
ar
X

iv
:m

at
h.

R
T

/0
21

02
56

 v
5 

  1
8 

Ju
n 

20
05

The generalized triangle inequalities in symmetric

spaces and buildings with applications to algebra

Misha Kapovich, Bernhard Leeb and John J. Millson

June 8, 2005

Abstract

In this paper we apply our results on the geometry of polygons in infinitesi-
mal symmetric spaces, symmetric spaces and buildings, [KLM1, KLM2], to four
problems in algebraic group theory. Two of these problems are generalizations
of the problems of finding the constraints on the eigenvalues (resp. singular
values) of a sum (resp. product) when the eigenvalues (singular values) of each
summand (factor) are fixed. The other two problems are related to the nonva-
nishing of the structure constants of the (spherical) Hecke and representation
rings associated with a split reductive algebraic group over Q and its complex
Langlands’ dual. We give a new proof of the “Saturation Conjecture” for GL(ℓ)
as a consequence of our solution of the corresponding “saturation problem” for
the Hecke structure constants for all split reductive algebraic groups over Q.

1 Introduction

In this paper we will examine and generalize the algebra problems listed immediately
below from the point of view of spaces of non-positive curvature.

Let F be either the field R or C, and let K be a nonarchimedean valued field with
discrete valuation ring O and the value group Z. For simplicity, let us consider here
and throughout this Introduction a split reductive group G over Q, see chapter 3 for
a more general discussion.

• Q1. Eigenvalues of a sum. Set G := G(F), let K be a maximal compact
subgroup of G. Let g be the Lie algebra of G, and let g = k + p be its Cartan
decomposition. Give necessary and sufficient conditions on α, β, γ ∈ p/Ad(K)
in order that there exist elements A,B,C ∈ p whose projections to p/Ad(K)
are α, β and γ, respectively, so that

A+B + C = 0.

• Q2. Singular values of a product. Let G and K be the same as above.
Give necessary and sufficient conditions on α, β, γ ∈ K\G/K in order that
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there exist elements A,B,C ∈ G whose projections to K\G/K are α, β and γ,
respectively, so that

ABC = 1.

• Q3. Invariant factors of a product. Set G := G(K) and K := G(O). Give
necessary and sufficient conditions on α, β, γ ∈ K\G/K in order that there exist
elements A,B,C ∈ G whose projections to K\G/K are α, β and γ, respectively,
so that

ABC = 1.

• Q4. Decomposing tensor products. Let G∨ be the Langlands’ dual group
of G, see Definition 2.13. Give necessary and sufficient conditions on highest
weights α, β, γ of irreducible representations Vα, Vβ , Vγ of G∨ := G∨(C) so that

(Vα ⊗ Vβ ⊗ Vγ)
G∨ 6= 0.

Notation 1.1. Throughout the paper we will denote by Sol(Qi, G) the sets of triples
(α, β, γ) which are solutions of Problems Qi, i = 1, ..., 4 for the group G.

We refer the reader to section 3.5 for linear algebra reformulations of the problems
Q1, Q2, Q3 in the case when G = GL(m) and to section 8.2 for reformulation of
Q3 in terms of the Hecke ring.

The above problems have a long history which is described in detail in [Fu1], we
briefly discuss it in section 3.5.

To state our main results we need several notation. The quotient spaces p/Ad(K)
and K\G/K in Problems Q1 and Q2 are naturally identified with the Euclidean
Weyl chamber ∆ inside a Cartan subspace a ⊂ p.

The double coset space appearing in Problem Q3 is a more subtle discrete object,
namely the intersection of ∆ with the cocharacter lattice LG ⊂ a (see section 3.4
for the precise definition). The appearance of the dual group G∨ in Problem Q4 is
explained by the fact that the cocharacter lattice of G is the same as the character
lattice of the dual group G∨, see section 3.4. We let Λ denote the lattice

Λ := {(α, β, γ) ∈ L3
G : α + β + γ ∈ Q(R∨)}.

Here Q(R∨) is the coroot lattice of G. The importance of the lattice Λ comes from
the inclusion

Sol(Q3, G(K)) ⊂ Λ.

Next we need the number kR, the saturation factor associated with the root system
R of the group G; it is computed in the table 11 in section 7.1. For a split rank ℓ
simple algebraic group G over K these numbers are defined as follows. Let R be the
associated root system, let α1, ..., αℓ be the simple roots and θ be the highest root:

θ =
ℓ∑

i=1

miαi. (1)
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Then kR is the least common multiple of m1, ..., mℓ.

