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Abstract

For noncompact semisimple Lie groups G with finite center we study the dynamics of

the actions of their discrete subgroups Γ ă G on the associated partial flag manifolds G{P .

Our study is based on the observation that they exhibit also in higher rank a certain form

of convergence type dynamics. We identify geometrically domains of proper discontinuity

in all partial flag manifolds. Under certain dynamical assumptions equivalent to the

Anosov subgroup condition, we establish the cocompactness of the Γ-action on various

domains of proper discontinuity, in particular on domains in the full flag manifold G{B. In

the regular case (e.g. of B-Anosov subgroups) we prove the nonemptiness of such domains

if G has (locally) at least one noncompact simple factor not of the type A1, B2 or G2, by

showing the nonexistence of certain ball packings of the visual boundary.
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1 Introduction

Let G be a noncompact semisimple Lie group with finite center. In this paper, we study the

natural actions

Γ ñ G{P

of discrete subgroups Γ ă G on the (partial) flag manifolds G{P associated to G. (Here, P ă G

denotes a parabolic subgroup.) We are interested in aspects of the topological dynamics of the

action of Γ, notably in domains of proper discontinuity and criteria for the cocompactness on

these (see Theorems 1.6, 1.9 and 1.10 below). Our approach relies on the geometry of the

associated symmetric space X “ G{K of noncompact type. The connection is established by

the fact that the flag manifolds occur as the G-orbits in the visual boundary B8X, that is,

the boundary at infinity of the visual compactification X “ X \ B8X of X. The results are

essentially generalizations of the main results in the first version of this paper [KLP1], however

we adopt here a more dynamical viewpoint.

If rankpXq “ 1, equivalently, if X has strictly negative sectional curvature, then the only

flag manifold is B8X itself and the transitive action G ñ B8X has convergence dynamics. This

means that divergent sequences in G exhibit a certain attraction-repulsion behavior, namely

they subconverge on the complement of one point in B8X locally uniformly to a constant map.

More precisely, for a sequence gn Ñ 8 in G there exist a subsequence pgnkq and (not necessarily

distinct) points ξ˘ P B8X such that

gnk |B8X´tξ´u Ñ ξ`

uniformly on compacta.

As a consequence of convergence dynamics, for a discrete subgroup Γ ă G, there is a clean

Γ-invariant dynamical decomposition

B8X “ Ωdisc \ Λ

into the open domain of discontinuity or wandering set Ωdisc and the compact limit set Λ. The

latter consists of all points occuring as limits ξ` as above for sequences γn Ñ 8 in Γ, and the

Γ-action on Ωdisc is even properly discontinuous. In order for this action to be cocompact, one

needs to impose further conditions on the group. The action Γ ñ Ωdisc is cocompact if (but not

only if) Γ is convex-cocompact.

If rankpXq ě 2, then the action G ñ B8X is no longer transitive. The G-orbits are compact

and, as G-spaces, copies of flag manifolds. They are parametrized by the spherical Weyl

chamber σmod associated to G; a G-orbit for an interior point of a face τmod Ď σmod (which we

will also refer to as a face type) is naturally identified with the flag manifold Flagτmod – G{Pτ , the

conjugacy class of the parabolic subgroup Pτ corresponding to the face τmod. In particular, the

regular G-orbits in B8X, i.e. those corresponding to interior points of σmod itself, are identified

with the full flag manifold, BF :uX – Flagσmod – G{Bσ, the space of Weyl chambers at infinity,

also called the Furstenberg boundary; here, Bσ denotes a minimal parabolic subgroup of G.
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Our study is based on the observation that a weak form of convergence dynamics persists

for the action G ñ B8X in higher rank (cf. sections 5.2 and 6): Sequences gn Ñ 8 in G

subaccumulate outside a compact exceptional subset locally uniformly at another compact

subset, meaning that there exist a subsequence pgnkq and compact subsets A˘ Ă B8X such

that

gnk |B8X´A´ accumulates at A`

uniformly on compacta. We briefly say in this case that pgnkq is pA´, A`q-accumulating. There

is a certain flexibility in the choice of the pair of compact subsets pA´, A`q and a trade-off

(“uncertainty relation”): If one shrinks one of the subsets A˘, one must enlarge the other.

For instance, one can make the following metric choice for the pair of compact subsets: For a

suitable subsequence pgnkq there exist points ξ˘ P B8X such that pgnkq is pBpξ´, π´rq, Bpξ`, rqq-

accumulating for all radii r P p0, πq, where Bpξ, rq denotes a ball in B8X with respect to the

Tits angle metric. This kind of convergence type dynamical behavior had been observed, in

the general setting of proper CAT(0) spaces, by Karlsson [Kar, Thm. 1] and Papasoglu and

Swenson [PS, Thm. 4], see also the first version of this paper [KLP1, Thm. 1.1 and §6.1].

In our setting of CAT(0) model spaces with their rich geometric structure, one can make

more flexible “combinatorial” choices for the pair of compact subsets which can be described in

terms of the (partial) Bruhat order ă on the Weyl group W . These will enable us to construct

larger domains of proper discontinuity for discrete group actions than those obtained from

metric choices. To explain the combinatorial choices, we need some preliminary considerations.

It will be useful for us to interpret the Bruhat order geometrically and we give a geometric

description of it and its generalization as the folding order (see section 3.2).

Since any two Weyl chambers at infinity σ, σ1 Ă B8X are contained in an apartment, that

is, the visual boundary B8F Ă B8X of a maximal flat F Ă X, we can define a combinatorial

relative position

pospσ1, σq P W

of σ1 with respect to σ (section 3.3). The larger the position is with respect to ă, the more

generic it is. We note that the sublevels of posp¨, σq in BF :uX are precisely the Schubert cycles

with respect to σ, that is, the Bσ-orbit closures.

We define a thickening

Th Ă W

of the neutral element inside the Weyl group as a union of sublevels for the Bruhat order

(section 3.4). Each thickening Th Ă W gives rise to corresponding thickenings of chambers

inside the Furstenberg boundary,

ThF :upσq :“ tposp¨, σq P Thu Ă BF :uX,

which can also be regarded as thickenings Thpσq Ă B8X inside the visual boundary, by taking

the union of the chambers contained in them. The thickenings of chambers in BF :uX are finite

unions of Schubert cycles and hence projective subvarieties. Thickenings ThF :upAq Ă BF :uX and
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ThpAq Ă B8X of compact subsets A Ă BF :uX are defined as the union of the thickenings of the

individual chambers σ P A; they are again compact.

This discussion generalizes: There is a well-defined WτmodzW -valued position posp¨, τq of

chambers relative to a simplex τ P Flagτmod . Here, Wτmod ă W denotes the stabilizer of

the face τmod Ď σmod. If the thickening Th Ă W is Wτmod-left invariant, then it yields well-

defined compact thickenings ThF :upAq Ă BF :uX and ThpAq Ă B8X of compact subsets A Ă

Flagτmod . Even more generally, there is a well-defined WτmodzW {Wνmod-valued position pospν, τq

of simplices ν P Flagνmod relative to simplices τ P Flagτmod , and a Wτmod-left and Wνmod-right

invariant thickening inside W yields thickenings of subsets of Flagτmod inside Flagνmod .

For every thickening Th Ă W , there is the complementary thickening Thc Ă W defined by

W “ Th\w0 Thc

where w0 denotes the longest element of the Weyl group. (This partition of the Weyl group

generalizes the decomposition π “ r`pπ´rq of the maximal distance in the unit sphere, cf. the

metric choices above.) We call a thickening Th slim, fat or balanced if Th Ď Thc, Th Ě Thc,

respectively, Th “ Thc. Existence results for balanced thickenings with different invariance

properties are stated in Proposition 1.11 below, examples are given in section 3.4.

Returning to the dynamics of sequences gn Ñ 8 in G on B8X, we show (cf. Lemma 4.6 and

Proposition 6.14) that there always exist a subsequence pgnkq, a face τmod Ď σmod and a pair of

simplices τ˘ P Flag˘τmod such that

gnk |Cpτ´q Ñ τ` (1.1)

uniformly on compacta in the open Schubert cell Cpτ´q Ă Flagτmod of simplices opposite to

τ´. Here ´τmod :“ ιτmod for the canonical involution ι “ ´w0 of σmod. This locally uniform

convergence property implies (Corollary 6.8) that, more generally,

pgnkq is pThcpτ´q,Thpτ`qq-accumulating on B8X (1.2)

for all Wτmod-left invariant thickenings Th Ă W . Note that (1.1) is equivalent to (1.2) for the

slimmest nonempty choice Th “ teu. We call sequences satisfying (1.1) τmod-contracting (cf.

Definition 6.1). An equivalent notion had been introduced by Benoist in [Be], see in particular

part (5) of his Lemma 3.5, cf. also Remark 1.5.

We now turn to discussing the dynamics of discrete subgroups Γ ă G on B8X.

For a face τmod Ď σmod we define the “small” τmod-limit set

Λτmod Ă Flagτmod

as the set of all simplices in Flagτmod which occur as limits τ` as in (1.1) for sequences γn Ñ 8

in Γ (cf. Definition 6.9).

Remark 1.3. Benoist introduced in [Be, §3.6] a notion of limit set ΛΓ for Zariski dense sub-

groups Γ of reductive algebraic groups over local fields which in the case of real semisimple
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Lie groups is equivalent to our concept of σmod-limit set Λσmod .
1 What we call the τmod-limit

set Λτmod for other face types τmod Ĺ σmod is mentioned in his Remark 3.6(3), and his work

implies that, in the Zariski dense case, Λτmod is the image of Λσmod under the natural projection

Flagσmod Ñ Flagτmod of flag manifolds.

By choosing a Wτmod-left invariant thickening Th Ă W , we obtain from these small limit

sets the “large” thickened limit sets ThpΛτmodq Ă B8X. Our main results concern the proper

discontinuity and cocompactness of the Γ-action on the complements

ΩTh :“ B8X ´ ThpΛτmodq,

respectively, on their intersections with theG-orbitsGη Ă B8X. We obtain the strongest results

for the dynamics on the Furstenberg boundary. This is reasonable because the latter fibers with

compact fiber over all partial flag manifolds, and cocompact domains of proper discontinuity in

any flag manifold pull back to such domains in BF :uX. Our results are of the kind, in the spirit

of Mumford’s Geometric Invariant Theory, that the Γ-actions become properly discontinuous

when removing a sufficiently “fat” thickening of Λτmod , and remain cocompact when removing

a sufficiently “slim” one. (See Example 3.42 and the discussion in section 7.4 for a concrete

connection with configuration spaces and GIT.)

The accumulation property (1.2) is the key step in constructing domains of proper discon-

tinuity for all discrete subgroups (see Propositions 6.21 and 6.23 in section 6.4). We obtain

the most useful results for subgroups which satisfy a certain generalization of the convergence

property (see Definition 6.10):

Definition 1.4 (Weak convergence subgroup). We call a discrete subgroup Γ ă G a τmod-

convergence subgroup with respect to a face type τmod Ď σmod, if every sequence γn Ñ 8 in

Γ has a subsequence satisfying (1.1) with this particular face type τmod, equivalently, has a

subsequence satisfying (1.2) for any choice of Wτmod-left invariant thickenings Th Ă W .

Remark 1.5 (Convergence dynamics versus regularity). We note that the τmod-conver-

gence property of a subgroup Γ ă G, formulated in terms of the dynamics of the action on

the visual boundary B8X, can be equivalently described in terms of the asymptotic behavior

of Γ-orbits in the symmetric space X. Namely, Γ is a τmod-convergence subgroup if and only if

it is a τmod-regular subgroup of G, see section 6.3. The notion of τmod-regularity was introduced

in our earlier paper [KLP2] where also the equivalence of the two notions was established. In

the present paper we only need (and verify) that τmod-convergence implies τmod-regularity.

The notions of regularity and contraction for sequences and their essential equivalence can

be found in some form already in the work of Benoist, see [Be, §3]. For the sake of completeness

we give independent proofs in our setting of discrete subgroups of semisimple Lie groups. Also

our methods are rather different. We give a geometric treatment and present the material in a

form suitable for the further development of our theory of discrete isometry groups acting on

1Benoist’s limit set ΛΓ is contained in the flag manifold YΓ which in the case of real Lie groups is the full

flag manifold G{B, see the beginning of §3 of his paper. It consists of the limit points of sequences contracting

on G{B, cf. his Definitions 3.5 and 3.6.
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Riemannian symmetric spaces and euclidean buildings, such as in our papers [KLP3, KL1].

Our main result on proper discontinuity includes (cf. Theorem 6.13):

Theorem 1.6 (Proper discontinuity outside fat thickenings). Let τmod Ď σmod be ι-

invariant. If Γ ă G is a τmod-convergence subgroup, then for any fat Wτmod-left invariant

thickening Th Ă W the action

Γ ñ B8X ´ ThpΛτmodq

is properly discontinuous.

In order to obtain cocompactness for actions of τmod-convergence subgroups, we must impose

further conditions, as it is the case for convergence actions, compare the situation in rank one.

Our main requirement is that the action Γ ñ Flagτmod should be expanding at Λτmod in the

sense of Sullivan [Su, §9], cf. Definition 5.22. Moreover, if τmod is ι-invariant, we call the limit

set Λτmod antipodal if the simplices in it are pairwise opposite (see Definition 2.4(ii)).

Definition 1.7 (CEA subgroup). For a ι-invariant face τmod Ď σmod we call a τmod-conver-

gence subgroup Γ ă G a τmod-CEA subgroup (convergence, expanding, antipodal) if Λτmod is

antipodal and if the action Γ ñ Flagτmod is expanding at Λτmod .

The restricted action Γ ñ Λτmod is then a convergence action in the traditional sense.

Such subgroups are higher-rank generalizations of convex-cocompact subgroups of rank one Lie

groups. In fact, the CEA condition is only one of various equivalent dynamical and (coarse) geo-

metric conditions which can be used to characterize this class of discrete subgroups, see [KLP2]

and also [KL2, KLP4, KLP5] for a detailed study of these conditions and their equivalence. In

particular:

Remark 1.8 (CEA versus Anosov). The class of τmod-CEA subgroups coincides with the

class of Pτmod-Anosov subgroups, see [KLP2, §6.5]. Here, Pτmod refers to the conjugacy class

of parabolic subgroups of G corresponding to the face τmod of the spherical Weyl chamber

σmod. We recall that the notion of Anosov subgroup had first been introduced in [La] using the

language of geodesic flows, and further extended in [GW]. We gave the first flow-free definitions

in [KLP2]. We note that Labourie’s original definition did not require τmod to be ι-invariant,

instead he worked with pPτmod , Pιτmodq-Anosov subgroups. However, as already observed in

[GW], the general case readily reduces to the ι-invariant one.

Our main result regarding cocompactness includes (cf. Theorem 7.8 and Corollary 7.9):

Theorem 1.9 (Cocompactness outside slim thickenings). Suppose that Γ ă G is a τmod-

CEA subgroup. Then for each slim Wτmod-left invariant thickening Th Ă W , the action

Γ ñ BF :uX ´ ThF :upΛτmodq

is cocompact.

More generally, suppose that νmod Ď σmod is another face type and that the thickening Th

is also Wνmod-right invariant. Then for any G-orbit Gη Ă B8X corresponding to an interior
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point of νmod, the action

Γ ñ Gη ´ ThpΛτmodq

is cocompact.

By combining the two theorems, we obtain the central result of this paper:

Theorem 1.10 (Cocompact domains of proper discontinuity). Let Γ ă G and the data

τmod, νmod,Th be as in the previous theorem with the additional requirement that the thickening

Th be balanced. Then the respective actions are properly discontinuous and cocompact.

We note that topology of the quotient space pBF :uX ´ ThF :upΛτmodqq{Γ, in general, depends

on the balanced thickening, see Example 7.15.

Balanced thickenings do not exist for all invariance requirements, but for many they do.

For instance, one can impose arbitrary left invariance and, as a consequence, one has balanced

thickenings of τmod-limits sets inside BF :uX for all ι-invariant τmod, as the first part of the next

result shows (see section 3.4 for more general results):

Proposition 1.11 (Existence of balanced thickenings). For every ι-invariant face type

τmod there exists a Wτmod-left invariant balanced thickening Th Ă W .

For an arbitrary face type νmod, a Wνmod-right invariant balanced thickening exists if and

only if left multiplication by w0 has no fixed point on W {Wνmod. This is the case, for instance,

if w0 “ ´ id, equivalently, if all irreducible factors of the symmetric space are of type A1, Bně2,

D2kě4, E7,8, F4 or G2.

The nonemptiness of the domains found in Theorem 1.10 (and Theorem 1.6) is an issue.

For instance, uniform lattices in rank one Lie groups have empty domains of discontinuity at

infinity (and such lattices are CEA). See also Example 7.15 for empty domains in the reducible

case. If for a τmod-convergence subgroup Γ with antipodal τmod-limit set all domains given by

Theorem 1.6 were empty, it would follow that the visual boundary of X admits a packing by

a compact family (with respect to the visual topology) of π
2
-balls (with respect to the Tits

metric), cf. Proposition 8.13. However, the existence of such packings can be ruled out for most

Weyl groups (Theorem 8.9), and we conclude (see Theorem 8.14):

Theorem 1.12 (Nonemptiness of domains of proper discontinuity). Suppose that X has

at least one de Rham factor not of the type A1, B2 or G2, and let Γ ă G be a σmod-convergence

subgroup with antipodal limit set Λσmod. Then for some balanced thickening Th Ă W the

domain of proper discontinuity BF :uX ´ ThF :upΛσmodq for the Γ-action provided by Theorem 1.6

is nonempty.

Note that the theorem covers the case of CEA subgroups, but is more general.

The possible balanced thickenings can be described more precisely, cf. Theorem 8.14. In

the B2-case, we have partial nonemptiness results for the groups G “ Op2k ` 1, 2q with k ě 1

(see Addendum 8.15). The G2-case is not discussed in this paper.
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The above results yield for the dynamics of CEA subgroups on the Furstenberg boundary:

Corollary 1.13 (Dynamics on the Furstenberg boundary). Suppose that Γ ă G is a

τmod-CEA subgroup. There exist Wτmod-left invariant balanced thickenings Th Ă W , and for

every such thickening the action

Γ ñ BF :uX ´ ThF :upΛτmodq

is properly discontinuous and cocompact.

If Γ ă G is a σmod-CEA subgroup, and if X has at least one de Rham factor not of the

type A1, B2 or G2, then for some balanced thickening Th Ă W the cocompact domain of proper

discontinuity BF :uX ´ ThF :upΛσmodq is nonempty.

Again, the possible thickenings occuring in the σmod-case can be described more precisely.

Remark 1.14 (Dynamics on Finsler compactifications). Our results regarding domains

of proper discontinuity and cocompactness for discrete group actions on flag manifolds have

analogs for the actions of the same classes of subgroups on a Finsler compactification X
Fins

of

X. This is done in our paper [KL1]. The compactification X
Fins

is obtained from X geomet-

rically by applying the horoboundary construction to suitable G-invariant regular polyhedral

Finsler metrics on X rather than to G-invariant Riemannian metrics (which yields the visual

compactification X “ X \ B8X), and it coincides with the maximal Satake compactification

from algebraic group theory, see also [Pa]. Note that the Furstenberg boundary BF :uX naturally

embeds into X
Fins

as a G-orbit, namely as the only compact one. Some of the results become

easier in the Finsler setting, for instance, the nonemptiness of domains of proper discontinuity

at infinity is no longer an issue: Each τmod-convergence subgroup with antipodal limit set Λτmod

has a nonempty domain of proper discontinuity in the Finsler ideal boundary (defined using an

arbitrary Wτmod-left invariant balanced thickening), once rankpXq ě 2, see [KL1, Lemma 9.19].

Remark 1.15. There is overlap of our results with [GW]. There, cocompact domains of proper

discontinuity are constructed for Anosov subgroups of various semisimple Lie groups acting

on various partial flag manifolds. However, in the general case of arbitrary semisimple Lie

groups G, such domains are constructed only in G-homogeneous spaces fibering over BF :uX –

G{B with compact fiber [GW, Thm. 1.9]. Nonemptiness of these domains is proven for P -

Anosov subgroups of small cohomological dimension [GW, Thms. 1.11, 1.12 and 9.10], while

our nonemptiness results apply to σmod-convergence subgroups with antipodal σmod-limit set,

which includes B-Anosov subgroups, without restriction on the cohomological dimension.

