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INTRODUCTION

In this paper, we consider diffusion processes on topological spaces and their
bounded harmonic functions.

It is a direct consequence of the convergence theorem for bounded martingales
that for a diffusion bounded harmonic functions converge along almost every tra-
jectory. In section 1, we prove an extension of this general fact. We introduce a
notion of distance associated to the diffusion and show in Theorem 1 that conver-
gence takes also place at bounded distance away from the trajectory. For instance,
in the case of brownian motion on a Riemannian manifold of bounded sectional
curvature, a bounded harmonic function converges a.s. uniformly on a “brownian
ball”, i.e. a ball of constant (geometric) radius accompanying the trajectory.

In section 3, we illustrate how this general argument can be applied in a homo-
geneous situation. We give a new proof for the fact that brownian motion on a
connected unimodular solvable Lie group with left-invariant metric is Liouville, i.e.
every bounded harmonic function is constant. Theorem 2 is an extension of this
fact to certain canonical left-invariant diffusions on arbitrary connected solvable Lie
groups. It can also be deduced from Raugi’s representation theorem for bounded
harmonic functions associated to a large class of random walks on locally compact
groups with countable base [Rau]. The special case of left-invariant diffusions gen-
erated by subelliptic operators on solvable Lie groups, which are the semidirect
product of an abelian group A and a nilpotent group N with diagonalizable action
of A on N, is studied in [DH] and implies our Theorem 2 for these groups.

We are using standard notation. Only basic facts about stochastic processes are
needed. Regarding the theory of martingales, in particular the convergence theorem
for bounded martingales, we refer the reader to [B1]. For details about stochastic
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differential equations, diffusion processes and their connection with elliptic differ-
ential operators, see [B2], [IW] and [I].

The results in this paper are part of my diplom thesis written at the University of
Bonn. I am very grateful to Werner Ballmann for his advice and encouragement.

§1. CONVERGENCE OF BOUNDED HARMONIC FUNCTIONS ALONG PATHS

A diffusion process P = (P;)zenm on a topological space M is a continuous M-
valued stochastic process satisfying the strong Markov property. For simplicity, we
assume that P has infinite life time. In the case that M is a manifold, for instance,
the result can immediately be carried over to the general case by sufficiently slowing
down the diffusion towards infinity.

Let h be a bounded harmonic function for the diffusion P. Then (M;);>o =
(h(w¢))¢>0 is a bounded martingale and therefore converges for P,-a.e. trajectory
w in the path space Q = Q(M). (w; is the canonical evaluation map Q@ — M, w +—
w(t).) Denote the limit by

tl_l)rglo h(w(t)) =t Moo (w).
In other words, h converges a.s. along the trajectories of the diffusion starting at
x e M.

We want to show that ~A does not only converge on but also at a bounded distance
away from the trajectories.

First of all, we have to make precise what “distance” means, since we do not
assume a metric on our space M. We introduce a stochastic distance associated to
the diffusion P. It is most easily formulated using the P-harmonic functions.
Definition: We say that two points x,y € M have stochastic distance d € [0, 0]
with respect to the diffusion P, if d is the smallest number, s.t.

h(z)

(1) em? < (o) < et VheH (M)

Here H; (M) denotes the space of bounded positive P-harmonic functions on M.

To obtain a stochastic formulation, consider the restrictions of the diffusion mea-
sures P, and P, to the tail field Ay. (The tail field consists of the events only
depending on the asymptotic large time behavior of the trajectories.) If d < oo,
the measures P, and P, are equivalent because of (1). In this case, (1) translates
into the following inequality for the Radon-Nikodym derivatives:

o AP
) A VR

Note that different points may have zero stochastic distance. An extreme case

occurs if all bounded harmonic functions are constant, i.e. if the diffusion process

is Liouville. Then the stochastic distance of any two points is zero.

Ezxamples:

(i) Knowing the extremal harmonic functions for brownian motion on hyperbolic
space, one can easily verify that the stochastic distance coincides with the geo-
metric distance.
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(ii) Consider brownian motion on a complete Riemannian manifold of bounded sec-
tional curvature. Then the stochastic diameter of balls B, (z) of a certain geo-
metric radius » > 0 is bounded in terms of r and the curvature bounds.

(iii) Let M be a smooth manifold and the diffusion be generated by a second order
elliptic differential operator with continuous coefficients. Since there is a Har-
nack inequality for small open sets, we see by a covering argument that relatively
compact open sets have finite stochastic diameter. If the operator is moreover in-
variant under the action of some group, then the stochastic diameter is invariant
as well.

We now make precise, what we mean by “convergence at a bounded distance
away from the trajectory”.