With these notation, the main result of this paper is the following chain of relations
between the problems Q1–Q4:

Main Theorem 1.2. 1.

Sol(Q1, G(F)) = Sol(Q2, G(F)) ⊃ Sol(Q3, G(K)) ⊃ Sol(Q4, G∨(C)).

2.
Sol(Q2, G(F)) ∩ kR · Λ ⊂ Sol(Q3, G(K)) ⊂ Sol(Q2, G(F)) ∩ Λ

3. For the root systems B2 = C2 and G2 we have

Sol(Q2, G(F)) ∩ Λ 6= Sol(Q3, G(K))

and
Sol(Q3, G(K)) 6= Sol(Q4, G∨(C)).

4. Even if G is not necessarily split, for G = G(F), the solution set Sol(Q1, G)
depends only on the (finite) Weyl group of G. It is a convex homogeneous polyhedral
cone D3(G/K) contained in ∆3. A description of the linear inequalities defining this
cone can be found in section 5.2.

5. Even if G is not necessarily split, for G = G(K), the solution set Sol(Q3, G)
depends only on the affine Weyl group of G.

Remark 1.3. The equivalence of Problems Q1 and Q2 (known as Thompson’s Con-
jecture) for some classical groups (including GL(m)) was proved by Klyachko in
[Kly2], for all complex semisimple groups by Alexeev, Meinrenken and Woodward in
[AMW], and in general case by Evens and Lu in the recent paper [EL], using different
methods.

Remark 1.4. The above saturation constants kR are not necessarily the smallest
possible, for instance, in §8.7 we prove that for the group G with the root system G2,

Sol(Q2, G(F)) ∩ 2 · Λ ⊂ Sol(Q3, G(K))

Remark 1.5. It is well-known, that

Sol(Q4, G(C)) ⊂ Sol(Q1, G(C)) ∩ Λ,

see Theorem 9.3 in the Appendix. In the forthcoming paper [KM2] it is shown that

Sol(Q3, G(K)) ∩ kR · Λ ⊂ Sol(Q4, G(C)).

Despite of the algebraic appearance of the results of the Main Theorem, its main
source is geometry, the sole exception is the relation between Q3 and Q4 which is
proven via Satake correspondence. In this paper, we reformulate the algebra problems
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Q1–Q3 as geometric problems which are special cases of a geometric question raised
and studied in [KLM1, KLM2]:

We fix a Euclidean Coxeter complex (E,Waff ) with the Euclidean Weyl chamber
∆ ∼= E/Wsph, and consider nonpositively curved metric spaces X with geometric
structures modeled on (E,Waff ). The spaces of this kind which we are interested in are
symmetric spaces of nonpositive curvature, their infinitesimal versions (infinitesimal
symmetric spaces, see section 4.2), and Euclidean buildings. For such spaces X there
is a notion of ∆-length for oriented geodesic segments which reflects the anisotropy
of X. This leads to the following problem:

• GTI: Generalized Triangle Inequalities. Give necessary and sufficient con-
ditions on α, β, γ ∈ ∆ in order that there exists a geodesic triangle in X with
∆-side lengths α, β and γ.

We refer to the solution set of GTI as D3(X).

As explained in section 4.4, for a symmetric space X, the problem GTI is equiv-
alent to the Singular Value Problem Q2. For an infinitesimal symmetric space p, it
is equivalent to the Eigenvalues of a Sum Problem Q1:

Theorem 1.6. Suppose that G is a reductive algebraic group over R and F = C or
F = R; let X = G/K be the symmetric space corresponding to G = G(F) and p be
the infinitesimal symmetric space. Then

Sol(Q1, G) = D3(p), Sol(Q2, G) = D3(X).

The Invariant Factor Problem Q3 corresponds to the case when X is a Euclidean
building and in this case the inequalities defining D3(X) give only necessary conditions
on (α, β, γ) to solve the algebraic problem Q3. The key difference with the problems
Q1, Q2 is lack of homogeneity in Euclidean buildings X: Not all vertices of X are
special (except for the buildings of type Aℓ). This eventually explains why for the
Euclidean building X corresponding to some groups G(K) we have the inequality

D3(X) ∩ Λ 6= Sol(Q3, G(K)).