Observe also that our treatment is intrinsic, while in [GW] first a theory for Anosov sub-

groups of Lie groups of the type AutpF q is developed (where the F ’s are certain bilinear and

hermitian forms), and then generalized to other semisimple Lie groups by embedding these

into the groups AutpF q. The intrinsic approach is more uniform and seems to provide better

control, e.g. it allows us to get the domains, for general semisimple Lie groups, in flag manifolds

instead of only in bundles over these as in [GW]. While in some low rank cases the outcomes

of the two constructions of thickened limit sets are the same, our construction appears to be

more general.
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The earlier version [KLP1] of this preprint written in 2013 covered only the σmod-regular

case. Some of the material of [KLP1], dealing with equivalent characterizations of τmod-CEA

actions, was later moved to our paper [KLP2]. Most of the rest of the material of [KLP1] was

generalized and moved into this paper.
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2 Geometric preliminaries

In this section we collect some standard material on Coxeter complexes, the geometry of non-

positively curved symmetric spaces and associated spherical Tits buildings; we refer the reader

to [KlL] and [Le] for more detailed discussion of symmetric spaces and buildings.

2.1 General notation

We will use the notation Bpa, rq and Bpa, rq for the open, respectively, closed r-ball, centered

at a in a metric space Z. We will denote the nearest point distance of a point z P Z to a subset

A Ă Z by dpz, Aq :“ inf dpz, ¨q|A. The Hausdorff distance between two subsets A,B Ă Z will

be denoted dHpA,Bq. A geodesic in a metric space is an isometric embedding from a (possibly

infinite) interval I Ă R.

2.2 Coxeter complexes

A spherical Coxeter complex amod is a pair pS,W q consisting of a unit sphere S in a Euclidean

vector space V and a finite group W which acts isometrically on S and is generated by reflections

at hyperplanes. A Coxeter complex is reducible if W splits as a (nontrivial) direct product

W1 ˆW2 and V admits a W -invariant (nontrivial) orthogonal direct sum decomposition V “

V1‘V2 such that Wi fixes V3´i, i “ 1, 2. In this case, we obtain two induced Coxeter complexes

pSi,Wiq on the unit spheres Si Ă Vi. A Coxeter complex which is not reducible is called

irreducible.

We will use the notation = for the angular metric on S. Throughout the paper, we assume

that W does not fix a point in S and is associated with a root system R. Spherical Coxeter

complexes will occur as model apartments of spherical buildings, mostly of Tits boundaries of

symmetric spaces, and will in this context usually be denoted by amod.

A wall mρ in S is the fixed point set of a hyperplane reflection ρ in W . A half-apartment in
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S is a closed hemisphere bounded by a wall. A point ξ P S is called singular if it belongs to a

wall and regular otherwise.

The action W ñ S determines on S a structure as a simplicial complex whose facets, called

chambers, are the closures of the connected components of

S ´
ď

ρ

mρ

where the union is taken over all reflections ρ in W . We will refer to the simplices in this

complex as faces. (If one allows fixed points for W on S, then S carries only a structure as a

cell complex.) Codimension one faces of this complex are called panels. The interior intpτq of

a face τ is the complement in τ to the union of walls not containing τ . The interiors intpτq are

called open simplices. A geodesic sphere in S is called singular if it is simplicial, equivalently,

if it equals an intersection of walls.

Each chamber is a fundamental domain for the action W ñ S. We define the spherical

model Weyl chamber as the quotient σmod “ S{W . The natural projection θ : S Ñ σmod
restricts to an isometry on every chamber. An important elementary property of the chamber

σmod is that its diameter (with respect to the spherical metric) is ď π
2
.

For a face τmod of σmod, we define the subgroup Wτmod Ă W as the stabilizer of τmod in

W . Accordingly, for a point ξ̄ P σmod, we define Wξ̄ Ă W as the stabilizer of ξ̄ in W . Then

Wξ̄ “ Wτmod where τmod is the face of σmod spanned by ξ̄, i.e. which contains ξ̄ as an interior

point. Note that Wσmod “ 1 and Wξ̄ “ 1 for ξ̄ P intpσmodq.

It is convenient, and we will frequently do so, to identify σmod with a chamber σ Ă S

(traditionally called the positive chamber). Such an identification determines a generating set

of W , namely the reflections at the walls bounding σmod, and hence a word metric on W ; the

longest element with respect to this metric is denoted w0. This element sends σmod to the

opposite chamber in S. We say that two points ξ, ξ̂ P S are Weyl antipodes if ξ̂ “ w0ξ. We

define the standard or opposition involution

ι “ ιS : S Ñ S

as the composition ´w0. This involution preserves σmod and equals the identity if and only if

´ idS P W because then w0 “ ´ idS.

A point ξ in S is called a root if the hemisphere centered at ξ is simplicial, equivalently, is

bounded by a wall. If pS,W q is associated with a root system R, then ξ P S is a root if and only

if it has the direction of a coroot. Note that irreducible root systems correspond to irreducible

Coxeter complexes and vice versa.

Remark 2.1. We will be assuming in what follows that pS,W q is associated with a root system

R which spans V ˚. Equivalently, W is isomorphic to the linear part of an affine crystallographic

Coxeter group, i.e., one acting cocompactly on the affine space underlying the vector space V .

The root system R in this situation can be assumed to be reduced, i.e., if roots α, β have the

same kernel then α “ ˘β. In what follows we will be assuming that R is reduced.
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Note that each root type ζ̄ P σmod is ι-invariant, since the reflection w P W corresponding

to the root ζ̄ sends ζ̄ to ´ζ̄.

Each irreducible root system R has one or two distinct root types, i.e. W acts on R with

one or two orbits. Geometrically speaking, this means that W acts on the set of walls with one

or two orbits. We refer the reader to [Bou] for details.

Suppose that S is identified with the sphere at infinity of a Euclidean space F , S – B8F ,

where B8F is equipped with the angular metric. For a closed subset A Ă S and a point x P F

we define V px,Aq Ă F as the complete cone over A with tip x, that is, as the union of rays

emanating from x and asymptotic to A. If τ Ă S is a face, we call the cone V px, τq a Weyl

sector, and if σ Ă S is a chamber, we call V px, σq a euclidean Weyl chamber.

After fixing an origin o P F , the group W lifts to a group of isometries of F fixing o. The

euclidean Weyl chambers V po, σq are then fundamental domains for the action of W ñ F .

We define the euclidean model Weyl chamber as the quotient Vmod “ F {W ; we will also

denote it by ∆ or ∆euc. It is canonically isometric to the complete euclidean cone over σmod.

The natural projection

proj : F Ñ Vmod “ ∆euc “ ∆

restricts to an isometry on every euclidean Weyl chamber V po, σq.

For a closed subset Ā Ă σmod we define V p0, Āq Ă Vmod as the complete cone over Ā with

tip 0. In particular, a face τmod of σmod corresponds to a face V p0, τmodq of Vmod.

We define the ∆-valued distance function or ∆-distance d∆ on F by:

d∆px, yq “ projpy ´ xq P ∆

Note the symmetry property:

d∆px, yq “ ιd∆py, xq (2.2)

The Weyl group is precisely the group of isometries for the ∆-valued distance on Fmod which

fix the origin.

Lemma 2.3. Suppose that the Coxeter complex pS,W q is irreducible. Then ι “ id if and only

if the root system of pS,W q is of type A1, B`, C`, D2k, E7,8, F4 or G2. If ι ‰ id, then σmod
contains exactly one root which, therefore, is ι-invariant.

Proof. The proof is by examination of the irreducible root systems, see e.g. [Bou]: w0 “ ´ id

if and only if the root system is of type A1, B`, C`, D2k, E7,8, F4 or G2. All the remaining

irreducible root systems are simply-laced; equivalently, W acts transitively on roots.

2.3 Hadamard manifolds

In this section only, X denotes a Hadamard manifold, i.e. a simply connected complete Rie-

mannian manifold with nonpositive sectional curvature. We will use the notation IsompXq for

the full isometry group of X.
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Any two points in X are connected by a unique geodesic segment. We will use the notation

xy for the oriented geodesic segment connecting x to y. We will often regard geodesic segments,

geodesic rays and complete geodesics as parameterized with unit speed and treat them as

isometric maps of intervals to X.

We will denote by =xpy, zq the angle between the geodesic segments xy and xz at the point

x. For x P X we let ΣxX denote the space of directions of X at x, i.e. the unit sphere in the

tangent space TxX, equipped with the angle metric.

The ideal or visual boundary of X, denoted B8X, is the set of asymptote classes of geodesic

rays in X, where two rays are asymptotic if and only if they have finite Hausdorff distance.

Points in B8X are called ideal points. For ξ P B8X and x P X we denote by xξ the geodesic

ray emanating from x and asymptotic to ξ, i.e. representing the ideal point ξ. For x P X we

have a natural map

logx : B8X Ñ ΣxX

sending ξ P B8X to the velocity vector at x of the geodesic ray xξ. The cone or visual topology

on B8X is characterized by the property that all the maps logx are homeomorphisms; with

respect to this topology, B8X is homeomorphic to the sphere of dimension dimpXq ´ 1. The

visual topology extends to X̄ “ X Y B8X as follows: A sequence pxnq converges to an ideal

point ξ P B8X if the sequence of geodesic segments xxn emanating from some (any) base point

x converges to the ray xξ pointwise (equivalently, uniformly on compacta in R). This topology

makes X̄ into a closed ball. We define the visual boundary of a subset A Ă X as the set

B8A “ ĀX B8X of its accumulation points at infinity.

The visual boundary B8X carries the natural Tits (angle) metric =T its, defined as

=T itspξ, ηq “ sup
xPX

=xpξ, ηq

where =xpξ, ηq is the angle between the geodesic rays xξ and xη. The Tits boundary BT itsX

is the metric space pB8X,=T itsq. The Tits metric is lower semicontinuous with respect to the

visual topology and, accordingly, the Tits topology induced by the Tits metric is finer than

the visual topology. It is discrete if there is an upper negative curvature bound, and becomes

nontrivial if flat directions occur. For instance, the Tits boundary of flat r-space is the unit

pr´1q-sphere, BT itsRr – Sr´1p1q. An isometric embedding X Ñ Y of Hadamard spaces induces

an isometric embedding BT itsX Ñ BT itsY of Tits boundaries.

A subset A of BT itsX is called convex if for any two points ξ, η P A with =T itspξ, ηq ă π, the

(unique) geodesic ξη connecting ξ and η in BT itsX is entirely contained in A.

2.4 Symmetric spaces of noncompact type

The standard references for this and the following section are [E] and [He]. Our treatment of

this standard material is more geometric than the one presented in these books.

A symmetric space, denoted by X throughout this paper, is said to be of noncompact type

if it is nonpositively curved, simply connected and has no Euclidean factor. In particular, it
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is a Hadamard manifold. We will identify X with the quotient G{K where G is a semisimple

Lie group with finite center acting isometrically and transitively on X, and K is a maximal

compact subgroup of G. We will assume that G is commensurable with the isometry group

IsompXq in the sense that we allow compact kernel and finite cokernel for the natural map

G Ñ IsompXq. In particular, the image of G in IsompXq contains the identity component

IsompXqo. The Lie group G carries a natural structure as a real algebraic group.

A point reflection (also known as a Cartan involution) at a point x P X is an isometry σx
which fixes x and has differential ´ idTxX in x. In a symmetric space, point reflections exist in

all points (by definition). A transvection of X is an isometry which is the product σxσx1 of two

point reflections; it preserves the oriented geodesic through x and x1 and the parallel vector

fields along it. The transvections preserving a unit speed geodesic cptq form a one parameter

subgroup pT ct q of IsompXqo where T ct denotes the transvection mapping cpsq ÞÑ cps ` tq. A

nontrivial isometry φ of X is called axial if it preserves a geodesic l and shifts along it. (It does

not have to be a transvection.) The geodesic l is called an axis of φ. Axes are in general not

unique. They are parallel to each other.

A flat in X is a totally geodesic flat submanifold, equivalently, a convex subset isometric to

a Euclidean space. A maximal flat in X is a flat which is not contained in any larger flat; we

will use the notation F for maximal flats. The group IsompXqo acts transitively on the set of

maximal flats; the common dimension of maximal flats is called the rank of X. The space X

has rank one if and only if it has strictly negative sectional curvature.

A maximal flat F is preserved by all transvections along geodesic lines contained in it. In

general, there exist nontrivial isometries of X fixing F pointwise. The subgroup of isometries

of F which are induced by elements of G is isomorphic to a semidirect product Rr ¸W , where

r is the rank of X. The subgroup Rr acts simply transitively on F by translations. The linear

part W is a finite reflection group, called the Weyl group of G and X. Since maximal flats are

equivalent modulo G, the action W ñ F is well-defined up to isometric conjugacy.

We will think of the Weyl group as acting on a model flat Fmod – Rr and on its visual bound-

ary sphere at infinity, the model apartment amod “ BT itsFmod – Sr´1. The pair pamod,W q is the

spherical Coxeter complex associated with X. We identify the spherical model Weyl chamber

σmod with a (fundamental) chamber in the model apartment, σmod Ă amod. Accordingly, we

identify the euclidean model Weyl chamber Vmod with the sector in Fmod with tip in the origin

and visual boundary σmod, Vmod Ă Fmod.

The ∆-valued distance naturally extends from Fmod to X because every pair of points lies in

a maximal flat. In order to define the ∆-distance d∆px, yq of two points x, y P X one chooses a

maximal flat F containing x, y and identifies it isometrically with Fmod so that the Weyl group

actions correspond. The resulting quantity d∆px, yq is independent of the choices. We refer the

reader to [KLM] for the detailed discussion of metric properties of d∆.

For every maximal flat F Ă X, we have a Tits isometric embedding B8F Ă B8X of its visual

boundary sphere. There is an identification B8F – amod with the model apartment, unique up

to composition with elements in W . The Coxeter complex structure on amod induces a simplicial

structure on B8F . The visual boundaries of maximal flats cover B8X because every geodesic
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ray in X is contained in a maximal flat. Moreover, their intersections are simplicial. One thus

obtains a G-invariant piecewise spherical simplicial structure on B8X which makes B8X into a

spherical building and, also taking into account the visual topology, into a topological spherical

building. It is called the spherical or Tits building associated to X. The Tits metric is the path

metric with respect to the piecewise spherical structure. We will refer to the simplices as faces.

The visual boundaries B8F Ă B8X of the maximal flats F Ă X are precisely the apartments

with respect to the spherical building structure at infinity, which in turn are precisely the convex

subsets isometric to the unit pr´ 1q-sphere with respect to the Tits metric. Any two points in

B8X lie in a common apartment.

The action G ñ B8X on ideal points is not transitive if X has rank ě 2. Every G-orbit

meets every chamber exactly once. The quotient can be identified with the spherical model

chamber, B8X{G – σmod. We call the projection

θ : B8X Ñ B8X{G – σmod

the type map. It restricts to an isometry on every chamber σ Ă B8X. We call the inverse

κσ “ pθ|σq
´1 : σmod Ñ σ the (chamber) chart for σ. Consequently, θ restricts to an isometry on

every face τ Ă B8X. We call θpτq Ă σmod the type of the face τ and κτ “ pθ|τ q
´1 : θpτq Ñ τ its

chart. We define the type of an ideal point ξ P B8X as its image θpξq P σmod. A point ξ P B8X

is called regular if its type is an interior point of σmod, and singular otherwise. We denote by

B
reg
8 X Ă B8X the set of regular ideal boundary points. A point ρ P BT itsX is said to be of root

type if θpρq is a root in σmod Ă S. Equivalently, the closed π
2
-ball centered at ρ (with respect

to the Tits metric) is simplicial, i.e. is a simplicial subcomplex of BT itsX. If a Ă B8X is an

apartment, we call a type preserving isometry κa : amod Ñ a an apartment chart for a.

A geodesic segment xy in X is called regular if x ‰ y and for the unique geodesic ray xξ

extending xy the point ξ P BT itsX is regular. Equivalently, the vector d∆px, yq belongs to the

interior of Vmod.

Definition 2.4 (Antipodal). (i) Two ideal points ξ, η P B8X are antipodal if =T itspξ, ηq “ π.

A subset of B8X is called antipodal if the points in it are pairwise antipodal.

(ii) Two simplices τ1, τ2 Ă B8X are opposite (or antipodal) with respect to a point x P X

if τ2 “ σxτ1, where σx denotes the reflection at the point x. Two simplices τ1, τ2 Ă B8X are

opposite (or antipodal) if they are opposite simplices in the apartments containing both of them.

Note that the last property holds iff some (every) interior point of τ1 has an antipode in the

interior of τ2, equivalently, iff τ1 and τ2 are opposite with respect to some point x P X. Their

types are then related by θpτ2q “ ιpθpτ1qq. We will frequently use the notation τ, τ̂ and τ`, τ´
for pairs of antipodal simplices.

A pair of opposite chambers σ`, σ´ Ă B8X is contained in a unique apartment, which we

will denote by apσ`, σ´q; the apartment apσ`, σ´q is the visual boundary of a unique maximal

flat F pσ`, σ´q in X.

For a point x P X and a simplex τ Ă B8X we define the (Weyl) sector V “ V px, τq Ă X

as the union of rays xξ for all ideal points ξ P τ . Weyl sectors are contained in flats. They
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are isometric images of faces V p0, τmodq Ă Vmod of the euclidean model Weyl chamber under

isometric embeddings Fmod Ñ X which are type preserving at infinity. More generally, for a

point x P X and a closed subset A Ă B8X, we define the Weyl cone V px,Aq as the union of all

rays xξ for ξ P A. Weyl cones are in general not flat.

The stabilizers Bσ Ă G of the chambers σ Ă B8X are the minimal parabolic subgroups of G.

After choosing a reference chamber σ0 Ă B8X, we call B “ Bσ0 the positive minimal parabolic

subgroup. The group G acts transitively on the set of chambers in B8X, which we will then

identify with G{B, the full flag manifold of G. The minimal parabolic subgroups are algebraic

subgroups of G, and G{B is a real projective variety. The set BF :uX – G{B of chambers in

B8X is called the Furstenberg boundary of X; we will equip it with the visual topology (as

opposed to the Zariski topology coming from G{B) which coincides with its manifold topology

as a compact homogeneous G-space. Every regular G-orbit Gξ Ă B8X, ξ P intpσ0q, is G-

equivariantly and homeomorphically identified with BF :uX by assigning to the (regular) ideal

point gξ the unique chamber gσ0 containing it.

The stabilizers Pτ Ă G of simplices τ Ă B8X are the parabolic subgroups of G. The group

G acts transitively on simplices of the same type. The set Flagτmod – G{Pτmod of the simplices

τ of type θpτq “ τmod Ă σmod is called the partial flag manifold of type τmod. In particular,

Flagσmod “ BF :uX. Again, we equip the flag manifolds with the visual topology; it agrees

with their topology as compact homogeneous G-spaces. Every G-orbit Gξ Ă B8X of type

θpξq P intpτmodq is G-equivariantly homeomorphic to Flagτmod .

For a flag manifold Flagτmod and a simplex τ̂ of type ιτmod we define the open Schubert

stratum Cpτ̂q Ă Flagτmod as the subset of simplices opposite to τ̂ in the sense of Definition 2.4.

It follows from semicontinuity of the Tits distance that the subset Cpτ̂q Ă Flagτmod is indeed

open. Furthermore, this subset is also dense in Flagτmod . We note that for rank 1 symmetric

spaces, the only flag manifold associated to G is B8X and the open Schubert strata are the

complements of points.

If τmod is ι-invariant, we say as in Definition 2.4 that a subset of Flagτmod is antipodal if the

simplices in it are pairwise opposite.

3 Geometry of visual boundaries

In this section we introduce definitions and prove some properties of symmetric spaces of

noncompact type and their visual boundaries of more specific nature which are needed for our

study of discrete group actions at infinity.

3.1 Stars at infinity and regular points

For a simplex τ Ă B8X, the star stpτq Ă B8X is the union of all closed chambers σ Ě τ . It is

proven in [KLP2, Proposition 2.14] that for each face τ Ă B8X, the Weyl cone V px, stpτqq is a

closed convex subset of X.
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For a face type τmod Ď σmod, we define the open star

ostpτmodq Ă σmod

as the union of all open faces of σmod whose closure contains τmod. Its complement

B stpτmodq :“ σmod ´ ostpτmodq

is the union of all (closed) faces of σmod which do not contain τmod.

For a simplex τ Ă B8X, we define the open star

ostpτq Ă stpτq Ă B8X

as the union of all open simplices in B8X whose closure contains τ . Then

B stpτq :“ stpτq ´ ostpτq

is the union of all (closed) simplices in stpτq which do not contain τ ,

Definition 3.1. An ideal point ξ P B8X is said to be τmod-regular if θpξq P ostpτmodq, and

τmod-singular if θpξq P B stpτmodq.

