1 € 0 X1 < J,o X of type Y splits as the spherical join
00X T 00X ™
B (Cla_) =B 1(§1,—)O(900X2
2 2
of the ball Fawxl(g“l, 7) © 0, Xy with the full visual boundary 0., X,. Hence, 0, X admits a
compact packing by 7-balls of type Y, if and only if 0,X; does. The assertion follows. ]

Combining Theorems 8.6 and 8.7 with Lemma 8.8, we obtain:

Theorem 8.9 (Nonexistence of simplicial packings). If X has at least one de Rham
factor not of the type Ay, By or Ga, then it is of non-root packing type.

Proof. The assumptions imply that X has a de Rham factor of type Ay or with rank > 3. [

8.2.4 Type B,

Suppose now that the symmetric space X has type By. We obtain only partial results on the
nonexistence of packings.

s
4

and all types in 0,,,q are t-invariant. We again denote by

The model spherical chamber o,,,4 is an arc 7 of length and &£,7 € Opmoq are the two

vertex types. Moreover, ¢ = id

Omod
Flag, —5Flage=60'(€) and Flag, % Flag, = 6 (7))

the canonical projections from the full flag manifold (of chambers) to the partial flag manifolds
(of vertices of fixed type).

Simplicial §-balls in 07;; X are centered at vertices, and hence simplicial packings by F-balls
are of vertex type.

A packing By, of regular type g € int(0,,04) gives rise to a continuous family of packings By,
¥ € Opmod, by simultaneously “sliding” its centers along the chambers containing them. Namely,
we choose as the centers of By the points of type ¥ in those chambers which contain the centers
of By,. A regular packing thus gives rise to singular packings of both vertex types.
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Consider now a packing B of 0, X by F-balls of type € with set of centers Cg < Flagg. Note
that Flag; is partitioned by the J-spheres around the points in Cg, and that the map

ngcg -, Flag,

is bijective. If C¢ is compact, then this map is a homeomorphism, and its inverse is a section of
7y whose image is mg-saturated, i.e. is a union of mg-fibers. Conversely, each section of m; whose
image is mg-saturated yields a compact packing of d, X by §-balls of type €.

Question 8.10. For which groups G of type By the projection 7z resp. 7; admits a section
whose image is ;- resp. mg-saturated?

Example 8.11. Let G = SO(n,2) with n > 2. The partial flag manifolds in this case are the
Grassmannian £ of isotropic lines L and the Grassmannian P of isotropic planes P, and the
full flag manifold is the manifold F of isotropic flags (L, P).

Fix an orthogonal splitting R™? = R" @ R? so that the quadratic form q = 2% + -+ + 22 —

2
n+1

isometries ® : (R?, —q|g2) — (R", ¢|rn). The isotropic lines in R™? are the graphs of isometries

22, — x2_, is definite on each factor. Then the isotropic planes in R™? are the graphs of
¢ : (I,—ql;) — (R, g|gn) defined on lines [ < R?. A full isotropic flag corresponds to a pair
(®,1), its isotropic line corresponding to the restriction ®|;. Thus, we have the product splitting
F =~ P x RP.

The projection 7p : F — P is the projection to the first factor. It admits “constant” sections
s; by fixing [. Their images are 7-saturated, namely s;(P) = 7' L; where £; denotes the set of
isotropic lines contained in the hyperplane R" @1 =~ R™! < R™2. The subset £; £ is compact
and antipodal, and hence constitutes the set of centers of a packing of d,X by F-balls. In
incidence geometric terms, the antipodality corresponds to the fact that the hyperplane R" @1
contains no isotropic plane, and the packing to the (equivalent) fact that every isotropic plane
intersects R® @[ in a line. The hyperplane R® @[ is the orthogonal complement, in R™2, of
the line [+ = R? orthogonal to I. Accordingly, £; = £ is the orbit of a subgroup = SO(n, 1) of
SO(n,2), namely of the one which fixes [+

The projection 7, : F — L is given by (®,1) — ®|;. Let £, < L denote the subset of
isotropic lines which project to l; = Re; < R?, i.e. for which the isometry ¢ is defined on ;. A
section of 7z over £; would associate with each unit vector ¢(e;) in R” a unit vector orthogonal
to it, namely ®(eq) for the extension ® of ¢ determined by the section. It would thus yield a
unit vector field on S"~! = R™. Such a vector field does not exist if n is odd.