We refer the reader to section 4.4 for justification of the correspondence between
algebraic and geometric problems.

Despite of the results of this paper, the structure of the solution sets Sol(Q3),
Sol(Q4) remains unclear. It was known for a long time that Sol(Q4) is a semigroup.
In contrast, we will see in section 8.7 that the set Sol(Q3) is not a semigroup for the
root systems B2 = C2 and G2.

The following result, a consequence of a recent theorem in logic of M. C. Laskowski
[La], building on work of S. Kochen [Ko], reveals the general structure of the subset

Sol(Q3, G(K)) ⊂ L3
G.

Define a subset of L3
G to be elementary if it is the set of solutions of a finite set of

linear inequalities with integer coefficients and a finite set of linear congruences. Then
Laskowski proves the following
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Theorem 1.7 (M. C. Laskowski, [La]). There is an integer N = NG, depending
only on G, such that for any nonarchimedean Henselian valued field K with value
group Z and residue characteristic greater than N we have

Sol(Q3, G(K)) ⊂ L3
G is a finite union of elementary sets.

Remark 1.8. It follows from Theorem 1.2, Part 5, that Theorem 1.7 holds for all
complete nonarchimedean valued fields K. This is because all split groups G, as K

varies, have the same affine Coxeter group. Hence the set Sol(Q3, G(K)) does not
depend on K. Therefore, once the above statement is true for one of them it is true
for all of them.

Problem 1.9. 1. Find the corresponding inequalities and congruences.

2. Is there an analogue of Laskowski’s theorem that describes the set Sol(Q4)? If
so find the inequalities and congruences in this case as well.

We can solve the Problem 1.9 and thus the Problem Q3 for the following groups:

Theorem 1.10. If G is covered by SL(m) or GL(m) then

Sol(Q3, G(K)) = Sol(Q1, G(F)) ∩ Λ.

In other words, say for the group G = SL(m), the solution set Sol(Q3, SL(m,K)) is
the set of triples (α, β, γ) in D3(Symm) ∩ Z3m such that α + β + γ ∈ Q(R∨). Here
Symℓ is the infinitesimal symmetric space of zero trace symmetric m ×m matrices
and Q(R∨) is the coroot lattice of SL(m).

A similar statement holds for a more general class of groups, see Theorem 7.23.
For example, the conclusion of part (a) holds for the groups SL(ℓ,D) where D is a
division algebra over K, see Tableau des échelonages [BT, p. 29-30].

We conclude by pointing out that for the group GL(m) it was known since the
1960-s that

Sol(Q3, GL(m)) = Sol(Q4, GL(m))

and therefore we can use Theorem 1.10 to give a new proof of the Saturation Con-
jecture for GL(m) (the theorem of Knutson and Tao), see section 8.6.

This paper is organized as follows.

In chapter 2 we review root systems for algebraic reductive groups and discuss
Coxeter groups.

In chapter 3 we set up the general algebra problem R which generalizes the setting
of the Problems Q1–Q3. We then discuss in detail the parameter spaces for the
Problems Q1–Q4 and their mutual relation.

In chapter 4 we first convert the problem R into an abstract geometry problem
about existence of polygons with the prescribed generalized side-lengths (Problem
4.1). Next, we introduce a class of metric spaces (metric spaces modeled on Euclidean
Coxeter complexes) and restate the abstract geometry problem for three classes of
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such spaces: infinitesimal symmetric spaces, nonpositively curved symmetric spaces
and Euclidean buildings. We introduce the notion of refined and coarse (the ∆-
length) generalized side-lengths for the geodesic polygons in such metric spaces. For
the infinitesimal symmetric spaces and symmetric spaces, the problem of existence of
polygons with the prescribed ∆-side lengths is adequate for solving the corresponding
algebra problems (Q1 and Q2), but in the case of buildings it is not. This establishes
the equalities and inclusions

Sol(Q3) ⊂ Sol(Q1) = Sol(Q2) = D3(X)

in Theorem 1.2 as well as Part 4 and 5 in this theorem.

In chapter 5 we describe the solution (given in [KLM1, KLM2]) to the problem
GTI of existence of polygons with the prescribed ∆-side lengths in the above classes
of metric spaces X. We also discuss the relation of this solution to symplectic and
Mumford quotients. We describe the system of generalized triangle inequalities for
X and give an explicit set of inequalities in the case of root system of type B2. The
reader who is not interested in the geometric ideas behind the results of this paper can
skip this chapter except for the definition of the mapping Φψ for buildings which will
be used in chapter 7.