We will call σmod-regular points simply regular. Note that ostpσmodq “ intpσmodq, and the

regular points in B8X are precisely the interior points of chambers.

Note that ostpτq is the subset of θpτq-regular points in stpτq and B stpτq is subset of θpτq-

singular points. The τmod-regular part

B
τmod´reg
8 X “ θ´1

postpτmodqq Ă B8X

of the visual boundary contains all open chambers and is in particular dense in B8X (also with

respect to the Tits topology). For a τmod-regular point ξ P B8X there is a unique closest (with

respect to the Tits metric) simplex τ Ă B8X of type τmod, namely the one with ξ P ostpτq.

The notion of regularity extends to oriented geodesic segments, rays and lines in X: A

geodesic ray xη Ă X is τmod-regular if its ideal endpoint η P B8X is. An oriented geodesic

segment xy Ă X is τmod-regular if the geodesic ray xη extending it is.

The geometric significance of σmod-regularity of geodesic segments comes from the fact that

a geodesic segment (or ray) in X is σmod-regular iff it is contained in a unique maximal flat.

3.2 Folding order

In this section, we discuss natural partial orders on Weyl orbits in the model apartment and

give different equivalent geometric definitions for them.

By a folding map amod Ñ amod we mean a type preserving continuous map which sends

chambers isometrically onto chambers.
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We will be working with folding maps which fix some reference face and think of them as

moving points “closer” towards this face. For instance, for a simplicial hemisphere h Ă amod
(containing the reference face) there is the folding map fixing h and reflecting the complementary

hemisphere onto it, see the discussion of special foldings below.

Definition 3.2 (Folding order). For a face type τmod Ď σmod, we define the τmod-folding

order ăτmod on amod as follows: For distinct points ξ̄1, ξ̄2 P amod we say that ξ̄1 ăτmod ξ̄2 if and

only if there exists a folding map f : amod Ñ amod such that f |τmod “ idτmod and fpξ̄2q “ ξ̄1.

We will use the notation ă for ăσmod .

The relations ăτmod are transitive, because the composition of folding maps are folding maps.

Remark 3.3. (o) Our folding order inequalities are non-strict inequalities allowing equality.

(i) The relation ăτmod is closed. It compares only points which lie in the same Weyl orbit,

i.e. if ξ̄1 ăτmod ξ̄2 then Wξ̄1 “ Wξ̄2.

(ii) The relation ăτmod on singular Weyl orbits is the closure of the relation ăτmod on regular

ones: It holds that ξ̄1 ăτmod ξ̄2 if and only if there exist sequences of regular points ξ̄ni Ñ ξ̄i
with ξ̄n1 ăτmod ξ̄

n
2 .

(iii) Any isometry of amod preserving τmod as a set preserves the relation ăτmod .

(iv) The relations ăτmod and ă are closely related: Clearly, ă is stronger than ăτmod , i.e. if

ξ̄1 ă ξ̄2 then ξ̄1 ăτmod ξ̄2. More precisely, note that a folding map f fixing τmod is the composition

w ˝ f 1 of a folding map f 1 fixing σmod with an element w P Wτmod . Thus ξ̄1 ăτmod ξ̄2 if and only

if there exist ξ̄1i P Wτmod ξ̄i such that ξ̄11 ă ξ̄12.

(v) If ξ̄1 ăτmod ξ̄2 then w1ξ̄1 ăτmod w2ξ̄2 for all w1, w2 P Wτmod , because w1fw
´1
2 is again a

folding map fixing τmod. Hence, ăτmod descends to a relation on the quotient Wτmodzamod which

we also denote by ăτmod .

There is a metric estimate for the folding order, because folding maps are 1-Lipschitz:

Lemma 3.4. If ϑ̄ P τmod, then we have the implication:

Wτmod ξ̄1 ăτmod Wτmod ξ̄2 ñ =T itspξ̄1, ϑ̄q ď =T itspξ̄2, ϑ̄q

Moreover, if ϑ̄ P intpτmodq, then equality holds on the right hand side only if Wτmod ξ̄1 “ Wτmod ξ̄2.

Proof. Suppose that Wτmod ξ̄1 ăτmod Wτmod ξ̄2. Then there exists a folding map amod Ñ amod
fixing τmod with fpξ̄2q “ ξ̄1. It maps the geodesic segment ϑ̄ξ̄2 to a broken geodesic segment β

from ϑ̄ to ξ̄1 of the same length, whence the implication of inequalities.

Suppose now in addition that ϑ̄ P intpτmodq and Wτmod ξ̄1 ‰ Wτmod ξ̄2. The initial segments of

β and ϑ̄ξ̄2 have the same type. Therefore there exists w P Wϑ̄ “ Wτmod such that wβ and ϑ̄ξ̄2

have a common initial segment. Since wξ̄1 ‰ ξ̄2, the broken geodesic segment β cannot be a

true geodesic segment, and we obtain the strict metric inequality =T itspξ̄1, ϑ̄q ă =T itspξ̄2, ϑ̄q.

As a consequence, we can justify our terminology of “partial order”:
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Corollary 3.5. ăτmod is a partial order on Wτmodzamod.

Proof. We must verify antisymmetry.

Suppose that Wτmod ξ̄1 ăτmod Wτmod ξ̄2 ăτmod Wτmod ξ̄1. By Lemma 3.4, we have =T itspξ̄1, ϑ̄q “

=T itspξ̄2, ϑ̄q for all ϑ̄ P τmod. The equality part implies that Wτmod ξ̄1 “ Wτmod ξ̄2.

We discuss next the structure of folding maps and decompositions into simple ones.

Each wall m splits amod into two hemispheres, the inner hemisphere h` containing σmod and

the outer hemisphere h´. This decomposition gives rise to the folding map which fixes h` and

reflects h´ onto it. We call a composition of such folding maps at walls mi a special folding.

The intersection Xih
`
i of inner hemispheres is fixed by the special folding. In particular, special

foldings fix the model chamber σmod.

In general, there are folding maps fixing σmod which are not special. However, this makes

no difference for the folding order ă:

Lemma 3.6 (Cf. [KM2, page 441, Thm. 4.9]). If for points ξ̄1, ξ̄2 P amod there exists

a folding map fixing σmod and mapping ξ̄2 ÞÑ ξ̄1, then there exists a special folding with this

property.

Proof. We may assume that ξ̄1 and ξ̄2 are regular and different. We connect a point η̄ in the

interior of σmod to ξ̄2 by a geodesic segment γ̄ which avoids faces of codimension at least two.

Let f be a folding map fixing σmod with fpξ̄2q “ ξ̄1. Then β̄ “ f ˝ γ̄ is a broken geodesic path

which connects η̄ to ξ̄1 and has the same length and initial direction as γ̄. Its bending points

are interior points of panels and β̄ is locally “reflected” at the walls containing these panels.

The assertion follows if we can replace β̄ by a broken geodesic path from η̄ to ξ̄1, which is the

image of γ̄ under a special folding.

Let η̄1 denote the first bending point of β̄ starting from η̄. It lies in a wall m1. If β̄ crosses m1

again in some point η̄2, then we replace the subpath η̄1η̄2 by its reflection at m1. The modified

broken path β̄1 has again reflection folds, the same initial direction and the same endpoint.

Moreover, its initial segment is strictly longer. After finitely many such modifications, we may

assume that β̄1 stays inside h`1 . (The wall m1 has changed in the process.) We then can obtain

β̄1 as the image of another broken path β̄2 under the special folding s1 at m1, i.e. β̄1 “ s1 ˝ β̄
2,

such that β̄2 has a strictly longer initial segment than β̄1.

Thus, we can replace β̄ by another broken path β̄2 with reflection bends, with the same

length and initial direction as γ̄, with a strictly longer initial segment than β̄, and such that

some special folding s1 maps the endpoint of β̄2 to the endpoint of β̄. It follows by induction

that β̄ can be replaced by another broken path with the same endpoint and which is the image

of γ̄ under a special folding.

Corollary 3.7 (Alternative definition of σmod-folding order). ξ̄1 ă ξ̄2 if and only if there

exists a special folding which maps ξ̄2 ÞÑ ξ̄1.

We note that the partial order ă had been defined exactly in this way by P. Littelmann,
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see [Li, p. 509].

The folding orders on the Weyl orbits in the model apartment correspond to orders on the

Weyl group and its (double) coset spaces, as we explain now.

We can regard the regular Weyl orbits as copies of W by identifying the orbit point in the

chamber wσmod with the element w P W . Under this identification, it holds that

w1 ă w2

for elements w1, w2 P W if and only if there exists a folding map amod Ñ amod fixing σmod and

mapping w2σmod ÞÑ w1σmod, and

w1 ăτmod w2

if and only if there exists such a folding map fixing only τmod. Again, ăτmod descends to an

order on WτmodzW , also denoted ăτmod .

Remark 3.8 (Bruhat order). The corollary shows that the folding order ă on W coincides

with the Bruhat order, see [Hu, ch. 5.9] or [BB, ch. 2] for a definition; hence, the folding order

gives a geometric interpretation of the Bruhat order. To verify this, one observes that if the

chambers wσmod and w1σmod are symmetric with respect to a wall and if wσmod lies in the inner

hemisphere, then we have the inequality lpwq ă lpw1q for word lengths. Here the word length

on W is defined using as generators the reflections at the walls of σmod.

More generally, if ξ̄ is an interior point of the face νmod Ď σmod, ξ̄ P intpνmodq, then Wξ̄ “

Wνmod and Wξ̄ – W {Wνmod . Under this identification, the order ăτmod on the Weyl orbit quo-

tient WτmodzWξ̄ Ă Wτmodzamod becomes a partial order on the double quotient WτmodzW {Wνmod ,

compare Remark 3.3(v). It holds that

Wτmodw1Wνmod ăτmod Wτmodw2Wνmod

if and only if there exist w1i P WτmodwiWνmod such that w11 ă w12, cf. [Mi2] for a slightly different

description of this order.

We next describe the effect of the longest element w0 P W on the folding order. Recall that

w0 is the involution sending σmod to the opposite chamber σ̂mod in amod.

Lemma 3.9. Left multiplication with w0 reverses the σmod-folding order.

Proof. Suppose that the special folding sm at the wall m maps ξ̄2 to ξ̄1, i.e. smξ̄2 “ ξ̄1. When

applying w0, the inner hemisphere bounded by m becomes the outer hemisphere bounded by

w0m and vice versa, w0h
˘
m “ h¯w0m

. Hence sw0mw0ξ̄1 “ w0ξ̄2. The assertion follows by applying

Corollary 3.7 and induction.

Regarding the analogous fact for the orders ăτmod , note that w0Wτmodw
´1
0 “ Ww0τmod “

Wιτmod and w0 maps Wτmod-orbits to Wιτmod-orbits. The action of w0 therefore induces a natural

map

Wτmodzamod
w0
ÝÑ Wιτmodzamod, Wτmod ξ̄ ÞÑ w0Wτmod ξ̄ “ Wιτmodw0ξ̄ (3.10)
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and, correspondingly,

WτmodzW {Wνmod
w0
ÝÑ WιτmodzW {Wνmod

WτmodwWνmod ÞÑ w0WτmodwWνmod “ Wιτmodw0wWνmod ,
(3.11)

and the lemma implies that these maps are order reversing:

Wτmod ξ̄1 ăτmod Wτmod ξ̄2 ô Wιτmodw0ξ̄1 ąιτmod Wιτmodw0ξ̄2 (3.12)

respectively

WτmodwWνmod ăτmod Wτmodw
1Wνmod ô Wιτmodw0wWνmod ąιτmod Wιτmodw0w

1Wνmod

3.3 Relative position at infinity

Let σ0, σ Ă B8X be chambers. There exists an (in general non-unique) apartment a Ă B8X

containing these chambers, σ0, σ Ă a, and a unique apartment chart α : amod Ñ a such that

σ0 “ αpσmodq. We define the position of σ relative to σ0 as the chamber

pospσ, σ0q :“ α´1
pσq Ă amod.

Abusing notation, it can be regarded algebraically as the unique element

pospσ, σ0q P W

such that

σ “ α
`

pospσ, σ0qσmod
˘

.

The relative position does not depend on the choice of the apartment a. To see this, choose

regular points ξ0 P intpσ0q and ξ P intpσq which are not antipodal, =T itspξ, ξ0q ă π. Then the

segment ξ0ξ is contained in a by convexity, and its image α´1pξ0ξq in amod is independent of

the chart α because its initial portion α´1pξ0ξ X σ0q in σmod is.

More generally, we define the position of a chamber σ relative to an arbitrary simplex τ0

of type τmod as follows. Let again a Ă B8X be an apartment containing τ0 and σ, and let

α : amod Ñ a be a chart such that τ0 “ αpτmodq. It is unique up to precomposition with an

element in Wτmod . We define the position of σ relative to τ0 as the Wτmod-orbit of the chamber

α´1pσq Ă amod. It can be interpreted algebraically as a coset

pospσ, τ0q P WτmodzW.

Even more generally, we define the position of a simplex ν Ă B8X relative τ0. Let a Ă B8X be

an apartment containing τ0 and ν, and let α : amod Ñ a be a chart such that τ0 “ αpτmodq. We

define the position of ν relative to τ0 as the Wτmod-orbit of the simplex α´1pνq Ă amod. It can

be interpreted algebraically as a double coset

pospν, τ0q P WτmodzW {Wνmod
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where νmod “ θpνq is the type of ν. Finally, we define the position of an ideal point ξ P B8X

relative τ0 as the relative position of the simplex νξ Ă B8X spanned by ξ (i.e. containing ξ as

an interior point),

pospξ, τ0q :“ pospνξ, τ0q P WτmodzW {Wνmod

where νmod “ θpνξq. In particular, pospξ, τ0q P WτmodzW if ξ is regular.

Lemma 3.13. Two ideal points ξ1, ξ2 in the same G-orbit Gξ Ă B8X have the same position

relative to a simplex τ Ă B8X iff they lie in the same orbit of the parabolic subgroup Pτ ă G,

pospξ1, τq “ pospξ2, τq ô Pτξ1 “ Pτξ2.

Proof. The implication “ð” is clear. For “ñ”, let ai Ă B8X be apartments containing τ and

ξi. There exists p P Pτ such that a1 “ pa2. Then pospξ1, τq “ pospξ2, τq “ posppξ2, τq iff ξ1 and

pξ2 span the same simplex in a1. In view of θpξ1q “ θpξ2q, the latter is equivalent to ξ1 “ ξ2.

The positions relative τ thus correspond to the orbits of Pτ and we have the identification

PτzGξ – PτzFlagνmod – PτzG{Pνξ – WτmodzW {Wνmod

with τmod “ θpτq and νmod “ θpνξq.

In particular, for regular orbits, which are copies of the Furstenberg boundary, we obtain

the identification

PτzBF :uX – WτmodzW.

The positions relative to a chamber σ correspond to the orbits of the minimal parabolic subgroup

Bσ, and we have

BσzGξ – BσzFlagνmod – BσzG{Pνξ – W {Wνmod and BσzBF :uX – W.

The G-orbits Gξ, respectively, the flag manifolds Flagνmod thus decompose into finitely

many Pτ -orbits which we call Schubert strata relative τ or τ -Schubert strata, and their closures

(generalized) Schubert cycles. (We will see below that the cycles are unions of strata.) The

level sets of posp¨, σq, i.e. the Bσ-orbits, are called Schubert cells relative σ.

Note that the Schubert cycles in the flag manifolds are projective subvarieties.

We will use the following notation. For a simplex τ´ P Flagιτmod , we denote by

Cτmodpτ´q :“ tτ : τ opposite to τ´
(

Ă Flagτmod

the open Schubert stratum associated with τ´ in Flagτmod ,

We can now use the folding order to compare the positions of points in a G-orbit Gξ Ă B8X,

respectively, a flag manifold Flagνmod relative to simplices τ of a fixed type τmod.

We begin by proving a useful monotonicity property for the folding order under folding maps.

It is a direct consequence of the definition of the folding order that folding maps amod Ñ amod
decrease the relative positions of pairs of simplices. We will need the same fact for folding maps

amod Ñ B8X and B8X Ñ B8X by which we mean, as before, type preserving continuous maps

sending chambers isometrically onto chambers.
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Lemma 3.14 (Monotonicity). (i) For a folding map f : B8X Ñ B8X and simplices τ, ν Ă

B8X it holds that

pospfpνq, fpτqq ăθpτq pospν, τq.

(ii) For a folding map α : amod Ñ B8X, a face type τmod and a simplex ν Ă amod it holds

that

pospαpνq, αpτmodqq ăτmod pospν, τmodq.

Proof. Part (i) reduces to (ii) by choosing an apartment a Ą τ Y ν and a chart κ : amod Ñ a

with κpτmodq “ τ for the face type τmod “ θpτq. Then apply (ii) to α “ f ˝ κ and ν̄ “ κ´1pνq.

To verify (ii), consider the composition

amod
α
ÝÑ B8X ÝÑ B8X{Bαpσmodq – amod

where the second map is the natural projection. It is a folding map ᾱ : amod Ñ amod fixing

σmod, and therefore

pospᾱpνq, τmodq ăτmod pospν, τmodq.

Since the Bαpσmodq-action on B8X preserves positions relative to faces of αpσmodq, we also have

pospαpνq, αpτmodqq “ pospᾱpνq, τmodq.

The assertion follows.

Lemma 3.15 (Semicontinuity of relative position). If ξn Ñ ξ in Gξ Ă B8X and τn Ñ τ

in Flagτmod are sequences such that the sequence of relative positions pospξn, τnq is constant,

pospξn, τnq “ p P WτmodzW {Wθpνξq for all n, then pospξ, τq ăτmod p.

In particular, the sublevels of posp¨, τq in Gξ are closed.

Proof. There exist apartment charts αn : amod Ñ B8X with αn|τmod “ κτn and αnpξ̄q “ ξn. The

charts subconverge to a folding map α with α|τmod “ κτ and αpξ̄q “ ξ. The assertion follows

from monotonicity, cf. Lemma 3.14(ii).

It follows that the suplevels tposp¨, τq ąτmod pu in Gξ are open, because their complements

are finite unions of sublevels tposp¨, τq ăτmod p
1u.

We show now that the folding order coincides with the inclusion order on Schubert cycles.

We start with the chamber case, where the relation between closures and the Bruhat order

is well known: In the case of complex Lie groups, it goes back to the work of Chevalley in 1950s

[Ch]; for the proofs in the general case (including reductive groups over local fields), see [BT]

and [Mi1]. (We are grateful to James Humphreys and Shrawan Kumar for the references.)

Proposition 3.16. For a chamber σ Ă B8X and ideal points ξ1, ξ2 in the same G-orbit Gξ Ă

B8X, we have:

pospξ1, σq ă pospξ2, σq ô Bσξ1 Ď Bσξ2
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Proof. We denote by ξ̄i P amod the point of type θpξq with pospξ̄i, σmodq “ pospξi, σq.

Suppose first that ξ1 P Bσξ2. Then there exists a sequence pbnq in Bσ such that bnξ2 Ñ ξ1.

Let an be apartments containing σ and bnξ2, and let αn : amod Ñ an be the apartment charts

which restrict to the chamber chart of σ, αn|σmod “ κσ : σmod Ñ σ. Then αnpξ̄2q “ bnξ2. The

Tits isometric embeddings αn subconverge (with respect to the visual topology) to a limit map

α : amod Ñ B8X. The map α is, in general, not an isometric embedding (chart), but only

a folding map extending κσ. It satisfies αpξ̄2q “ ξ1. Monotonicity, cf. Lemma 3.14(ii), yields

pospξ1, σq ă pospξ̄2, σmodq “ pospξ2, σq.

Vice versa, suppose now that ξ̄1 ă ξ̄2. By definition of the partial order ă there exists

a folding map of amod fixing σmod and carrying ξ̄2 ÞÑ ξ̄1. Furthermore there is an isometric

embedding amod Ñ B8X which extends the chamber chart κσ and maps ξ̄1 ÞÑ ξ1. By compo-

sition we obtain a folding map α : amod Ñ B8X which extends κσ and maps αpξ̄2q “ ξ1. We

want to find a sequence of isometric embeddings αn : amod Ñ B8X extending κσ such that

αnpξ̄2q Ñ αpξ̄2q “ ξ1. This will then imply that ξ1 P Bσξ2. (Note that in general folding maps

are not limits of isometric embeddings.)