By a neighbourhood system of bounded stochastic diameter, we mean a family
(U(ac))z car Of open sets, such that U(z) contains = and has diameter < d with
respect to the stochastic distance for some fixed positive number d. Think of

(U(w(t))) >0 a8 accompanying the trajectory w. E.g. in the case of brownian
motion on a Riemannian manifold, we call (B, (w(t))) >0 the brownian ball of radius
r accompanying the trajectory w. B

The nonconstancy on the accompanying set of the bounded harmonic function
h is measured by

Ay = sup{|h(z) — h(wy)| : 7 € Uluwy)}
Lemma 1. For everyxz € M:
tll}go Ay =0 P, —a.s.
As an immediate consequence, we obtain the

Theorem 1. Let (P;)zenm be a diffusion on a topological space M and h a bounded
harmonic function for this diffusion. Then h converges Py-a.s. on the set (U(w(t)))
accompanying the trajectory w uniformly in the following sense:

For every € > 0, there is a t(w,€) > 0, s.t.:

t>tw,e) N zeU(w)) = |h(z) — My (w)| < ¢

Proof: (of lemma)
We estimate the deviation h(y) —h(z) for y € U(z). The martingale convergence

theorem implies:
- / Mo () P, (dw)
Q

By the Cauchy-Schwartz inequality:
(1) = 1(@))” = ( | (Moxl) = b)) Py ()
< [ (Max() = h(a))? P, )

Since the stochastic diameter of the U(x) is bounded by assumption by some con-
stant d > 0, we may use the corresponding Harnack inequality (2) to estimate the
right-hand side:

/ (Moo () — h(2))? Py (dw)
(Moo — My)?]
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Taking the supremum of the left-hand side:
Af < et B, [(Mo — My)?]
We transfer this inequality to arbitrary time ¢ > 0 via the Markov property:
A} < et Ey[(Mo — My)?| 7] P,-a.e.

The right-hand side is a positive supermartingale, as the decomposition

B[~ MP|R] = EMLIFL- M
martingale submartingale

shows, and therefore converges. Its limit has to be zero a.e., because
E,[(Mo — My)?| = E,[MZ] — E,[M?] -0 ast— oo

We conclude
lim A2 =0  P,-as.,
t—o0

q.e.d.

Remark: In our argument we did not use the boundedness of h. It works as well
under the weaker assumption that (h(w;)) is a L2-martingale.

Remark: One might want to modify the above definition of stochastic distance by
allowing all positive harmonic functions, not only the bounded ones. This amounts
to considering the whole family of h-processes P" obtained from P by conditioning
with positive harmonic functions h. Therefore, we have to give (1) a form which is
invariant under conditioning:

/ -2 hl('r) h2(y) 2
(1) e”2 < (@) Fa(y) < e Vhy,hy € HT (M),

where HT (M) denotes the space of positive P-harmonic functions on M. Recall
that the PPo-harmonic functions are exactly the functions h/hg with A P-harmonic.
The corresponding stochastic statement is:

(2" e”2 < < e VYheHT (M)

(Sketch of proof for (2') = (1’): Insert for h positive linear combinations a-hy+b-ha.
Then hy/h is bounded h-harmonic and (2’) implies:

—2d hl(x) hl(y) 2d
S @ /ohy) S ©

Now let a/b tend to zero and (1’) follows.)
Theorem 1 holds as well with this modified notion of stochastic distance.

The modified (pseudo-)distance separates points better than the original one.
But still the extremal case might occur that all positive harmonic functions are
constant, as in the case of brownian motion on nilpotent Lie groups with left-
invariant metric [Mg]. Then any two points have distance zero.

e
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§2. THE CANONICAL DIFFUSION

We will use Theorem 1 in section 3 to prove the Liouville property for certain
diffusion processes on solvable Lie groups. In the present section, we describe these
processes.

Let G be a connected Lie group equipped with a left invariant metric (-, -). We
define the second order elliptic operator

(1) LS = Z(Ei)2

where E; is an orthonormal basis of the Lie algebra g. LE does only depend on the
metric, but not on the particular basis chosen. %LG generates a diffusion process
on G given by the stochastic differential equation

(2) dXy =Y Ei(Xy) o dWY,

where (W) is standard brownian motion on RAUM G We call (Xt) the canonical
diffusion on G.
L€ is related to but in general different from the Laplace operator A¢ on G:

¢ = Z(D%“Ei + Dg, E;)

%

=A%+ Dg,FE;

As the following computation will show, the deviation from the Laplace operator is
given by the trace of the adjoint representation, which depends only on the group
structure. For X € g we have:

() DgEi,X)=-) (Ei,Dg,X)
i i
(3) = _;<Eial_):(Ei> +Xi:<Ei, (X, Ei])
= tracead X
The 1-form trace ad on g corresponds via the scalar product to a left-invariant vector
field, which we denote by A. (It is in fact the gradient of the function log det Ad
on G.) We get
(4) LE =A% + A

The above discussion shows:
Fact. The canonical diffusion is brownian motion if and only if G is unimodular.