In chapter 6 we show that the geometry problem GTI solved in the previous
chapter is not adequate (in the building case) for solving the algebra problem Q3. The
key tool here is the procedure of folding of geodesic triangles in Euclidean buildings
into apartments. The main application of the examples constructed in this section is
to establish the first inequality in Part 3 of Theorem 1.2.

In chapter 7 we show that in the case of A-type root systems, the solution of the
geometry problem GTI given in chapter 5 solves the algebra problem Q3 as well:

Sol(Q3) = D3(X) ∩ Λ.

More generally, we establish the existence of the saturation factors k = kinv fact and
compute these numbers; modulo multiplication by k the geometry problem GTI is
equivalent to the algebra problem Q3. This establishes Part 2 of Theorem 1.2.

In chapter 8 we reformulate problem Q3 in terms of spherical Hecke rings, compare
the algebraic problems Q3 and Q4, establish the inclusion

Sol(Q4, G∨(C)) ⊂ Sol(Q3, G(K))

(see Part 1 of Theorem 1.2) and give our new proof of the saturation conjecture for
GL(m).

In the Appendix, chapter 9, we relate the solution set of the problem Q4 to
Mumford quotients and show that the former forms a semigroup. Although these
results are known to experts, we include them for the sake of completeness.
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2 Roots and Coxeter groups

Let G be a reductive algebraic group over a field F and T be a split torus in G. Our
goal in this section is to describe the root datum associated to the pair (G, T ). The
reader will find the definition of root datum in [Sp, §1].

2.1 Split tori over F

We recall that the algebraic group Gm is the affine algebraic group with coordinate
ring F[S, T ](ST − 1) and comultiplication ∆ given by ∆(T ) = T ⊗ T,∆(S) = S ⊗ S.

Definition 2.1. An affine algebraic group T defined over F is a split torus of rank l
if it is isomorphic to the product of l copies of Gm.

A character of an algebraic group T defined over F is a morphism of algebraic
groups from T to Gm. The product of two characters and the inverse of a character
are characters and accordingly the set of characters of T is an abelian group denoted
by X∗(T ).

Lemma 2.2. Suppose that T is a split torus over F of rank l. Then the character
group of T is a lattice (i.e. free abelian group) of rank l.

Proof: We have F[T ] ∼= F[T1, T
−1
1 , · · · , Tl, T−1

l ]. A character of T corresponds to a
Hopf algebra morphism from F[Gm] to F[T1, T

−1
1 , · · · , Tl, T−1

l ]. Such a morphism is
determined by its value on T . This value is necessarily a grouplike element (this
means ∆(f) = f ⊗ f). However the grouplike elements of F[T1, T

−1
1 , · · · , Tl, T−1

l ] are
the monomials in the Ti’s and their inverses. The exponents of the monomial give
the point in the lattice.

Corollary 2.3.
Hom(Gm,Gm) ∼= Z.

We note that the previous isomorphism is realized as follows. Any Hopf-algebra
homomorphism ψ of coordinate rings is of the form T → T n for some integer n. Then
the above isomorphism sends ψ to n.

Definition 2.4. A cocharacter or a one-parameter (algebraic) subgroup of T is a
morphism φ : Gm → T . The set of cocharacters of T will be denoted X∗(T ).

Lemma 2.5. Suppose that T is a split torus over F of rank l. Then the cocharacter
group of T is a free abelian group of rank l.

Proof: We have F[T ] ∼= F[T1, T
−1
1 , · · · , Tl, T−1

l ]. A cocharacter of T corresponds to a
Hopf algebra morphism ψ from F[T1, T

−1
1 , · · · , Tl, T−1

l ] to F[Gm]. Such a morphism
is determined by its value on T1, · · · , Tl. Then ψ corresponds to the lattice vector
(m1, · · · , ml) where Tmi = ψ(Ti).
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We define an integer-valued pairing 〈 , 〉 between characters and cocharacters
as follows. Suppose φ is a cocharacter of T and χ is a character. Then χ ◦ φ ∈
Hom(Gm,Gm) ∼= Z. We define 〈χ, φ〉 to be the integer corresponding to χ ◦ φ.

We now describe two homomorphisms that will be useful in what follows. Let
Te(T ) be the Zariski tangent space of T at the identity e.