We may assume that the relative positions ξ̄i are regular. (Otherwise, we may perturb

them keeping the inequality ξ̄1 ă ξ̄2 and perturb the ξi accordingly.) We choose in amod a

geodesic γ̄ of length π starting in an interior point η̄0 of σmod and passing through ξ̄2 while

avoiding simplices of codimension ě 2. It crosses successively a sequence (gallery) of chambers

σ̄0 “ σmod, σ̄1, . . . , σ̄k “ ˆσmod and intersects the intermediate panels τ̄i “ σ̄iX σ̄i´1 transversally

in interior points η̄i. When applying the folding map α, it may happen that successive chambers

of the folded gallery coincide, i.e. that αpσ̄iq “ αpσ̄i´1q for some i. (This happens if and only if

α is not an isometric embedding.) One can arbitrarily well approximate (in the visual topology)

the folded gallery by an embedded gallery with the same initial chamber σ. To obtain such

approximations it is convenient to use the G-action as follows. If αpσ̄iq “ αpσ̄i´1q then one may

pick an element g P G close to the identity, which fixes αpτ̄iq and moves αpσ̄iq “ αpσ̄i´1q away

from itself, and apply it to the “tail” αpσ̄iq, . . . , αpσ̄kq of the gallery. Doing this inductively

along the gallery, one obtains an arbitrarily good approximation of the folded gallery αpσ̄0q “

σ, . . . , αpσ̄kq by an embedded gallery σ0 “ σ, . . . , σk, that is a sequence of chambers such that

σi X σi´1 is precisely a panel for all i. This yields at the same time an approximation of the

broken geodesic αpγ̄q in B8X by a true geodesic γ such that γXσi and γ̄X σ̄i are corresponding

subsegments of the same type. Now we use the path γ̄ as a “guiding line” to extend the

correspondence σ̄i ÞÑ σi of galleries to an isometric embedding α1 : amod Ñ B8X extending

κσ: Since γ connects two antipodal regular points there exists a unique such α1 extending the

isometry γ̄ Ñ γ and hence mapping σ̄i to σi. By construction, α1pξ̄2q approximates αpξ̄2q “ ξ1

arbitrarily well. So we find a sequence of apartment charts αn with the desired properties.

The proposition readily generalizes to the simplex case (in the case when G is a complex

semisimple Lie group, a proof of the following proposition can be found in [Mi2, Prop. 3.13]):

Proposition 3.17. For simplices τ Ă B8X and ideal points ξ1, ξ2 in the same G-orbit Gξ Ă

B8X, we have:

pospξ1, τq ăθpτq pospξ2, τq ô Pτξ1 Ď Pτξ2
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Proof. Let σ Ą τ be a chamber. Since the quotient space Pτ{Bσ is compact (it is the space of

chambers containing τ as a face), the condition ξ1 P Pτξ2 is equivalent to the existence of an

element p P Pτ such that pξ1 Ď Bσξ2. According to Proposition 3.16, this is equivalent to the

existence of p P Pτ such that posppξ1, σq ă pospξ2, σq. Since Pτ acts transitively on chambers

containing τ , we have that YpPPτ posppξ1, σq “ Wθpτq pospξ1, σq “ pospξ1, τq. This completes

the proof.

In other words, the proposition says that the τ -Schubert cycles in G{Pν correspond to the

sublevels of the folding order ăτmod on WτmodzW {Wνmod , where τmod “ θpτq and νmod “ θpνq.

Recall that the simplices opposite to simplices of type τmod have type ιτmod, and that the

action of w0 induces the natural maps

Wτmodzamod
w0
ÝÑ Wιτmodzamod,

and hence the maps

WτmodzW {Wνmod
w0
ÝÑ WιτmodzW {Wνmod

of relative positions, compare (3.10) and (3.11).

Definition 3.18 (Complementary position). We define the complementary position by

c-pos :“ w0 pos .

This terminology is justified by (cf. Def. 2.4(ii) for the notion of antipodality):

Lemma 3.19. Let τ, τ̂ , ν Ă B8X be simplices contained in an apartment a, and suppose that

τ and τ̂ are antipodal. Then pospν, τ̂q “ c-pospν, τq.

Proof. Let α : amod Ñ a be a chart such that α|τmod “ κτ . Then τ̂ “ αpτ̂modq “ pα ˝ w0qpιτmodq

with the simplex τ̂mod “ w0ιτmod Ă amod opposite to τmod. Using the reparametrized chart

α ˝ w0, we obtain pospν, τ̂q “ pα ˝ w0q
´1pνq “ w0α

´1pνq “ w0 pospν, τq.

The relation of “complementarity” is clearly symmetric, c-c-pos “ pos. Passing to comple-

mentary relative position reverses the partial order, cf. Lemma 3.9:

pospξ1, τq ăθpτq pospξ2, τq ô c-pospξ1, τq ąιθpτq c-pospξ2, τq (3.20)

Points with smaller position relative to a simplex are closer to it in a metric sense. Namely,

according to Lemma 3.4 we have the inequality of Tits distances

pospξ1, τq ăθpτq pospξ2, τq ñ =T itspξ1, ¨q|τ ď =T itspξ2, ¨q|τ , (3.21)

respectively, for simplices τ1 and τ2 of the same type τmod,

pospξ1, τ1q ăτmod pospξ2, τ2q ñ =T itspξ1, ¨q ˝ κτ1 ď =T itspξ2, ¨q ˝ κτ2 . (3.22)

25



If τ1 and τ2 are simplices of opposite types, θpτ1q “ ιθpτ2q, and if the relative positions pospξ1, τ1q

and pospξ2, τ2q are complementary, then

=T itspξ1, ¨q ˝ κτ1 `=T itspξ2, ¨q ˝ κτ2 ˝ ι ” π (3.23)

on θpτ1q “ ιθpτ2q. To see this, note that the formula reduces to the case when the simplices τ1

and τ2 are opposite to each other and ξ1 “ ξ2 lies in an apartment containing them.

The following triangle inequality extends Lemma 3.19:

Lemma 3.24. Let τ, τ̂ Ă B8X be a pair of antipodal simplices and let ν Ă B8X be an arbitrary

simplex. Then

pospν, τ̂q ąιθpτq c-pospν, τq

with equality iff τ, τ̂ , ν are contained in an apartment.2

Proof. Let a Ă B8X be an apartment containing τ, τ̂ and let

B8X
r
ÝÑ a

be a folding retraction, i.e. a folding map such that r|a “ ida. Such a retraction is given e.g.

by the natural projection B8X Ñ B8X{Bσ – a for a chamber σ Ă a. By monotonicity, cf.

Lemma 3.14(i), we have

pospν, τq ąθpτq posprν, τq

and

pospν, τ̂q ąιθpτq posprν, τ̂q “ c-posprν, τq,

cf. Lemma 3.19. Since complementing position reverses the folding order, see (3.20), we obtain

the desired inequality.

Suppose that equality holds, pospν, τ̂q “ c-pospν, τq. Let ξ, ξ̂, η be interior points of τ, τ̂ , ν

such that ξ, ξ̂ are antipodal. Then

=T itspξ, ηq `=T itspη, ξ̂q “ π,

cf. Lemma 3.19 again, i.e. η lies on a geodesic segment ξξ̂. It follows that there exists an

apartment containing ξ, ξ̂, η and hence also the simplices spanned by these points.

3.4 Thickenings

3.4.1 Thickenings in the Weyl group

A thickening (of the neutral element) in W is a subset

Th Ă W

2Equivalently, ν lies in the spherical subbuilding Bpτ, τ̂q Ă B8X consisting of all apartments containing τ, τ̂ .
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which is a union of sublevels for the folding order, i.e. which contains with every element w

also every element w1 satisfying w1 ă w. In the theory of posets, such subsets are called ideals.

Unions and intersections of thickenings are again thickenings, and removing a maximal

element from a thickening yields a thickening. Furthermore, note that

Thc :“ w0pW ´ Thq “ W ´ w0 Th

is again a thickening, because left multiplication with w0 reverses the folding order, cf. Lemma 3.9.

It holds that

W “ Th\w0 Thc

and we therefore call Thc the thickening complementary to Th.

Definition 3.25 (Fat and slim). The thickening Th Ă W is called fat if ThYw0 Th “ W ,

equivalently, Th Ě Thc. It is called slim if ThXw0 Th “ H, equivalently, Th Ď Thc. It is called

balanced if it is both fat and slim, equivalently, Th “ Thc.

For types ϑ̄0, ϑ̄ P σmod and a radius r P r0, πs we define the metric thickening

Thϑ̄0,ϑ̄,r :“ tw P W : dpwϑ̄, ϑ̄0q ď ru, (3.26)

using the naturalW -invariant spherical metric d on amod. It is indeed a thickening by Lemma 3.4.

Recall that for a face type τmod Ď σmod, we denote by Wτmod its stabilizer in W . Furthermore,

ι “ ´w0 : σmod Ñ σmod denotes the canonical involution of the model spherical Weyl chamber.

Lemma 3.27. (i) If ϑ̄0 P τmod, then Thϑ̄0,ϑ̄,r is Wτmod-left invariant, Wτmod Thϑ̄0,ϑ̄,r “ Thϑ̄0,ϑ̄,r.

(ii) If also ιϑ̄0 “ ϑ̄0, then Thϑ̄0,ϑ̄,r is fat for r ě π
2

and slim for r ă π
2
.

(iii) If in addition dpwϑ̄, ϑ̄0q ‰
π
2

for all w P W , then Thϑ̄0,ϑ̄,
π
2

is balanced.

Proof. (i) For w1 P Wτmod , we have that w1ϑ̄0 “ ϑ̄0 and hence

dpw1wϑ̄, ϑ̄0q “ dpwϑ̄, w1
´1
ϑ̄0

loomoon

ϑ̄0

q.

(ii) Since w0ϑ̄0 “ ´ιϑ̄0 “ ´ϑ̄0, we have

dpw0wϑ̄,´ϑ̄0q “ dpwϑ̄,´w0ϑ̄0
loomoon

ϑ̄0

q

and

dpw0wϑ̄, ϑ̄0q “ π ´ dpwϑ̄, ϑ̄0q.

Hence

Thcϑ̄0,ϑ̄,r
“ W ´ w0 Thϑ̄0,ϑ̄,r :“ tw P W : dpwϑ̄, ϑ̄0q ă π ´ ru

which yields the assertion.

(iii) Slimness holds because Thϑ̄0,ϑ̄,
π
2
“ Thϑ̄0,ϑ̄,r for radii r slightly below π

2
.

The metric examples provide balanced thickenings with arbitrary left invariance:
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Corollary 3.28 (Existence of balanced thickenings I). For every ι-invariant face type

τmod there exists a Wτmod-left invariant balanced thickening Th Ă W .

Proof. Since ιτmod “ τmod, there exists ϑ̄0 P τmod such that ιϑ̄0 “ ϑ̄0. Moreover, the set of types

ϑ̄ P σmod such that dp¨ϑ̄, ϑ̄0q ‰
π
2

on W is the complement of a finite union of great spheres in

amod, and hence open and dense.

In order to obtain balanced thickenings with additional right invariance, we modify the

metric thickenings (3.26) at their “boundaries”. The rigidity part of Lemma 3.4 implies that

the elements of

BThϑ̄0,ϑ̄,r :“ tw P W : dpwϑ̄, ϑ̄0q “ ru,

are pairwise ă-incomparable and maximal in Thϑ̄0,ϑ̄,r. Therefore every subset Th Ă W with

tw P W : dpwϑ̄, ϑ̄0q ă ru Ď Th Ď Thϑ̄0,ϑ̄,r

is a thickening.

Using these modified metric thickenings, we can generalize our last existence result:

Proposition 3.29 (Existence of balanced thickenings II). Let τmod, νmod Ď σmod be face

types and suppose that τmod is ι-invariant. Then a Wτmod-left invariant and Wνmod-right invari-

ant balanced thickening Th Ă W exists if and only if (left multiplication by) w0 has no fixed

point on WτmodzW {Wνmod, cf. (3.11).

Proof. If a balanced thickening exists, then w0 cannot have a fixed point as a consequence of

the definition of balancedness.

Vice versa, let us assume that w0 has no fixed point. We choose ϑ̄0 P τmod with ιϑ̄0 “ ϑ̄0

and ν̄ P νmod. Then the fat thickening Thϑ̄0,ν̄,
π
2

is Wτmod-left and Wνmod-right invariant, and so

is the “great sphere” BThϑ̄0,ν̄,
π
2
. The latter is moreover preserved by the involution w0 while

the “hemispheres bounded by it”, Thϑ̄0,ν̄,
π
2
´BThϑ̄0,ν̄,

π
2

and W ´ Thϑ̄0,ν̄,
π
2
, are exchanged, cf.

the proof of Lemma 3.27(ii). Since w0 has no fixed point, BThϑ̄0,ν̄,
π
2

decomposes as a union of

pairs of double cosets WτmodwWνmod which are swapped by w0. By removing from Thϑ̄0,ν̄,
π
2

one

double coset of each pair, we therefore obtain a balanced thickening as desired.

For instance, we can deduce:

Corollary 3.30. If w0 “ ´ idamod, then a Wνmod-right invariant balanced thickening exists for

every face type νmod.

Proof. We equivariantly identify the coset space W {Wνmod with an orbit Wν̄ Ă amod for some

ν̄ P intpνmodq. By assumption, w0 has no fixed point on amod, and hence none on W {Wνmod .

Remark 3.31. (i) Note that w0 “ ´ idamod if and only if all irreducible factors of W are of

type A1, Bně2, D2kě4, E7,8, F4 or G2, see [Bou].

(ii) Wτmod-left and Wνmod-right invariant balanced thickenings do not always exist. For

instance, in the B2-case there are no Wτmod-biinvariant thickenings for τmod a vertex type.
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In rank two, the balanced thickenings are easy to describe:

Example 3.32 (Balanced thickenings in rank 2). (i) If W “ WA2 , then σmod is an arc

of length π
3
. There is a unique balanced thickening Th Ă W described by the property that

Th ¨σmod Ă amod is the π
2
-ball centered at the midpoint of σmod.

(ii) If W “ WB2 or WG2 , then σmod is an arc of length π
4

or π
6
. In these cases, there are

two balanced thickenings. Namely, for each vertex ξ̄ of σmod we have the Wξ̄-left invariant

thickening Th Ă W for which Th ¨σmod “ Bpξ̄, π
2
q.

Below, we give two examples in higher rank. First in the irreducible case:

Example 3.33 (Some balanced thickenings of type An). The spherical Coxeter complex

amod can be modelled as the unit sphere in the hyperplane

x0 ` . . .` xn “ 0

in Rn`1. The Weyl group W – Sn`1 acts by permuting the coordinates, and we choose the

fundamental chamber σmod Ă amod as given by the inequalities x0 ě . . . ě xn. It holds that

px0, . . . , xnq
w0“´ι
ÞÑ pxn, . . . , x0q,

There are the ι-invariant edge midpoints ϑ̄k P σmod for 1 ď k ď n
2

represented by the vectors

p1, . . . , 1
loomoon

k

, 0, . . . , 0,´1, . . . ,´1
looooomooooon

k

q

and the unique ι-invariant vertex ϑ̄n`1
2
P σmod if n is odd. The type ϑ̄1 is the unique root type.

In incidence geometric terms, the Coxeter complex amod is the spherical building associated

to the finite projective n-space Pnmod “ te0, . . . , enu consisting of n ` 1 points. Every subset is

a projective subspace (of dimension on less than the number of points in it) and corresponds

to a vertex of amod. Vertices are adjacent iff the corresponding subspaces are incident, i.e. one

contains the other. The element wπ P W corresponding to the permutation π P Sn`1 acts by

ei
wπ
ÞÑ eπpiq. We let the fundamental chamber σmod Ă amod correspond to the full flag

te0u Ă . . . Ă te0, . . . , eiu Ă . . . Ă te0, . . . , en´1u

The edge spanned by ϑ̄k then has the vertices te0, . . . , ek´1u and te0, . . . , en´ku.

We determine the metric thickenings Thϑ̄1,ϑ̄,
π
2

for regular types ϑ̄ P intpσmodq: The type ϑ̄ is

represented by a vector ptiq with t0 ą . . . ą tn. The element wπ P W carries ptiq to the vector

ptπ´1piqq. Thus, =T itspwπϑ̄, ϑ̄1q ă
π
2

if and only if tπ´1p0q ą tπ´1pnq if and only if π´1p0q ă π´1pnq,

and we obtain the balanced thickening:

Thϑ̄1,ϑ̄,
π
2
“ twπ P W : π´1

p0q ă π´1
pnqu (3.34)

Similarly, one can describe the thickenings Thϑ̄k,ϑ̄,π2 for k ě 2. They depend on the type ϑ̄ and

are balanced for a dense open set of values.
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To give an incidence geometric description of the thickening (3.34), note that π´1piq is the

dimension of the smallest subspace in the flag wπσmod which contains ei. Hence wπ P Thϑ̄1,ϑ̄,
π
2

if

and only if to the flag wπσmod belongs a subspace U which contains e0 but not en, equivalently

te0u Ď U Ď te0, . . . , en´1u. (3.35)

Another interesting example is the Wϑ̄m-biinvariant thickening Thϑ̄m,ϑ̄m,π2 for n “ 2m ´ 1.

We observe that =T itspwπϑ̄m, ϑ̄mq ď
π
2

if and only if

ˇ

ˇwπte0, . . . , em´1u X te0, . . . , em´1u
ˇ

ˇ ě
m

2
(3.36)

with the equality cases corresponding to each other. Equality cannot occur if m is odd, and in

this case the thickening Thϑ̄m,ϑ̄m,π2 is balanced.

Remark 3.37. With a bit more work one can classify all balanced thickenings in the A3 case:

There are 10 balanced thickenings. Two of them are Wϑ̄2
-left invariant for the unique ι-invariant

vertex ϑ̄2 P σmod, and one is Wεmod-left invariant for the unique ι-invariant edge εmod Ă σmod.

The next example concerns the reducible case:

Example 3.38 (Some balanced thickenings of type An1). The spherical Coxeter complex

amod can be modelled as the unit sphere in Rn. The Weyl group W – Zn2 – t˘1un acts by

changing the signs of the coordinates xi, i.e. its canonical generators act by reflections at the

coordinate hyperplanes. We choose the fundamental chamber σmod Ă amod as given by the

inequalities x1, . . . , xn ě 0.

The longest element w0 “ p´1, . . . ,´1q acts as ´ id. The Bruhat order on W is given by

wε ă wε1 ðñ εi ě ε1i @ i

where we denote the elements in W by wε with ε “ pεiq.

The pk´ 1q-simplices of the spherical Coxeter complex amod correspond to the t˘1u-valued

maps defined on subsets of t1, . . . , nu of cardinality k. In particular, the chambers can be

interpreted as the ordered n-point configurations on t˘1u.

Let ζ̄ P σmod be the central type represented by the vector p1, . . . , 1q. We determine the

metric thickenings of the form Thζ̄,ϑ̄,π
2

for the regular types ϑ̄ P intpσmodq: The type ϑ̄ is

represented by a vector t “ ptiq with ti ą 0. The element wε P W carries t to the vector pεitiq.

Thus, =T itspwεϑ̄, ζ̄q ă
π
2

if and only if ε ¨ t “ ε1t1 ` . . .` εntn ą 0, and

Tht “ twε P W : ε ¨ t ą 0u, Tht “ twε P W : ε ¨ t ě 0u

are metric thickenings. The thickening Tht is slim, while Tht is fat. We have that Tht “ Tht
is balanced, iff ε ¨ t ‰ 0 for all sign choices ε, which is the case for “generic” values of t.

To phrase it in terms of configurations, we consider weighted n-point configurations on t˘1u

with weights ti. Then the thickenings Tht and Tht correspond to the sets of configurations

with at least, respectively, strictly more than half of the total mass placed on `1.
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3.4.2 Thickenings at infinity

From thickenings in the Weyl group, we derive thickenings at infinity as follows.

Given a Wτmod-left invariant thickening Th Ă W , the induced thickening of a simplex τ P

Flagτmod inside the Furstenberg boundary

ThF :upτq :“ tposp¨, τq P WτmodzThu Ă BF :uX

is well-defined. Furthermore, we define the thickening of τ inside the visual boundary as the

union of the corresponding (closed) chambers

Thpτq :“
ď

σPThF :upτq

σ Ă B8X. (3.39)

Due to the semicontinuity of relative position, cf. Lemma 3.15, the thickenings ThF :upτq and

Thpτq are compact. The intersections Thpτq X Gξ with G-orbits Gξ Ă B8X are finite unions

of Schubert cycles and hence projective subvarieties. For regular G-orbits Gξ, the intersection

Thpτq XGξ is naturally identified with ThF :upτq.