On the other hand, if n is even, then we can use the standard identification R™? =~ C2'' and
consider the subset P. < P of isotropic planes which are invariant under the complex structure,
i.e. which are complex lines. Every isotropic line is contained in a unique such isotropic plane
by complexification, which means that

1y Tz
Tp Pe —

is a homeomorphism and, accordingly, P, is the set of centers of a packing. It is the orbit of

the subgroup SU(%,1) = SO(n,2).
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Our discussion and the example imply:

Theorem 8.12. (i) If G = O(2k + 1,2) with k > 1, then 0,X admits no compact packing by
5-balls of reqular type, neither of the singular type corresponding to isotropic planes.
(ii) If G = O(2k,2) with k > 1, then 0,X admits a compact packing by 5-balls of the
singular type corresponding to isotropic planes whose set of centers is an orbit of U(k,1) < G.
(iii) If G = O(n,2) with n = 2, then 0,X admits a compact packing by F-balls of the
singular type corresponding to isotropic lines whose set of centers is an orbit of O(n,1) < G.

Proof. (i) According to our above discussion, a packing of regular type gives rise to packings
of both singular types. We assume therefore that there exists a packing of the singular type
corresponding to isotropic planes, i.e. with centers in P < 0., X. It yields a section of the fiber
bundle 7, : F — L. However, such a section does not exist, cf. the example, contradiction.

(ii)+(iii) See the previous example. O

The theorem leaves open the question whether packings of regular type exist if n is even.

8.3 Nonemptiness of domains of proper discontinuity

We now apply our results on packings to discrete subgroups. Proposition 8.3 yields:

Proposition 8.13 (Empty domains yield packings). Let Tpoq and Uy € Tmoea be t-invariant.

Suppose that I' < G is a discrete subgroup such that A, . is antipodal and

od

ThFU (ATmod) = aFUX

for all balanced W -left invariant thickenings Th < W of the form Th = Thgoﬁg (as defined
by (3.26)). Then the family of balls B(A Jo) is a packing of 0 X.

Tmod?

Applying our nonexistence results for packings (Theorem 8.9), we conclude that some of
the domains of proper discontinuity constructed earlier (cf. Theorem 6.13) are nonempty. For
instance, we obtain in the regular case 7,04 = Tmod:

Theorem 8.14 (Nonemptiness of domains of proper discontinuity). Suppose that X has
at least one de Rham factor not of the type Ay, By or G, and let I' < G be a 0,,,4-convergence
subgroup with antipodal limit set A, _,.
of proper discontinuity 0pz X — Thri(A,, ) for the T-action (provided by Theorem 6.13) is

Then for some balanced thickening Th < W the domain

nonempty. Moreover, the thickening can be chosen of the form Th = Thﬁo,ﬁ,g (as defined by
(3.26)) with ¥y € 0ymea a 0Ot type.

Proof. Otherwise, by the proposition, d,X admits compact packings by F-balls for all (of the
at most two) root types. However, this contradicts Theorem 8.6, respectively, Theorem 8.7.
(Note that root types are t-invariant.) O

In the By case, we can only treat a family of examples:
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Addendum 8.15 (Nonemptiness of domains of proper discontinuity, By case). Sup-
pose that G = O(2k + 1,2) with k = 1, and let T' < G be a Tpeq-convergence subgroup with
antipodal limit set A, . for the verter type Tmod € Omoa corresponding to isotropic planes.
Then for the balanced W -left invariant thickening Th ¢ W = Wpg, the domain of proper
discontinuity Ops X — Thpy(Ar,,,) for the I'-action (provided by Theorem 6.13) is nonempty.

Proof. Otherwise, the proposition yields a compact packing of 0, X by Z-balls of type 7,
contradicting Theorem 8.12(i). O

This leaves open the question whether, in the case of G = O(2k,2) for k > 2, there are
Omod-convergence subgroups with antipodal limit sets, which have empty domains of proper
discontinuity for arbitrary balanced thickenings Th. We note that Example 7.15 provides ex-
amples of 7,,,g-CEA subgroups with empty domains of proper discontinuity in dp; X for some
choices of balanced thickenings.

Remark 8.16. Theorem 8.14 is both weaker and stronger than the nonemptiness results in
[GW, Thms. 1.11, 1.12 and 9.10]. It is stronger in the sense that it applies to hyperbolic groups
I' without assumptions on their cohomological dimension, unlike the results in [GW] which
require small cohomological dimension; furthermore, it applies to domains of discontinuity in
various partial flag manifolds (always including G/B = dr; X ), unlike the results in [GW] which
work (in general) only for domains of discontinuity in G/AN (which is a certain fiber bundle
over GG/B). On the other hand, it is weaker in the sense that it addresses only the regular
case (Tmod = Omod). We also note that some examples of Anosov subgroups for which some
discontinuity domains are empty are given in [GW, Remark 8.5].
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