Definition 2.6. We define Φ : X∗(T ) −→ Te(T ) by

Φ(λ) = λ′(1).

Here 1 is the identity of GL(1,F) and λ′(1) denotes the derivative at 1.

We also define Φ∨ : X∗(T ) −→ T ∗
e (T ) by

Φ∨(λ) = dλ|e.

Remark 2.7. The character and cocharacter groups X∗(T ), X∗(T ) are multiplicative
groups, the trivial (co)character will be denoted by 1. However, we will use the em-
beddings Φ and Φ∨ to identify them with additive groups. This will be done for the
most part in chapters 3 and 8.

2.2 Roots, coroots and the Langlands’ dual

The reductive group G picks out a distinguished finite subset of X∗(T ), the relative
root system R = Rrel(G, T ). A character of T is a root if it occurs in the restriction
of the adjoint representation of G to T . We let Q(R) denote the subgroup of X∗(T )
generated by R and define V := Q(R) ⊗ R.

We recall

Definition 2.8. The algebraic group G is split over F if it has a maximal torus T
defined over F, which is split.

From now on we assume G is split over F and T is a maximal torus as in the
above definition.

It is proved in [Sp, §2], that R ⊂ V satisfies the axioms of a root system. Moreover
in the same section it is proved that to every root α ∈ R there is an associated coroot
α∨ ∈ X∗(T ) such that 〈α, α∨〉 = 2. We let R∨ denote the resulting set of coroots, let
Q(R∨) be the subgroup of X∗(T ) they generate and V ∨ := Q(R∨)⊗R. The root and
coroot system R and R∨ determine (isomorphic) finite Weyl groups W,W∨ which acts
on V ∨ and V respectively. The action of the generators sα, sα∨ of the group W,W∨

on X∗(T ) and X∗(T ) are determined by the formulae:

sα(x) := x− 〈x, α∨〉α and sα∨(u) := u− 〈u, α〉α∨.

We then have [Sp, §2]:

Proposition 2.9. The quadruple Ψ(G, T ) := (X∗(T ), R,X∗(T ), R∨) is a root datum.
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Definition 2.10. Let Ψ = (X,R,X∨, R∨) and Ψ′ = (X ′, R′, (X ′)∨, (R′)∨) be root
data. Then an isogeny from Ψ′ to Ψ is a homomorphism φ from X ′ to X such that φ
is injective with finite cokernel. Moreover we require that φ induces a bijection from
R′ to R and the transpose of φ induces a bijection of coroots.

Now suppose f : G −→ G′ is a covering of algebraic groups. If T is a maximal
torus in G then its image T ′ is a maximal torus in G′. The induced map on characters
gives rise to an isogeny of root data, denoted Ψ(f).

Conversely, we have [Sp, Theorem 2.9]:

Theorem 2.11. 1. For any root datum Ψ with reduced root system there exist a
connected split (over F) reductive group G and a maximal split torus T such
that Ψ = Ψ(G, T ). The pair (G, T ) is unique up to isomorphism.

2. Let Ψ = Ψ(G, T ) and Ψ′ = Ψ(G′, T ′) and φ be an isogeny from Ψ′ to Ψ. Then
there is a covering f : G −→ G′ with the image of T equal to T ′ such that
φ = Ψ(f).

Before stating the next definition we need a lemma which we leave to the reader.

Lemma 2.12. If (X,R,X∨, R∨) is a root datum so is (X∨, R∨, X,R).

We now have

Definition 2.13. Let G be a (connected) split reductive group over Q. Let Ψ =
Ψ(G, T ) = (X,R,X∨, R∨) be the root datum of (G, T ). Then the Langlands dual G∨

of G is the unique (up to isomorphism) reductive group over Q which has the root
datum Ψ′ = (X∨, R∨, X,R).

In fact we will need only the complex points G∨ := G∨(C) of G∨ in what follows.
We will accordingly abuse notation and frequently refer to G∨ as the Langlands dual
of G. One has

(G∨)∨ ∼= G.

2.3 Coxeter groups

In this section we review the properties of Coxeter groups, we refer the reader for
a more thorough discussion to [Hum, Section 4.2] and [Bo]. Let R ⊂ V ∗ be a root
system of rank n on a real Euclidean vector space V . We do not assume that n equals
the dimension of V . Note that in the case of semisimple Lie algebras, the space V
will be a Cartan subalgebra a ⊂ g with the Killing form.