Note that if the thickening Th Ă W is Wνmod-right invariant for a face type νmod Ď σmod,

then the thickenings of simplices are unions of stars of simplices of type νmod.

For a subset A Ă Flagτmod , we define the induced thickenings

ThF :upAq “
ď

τPA

ThF :upτq and ThpAq “
ď

τPA

Thpτq.

If A is compact, then its thickenings are compact as well.

Below are several examples of thickenings, based on the examples in the previous section.

Example 3.40 (Rank 2). We continue with Example 3.32.

(i) If W “ WA2 , then chambers in the visual boundary are arcs of Tits length π
3
. For the

unique balanced thickening Th Ă W , the associated thickening Thpσq Ă B8X of a chamber

σ Ă B8X with midpoint ζ is the ball Bpζ, π
2
q. In incidence geometric terms, regarding BT itsX

as the spherical building associated to a projective plane Π, the chamber σ corresponds to a

flag pl, pq consisting of a line l Ă Π and a point p P l. The thickening ThF :upσq Ă BF :uX inside

the Furstenberg boundary consists of all flags pl1, p1q such that l1 “ l or p1 “ p.

(ii) If W “ WB2 or WG2 , then chambers have length π
4

or π
6
. For a vertex type ξ̄ P σmod

and the unique Wξ̄-left invariant balanced thickening Th Ă W , the associated thickening of a

vertex ξ P B8X of type θpξq “ ξ̄ inside B8X is given by Thpξq “ Bpξ, π
2
q. The thickening of a

chamber σ Ă B8X equals Thpσq “ Bpξσ,
π
2
q where ξσ is the vertex of σ with type ξ̄.

For instance, if G “ Opn, 2q with n ě 2 and hence X has type B2, then BT itsX can

be regarded from the incidence geometry perspective as the spherical building arising from

isotropic flags in Rn,2 “ Rn ‘ R2. A chamber corresponds to a flag pL, P q consisting of an

isotropic plane P Ă Rn,2 and a(n isotropic) line L Ă P . If ξ̄ is the vertex type corresponding

to isotropic lines, then the thickening ThF :upLq Ă BF :uX of an isotropic line L P Flagξ̄ consists
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of all flags pL1, P 1q such that P 1 Ą L. On the other hand, if ξ̄ is the vertex type corresponding

to isotropic planes, then the thickening ThF :upP q of an isotropic plane P P Flagξ̄ consists of all

flags pL1, P 1q P BF :uX such that L1 Ă P .

Example 3.41 (Type An). We continue with Example 3.33.

Let G “ SLpn`1,Fq. We regard BT itsX as the spherical building associated to the projective

n-space FP n.

Let τmodpϑ̄1q Ă σmod denote the edge type with midpoint ϑ̄1. Then Flagτmodpϑ̄1q
“ F1,n,

the manifold of 2-flags pL,Hq consisting of a hyperplane H Ă Fn`1 and a line L Ă H. For

the Wτmodpϑ̄1q
-left invariant balanced thickening Thϑ̄1,ϑ̄,

π
2
Ă W given by (3.34), the thickening

ThF :u
ϑ̄1,ϑ̄,

π
2
ppL,Hqq of the flag pL,Hq P F1,n in the full flag manifold BF :uX consists of all flags

U1 Ă . . . Ă Ui Ă . . . Ă Un in Fn`1 such that

L Ď Ui Ď H for some i,

compare (3.35).

If n “ 4l ` 1, then Flagϑ̄2l`1
“ F2l`1 is the middle Grassmannian of p2l ` 2q-dimensional

linear subspaces of Fn`1. The balanced Wϑ̄2l`1
-biinvariant thickening ThF :u

ϑ̄2l`1,ϑ̄2l`1,
π
2
pUq of a

subspace U P F2l`1 inside F2l`1 consists of all subspaces U 1 P F2l`1 such that

dimpU 1 X Uq ě l ` 1,

compare (3.36).

Example 3.42 (Type An1 , configuration spaces and stability in the sense of Geometric

Invariant Theory). We continue with Example 3.38.

Let X “ Y n be the n-fold product of a rank one symmetric space Y , e.g. Y “ H2. Then

BF :uX – pB8Y q
n and we will view chambers as ordered n-point configurations ξ “ pηiq on B8Y .

The relative position of two configurations ξ, ξ1 P BF :uX is given by:

pospξ1, ξq “ wε with εi “ `1 ô η1i “ ηi

Thus, it records the entries i where the configurations agree.

We fix a regular vector t “ ptiq P intp∆q – Rn
` and assign the weight ti ą 0 to the i-th

point of a configuration. Then a chamber ξ, regarded now as a weighted configuration on B8Y ,

defines the finite measure

µξ “ t1δη1 ` . . .` tnδηn

on B8Y , where δηi denotes the Dirac measure concentrated in the point ηi. (Masses add when

points ηi “collide”). The total mass |µξ| of µξ equals

M “ t1 ` . . .` tn.

In the language of Geometric Invariant Theory, the finite measure µξ (and the corresponding

weighted configuration ξ) is called stable if µξpηq ăM{2 for all points η P B8Y , and semistable

if µξpηq ďM{2 for all η.
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Let pηq :“ pη, . . . , ηq denote the configuration concentrated in the point η. According to

Example 3.38, the thickenings pThtqF :uppηqq and pThtqF :uppηqq of pηq consist of the weighted con-

figurations where at least, respectively, strictly more than half of the total mass is concentrated

in the point η.

Choose now A Ă BF :uX as the “diagonal”, that is, as the compact antipodal subset of all

configurations pηq concentrated in one point. Then the thickenings pThtqF :upAq and pThtqF :upAq

of A inside BF :uX equal the subsets of weighted configurations which are not semistable, respec-

tively, not stable. In the case when Tht is balanced, both notions agree: “stable=semistable”.

The sets of stable and semistable configurations depend on the weights t. For instance, if

ti ąM{2 for some i, then there are no semistable weighted configurations, equivalently,

pThtqF :upAq “ BF :uX.

For instance, for n “ 2 and any t1 ‰ t2, there are no semistable configurations.

In contrast, if n ě 3 and ti ăM{2 for all i, then there are always stable configurations, for

instance, the configurations where no two point coincide. Equivalently,

pThtqF :upAq ‰ BF :uX

in this case.

We return to the general discussion of thickenings in B8X. Our motivation for introducing

the notion of slimness is the following observation:

Lemma 3.43 (Disjointness of slim thickenings). (i) Let τmod Ď σmod be an ι-invariant

face type, and let Th Ă W be a slim Wτmod-left invariant thickening. Then for any two antipodal

simplices τ, τ̂ P Flagτmod it holds that

ThF :upτq X ThF :upτ̂q “ H.

(ii) More generally, suppose that νmod Ď σmod is another face type and that the slim thick-

ening Th is also Wνmod-right invariant. Then for any G-orbit Gξ Ă B8X of type ξ̄ “ θpξq P

intpνmodq and any two antipodal simplices τ, τ̂ P Flagτmod it holds that

Thpτq X Thpτ̂q XGξ “ H.

Proof. Part (i) follows from Lemma 3.24 and the definition of slimness. Indeed, suppose

that ThF :upτq X ThF :upτ̂q contains a chamber σ. Then pospσ, τq, pospσ, τ̂q P WτmodzTh. By

Lemma 3.24, pospσ, τ̂q ąτmod c-pospσ, τq. Hence also c-pospσ, τq P WτmodzTh, equivalently,

pospσ, τq P Wτmodzw0 Th. It follows that ThXw0 Th ‰ H, contradicting slimness.

Part (ii) follows because the thickenings are unions of stars of simplices of type νmod. Indeed,

by (i), the intersection Thpτq X Thpτ̂q contains no chamber, and hence it cannot contain the

star of a simplex of type νmod.
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4 Asymptotic geometric notions in symmetric spaces

4.1 Shadows at infinity and strong asymptoticity of Weyl cones

For a simplex τ´ Ă B8X of type ιτmod and a point x P X, we consider the function

τ ÞÑ dpx, P pτ´, τqq (4.1)

on the open Schubert stratum Cpτ´q Ă Flagτmod . We denote by τ` P Cpτ´q the chamber

x-opposite to τ´.

Lemma 4.2. The function (4.1) is continuous and proper.

Proof. This follows from the fact that Cpτ´q and X are homogeneous spaces for the parabolic

subgroup Pτ´ . Indeed, continuity follows from the continuity of the function

g ÞÑ dpx, P pτ´, gτ`qq “ dpg´1x, P pτ´, τ`qq

on Pτ´ which factors through the orbit map Pτ´ Ñ Cpτ´q, g ÞÑ gτ`.

Regarding properness, note that a simplex τ P Cpτ´q is determined by any point y contained

in the parallel set P pτ´, τq, namely as the simplex y-opposite to τ´. Thus, if P pτ´, τq X

Bpx,Rq ‰ H for some fixed R ą 0, then there exists g P Pτ´ such that τ “ gτ` and dpx, gxq ă

R. In particular, g is bounded. This implies properness.

Moreover, the function (4.1) has a unique minimum zero in τ`.

We define the following open subsets of Cpτ´q which can be regarded as shadows of balls in

X with respect to τ´. For x P X and r ą 0, we put

Uτ´,x,r :“ tτ P Cpτ´q|dpx, P pτ´, τqq ă ru.

The next fact expresses the uniform strong asymptoticity of asymptotic Weyl cones.

Lemma 4.3. For r, R ą 0 exists d “ dpr, Rq ą 0 such that:

If y P V px, stpτ´qq with dpy, BV px, stpτ´qqq ě dpr, Rq, then Uτ´,x,R Ă Uτ´,y,r.

Proof. If Uτ´,x,R Ć Uτ´,y,r then there exists x1 P Bpx,Rq such that dpy, V px1, stpτ´qqq ě r. Thus,

if the assertion is wrong, there exist a sequence xn Ñ x8 in Bpx,Rq and a sequence yn Ñ 8 in

V px, stpτ´qq such that dpyn, BV px, stpτ´qqq Ñ `8 and dpyn, V pxn, stpτ´qqq ě r.

Let ρ : r0,`8q Ñ V px, τ´q be a geodesic ray with initial point x and asymptotic to an

interior point of τ´. Then the sequence pynq eventually enters every Weyl cone V pρptq, stpτ´qq.

Since the distance function dp¨, V pxn, stpτ´qqq is convex and bounded, and hence non-increasing

along rays asymptotic to stpτ´q, we have that

R ě dpx, V pxn, stpτ´qqq ě dpρptq, V pxn, stpτ´qqq ě dpyn, V pxn, stpτ´qqq ě r

for n ě nptq. It follows that

R ě dpρptq, V px8, stpτ´qqq ě r

for all t. However, the ray ρ is strongly asymptotic to V px8, stpτ´qq, a contradiction.

34



4.2 Asymptotic properties of sequences and subgroups

We first consider sequences in the model euclidean Weyl chamber ∆.

Definition 4.4. We say that a sequence pδnq in ∆ is

(i) τmod-pure if it is contained in a tubular neighborhood of the sector V p0, τmodq and drifts

away from its boundary BV p0, τmodq “ V p0, Bτmodq,

dpδn, V p0, Bτmodqq Ñ `8.

(ii) τmod-regular if

dpδn, V p0, B stpτmodqqq Ñ `8.

These properties are stable under bounded perturbation of the sequence, due to the triangle

inequality |d∆px, yq ´ d∆px
1, y1q| ď dpx, x1q ` dpy, y1q. Therefore the following definitions for

sequences in X and G are sensible:

Definition 4.5 (Pure and weakly regular). (i) We say that a sequence pxnq in X is τmod-

pure, respectively, τmod-regular if for some (any) base point o P X the sequence of ∆-distances

d∆po, xnq has this property.

(ii) We say that a sequence pgnq in G is τmod-pure, respectively, τmod-regular if for some (any)

point x P X the orbit sequence pgnxq in X has this property.

(iii) We say that a subgroup Γ ă G is τmod-regular if all sequences of pairwise distinct

elements in Γ have this property.

The face type of a pure sequence is uniquely determined. Moreover, a τmod-regular sequence

is τ 1mod-regular for every face type τ 1mod Ď τmod, because ostpτ 1modq Ě ostpτmodq.

Note that τmod-regular subgroups are in particular discrete. If rankpXq “ 1, then dis-

creteness is equivalent to (σmod-)regularity. In higher rank, regularity can be considered as a

strengthening of discreteness: A discrete subgroup Γ ă G may not be τmod-regular for any face

type τmod; this can happen e.g. for free abelian subgroups of transvections of rank ě 2.

We observe furthermore:

Lemma 4.6. (i) τmod-pure sequences are τmod-regular.

(ii) Every sequence, which diverges to infinity, contains a τmod-pure subsequence for some

face type τmod Ď σmod.

Proof. Assertion (i) is a direct consequence of the definitions, and (ii) follows by induction on

face types.

Note also that a sequence, which diverges to infinity, is τmod-regular if and only if it contains

νmod-pure subsequences only for face types νmod Ě τmod. (We will not use this fact.)

Remark 4.7 (Relation to Finsler compactifications). There is a close relation between

the regularity of sequences and the asymptotic geometry of certain G-invariant Finsler metrics
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on X, see [KL1, §8.1.2]. For instance, a sequence in X is (σmod-)regular if and only if it

accumulates at the Furstenberg boundary inside the regular Finsler compactification.

5 Some topological dynamics

5.1 (Proper) discontinuity and dynamical relation

Let Z be a compact metrizable space, and let Γ Ă HomeopZq be a countably infinite subgroup.

We consider the action Γ ñ Z.

Definition 5.1 (Discontinuous). A point z P Z is called wandering with respect to the Γ-

action if the action is discontinuous at z, i.e. if z has a neighborhood U such that U X γU ‰ H

for at most finitely many γ P Γ.

Nonwandering points are called recurrent.

Definition 5.2 (Domain of discontinuity). We call the set

Ωdisc Ă Z

of wandering points the wandering set or domain of discontinuity for the action Γ ñ Z.

Note that Ωdisc is open and Γ-invariant.

Definition 5.3 (Proper). The action of Γ on an open subset U Ă Z is called proper if for

every compact subset K Ă U it holds that K X γK ‰ H for at most finitely many γ P Γ.

In particular, the action of Γ on U is then discontinuous, U Ď Ωdisc, and is therefore called

properly discontinuous.

Definition 5.4 (Domain of proper discontinuity). If Γ is a group, we call a Γ-invariant

open subset Ω Ď Ωdisc on which Γ acts properly a domain of proper discontinuity for Γ.

The orbit space Ω{Γ is then Hausdorff. Note that in general there is no unique maximal

proper domain of discontinuity.

Example 5.5 (Nonunique maximal domain of proper discontinuity). Consider the

infinite cyclic group Γ – Z acting projectively on Z “ RP 2, so that a generator γ of Γ acts

as the projectivization of a diagonal matrix with distinct positive eigenvalues λ1 ą λ2 ą λ3.

Let e1, e2, e3 P Z be the three fixed points of γ (eigenspaces for λ1, λ2, λ3 respectively). Let

Eij Ă Z denote the projective lines spanned by ei and ej, i ă j. Then Ωdisc “ Z ´ te1, e2, e3u,

and both sets U1 “ Z ´ pE23 Y te1uq and U3 “ Z ´ pE12 Y te3uq are maximal domains of

proper discontinuity for Γ. (The maximality follows from the fact that the points on E12 are

dynamically related to the points on E23.) Observe also that in this example both U1{Γ and

U3{Γ are compact.
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Discontinuity and proper discontinuity can be nicely expressed using the notion of dynamical

relation. The following definition is due to Frances [Fr, Def. 1]:

Definition 5.6 (Dynamically related). Two points z, z1 P Z are called dynamically related

with respect to a sequence phnq in HomeopZq,

z
phnq
„ z1

if there exists a sequence zn Ñ z in Z such that hnzn Ñ z1.

The points z, z1 are called dynamically related with respect to the Γ-action,

z
Γ
„ z1

if there exists a sequence γn Ñ 8 in Γ such that z
pγnq
„ z1.

Here, for a sequence pγnq in Γ we write γn Ñ 8 if every element of Γ occurs at most finitely

many times in the sequence.

One verifies (see e.g. [KL2]):

(i) Dynamical relation is a closed relation in Z ˆ Z.

(ii) Points in different Γ-orbits are dynamically related if and only if their orbits cannot be

separated by disjoint Γ-invariant open subsets.

The concept of dynamical relation is useful for our discussion of discontinuity, because:

(i) A point is nonwandering if and only if it is dynamically related to itself.

(ii) The action is proper on an open subset U Ă Z if and only if no two points in U are

dynamically related.

5.2 Accumulation and proper discontinuity

In this paper, we derive proper discontinuity of actions from a certain accumulation behavior

which is a relaxation of convergence dynamics.

Let Z and Γ be as above. Let pYnq be a sequence of subsets of Z. We denote by AccppYnqq Ă

Z the closed subset consisting of the accumulation points of all sequences pynq of points yn P Yn.

Definition 5.7 (Accumulation). We say that the sequence of subsets Yn Ă Z accumulates

at a subset S Ă Z,

Yn acc S,

if AccppYnqq Ď S.

If S Ă Z is closed, then the sequence pYnq accumulates at S if and only if every neighborhood

U of S contains all but finitely many of the subsets Yn.

We first consider the dynamics of a sequence phnq in HomeopZq.
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Definition 5.8 (Accumulating sequence). For compact subsets A˘ Ă Z we say that the

sequence phnq accumulates at A` outside A´, briefly, pA´, A`q-accumulates, if

hnK acc A` (5.9)

for all compacta K disjoint from A´.

Property (5.9) is a statement about the locally uniform accumulation of the phnq-orbits

initiating outside the exceptional subset A´ and can be rephrased in terms of dynamical rela-

tions between points in Z with respect to the phnq-action. Namely, equivalently, for all points

z, z1 P Z it holds that:

z
phnk q
„ z1 for some subsequence phnkq ñ z P A´ or z1 P A` (5.10)

Note that the dynamical relation condition z
phnk q
„ z1 is equivalent to the dual condition z1

ph´1
nk
q

„ z,

and consequently we have the symmetry:

phnq is pA´, A`q-accumulating ô ph´1
n q is pA`, A´q-accumulating

Note that if A˘ Ă A1˘, then pA´, A`q-accumulation implies pA1´, A
1
`q-accumulation.

Now we consider the action Γ ñ Z.

Definition 5.11 (Accumulating action I). We say that the action Γ ñ Z is pA´, A`q-ac-

cumulating if every sequence γn Ñ 8 in Γ has an pA´, A`q-accumulating subsequence.

According to (5.10) we obtain for dynamical relations:

Lemma 5.12 (Dynamical relations I). If the action Γ ñ Z is pA´, A`q-accumulating, then

for any two points z, z1 P Z it holds that:

z
Γ
„ z1 ñ z P A´ or z1 P A` (5.13)

Proof. This is a direct consequence of (5.10).

We conclude:

Proposition 5.14 (Proper discontinuity I). If the subsets A˘ are Γ-invariant and if the

action Γ ñ Z is pA´, A`q-accumulating, then the action

Γ ñ Z ´ pA´ Y A`q

is properly discontinuous.

Proof. By the lemma, there are no dynamical relations between points outside A´ Y A`.

Suppose that A˘ are Γ-invariant compact (with respect to the Hausdorff topology) families

of compact subsets A˘ Ă Z.
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Definition 5.15 (Limit family). The forward limit family of Γ with respect to pA´,A`q
is the family L` Ă A` consisting of all subsets A` P A` for which there exists a sequence

γn Ñ 8 in Γ which is pA´, A`q-accumulating for some subset A´ P A´. Similarly, we define

the backward limit family L´ Ă A´.

The limit families L˘ are Γ-invariant. Due to the compactness of the families A˘, they are

closed and hence compact themselves:

Lemma 5.16. L˘ is closed.

Proof. Suppose, for instance, that pAk`q is a sequence in L` such that Ak` Ñ A` P A`. There

exist sequences γkn Ñ 8 in Γ which pAk´, A
k
`q-accumulate for some Ak´ P A´ (in fact P L´).

After passing to a subsequence, we may assume that Ak´ Ñ A´ P A´. A diagonal argument

yields an pA´, A`q-accumulating sequence
´

γ
kpmq
npmq

¯

m
in Γ. Hence A` P L` and L` is closed.

As a consequence of the lemma, the Γ-invariant subsets

T˘ :“
ď

A˘PL˘

A˘ Ă Z

are compact.

Definition 5.17 (Accumulating action II). We say that the action Γ ñ Z is pA´,A`q-ac-

cumulating if every sequence γn Ñ 8 in Γ has a subsequence which is pA´, A`q-accumulating

for some subsets A˘ P A˘.