We consider the canonical diffusion, because it is compatible with homomor-
phisms which are submersions:



6 B. LEEB

Proposition 1. A surjective homomorphism ¢ : G — H of Lie groups equipped
with left invariant metrics, which is a Riemannian submersion, maps the canonical
diffusion on G to the canonical diffusion on H.

Proof: Choose a left invariant orthonormal basis Fy, ..., E, on G, so that Eq, ..., E,
respectively Fy,+1, ..., B, are orthogonal respectively tangent to ker ¢. The vector-
fields E; := d¢ - E; are leftinvariant on H. E], ..., E], vanish and, since ¢ is a
Riemannian submersion, EY, ..., E/, form an orthonormal basis on H.

It6’s formula applied to (2) yields for the process (Y;), where Y; := ¢(Xy):

dYy =) (d¢- Ei(Xy)) o W}

=1

3" B o aw;

=1

Thus (Y;) is the canonical diffusion on H, q.e.d.

§3. THE LIOUVILLE PROPERTY FOR THE CANONICAL DIFFUSION

Recall that the Liouville property states that every bounded harmonic function
is constant, or equivalently in stochastic terms, that the diffusion satisfies a 0-1 law
on the stationary o-algebra Ay of shift-invariant events.

Theorem 2. The canonical diffusion on a connected solvable Lie group G is Li-
ouville.

Proof: First we find a small normal subgroup to perform the induction step. (In case
G is nilpotent, the center would do.) This is due to the solvability of G: g®g C acts
on itself via the adjoint representation and by the theorem of Lie-Kolchin [Hum],
there is a complex 1-dimensional invariant subspace U. Since the action is defined
over R, this implies the existence of an ideal h C g, of dimension < 2. Let H be
the corresponding connected subgroup.

Since the Adjoint action of G on U is given by

Ad(g) - Y=x(9) Y VYelUygeG
with a character x : G — C*, there is a constant C > 1, so that
(1) | Ad(g) - X|| < C - [x(9)] - 1 X]| VXehgel

This allows us to estimate the distance of paths to their translates by elements of
H. Let z = exp(X) with X € h:

1

dist(wy, T - wy) = dist(e, wy “zw;)

< [ Ad(w; ) - X |
< C-x(we)[7HIXI by (1)

As a consequence of Proposition 1 applied to the homomorphism

log|x|:G—=R
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we know that the image of the canonical diffusion under log|x| is brownian motion
on R. This means that Py-a.s. |x(w:)| becomes arbitrarily large after arbitrarily
long time, and we conclude that for Pj-a.e. path w:

VI 3t>T: dist(w(t), z - w(t)) < 6,

where § is some fixed positive number, which can be chosen arbitrarily. I.e. for » >
30 the balls B, (w(t)) and B, (z-w(t)) accompanying the trajoctories w respectively
x - w will intersect after arbitrarily large time.

Now let h be a bounded harmonic function. Note that left translation by z € G
transforms the diffusion starting at ¢ € G, P, to the diffusion starting at z - g,
P,.4. By Theorem 1, h converges Py-a.s. on both of the accompanying balls, and
because these intersect after arbitrarily large time, the limits have to coincide:

lim h(w(t)) = lim A(z - w(t)) Py-as.

t—o00 t—o0

Integration yields
h(g) = h(zg) Vg€ G,z € exp(h),

and since H is connected and h continuous:
h(g) = h(zg) Vg€ G,z € H.
Thus, h is H-invariant of the form
h=hyom,

where 7 : G — G/H =: G is the natural projection. Equip the connected solvable
Lie group G171 with the unique left invariant metric, so that 7 is a Riemannian
submersion. By proposition 1, 7 maps the canonical diffusion on G to the canonical
diffusion on G; and h; is harmonic with respect to it.

The dimension decreases: dim G; < dim G. We proceed by induction and finally
conclude that h is constant, q.e.d.

We point out the special case, where the canonical diffusion coincides with brown-
ian motion:

Liouville property of connected unimodular solvable Lie groups. FEvery
bounded harmonic function on a connected unimodular solvable Lie group is con-
stant.

Remark: The unimodularity condition is necessary. For instance, there are plenty
of bounded harmonic functions on the standard hyperbolic plane, but nevertheless
it can be realized as a 2-dimensional solvable Lie group with left-invariant metric.
To do this, take the group of all isometries preserving orientation and a certain
point at infinity and equip it with the Riemannian metric enherited by its simply
transitive action on hyperbolic plane.
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