We will sometimes identify V and V ∗ using the metric. Let Q(R) ⊂ V ∗ denote the
root lattice, i.e. the integer span of R. This subgroup is a lattice in SpanR(R) ⊂ V ,
it is a discrete free abelian subgroup of rank n. Given a subgroup Λ ⊂ R we define a
collection H = HR,Λ of hyperplanes (called walls) in V as the set

H := {Hα,t = {v ∈ V : α(v) = t}, t ∈ Λ, α ∈ R}.
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In this paper we will be mostly interested in the case when Λ is either Z or R, but much
of our discussion is more general. We define an affine Coxeter group Waff = WR,Λ

as the group generated by the reflections wH in the hyperplanes H ∈ H. The only
reflection hyperplanes of the reflections in Waff are the elements of H. The pair
(E,Waff ) is called a Euclidean Coxeter complex, where E = V is the Euclidean
space. The vertices of the Coxeter complex are points which belong to the transversal
intersections of n walls in H. (This definition makes sense even if n < dim(V ), only
in this case there will be continuum of vertices even if Λ = Z.) If Waff is trivial, we
declare each point of E a vertex. We let E(0) denote the vertex set of the Coxeter
complex.

Definition 2.14. An embedding of Euclidean Coxeter complexes is a map (f, φ) :
(E,W ) → (E ′,W ′), where φ : W → W ′ is a monomorphism of Coxeter groups and
f : E → E ′ is a φ-equivariant affine embedding.

Let Ltrans denote the translational part of Waff . If Λ = Z then Ltrans is the
coroot lattice Q(R∨) of R. In general, Ltrans = Q(R∨) ⊗ Λ. The linear part Wsph

of Waff is a finite Coxeter group acting on V , it is called a spherical Coxeter group.
The stabilizer of the origin 0 ∈ E (which we will regard as a base-point o ∈ E) in
Waff maps isomorphically onto Wsph. Thus Waff = Wsph ⋉ Ltrans. A vertex of the
Euclidean Coxeter complex is called special if its stabilizer in Waff is isomorphic to
Wsph. We let E(0),sp denote the set of special vertices of E.

Remark 2.15. The normalizer Naff of Waff (in the full group V of translations on
E) acts transitively on the set of special vertices. The vertex set E(0) of the complex
(E,Waff ) contains Naff · o, but typically it is strictly larger that. Moreover, in many
cases E(0) does not form a group.

We recall that the weight group P (R) and the coweight group P (R∨) are defined
by

P (R) ={λ ∈ V ∗ : λ(v) ∈ Z, ∀v ∈ R∨},
P (R∨) ={v ∈ V : α(v) ∈ Z, ∀α ∈ R}.

Remark 2.16. In the case when n < dim(V ) our definition of weights is different
from the one in [Sp].

Again, P (R) and P (R∨) are lattices provided that n = dim(V ), otherwise they
are nondiscrete abelian subgroups of V . We have the inclusions

Q(R∨) ⊂ P (R∨), Q(R) ⊂ P (R).

The normalizer Naff equals P (R∨) ⊗ Λ.

The spherical Coxeter groups Wsph which appear in the above construction act
naturally on the sphere at infinity S = ∂∞E; the pair (S,Wsph) is called a spheri-
cal Coxeter complex. The definitions of walls, vertices, etc., for Euclidean Coxeter
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complexes generalize verbatum to the spherical complexes. We will use the notation
∆sph ⊂ S for the spherical Weyl chamber, ∆sph is the ideal boundary of the Euclidean
Weyl chamber ∆ ⊂ E (i.e. a fundamental domain for the action Wsph y E, which is
bounded by walls).

From our viewpoint, the Euclidean Coxeter complex is a more fundamental object
than a root system. Thus, if the root system R was not reduced, we replace it with a
reduced root system R′ which has the same group Waff : If α, 2α ∈ R we retain the
root 2α and eliminate the root α. We will assume henceforth that the root system R
is reduced.

Product decomposition of Euclidean Coxeter complexes. Suppose that
(E,Waff ) is a Euclidean Coxeter complex associated with the reduced root system R,
let R1, ..., Rs denote the decomposition ofR into irreducible components. Accordingly,
the Euclidean space E splits as the metric product

E = E0 ×
s∏

i=1

Ei,

where Ei is spanned by R∨
i , 1 ≤ i ≤ s. This decomposition is invariant under the

group Waff which in turn splits as

Waff =

s∏

i=1

W i
aff ,

where W i
aff = WRi,Λ for each i = 1, ..., s; for i = 0 we get the trivial Coxeter group

W 0
aff . The group W i

aff is the image of WRi,Λ under the natural embedding of affine
groups Aff(Ei) −→

∏s
i=1Aff(Ei) = Aff(E).