For such accumulating actions, the limit families are closely related to their dynamics:

Lemma 5.18 (Dynamical relations II). If the action Γ ñ Z is pA´,A`q-accumulating,

then for any two points z, z1 P Z it holds that:

z
Γ
„ z1 ñ z P T´ or z1 P T`

Proof. If two points are dynamically related with respect to the Γ-action, then they are dy-

namically related with respect to an pA´, A`q-accumulating sequence in Γ with A˘ P L˘ and,

hence, A˘ Ă T˘. The assertion therefore follows from (5.10).

We conclude as before:

Proposition 5.19 (Proper discontinuity II). If the action Γ ñ Z is pA´,A`q-accumulating,

then the action

Γ ñ Z ´ pT´ Y T`q

is properly discontinuous.

Remark 5.20 (Convergence actions). The action Γ ñ Z is a convergence action (see e.g.

[Bow]) if and only if it is pA´,A`q-accumulating with A˘ the family of one point subsets. The
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limit families L˘ then become the limit set Λ Ă Z of the action. The action on its complement

is properly discontinuous, compare Proposition 5.19. We recover the dynamical decomposition

Z “ Ωdisc \ Λ

and that the action on the domain of discontinuity is proper. Hence, for convergence actions

there exists a unique maximal domain of proper discontinuity.

The main example of convergence actions comes from the following fact: Every discrete

group Γ of isometries of a proper Gromov hyperbolic geodesic metric space Y acts as a con-

vergence group on the visual compactification Ȳ “ Y YB8Y , and in particular on the Gromov

boundary B8Y of Y .

Remark 5.21 (Accumulation phenomena in nonpositive curvature). Convergence type

behavior in the sense of accumulation has been studied by Karlsson, Papasoglu and Swenson

in the general context of nonpositive curvature. They showed that for proper isometric actions

Γ ñ Y on CAT(0) spaces the induced action Γ ñ B8Y on the visual boundary is pBpθq,Bpπ´
θqq-accumulating for 0 ă θ ă π, where Bpθq is the family of closed balls of Tits radius θ in

B8Y , see [Kar, Thm. 1] and [PS, Thm. 4]. Some of our results can be viewed as combinatorial

versions of this (Tits) metric result for actions on CAT(0) model spaces of higher rank, see e.g.

Corollary 6.8 and Lemma 6.20 below.

5.3 Expansion and cocompactness

In this section, let pZ, dq be a compact metric space and let Γ ñ Z be a continuous action of

a discrete group.

The following notion is due to Sullivan [Su, §9]:

Definition 5.22 (Expanding action). We say that the action Γ ñ Z is expanding at the

point z P Z if there exists an element γ P Γ which is uniformly expanding on a neighborhood U

of z, i.e. for some constant c ą 1 and all points z1, z2 P U we have

dpγz1, γz2q ě c ¨ dpz1, z2q.

We say that the action of Γ is expanding at a compact Γ-invariant subset E Ă Z if it is expanding

at all points z P E.

Remark 5.23. If the action Γ ñ Z is expanding at E, then it is arbitrarily strongly expanding

there, i.e. for every point z P E exist a sequence pγnq in Γ and a sequence of (shrinking)

neighborhoods Un of z such that the γn|Un are uniformly expanding with expansion factors

cn Ñ `8. This follows directly from the definition by iterating locally expanding elements.

Note that, as a consequence, the action is expanding at E also with respect to any bilipschitz

equivalent metric on Z.

We will need the following more general notion of partial expansion. We suppose that the

action Γ ñ Z has the following structure: There is a Γ-invariant compact subset E Ă Z and a
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continuous map π : E Ñ Λ onto a compact topological space Λ (e.g. a fiber bundle), such that

the restricted action Γ ñ E is fiber preserving, i.e. it descends to a continuous action Γ ñ Λ.

We set Eλ :“ π´1pλq.

Definition 5.24 (Transversely expanding action I). We say that the action Γ ñ Z is

expanding transversely to π at the fiber Eλ if there exist an element γ P Γ and a neighborhood

U Ă Z of Eλ such that for some constant c ą 1 we have

dpγz, Eγλ1q ě c ¨ dpz, Eλ1q (5.25)

for all points z P U and fibers Eλ1 Ă U .

We say that the action Γ ñ Z is expanding at E transversely to π if it is expanding at all

fibers Eλ.

The action Γ ñ Z is expanding at E if and only if it is expanding at E transversely to idE.

The concept of expansion is important to us due to the following observation:

Proposition 5.26 (Transversely expanding implies cocompact on the complement

I). If the action Γ ñ Z is expanding at E transversely to π, then the action Γ ñ Z ´ E is

cocompact.

Proof. We claim that for some constant c ą 1,

sup dp¨, Eq|Γz ą c ¨ dpz, Eq (5.27)

for all z P Z ´E sufficiently close to E. Otherwise, there would exist a sequence pznq in Z ´E

accumulating at E and a sequence of constants cn Ñ 1 such that

dpγzn, Eq ď cn ¨ dpzn, Eq

for all n P N and γ P Γ. Since E is compact, we may assume, after passing to a subsequence,

that pznq accumulates at a fiber, zn Ñ Eλ. Due to expansion, there exists an element γλ P Γ

which satisfies the expansion property (5.25) on a neighborhood Uλ Ă Z of Eλ with some

expansion factor cλ ą 1. Let Eγλλn be the fiber closest to γλzn, dpγλzn, Eγλλnq “ dpγλzn, Eq.

Then λn Ñ λ. Since zn P Uλ and Eλn Ă Uλ for large n, it follows that

cλ ¨ dpzn, Eq ď cλ ¨ dpzn, Eλnq ď dpγλzn, Eγλλnq “ dpγλzn, Eq ď cn ¨ dpzn, Eq,

a contradiction confirming our claim.

Let U Ă Z be an open tubular neighborhood of E where (5.27) holds. Thus, no Γ-orbit is

entirely contained in U ´ E and, therefore, every Γ-orbit in Z ´ E meets the compact subset

Z ´ U Ă Z ´ E.

The above argument (from [KLP1, sec. 2.2]) leads actually to a more general result.

Let us suppose, more generally, that the action Γ ñ Z has the following structure: There

is a Γ-invariant compact subset E Ă Z which is represented as the (not necessarily disjoint)

union of a Γ-invariant collection E “ tEλ : λ P Λu of compact subsets Eλ Ă Z parametrized by

some set Λ.
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Definition 5.28 (Transversely expanding action II). We say that the action Γ ñ Z is

expanding transversely to E at a point z if there exist an element γ P Γ, a neighborhood U Ă Z

of z and a constant c ą 1 such that we have

dpγu, γEλq ě c ¨ dpu,Eλq (5.29)

for all points u P U ´E and all Eλ which have nonempty intersection with U . We say that the

action Γ ñ Z is expanding transversely to E if it is expanding at all points z P E.

Proposition 5.30 (Transversely expanding implies cocompact on the complement

II). If the action Γ ñ Z is expanding transversely to E, then the action Γ ñ Z ´ E is

cocompact.

Proof. We claim that for some constant c ą 1,

sup dp¨, Eq|Γu ą c ¨ dpu,Eq (5.31)

for all u P Z ´E sufficiently close to E. Otherwise, there would exist a sequence punq in Z ´E

accumulating at E and a sequence of constants cn Ñ 1 such that

dpγun, Eq ď cn ¨ dpun, Eq

for all n P N and γ P Γ. Since E is compact, we may assume, after passing to a subsequence,

that punq converges to some point z P Eλ for some λ P Λ. Due to expansion, there exists an

element γz P Γ which satisfies the expansion property (5.29) on a neighborhood U Ă Z of z

with some expansion factor c ą 1. Let γzEλn P E be the set in the collection E closest to γzun,

dpγzun, Eq “ dpγzun, γzEλnq “ dpγzun, γzznq

with zn P Eλn . Then zn Ñ z because γzun Ñ γzz P E, which implies that Eλn X U ‰ H for all

sufficiently large n. It follows that (for large n),

c ¨ dpun, Eq ď c ¨ dpun, Eλnq ď dpγzun, γzEλnq “ dpγzun, Eq ď cn ¨ dpun, Eq,

a contradiction confirming our claim.

Let U Ă Z be an open tubular neighborhood of E where (5.31) holds. Thus, no Γ-orbit is

entirely contained in U ´ E and, therefore, every Γ-orbit in Z ´ E meets the compact subset

Z ´ U Ă Z ´ E.

6 Accumulation dynamics on flag manifolds and proper

discontinuity

We now study the dynamics of G and its discrete subgroups Γ ă G on its associated flag

manifolds, equivalently, on (the G-orbits in) the visual boundary B8X. In this section, we will

discuss a certain dynamical behavior, which is a relaxed version of convergence dynamics, and

use it to construct domains of proper discontinuity for discrete subgroups.
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6.1 Weakly contracting sequences

Let pgnq be a sequence in G, and let τmod Ď σmod be a face type.

We consider the following contraction property for the dynamics of pgnq on Flagτmod . An

equivalent notion had been studied in [Be], see §3.5 there.

Definition 6.1 (τmod-Contracting sequence). We say that the sequence pgnq is τmod-con-

tracting if there exist simplices τ˘ of type ˘τmod such that

gn|Cpτ´q Ñ τ` (6.2)

uniformly on compacta as nÑ `8.

We recall that Cpτ´q is a dense open subset of Flagτmod .

Property (6.2) means that pgnq is pFlagτmod ´Cpτ´q, τ`q-accumulating, cf. Definition 5.8. It

can be rephrased in terms of dynamical relations between points in Flagτmod with respect to

the pgnq-action. Namely, equivalently, for all simplices τ, τ 1 P Flagτmod it holds that, cf. (5.10):

τ
pgnk q
„ τ 1 for some subsequence pgnkq ñ τ R Cpτ´q or τ 1 “ τ` (6.3)

The conclusion of the last implication can be expressed in terms of relative positions:

pospτ, τ´q maximal ñ pospτ 1, τ`q minimal

We observe that the last implication follows from the combinatorial inequality

pospτ 1, τ`q ă c-pospτ, τ´q. (6.4)

The next result shows that this inequality holds for dynamically related points on all flag

manifolds, thought of as G-orbits in B8X. It is the key step in our study of proper discontinuity.

Proposition 6.5 (Dynamical relation inequality). The following are equivalent:

(i) Property (6.2)

(ii) For any two points ξ, ξ1 P B8X it holds that:

ξ
pgnk q
„ ξ1 for some subsequence pgnkq ñ pospξ1, τ`q ă c-pospξ, τ´q (6.6)

Proof. Suppose first that property (6.2) holds and that ξ
pgnq
„ ξ1. Then ξ and ξ1 lie in the

same G-orbit, Gξ “ Gξ1, and there exists a sequence pξnq in this G-orbit such that ξn Ñ ξ

and gnξn Ñ ξ1. Let a Ă B8X be an apartment containing τ´ and ξ. Nearby apartments an
containing ξn can be obtained by using isometries hn Ñ e in G with ξn “ hnξ and putting

an “ hna. Let τ̂´ Ă a be the simplex opposite to τ´, and let τn “ hnτ̂´ Ă an. Then τn Ñ τ̂´.

Since τ̂´ P Cpτ´q, the locally uniform convergence (6.2) implies that gnτn Ñ τ`. We obtain

pospξ1, τ`q ă pospgnξn, gnτnq “ pospξn, τnq “ posphnξ, hnτ̂´q “ pospξ, τ̂´q “ c-pospξ, τ´q
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where the first inequality follows from the semicontinuity of relative position (Lemma 3.15).

Conversely, suppose that (ii) holds. Since inequality (6.4) is a special case of the inequality

in the implication of (6.6), it follows that (6.3) holds, equivalently, (6.2).

We observe a symmetry: Condition (6.6) is equivalent to the dual condition

ξ1
pg´1
nk
q

„ ξ for some subsequence pg´1
nk
q of pg´1

n q ñ pospξ, τ´q ă c-pospξ1, τ`q (6.7)

because both dynamical relation hypotheses are equivalent, as are the combinatorial inequality

conclusions. Therefore the proposition implies that (6.2) is equivalent to the dual property on

Flag´τmod that

g´1
n |Cpτ`q Ñ τ´

uniformly on compacta as nÑ `8.

Note that the simplices τ˘ in (6.2) are well-defined, because this is clear for τ` and follows

for τ´ by symmetry.

Inequality (6.6) can be (re)converted into a statement about the asymptotic behavior of

arbitrary pgnq-orbits in B8X. We can in general not expect that these orbits converge, but we

obtain information where they accumulate. For individual orbits, it follows that for a point

ξ P B8X the orbit pgnξq accumulates in Gξ Ă B8X at the Schubert cycle

tposp¨, τ`q ă c-pospξ, τ´qu

A locally uniform statement can be conveniently formulated using the language of thickenings:

Corollary 6.8 (Orbit accumulation). If property (6.2) holds, and if Th Ă W is a Wτmod-left

invariant thickening, then the sequence pgnq is pThcpτ´q,Thpτ`qq-accumulating (cf. Def. 5.8).

Proof. Otherwise, there is a dynamical relation ξ
pgnk q
„ ξ1 with ξ R Thcpτ´q and ξ1 R Thpτ`q,

compare (5.10), i.e. pospξ, τ´q R Thc and pospξ1, τ`q R Th. Moreover (6.2) implies (6.6), and

hence the inequality pospξ1, τ`q ă c-pospξ, τ´q. It follows that

pospξ1, τ`q ă c-pospξ, τ´q “ w0 pospξ, τ´q P Th

and hence pospξ1, τ`q P Th, a contradiction.

6.2 Weak convergence subgroups

Let Γ ă G be a discrete subgroup.

Definition 6.9 (τmod-Limit set). We define the forward/backward τmod-limit set of Γ as the

set

Λ˘τmod “ Λ˘τmodpΓq Ă Flag˘τmod

of all simplices τ˘ as in (6.2) for all τmod-contracting sequences γn Ñ 8 in Γ.
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Note that passing to a finite index subgroup does not change the limit sets.

The limit sets Λ˘τmod are Γ-invariant and compact, cf. Lemma 5.16. Moreover, one has the

symmetry

Λ˘´τmodpΓq “ Λ¯τmodpΓq.

In particular, if τmod is ι-invariant we can define the τmod-limit set

ΛτmodpΓq :“ Λ˘τmodpΓq.

To any Wτmod-left invariant thickening Th Ă W , we associate the Γ-invariant compact families

of compact subsets

A´τmod,Th :“ tThcpτ´q : τ´ P Λ´τmodu and A`τmod,Th :“ tThpτ`q : τ` P Λ`τmodu

The structure of the dynamics of the action Γ ñ B8X is closely related to the limit sets if it

enjoys contraction behavior in the following sense:

Definition 6.10 (τmod-Convergence action). The action Γ ñ B8X is called a τmod-conver-

gence action if every sequence γn Ñ 8 in Γ has a τmod-contracting subsequence. The subgroup

Γ ă G is then called a τmod-convergence subgroup.

Remark 6.11 (Rank one). If rankpXq “ 1, this property is equivalent to being a convergence

action and is satisfied for all discrete subgroups Γ ă G, compare Remark 5.20.

Corollary 6.8 implies:

Proposition 6.12 (Weak contraction implies accumulation). If Γ ă G is a τmod-conver-

gence subgroup and if Th Ă W is a Wτmod-left invariant thickening, then the action Γ ñ B8X

is pA´τmod,Th,A
`
τmod,Th

q-accumulating.

We obtain our main result for proper discontinuity:

Theorem 6.13 (Domains of proper discontinuity for τmod-convergence subgroups).

If Γ ă G is a τmod-convergence subgroup, then for any Wτmod-left invariant thickening Th Ă W

the action

Γ ñ B8X ´ pThcpΛ´τmodq Y ThpΛ`τmodqq

is properly discontinuous. In particular, if τmod is ι-invariant and Th is fat, then the action

Γ ñ B8X ´ ThpΛτmodq

is properly discontinuous.

Proof. The first assertion follows from the last proposition by applying Proposition 5.19 with

L˘ “ A˘τmod,Th. The second assertion follows because Thc Ď Th due to fatness.

Note that the thickenings of limit sets ThpΛ˘τmodpΓqq are Γ-invariant and compact.

For examples of thickenings, we refer to section 3.4.2.
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6.3 Weakly regular subgroups

The properties of contraction, defined in terms of the dynamics at infinity (Definition 6.1), and

regularity, defined in terms of the asymptotics of orbits in X (Definition 4.4), are equivalent

in a suitable sense, compare the discussion in [KLP2, §5.2]. The most relevant aspect for the

purposes of this paper is that regularity implies contraction in a suitable sense.

We first consider sequences of isometries:

Proposition 6.14. Every τmod-regular sequence in G contains a τmod-contracting subsequence.

Proof. Compare the proof of [KLP2, Proposition 5.14].

Suppose that the sequence pgnq in G is τmod-regular. Let x P X. There exist simplices

τ˘n P Flag˘τmod (unique for large n) such that

g˘1
n x P V px, stpτ˘n qq.

After passing to a subsequence, we may assume convergence

τ˘n Ñ τ˘

in Flag˘τmod , because the flag manifolds are compact.

Since x P gnV px, stpτ
´
n qq “ V pgnx, stpgnτ

´
n qq, it follows together with gnx P V px, stpτ

`
n qq

that the Weyl cones V pgnx, stpgnτ
´
n qq and V px, stpτ`n qq lie in the same parallel set, namely in

P pgnτ
´
n , τ

`
n q, and face in opposite directions. In particular, the simplices gnτ

´
n and τ`n are

x-opposite, and thus gnτ
´
n converges to the simplex τ̂` x-opposite to τ`,

gnτ
´
n Ñ τ̂`.

Since the sequence pgnxq is τmod-regular, it holds that

dpg´1
n xn, BV px, stpτ

´
n qqq Ñ `8

According to Lemma 4.3, for any r, R ą 0 the inclusion of shadows

Uτ´n ,x,R Ă Uτ´n ,g´1
n x,r

holds for n ě npr, Rq. Therefore there exist positive numbers Rn Ñ `8 and rn Ñ 0 such that

Uτ´n ,x,Rn Ă Uτ´n ,g´1
n x,rn

for large n, equivalently

gnUτ´n ,x,Rn Ă Ugnτ´n ,x,rn . (6.15)

Since τ´n Ñ τ´ and Rn Ñ `8, the sequence of shadows Uτ´n ,x,Rn Ă Cpτ´n q Ă Flagτmod exhausts

Cpτ´q in the sense that every compactum in Cpτ´q is contained in Uτ´n ,x,Rn for large n. Indeed,

for fixed R ą 0 we have Hausdorff convergence Uτ´n ,x,R Ñ Uτ´,x,R in Flagτmod , which immediately

follows e.g. using symmetry, i.e. from the transitivity of the action Kx ñ Flagιτmod of the
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maximal compact stabilizer Kx ă G of x. Furthermore, the shadows Uτ´,x,R exhaust Cpτ´q as

RÑ `8, cf. the continuity part of Lemma 4.2.

On the other hand, since gnτ
´
n Ñ τ̂` and rn Ñ 0, the shadows Ugnτ´n ,x,rn shrink, i.e. Hausdorff

converge to the point τ`. Indeed, Ugnτ´n ,x,r Ñ Uτ̂`,x,r in Flagτmod for fixed r ą 0, and Uτ̂`,x,r Ñ τ`
as r Ñ 0, using again the continuity part of Lemma 4.2 and the fact that the function (4.1)

assumes the value zero only in τ`.

Together with these observations on exhaustion and shrinking of shadows, (6.15) shows that

gn|Cpτ´q Ñ τ`

uniformly on compacta, i.e. the (sub)sequence pgnq is τmod-contracting.

Remark 6.16. The converse, that τmod-contracting sequences in G are τmod-regular, was shown

in [KLP2, Theorem 5.23].

We conclude for groups of isometries:

Corollary 6.17. τmod-Regular subgroups are τmod-convergence subgroups.

Remark 6.18. For τmod-regular subgroups, the notion of τmod-limit set introduced in Defi-

nition 6.9 is equivalent to the notion of τmod-limit set introduced in [KLP2, Def. 5.32], see

Proposition 5.29 of [KLP2].