Analogously, the spherical Coxeter group Wsph splits as the direct product

W 0
sph × ...×W s

sph

(where W 0
sph = {1}). The Weyl chamber ∆ of Wsph is the direct product of the Weyl

chambers ∆0 × ∆1 × ... × ∆s, where ∆i is a Weyl chamber of W i
sph and ∆0 = E0.

Similarly, the normalizer Naff of Waff splits as

Naff = V0 ×
s∏

i=1

N i
aff ,

where V0 is the vector space underlying E0 and N i
aff is the normalizer of W i

aff in the
group of translations of Ei. Note that for each i = 1, ..., s the groups W i

aff and N i
aff

act as lattices on Ei. We observe that the vertex set of the complex (E,Waff ) equals

E0 ×E
(0)
1 × ...× E(0)

s ,

where E
(0)
i is the vertex set of the complex (Ei,W

i
aff ). Similarly, the set of special

vertices E(0),sp of E equals

E0 × E
(0),sp
1 × ...× E(0),sp

s .
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Remark 2.17. Our discussion of Coxeter groups was somewhat nongeometric; a
more geometric approach would be to start with an affine Coxeter group and from this
get root systems, etc.

3 The first three algebra problems and the param-

eter spaces Σ for K\G/K
We will see in this chapter that the problems Q1–Q3 for reductive algebraic groups
G can reformulated as special cases of a single algebraic problem as follows. There is
a group G (closely associated to G) which contains K, a maximal bounded subgroup
of G. The conditions of fixing α, β and γ in problems Q1–Q3 will amount to fixing
three double cosets in Σ = K\G/K. The problems Q1–Q3 will be then reformulated
as:

• Problem R(G): Find necessary and sufficient conditions on α, β, γ ∈ Σ in
order that there exist A,B,C ∈ G in the double cosets represented by α, β, γ
resp., such that A · B · C = 1.

We will now describe the groups G and K for the problems Q1–Q3. The main
part of this chapter will then be occupied with describing the double coset spaces
Σ = K\G/K. In section 3.1 we will also prove that the problem R(G) agrees with
the Problem Q1 from the Introduction (the equivalence will be clear for two other
problems).

1. For the Problem Q1: For F = R or C, let G be a connected reductive algebraic
group over R, G := G(F) be a real or complex Lie group with Lie algebra g.
Pick a maximal compact subgroup K of G. Let k denote the Lie algebra of K.
Then we have the orthogonal decomposition (with respect to the Killing form)

g = k ⊕ p.

We let G be the Cartan motion group G = K ⋉ p.

2. For the problem Q2: G and K are the same as in 1, but now we take G = G =
G(F).

3. For the problem Q3: Let K be a complete nonarchimedean valued field with a
discrete valuation v and the value group Z = v(K) ⊂ R. Let O denote the ring
of elements in K with nonnegative valuation. Let G be a connected reductive
algebraic group over K, G := G := G(K) and K := G(O).

In order to relate Problems Q1–Q3 with geometry we will have to compute the double
coset spaces Σ = K\G/K. Moreover we will show that the parameter spaces Σ admit
canonical linear structures: In the first two problems we use a Cartan decomposition
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G = KAK, then Σ is described as the (positive) Weyl chamber ∆ in a, the Lie
algebra of A. In the case of the third problem, Σ is identified with the intersection
LG∩∆ ⊂ a = X∗(T )⊗R, where T is a maximal K-split torus of G and LG is extended
cocharacter lattice of T (see section 3.3).

3.1 The generalized eigenvalues of a sum problem Q1 and
the parameter space Σ of K-double cosets

We continue with the notation of previous section, in particular, G = K ⋉ p. We
now describe the parameter space Σ = K\G/K. We choose a Cartan subspace a ⊂ p

(i.e. a maximal subalgebra of p, necessarily abelian and reductive). We recall that
the positive Euclidean Weyl chamber ∆ is the dual cone in a to the cone of positive
restricted roots in a∗.