Based on the corollary, we can translate our proper discontinuity result for convergence

subgroups (Theorem 6.13) into one for regular subgroups:

Theorem 6.19 (Domains of proper discontinuity for τmod-regular subgroups). Let

τmod Ď σmod be an arbitrary face type. If Γ ă G is a τmod-regular subgroup, then for every

Wτmod-left invariant thickening Th Ă W the action

Γ ñ B8X ´ pThcpΛ´τmodq Y ThpΛ`τmodqq

is properly discontinuous. In particular, if τmod is ι-invariant and Th is fat, then the action

Γ ñ B8X ´ ThpΛτmodq

is properly discontinuous.

6.4 Discrete subgroups

The general construction of domains of proper discontinuity in section 5.2 applies equally to

arbitrary discrete subgroups Γ ă G. There are several ways to proceed. The most immediate

possibility is the following.

Choose for every face type τmod Ď σmod a Wτmod-left invariant thickening Thτmod , and define

the Γ-invariant compact families

A˘ :“
ď

τmodĎσmod

A˘τmod,Thτmod .
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Lemma 6.20. The action Γ ñ B8X is pA´,A`q-accumulating.

Proof. According to Lemma 4.6, every sequence γn Ñ 8 in Γ contains a τmod-regular (even

τmod-pure) subsequence, and hence a τmod-contracting subsequence for some face type τmod. The

assertion follows therefore from Corollary 6.8.

Thus Proposition 5.19 yields in this case:

Proposition 6.21 (Domains of proper discontinuity for discrete subgroups I). If

Γ ă G is a discrete subgroup, then the action

Γ ñ B8X ´
ď

τmod

pThcτmodpΛ
´
τmod

q Y ThτmodpΛ
`
τmod

qq (6.22)

is properly discontinuous.

In general, this domain of proper discontinuity can be further enlarged by only removing

the thickenings of the limit simplices arising from pure sequences in the group: Define the pure

forward/backward τmod-limit set

Λpure,˘
τmod

Ď Λ˘τmod

as the closure of the set of all simplices τ˘ as in (6.2) for all τmod-pure τmod-contracting sequences

pγnq in Γ. As above, we conclude:

Proposition 6.23 (Domains of proper discontinuity for discrete subgroups II). If

Γ ă G is a discrete subgroup, then the action

Γ ñ B8X ´
ď

τmod

pThcτmodpΛ
pure,´
τmod

q Y ThτmodpΛ
pure,`
τmod

qq (6.24)

is properly discontinuous.

Since the domain in (6.22) is in general smaller than the domain in (6.24), one cannot expect

the Γ-action on it to be cocompact.

On the other hand, if Γ is τmod-regular, then it contains νmod-pure sequences only for the face

types νmod Ě τmod, and hence only these limit sets Λ˘νmod can be nonempty. Since Wνmod ď Wτmod ,

we may choose Thνmod “ Thτmod for these face types, and then the domain in (6.24) coincides

with the domain in Theorem 6.19.

7 Cocompactness

7.1 Nearby simplex thickenings

For incident faces υ Ă τ Ă B8X, the parabolic subgroups fixing them are contained in each

other, Pυ Ą Pτ . Correspondingly, for incident face types υmod Ă τmod Ď σmod there is the

natural forgetful map

πυmodτmod : Flagτmod Ñ Flagυmod
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assigning to a face τ of type τmod its face υ of type υmod. It is a G-equivariant smooth fibration

with compact base and fiber.

We fix auxiliary Riemannian metrics on all partial flag manifolds Flagτmod . Thereby also the

G-orbits Gξ Ă B8X are equipped with Riemannian metrics by equivariantly identifying them

with the appropriate flag manifolds.

The fibrations πυmodτmod are then Lipschitz continuous by compactness. Vice versa, we have:

Lemma 7.1 (Controlled lifts). Let τ and υ1 be simplices of types τmod and υmod, υmod Ă τmod,

and let υ Ă τ be the face of type υmod. Then there exists a simplex τ 1 Ą υ1 of type τmod such

that

dpτ 1, τq ď C0 ¨ dpυ
1, υq

with a uniform constant C0 ě 1 only depending on the chosen Riemannian metrics.

Proof. The Riemannian metrics on Flagτmod and Flagυmod can be chosen so that πυmodτmod
becomes a Riemannian submersion. With respect to these metrics, there exists τ 1 so that

dpτ, τ 1q “ dpυ, υ1q. For other choices of the metrics, a multiplicative constant enters.

The lemma generalizes (by induction along galleries) to:

Lemma 7.2. Let τ, τ 1 be simplices of type τmod and let τ̃ be a simplex of type τ̃mod. Then there

exists another simplex τ̃ 1 of type τ̃mod with relative position pospτ̃ 1, τ 1q “ pospτ̃ , τq such that

dpτ̃ 1, τ̃q ď C1 ¨ dpτ
1, τq

with a uniform constant C1 ě 1 only depending on the chosen Riemannian metrics.

Let now Gξ Ă B8X be a G-orbit at infinity, which we think of as identified with the

appropriate flag manifold. We fix a Wτmod-left invariant thickening Th Ă W . Then the distance

between simplices τ in Flagτmod and the Hausdorff distance between their thickenings ThpτqXGξ

in Gξ control each other, and through an ideal point in Gξ outside a simplex thickening exists

a simplex thickening at controlled distance:

Lemma 7.3 (Nearby simplex thickenings). The following assertions hold with a uniform

constant C ě 1 only depending on the chosen Riemannian metrics:

(i) The Hausdorff distance between the thickenings of any two simplices τ 1, τ P Flagτmod is

controlled by

dHpThpτ 1q XGξ,Thpτq XGξq ď C ¨ dpτ 1, τq.

(ii) For a point ξ1 P Gξ and a simplex τ P Flagτmod there exists a simplex τ 1 P Flagτmod such

that ξ1 P Thpτ 1q and

dpτ 1, τq ď C ¨ dpξ1,Thpτq XGξq.

Proof. (i) If η P ThpτqXGξ is arbitrary, then applying Lemma 7.2 (to the flag manifold identified

with Gξ) yields a point η1 P Gξ with pospη1, τ 1q “ pospη, τq P Thpτmodq, i.e. η1 P Thpτ 1q, and

controlled distance dpη1, ηq ď C ¨ dpτ, τ 1q.
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(ii) Suppose that ξ P Thpτq XGξ is the point closest to ξ1, i.e. dpξ1, ξq “ dpξ1,Thpτq XGξq.

Lemma 7.2 yields a simplex τ 1 P Flagτmod with pospξ1, τ 1q “ pospξ, τq P Th and controlled

distance dpτ 1, τq ď C ¨ dpξ1, ξq, whence the second inequality.

7.2 From expansion to transverse expansion

Let τmod Ď σmod be a face type, and let Th Ă W be a Wτmod-left invariant thickening. In this

section, we work on a fixed but arbitrary G-orbit Gη Ă B8X.

We start with an observation concerning the topology of thickenings in flag manifolds.

Lemma 7.4 (Fibration of thickenings). Let A Ă Flagτmod be compact, and suppose that the

thickenings Thpτq XGη of the simplices τ P A are pairwise disjoint. Then the natural map

ThpAq XGη
π
ÝÑ A

is a continuous fibration with compact fiber.

Proof. Suppose that ξn Ñ ξ in ThpAqXGη and τn Ñ τ in A with ξn P Thpτnq. Then ξ P Thpτq

by semicontinuity of relative position, cf. Lemma 3.15. The assumption on the disjointness of

fibers implies that πpξq “ τ . Thus, π is continuous.

In order to show that π is a fiber bundle, we need to construct local trivializations. Fix

τ0 P A. There exists a compact subset S Ă G which is mapped by s ÞÑ sτ0 homeomorphically

onto a compact neighborhood of τ0 in A. (Such a subset can be found in a slice through e

transverse to Pτ0 .) Restricting the action G ñ B8X, we obtain a topological embedding

S ˆ pThpτ0q XGηq Ñ ThpAq XGη

and a local trivialization of π over a neighborhood of τ0 in A.

Now we turn to dynamics.

Let pgnq be a sequence of isometries in G which preserve A, gnA “ A. We consider the

action of pgnq on Gη and derive transverse expansion from expansion on Flagτmod :

Lemma 7.5 (Expansion implies transverse expansion). Suppose that pgnq is on Flagτmod
arbitrarily expanding at τ` P A, i.e. there exist neighborhoods Vn of τ` in Flagτmod and constants

cn Ñ `8 such that gn|Vn is expanding with expansion factor cn.

Then there exist neighborhoods Wn of Thpτ`q XGη and constants Cn Ñ `8 such that

dpgnξ, gn Thpτq XGηq ě Cn ¨ dpξ,Thpτq XGηq (7.6)

for all ξ P Wn and τ P A with Thpτq XGη Ă Wn, compare inequality (5.25).

Proof. To simplify notation, we write (only in this proof) Thp¨q instead of Thp¨q XGη.
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Let Wn be some (small) neighborhood of the compact subset Thpτ`q, and let ξ, τ be as

in inequality (7.6). We work near Thpgnτ`q. According to Lemma 7.3(ii), we can choose

gnτ
1 P Flagτmod such that gnξ P Thpgnτ

1q, and gnτ
1 has controlled distance from gnτ ,

dpgnτ
1, gnτq ď C ¨ dpgnξ,Thpgnτqq

with a uniform constant.

After shrinking the neighborhood gnWn of Thpgnτ`q, we may assume that gnτ is close to

gnτ`, using that ThpAq fibers over A, cf. Lemma 7.4. Moreover, that gnξ is close to Thpgnτq.

Thus, after shrinking Wn sufficiently, we may assume that τ 1, τ P Vn.

Then

dpgnτ
1, gnτq ě cn ¨ dpτ

1, τq.

Since we also have uniform control

dpξ,Thpτqq ď dHpThpτ 1q,Thpτqq ď C ¨ dpτ 1, τq

by Lemma 7.3(ii), it follows that

dpgnξ,Thpgnτqq ě C´2cn ¨ dpξ,Thpτqq,

that is, our assertion with Cn “ C´2cn.

We apply the above discussion to discrete group actions on flag manifolds.

Proposition 7.7 (Transverse expansion at slim thickenings). Let Γ ă G be a discrete

subgroup and suppose that:

(i) The action Γ ñ Flagτmod is expanding at Λ`τmod.

(ii) The thickenings Thpτq XGη of the simplices τ P Λ`τmod are pairwise disjoint.

Then the action Γ ñ Gη is expanding at ThpΛ`τmodqXGη transversely to the natural fibration

ThpΛ`τmodq XGη Ñ Λ`τmod given by Lemma 7.4.

Proof. Since the action Γ ñ Flagτmod is expanding at Λ`τmod , it is arbitrarily strongly expanding

there, cf. Remark 5.23, i.e. for every limit simplex τ` P Λ`τmod exists a sequence pγnq in Γ and a

sequence of neighborhoods Vn of τ` such that the γn|Vn are uniformly expanding with expansion

factors cn Ñ `8. Lemma 7.5 then implies that the action Γ ñ Gη is (arbitrarily) expanding

at ThpΛ`τmodq XGη transversely to π.

Using that transverse expansion implies cocompactness on the complement (Proposition 5.26),

we derive our main cocompactness result:

Theorem 7.8 (Cocompact domains). Let Γ and Th be as in the previous proposition. Then

the action

Γ ñ Gη ´ ThpΛ`τmodq

is cocompact.
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The following is a special case of the theorem. Here, for ι-invariant τmod, a subset of Flagτmod
is called antipodal if the simplices in it are pairwise opposite, cf. Definition 2.4(ii).

Corollary 7.9 (Cocompactness outside slim thickenings). Let τmod Ď σmod be an ι-

invariant face type. Suppose that Γ ă G is a discrete subgroup such that Λτmod is antipodal and

the action Γ ñ Flagτmod is expanding at Λτmod.

(i) Then for any slim Wτmod-left invariant thickening Th Ă W the action

Γ ñ BF :uX ´ ThF :upΛτmodq

is cocompact.

(ii) More generally, suppose that νmod Ď σmod is another face type and that the thickening

Th is also Wνmod-right invariant. Then for any G-orbit Gη Ă B8X of type η̄ “ θpηq P intpνmodq

the action

Γ ñ Gη ´ ThpΛτmodq

is cocompact.

Proof. We have that Λ˘τmod “ Λτmod , because τmod is ι-invariant. Since Th is slim and the

simplices τ in Λτmod are pairwise antipodal, their thickenings ThF :upτq in BF :uX are pairwise

disjoint, cf. Lemma 3.43. Thus, the hypotheses of the theorem are satisfied.

Remark 7.10 (Rank one). If rankpXq “ 1, this follows from part of a basic result for Kleinian

groups characterizing convex-cocompactness. Namely, the following properties are equivalent

for a discrete subgroup Γ ă G:

(i) Γ is convex-cocompact.

(ii) The action Γ ñ X, equivalently, the action Γ ñ B8X, is expanding at Λ.

(iii) The (properly discontinuous) action Γ ñ X ´ Λ is cocompact.

In particular, then the action Γ ñ B8X ´ Λ is cocompact.

7.3 Cocompact domains of proper discontinuity

We consider the following class of discrete subgroups (see Definition 1.7 in the introduction):

Definition 7.11 (CEA subgroup). For a ι-invariant face type τmod Ď σmod we call a τmod-

convergence subgroup Γ ă G a τmod-CEA subgroup (convergence, expanding, antipodal) if Λτmod

is antipodal and if the action Γ ñ Flagτmod is expanding at Λτmod .

Remark 7.12 (CEA versus Anosov). The class of τmod-CEA subgroups coincides with the

class of Pτmod-Anosov subgroups, see [KLP2, §6.5]. Here, Pτmod refers to the conjugacy class of

parabolic subgroups of G corresponding to the face τmod of the spherical Weyl chamber σmod.

Combining our main results on proper discontinuity (Theorem 6.13) and cocompactness

(Corollary 7.9), we obtain:
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Theorem 7.13 (Cocompact domains of proper discontinuity). Suppose that Γ ă G is

a τmod-CEA subgroup.

(i) Then for any balanced Wτmod-left invariant thickening Th Ă W the action

Γ ñ BF :uX ´ ThF :upΛτmodq

is properly discontinuous and cocompact.

(ii) More generally, suppose that νmod Ď σmod is another face type and that the thickening Th

is also Wνmod-right invariant. Then for every G-orbit Gη Ă B8X of type η̄ “ θpηq P intpνmodq

the action

Γ ñ Gη ´ ThpΛτmodq

is properly discontinuous and cocompact.

Remark 7.14. According to Corollary 3.28, balanced Wτmod-left invariant thickenings always

exist, and Theorem 7.13 therefore provides cocompact domains of discontinuity at least in the

Furstenberg boundary BF :uX.

The question whether these domains are nonempty will be addressed in section 8.

7.4 A relation with Mumford’s Geometric Invariant Theory

We continue the discussion in Example 3.42, now looking at actions (of Lie subgroups) on

configuration spaces. (See [KM1, KLM] for a more detailed discussion of Geometric Invariant

Theory in the context of weighted configurations.)

Let H “ IsomopY q. We consider the diagonal action H ñ BF :uX on configurations. As we

discussed in Example 3.42, the choice of a regular vector t “ ptiq P intp∆q determines subsets

pBF :uXqst,t “ BF :uX ´ pThtqF :upAq and pBF :uXqsst,t “ BF :uX ´ pThtqF :upAq

of stable, respectively, semistable weighted configurations in B8Y . Mumford’s GIT [Mu] defines

the Mumford quotient

BF :uX{{tH “ pBF :uXqsst,t{{H.

by suitably extended orbit equivalence. In the case when the thickening Tht is balanced, all

semistable points are even stable, and one has

BF :uX{{tH “ pBF :uXqsst,t{{H “ pBF :uXqst,t{H,

the latter being a quotient in the usual sense.

A nice exercise is to prove directly that the space BF :uX{{tH is compact and Hausdorff in

this case. For instance, if H “ PSLp2,Rq, Y “ H2, n “ 3 and t “ p1, 1, 1q, then BF :uX{{tH

consists of exactly two points represented by configurations of three distinct points on the

circle with different cyclic orders. Continuing with Y “ H2 and letting n “ 4, one verifies that

for t “ p2, 1, 1, 1q the Mumford quotient is homeomorphic to S1, while for t “ p5, 4, 3, 1q the
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Mumford quotient is homeomorphic to the disjoint union of two circles. Taking n “ 5, one

obtains that for t “ p1, 1, 1, 1, 1q the Mumford quotient is the genus 4 oriented surface, while for

t “ p5, 4, 1, 1, 1q the quotient is the disjoint union of two 2-spheres. Thus, we see that quotients

are not homeomorphic for distinct choices of t’s.

More generally, one can describe dependence of the topology of the Mumford quotient

BF :uX{{tH on the parameter t as follows.

The hyperplanes
ř

iPI ti “
ř

jRI tj (also called interior walls), where I runs over subsets of

t1, . . . , nu, partition the chamber

∆ “ tpt1, . . . , tnq : ti ą 0u

into open convex subsets, also called chambers. The topology of BF :uX{{tH does not change

as long as t varies in a single chamber; permuting the chambers does not change the topology

either; however, crossing through a wall amounts to a certain Morse surgery on the manifold.

This can be seen by identifying the quotients BF :uX{{tH with certain moduli spaces of polygons

with fixed side-length: In the case when H “ PSLp2,Rq, these are polygons in the Euclidean

plane, cf. [KM1].

It was conjectured by Kevin Walker that if t, t1 belong to chambers in distinct Sn-orbits

then the Mumford quotients are not homeomorphic. This conjecture was proven 20 years later

in “most” cases by Farber, Hausmann and Schütz [FHS] and in full generality by Schütz [Sch].

Similar results hold when the circle is replaced by a k-sphere. In fact, different quotients are

distinguished by their cohomology rings.

We will now see how the dependence of the topology of BF :uX{{tH on the parameter t

described above leads to the change of the topology of quotients by discrete group actions.

Example 7.15. We continue with the notation of Example 3.42. For concreteness, we assume

that Y “ H2, H “ PSLp2,Rq and Γ ă H is a torsion-free uniform lattice (a closed hyperbolic

surface subgroup). The embedding H ă G “ H ˆ . . . ˆ H is diagonal and we view Γ as a

subgroup of G. Then Γ preserves the diagonally embedded totally-geodesic hyperbolic plane

H2 Ă X and acts cocompactly on it. Thus, Λσmod “ B8H2 Ă BF :uX, the diagonally embedded

circle, and Λ “ B8H2 Ă B8X for the visual limit set. The ideal boundary points in B8H2 Ă B8X

are contained in the central regular G-orbit θ´1pζ̄q Ă B8X of type ζ̄ P intpσmodq represented

by the vector p1, . . . , 1q P intp∆q. It follows that the subgroup Γ ă G is uniformly σmod-regular

(see [KLP2] for the precise definition). More precisely, it is tζ̄u-regular. Moreover, the group Γ

is obviously quasi-isometrically embedded in H, and hence also in G. We conclude that Γ ă G

is a σmod-CEA subgroup (e.g. as a consequence of [KLP3, Theorem 1.5]).

Given a balanced metric thickening Th “ Tht Ă W , the domain ΩTh “ BF :uX´ThF :upΛσmodq

considered in Theorem 7.13(i) equals the set pBF :uXqst,t of stable weighted n-point configurations

on B8Y – S1 (stability being defined with respect to the weights t). The group H acts on

pBF :uXqst,t freely and we have a principal H-bundle

H Ñ pBF :uXqst,t Ñ pBF :uXqst,t{H “ BF :uX{{tH.
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Dividing pBF :uXqst,t by Γ instead of H we obtain a fiber bundle

H{Γ Ñ pBF :uXqst,t{Γ Ñ pBF :uXqst,t{H.

In particular, by taking non-homeomorphic Mumford quotients, we obtain non-homeomorphic

quotients ΩTh{Γ. For instance, for n “ 4 we obtain three distinct topological types of quotients:

The empty quotient, a connected nonempty quotient (a bundle over the circle with the fiber

H{Γ) and a disconnected quotient which is the disjoint union of two copies of an H{Γ-bundle

over S1.

8 Nonemptiness

8.1 Thickenings and packings

We will use the following notion of ball packing for the visual boundary (using its structure as

a topological spherical building).

Definition 8.1 (Packing). A packing of B8X by π
2
-balls is a family B of disjoint open π

2
-balls

(with respect to the Tits metric) the union of whose closures equals B8X. We call the packing

compact if the set of centers of these balls is compact with respect to the visual topology.

Note that the set of centers of the balls is necessarily antipodal, cf. Definition 2.4(i), and

hence the centers must have the same ι-invariant type. We call it the type of the packing. We

call the packing simplicial if the balls are simplicial subcomplexes of B8X. The simplicial π
2
-

balls are precisely the π
2
-balls centered at points of root type, and hence a packing is simplicial

if and only if it is of root type.

We will show that compact packings often do not exist.

Definition 8.2 (Non-packing type). We say that the symmetric space X is of

(i) non-packing type if B8X admits no compact packing by π
2
-balls.

(ii) non-ϑ̄-packing type for an ι-invariant type ϑ̄ P σmod if B8X admits no compact packing

by π
2
-balls of type ϑ̄.

(iii) non-root packing type if it is of non-ϑ̄-packing type for some root type ϑ̄ P σmod.

Our motivation for proving the nonexistence of packings is that it implies via the nonfullness

of thickenings, as is made precise by the next result, the nonemptiness of domains of proper

discontinuity, see Proposition 8.13 below.

Let τmod Ď σmod be an ι-invariant face type. Suppose that

A Ă Flagτmod

is an antipodal compact subset. It determines for every ι-invariant type ϑ̄0 P τmod the antipodal

compact subset C Ă B8X consisting of the points ζτ,ϑ̄0
“ τXθ´1pϑ̄0q of type ϑ̄0 in the simplices
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τ P A, and hence the family of disjoint open π
2
-balls

BpA, ϑ̄0q “

!

B
`

ζτ,ϑ̄0
,
π

2

˘

: τ P A
)

.

Note that the union of the closed balls is a compact subset of B8X.

Proposition 8.3 (Full thickenings yield packings). Let τmod and ϑ̄0 P τmod be ι-invariant,

and let A Ă Flagτmod be an antipodal compact subset. Suppose that

ThF :upAq “ BF :uX

for all balanced Wτmod-left invariant thickenings Th Ă W of the form Th “ Thϑ̄0,ϑ̄,
π
2

(as defined

by (3.26)). Then the family of balls BpA, ϑ̄0q is a packing of B8X.

Proof. Suppose that BpA, ϑ̄0q is not a packing. The union of the corresponding closed balls

is compact in B8X (with respect to the visual topology), and its complement therefore open.

Let ξ be a point in the complement, and denote θpξq “ ϑ̄. After perturbing ξ, we may assume

that ξ is regular and that the (always fat) Wτmod-left invariant metric thickening Thϑ̄0,ϑ̄,
π
2
Ă W

is balanced, cf. Lemma 3.27 and the proof of Corollary 3.28. By the construction of metric

thickenings, see (3.26) and (3.39),

Thϑ̄0,ϑ̄,
π
2
pτq XGξ “ B

`

ζτ,ϑ̄0
,
π

2
q XGξ

for τ P A. It follows that ξ R Thϑ̄0,ϑ̄,
π
2
pAq and hence pThϑ̄0,ϑ̄,

π
2
qF :upAq ‰ BF :uX.

Remark 8.4 (Full thickenings yield fibrations). Note that the hypothesis of the propo-

sition implies in particular the existence of the following kind of fibrations of the Furstenberg

boundary: In view of Lemma 7.4, it follows from ThF :upAq “ BF :uX that there is a fiber bundle

BF :uX ÝÑ A

whose fibers are finite unions of Schubert cycles (namely the thickenings Thpτq for τ P A). Any

two fibers are equivalent modulo the G-action on BF :uX. If A “ Λτmod for a subgroup Γ ă G,

then the fibration is Γ-equivariant.

8.2 Nonexistence of packings

We show in this section that compact packings of the visual boundary by π
2
-balls do not exist

for most Weyl groups. Note that the discussion applies more generally to packings of compact

topological spherical buildings.

8.2.1 Type A2

Suppose that the symmetric space X has type A2. The spherical model chamber σmod is then

an arc ξ̄η̄ of length π
3
, with ξ̄, η̄ P σmod the two vertex types. The involution ι of σmod is the

reflection at the midpoint ζ̄, which is therefore the only ι-invariant type. We denote by

Flagσmod
πξ̄
ÝÑ Flagξ̄ “ θ´1

pξ̄q and Flagσmod
πη̄
ÝÑ Flagη̄ “ θ´1

pη̄q
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the canonical projections from the full flag manifold (of chambers) to the partial flag manifolds

(of vertices of fixed type).

A packing B of B8X by π
2
-balls is necessarily of type ζ̄ and hence simplicial. A π

2
-ball in B8X

with center of type ζ̄ consists of a central chamber and all chambers adjacent to it, i.e. it is the
π
3
-neighborhood of its central chamber. Thus, the packing corresponds to a set C Ă Flagσmod

of pairwise opposite chambers such that every other chamber is adjacent to a chamber in C.

We denote by Cξ̄ “ πξ̄pCq and Cη̄ “ πη̄pCq the sets of vertices of the chambers in C, and

by Oξ̄ “ Flagξ̄ ´Cξ̄ and Oη̄ “ Flagη̄ ´Cη̄ their complements. The complement of the union of

the chambers in C is the union of the open π
3
-balls centered at the points in Oξ̄ Y Oη̄, i.e. the

chambers not in C are the chambers with a vertex in Oξ̄ or Oη̄. We therefore have the disjoint

decomposition

Flagσmod “ C \ π´1
ξ̄
pOξ̄q \ π

´1
η̄ pOη̄q.

We observe that, if a chamber has a vertex in Oξ̄, then its other vertex lies in Cη̄. Vice versa,

every vertex in Cη̄ belongs to a chamber whose other vertex lies in Oξ̄. This means that

Cη̄ “ πη̄pπ
´1
ξ̄
pOξ̄qq (8.5)

So far, our discussion applies to packings of arbitrary spherical buildings of type A2. Now we

take into account the visual topology.

Theorem 8.6. If X has type A2, then it is of non-packing type.

Proof. We keep the notation from the previous discussion. Suppose that B is a compact packing

of B8X, i.e. C is compact and therefore also its images Cξ̄ and Cη̄ under the projections πξ̄
and πη̄. Then Oξ̄ is open. Since the projection πη̄ is open, (8.5) implies that Cη̄ is also open,

i.e. it is clopen. Since it is a nonempty proper subset, it follows that Flagη̄ is disconnected,

and consequently also Flagσmod . This is absurd, because Flagσmod is a homogeneous space of

IsomopXq and therefore connected.

8.2.2 Irreducible case of rank ě 3

For most irreducible Weyl groups, the question of the nonexistence of simplicial packings can

be reduced to the A2-case.

Theorem 8.7 (Nonexistence of simplicial packings in rank ě 3). If X is irreducible of

rankpXq ě 3, then it is of non-root packing type.

Proof. We make use of the spherical building geometry of BT itsX, see [KlL] for a detailed

discussion. The question of nonexistence can be reduced to lower rank by observing that

packings of spherical buildings by π
2
-balls induce such packings of their spaces of directions.

The space of directions ΣξBT itsX of a point ξ P B8X carries again a natural spherical

building structure. We will use the notation pSξ,Wξq for the associated Coxeter complex. More

precisely, ΣξBT itsX is naturally identified with the Tits building of the symmetric subspace
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X 1 Ă X, which appears in the decomposition P plq “ X 1 ˆ l of the parallel set of a geodesic

l Ă X asymptotic to ξ.

Furthermore, the spaces of directions of closed π
2
-balls Bpζ, π

2
q at boundary points ξ P

BBpζ, π
2
q are again π

2
-balls,

ΣξBpζ,
π

2
q “ Bp

ÝÑ
ξζ,

π

2
q.

This follows from the first variation formula in S2, because for any point η sufficiently close to

ξ the three points ξ, η, ζ are the vertices of an embedded spherical triangle. If two open balls

Bpζi,
π
2
q are disjoint and if ξ is a point in the intersection of their boundaries, then the spaces

of directions ΣξBpζi,
π
2
q have disjoint interiors.

Let now B be a compact packing of B8X by π
2
-balls. Then B induces packings Bξ by π

2
-balls

of the spaces of directions ΣξBT itsX for all boundary points ξ of the packing balls; the family

Bξ consists of the balls Bp
ÝÑ
ξζ, π

2
q for which Bpζ, π

2
q P B and ξ P BBpζ, π

2
q. If the packing B is

simplicial, then so are the packings Bξ.
To see that the compactness of B implies the compactness of the induced families Bξ, consider

a convergent sequence ζn Ñ ζ of centers of packing balls in B such that =T itspξ, ζnq “
π
2

for

all n. Then =T itspξ, ζq ď
π
2

by the semicontinuity of Tits distance. However, strict inequality

is impossible, because then ξ would be an interior point of the packing ball Bpζ, π
2
q, which is

absurd. Thus also =T itspξ, ζq “
π
2

and it follows that
ÝÑ
ξζn Ñ

ÝÑ
ξζ. Hence the centers

ÝÑ
ξζn of

packing balls in Bξ converge to the center of such a ball. Thus the families Bξ are compact.

Let us now focus on simplicial packings. Suppose that B8X admits compact simplicial

packings by π
2
-balls for all (at most two) root types. Consider for all such packings of B8X the

induced simplicial packings by π
2
-balls of the spaces of directions ΣξBT itsX for all vertices ξ in

the boundaries of packing balls. Then for these, the type θpξq P σmod runs through all possible

vertex types, and for every fixed vertex type θpξq the type of the packing Bξ runs through

all possible root types. (The vertex type θpξq and the root type of the packing Bξ uniquely

determine the root type of the packing B which has to be used.)

The type θpξq of a vertex ξ corresponds to a wall of the fundamental Weyl chamber, and

the Dynkin diagram for the link ΣξBT itsX is obtained from the Dynkin diagram for BT itsX by

removing the corresponding node. By examining Dynkin diagrams of irreducible root systems,

we note that every irreducible root system of rank ě 3 has a simple edge and can hence be

reduced to the A2 root system by successively removing nodes without disconnecting it. Thus,

if rankpXq ě 3, it follows that there exists a symmetric space X 1 of type A2 whose visual

boundary admits a compact packing by π
2
-balls. This contradicts Theorem 8.6.

Note that root types are ι-invariant.

Regarding the irreducible case, Theorems 8.6 and 8.7 leave open the cases of type B2 and

G2 in rank 2. We will prove some partial results for the B2-case in section 8.2.4.

8.2.3 Reducible case

We reduce to the irreducible case using the observation:
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Lemma 8.8. Suppose that X decomposes as the product X “ X1 ˆ X2 of symmetric spaces.

If X1 is of non-root packing type, then so is X.

Proof. The model chamber σmod of X splits as the spherical join

σmod “ σ1
mod ˝ σ

2
mod

of the model chambers of the factors. The same applies to the visual boundaries:

B8X “ B8X1 ˝ B8X2

A root type ϑ̄1 P σ
1
mod remains a root type in σmod under the inclusion σ1

mod Ă σmod, and a π
2
-ball

B
B8X

pζ1,
π
2
q Ă B8X centered at a point ζ1 P B8X1 Ă B8X of type ϑ̄1 splits as the spherical join

B
B8X

pζ1,
π

2
q “ B

B8X1
pζ1,

π

2
q ˝ B8X2

of the ball B
B8X1

pζ1,
π
2
q Ă B8X1 with the full visual boundary B8X2. Hence, B8X admits a

compact packing by π
2
-balls of type ϑ̄1 if and only if B8X1 does. The assertion follows.

Combining Theorems 8.6 and 8.7 with Lemma 8.8, we obtain:

Theorem 8.9 (Nonexistence of simplicial packings). If X has at least one de Rham

factor not of the type A1, B2 or G2, then it is of non-root packing type.

Proof. The assumptions imply that X has a de Rham factor of type A2 or with rank ě 3.

8.2.4 Type B2

Suppose now that the symmetric space X has type B2. We obtain only partial results on the

nonexistence of packings.

The model spherical chamber σmod is an arc ξ̄η̄ of length π
4
, and ξ̄, η̄ P σmod are the two

vertex types. Moreover, ι “ idσmod and all types in σmod are ι-invariant. We again denote by

Flagσmod
πξ̄
ÝÑ Flagξ̄ “ θ´1

pξ̄q and Flagσmod
πη̄
ÝÑ Flagη̄ “ θ´1

pη̄q

the canonical projections from the full flag manifold (of chambers) to the partial flag manifolds

(of vertices of fixed type).

Simplicial π
2
-balls in BT itsX are centered at vertices, and hence simplicial packings by π

2
-balls

are of vertex type.

A packing Bϑ̄0
of regular type ϑ̄0 P intpσmodq gives rise to a continuous family of packings Bϑ̄,

ϑ̄ P σmod, by simultaneously “sliding” its centers along the chambers containing them. Namely,

we choose as the centers of Bϑ̄ the points of type ϑ̄ in those chambers which contain the centers

of Bϑ̄0
. A regular packing thus gives rise to singular packings of both vertex types.
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Consider now a packing B of B8X by π
2
-balls of type ξ̄ with set of centers Cξ̄ Ă Flagξ̄. Note

that Flagη̄ is partitioned by the π
4
-spheres around the points in Cξ̄, and that the map

π´1
ξ̄
Cξ̄

πη̄
ÝÑ Flagη̄

is bijective. If Cξ̄ is compact, then this map is a homeomorphism, and its inverse is a section of

πη̄ whose image is πξ̄-saturated, i.e. is a union of πξ̄-fibers. Conversely, each section of πη̄ whose

image is πξ̄-saturated yields a compact packing of B8X by π
2
-balls of type ξ̄.

Question 8.10. For which groups G of type B2 the projection πξ̄ resp. πη̄ admits a section

whose image is πη̄- resp. πξ̄-saturated?

Example 8.11. Let G “ SOpn, 2q with n ě 2. The partial flag manifolds in this case are the

Grassmannian L of isotropic lines L and the Grassmannian P of isotropic planes P , and the

full flag manifold is the manifold F of isotropic flags pL, P q.

Fix an orthogonal splitting Rn,2 “ Rn ‘ R2 so that the quadratic form q “ x2
1 ` ¨ ¨ ¨ ` x

2
n ´

x2
n`1 ´ x2

n`2 is definite on each factor. Then the isotropic planes in Rn,2 are the graphs of

isometries Φ : pR2,´q|R2q Ñ pRn, q|Rnq. The isotropic lines in Rn,2 are the graphs of isometries

φ : pl,´q|lq Ñ pRn, q|Rnq defined on lines l Ă R2. A full isotropic flag corresponds to a pair

pΦ, lq, its isotropic line corresponding to the restriction Φ|l. Thus, we have the product splitting

F – P ˆ RP 1.

The projection πP : F Ñ P is the projection to the first factor. It admits “constant” sections

sl by fixing l. Their images are πL-saturated, namely slpPq “ π´1
L Ll where Ll denotes the set of

isotropic lines contained in the hyperplane Rn‘ l – Rn,1 Ă Rn,2. The subset Ll Ă L is compact

and antipodal, and hence constitutes the set of centers of a packing of B8X by π
2
-balls. In

incidence geometric terms, the antipodality corresponds to the fact that the hyperplane Rn‘ l

contains no isotropic plane, and the packing to the (equivalent) fact that every isotropic plane

intersects Rn ‘ l in a line. The hyperplane Rn ‘ l is the orthogonal complement, in Rn,2, of

the line lK Ă R2 orthogonal to l. Accordingly, Ll Ă L is the orbit of a subgroup – SOpn, 1q of

SOpn, 2q, namely of the one which fixes lK.

The projection πL : F Ñ L is given by pΦ, lq ÞÑ Φ|l. Let L1 Ă L denote the subset of

isotropic lines which project to l1 “ Re1 Ă R2, i.e. for which the isometry φ is defined on l1. A

section of πL over L1 would associate with each unit vector φpe1q in Rn a unit vector orthogonal

to it, namely Φpe2q for the extension Φ of φ determined by the section. It would thus yield a

unit vector field on Sn´1 Ă Rn. Such a vector field does not exist if n is odd.

On the other hand, if n is even, then we can use the standard identification Rn,2 – Cn
2
,1 and

consider the subset Pc Ă P of isotropic planes which are invariant under the complex structure,

i.e. which are complex lines. Every isotropic line is contained in a unique such isotropic plane

by complexification, which means that

π´1
P Pc

πL
ÝÑ L

is a homeomorphism and, accordingly, Pc is the set of centers of a packing. It is the orbit of

the subgroup SUpn
2
, 1q Ă SOpn, 2q.
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Our discussion and the example imply:

Theorem 8.12. (i) If G “ Op2k ` 1, 2q with k ě 1, then B8X admits no compact packing by
π
2
-balls of regular type, neither of the singular type corresponding to isotropic planes.

(ii) If G “ Op2k, 2q with k ě 1, then B8X admits a compact packing by π
2
-balls of the

singular type corresponding to isotropic planes whose set of centers is an orbit of Upk, 1q ă G.

(iii) If G “ Opn, 2q with n ě 2, then B8X admits a compact packing by π
2
-balls of the

singular type corresponding to isotropic lines whose set of centers is an orbit of Opn, 1q ă G.

Proof. (i) According to our above discussion, a packing of regular type gives rise to packings

of both singular types. We assume therefore that there exists a packing of the singular type

corresponding to isotropic planes, i.e. with centers in P Ă B8X. It yields a section of the fiber

bundle πL : F Ñ L. However, such a section does not exist, cf. the example, contradiction.

(ii)+(iii) See the previous example.

The theorem leaves open the question whether packings of regular type exist if n is even.

8.3 Nonemptiness of domains of proper discontinuity

We now apply our results on packings to discrete subgroups. Proposition 8.3 yields:

Proposition 8.13 (Empty domains yield packings). Let τmod and ϑ̄0 P τmod be ι-invariant.

Suppose that Γ ă G is a discrete subgroup such that Λτmod is antipodal and

ThF :upΛτmodq “ BF :uX

for all balanced Wτmod-left invariant thickenings Th Ă W of the form Th “ Thϑ̄0,ϑ̄,
π
2

(as defined

by (3.26)). Then the family of balls BpΛτmod , ϑ̄0q is a packing of B8X.

Applying our nonexistence results for packings (Theorem 8.9), we conclude that some of

the domains of proper discontinuity constructed earlier (cf. Theorem 6.13) are nonempty. For

instance, we obtain in the regular case τmod “ σmod:

Theorem 8.14 (Nonemptiness of domains of proper discontinuity). Suppose that X has

at least one de Rham factor not of the type A1, B2 or G2, and let Γ ă G be a σmod-convergence

subgroup with antipodal limit set Λσmod. Then for some balanced thickening Th Ă W the domain

of proper discontinuity BF :uX ´ ThF :upΛσmodq for the Γ-action (provided by Theorem 6.13) is

nonempty. Moreover, the thickening can be chosen of the form Th “ Thϑ̄0,ϑ̄,
π
2

(as defined by

(3.26)) with ϑ̄0 P σmod a root type.

Proof. Otherwise, by the proposition, B8X admits compact packings by π
2
-balls for all (of the

at most two) root types. However, this contradicts Theorem 8.6, respectively, Theorem 8.7.

(Note that root types are ι-invariant.)

In the B2 case, we can only treat a family of examples:
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Addendum 8.15 (Nonemptiness of domains of proper discontinuity, B2 case). Sup-

pose that G “ Op2k ` 1, 2q with k ě 1, and let Γ ă G be a πmod-convergence subgroup with

antipodal limit set Λπmod for the vertex type πmod P σmod corresponding to isotropic planes.

Then for the balanced Wπmod-left invariant thickening Th Ă W “ WB2 the domain of proper

discontinuity BF :uX ´ ThF :upΛπmodq for the Γ-action (provided by Theorem 6.13) is nonempty.

Proof. Otherwise, the proposition yields a compact packing of B8X by π
2
-balls of type πmod,

contradicting Theorem 8.12(i).

This leaves open the question whether, in the case of G “ Op2k, 2q for k ě 2, there are

σmod-convergence subgroups with antipodal limit sets, which have empty domains of proper

discontinuity for arbitrary balanced thickenings Th. We note that Example 7.15 provides ex-

amples of σmod-CEA subgroups with empty domains of proper discontinuity in BF :uX for some

choices of balanced thickenings.

Remark 8.16. Theorem 8.14 is both weaker and stronger than the nonemptiness results in

[GW, Thms. 1.11, 1.12 and 9.10]. It is stronger in the sense that it applies to hyperbolic groups

Γ without assumptions on their cohomological dimension, unlike the results in [GW] which

require small cohomological dimension; furthermore, it applies to domains of discontinuity in

various partial flag manifolds (always including G{B “ BF :uX), unlike the results in [GW] which

work (in general) only for domains of discontinuity in G{AN (which is a certain fiber bundle

over G{B). On the other hand, it is weaker in the sense that it addresses only the regular

case (τmod “ σmod). We also note that some examples of Anosov subgroups for which some

discontinuity domains are empty are given in [GW, Remark 8.5].
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