Lemma 3.1. The inclusion ι : ∆ → K ⋉ p given ι(σ) = (1, σ) induces a bijection
onto Σ.

Proof: We first observe that since (k1, x) · (k2, 0) = (k1k2, x), every double coset
in K\G/K has a representative of the form (1, x). Since (k, 0) · (1, x) · (k, 0)−1 =
(1, Ad k(x)) the lemma is clear.

We complete the proof of equivalence of R(G) with Problem Q1 by observing
that for gi = (ki, xi), i = 1, 2, 3,

(k1, x1) · (k2, x2) · (k3, x3) = (k1k2k3, x1 + Adk1x2 + Ad(k1k2)x3). (2)

We see from (2) that if g1g2g3 = 1 then putting a = x1, b = Adk1x2, c =
Ad(k1k2)x3 we find

a+ b+ c = 0.

Thus we find representatives a, b and c in p of the orbits Ad(K)(xi), 1 ≤ i ≤ 3
whose sum equals zero (i.e. we have a solution of the Eigenvalues of a Sum Problem).
Conversely, if a, b, c ∈ p solve the Eigenvalues of a Sum Problem then

g1 · g2 · g3 = (1, a) · (1, b) · (1, c) = (1, 0)

and hence g1, g2, g3 solve the double coset problem R(G).

Thus we may find A, B and C in G in the required K-double cosets with A·B ·C =
1 if and only if there exist a, b, c ∈ p with a + b + c = 0 in the required AdK-orbits
in p.

3.2 The generalized singular values of a product and the pa-
rameter space Σ of K-double cosets

Let G := G = G(F) and consider the Cartan decomposition G = KAK where A
is the maximal abelian subgroup of G, whose Lie algebra is the Cartan subalgebra
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a ⊂ p from the previous section. We will identify A and a via the exponential map,
let A∆ := exp(∆) ⊂ A. Then we get the refinement of the Cartan decomposition:
G = KA∆K. It is now clear that the inclusion ι : ∆ → G given by ι(σ) = exp(σ)
induces a bijection onto Σ = K\G/K. In what follows we will parameterize double
cosets in Σ by their logarithms, which are vectors in ∆.

3.3 The generalized invariant factor problem and the param-

eter space Σ of K-double cosets

The goal of this section is to give an explicit description of the parameter space
Σ = Σinv fact for the Invariant Factor Problem Q3. We start by noticing that the
discrete valuation v : K → Z admits a splitting κ : Z → K: it is given by sending
1 ∈ Z to the uniformizer π ∈ K. Throughout this section, G will denote a connected
reductive algebraic group over K, which has the (relative) rank l. Let T ⊂ G be a
maximal K-split torus, and let X∗(T ) and X∗(T ) be the lattices of characters and
cocharacters. We denote by P ⊂ G be a minimal parabolic subgroup such that (P , T )
is a parabolic pair, [C, pg. 127].

This data determines a (relative) root system Rrel and hence a (relative) finite
Weyl group Wsph. Let Z ⊂ G and N ⊂ G be respectively the centralizer and nor-
malizer (over K) of the algebraic group T . As usual we let G,N,Z and T denote the
groups of K-points of the corresponding algebraic groups. We let K denote G(O) and
B := T (O) = K ∩ T . We will frequently refer to G as a nonarchimedean reductive
Lie group.

As in the previous section, we have to discuss the Cartan decomposition G =
K · Γ ·K of the group G (where Γ will be an appropriate subset of Z). In the split
case this decomposition will have the form G = K · A∆ · K, where A∆ ⊂ A and A
will be a subgroup of T so that A× B = T .

We can now describe Σinv fact(G) = K\G/K, the parameter space for the gener-
alized invariant factors problem for the nonarchimedean reductive Lie group G.

Split Case. We first consider the case when G is split over K since the description
is more transparent in this case. In this case there is an algebraic group defined and
split over Q and in fact a group scheme over Z such that G is obtained from it by
extension of scalars. We will abuse notation and also denote the above group-scheme
over Z by G as well. Under this assumption the torus T is also defined and split over
Q, hence the group of real points of T is well-defined. We thus consider the real torus
T (R) with the real Lie algebra a. The map Φ of Definition 2.6 (with F = R) gives us
an identification

X∗(T ) ⊗ R ∼= a.

Then the group X∗(T ) is identified with a lattice L := LG in a. Similarly we use the
map Φ∨ to identify X∗(T ) with a lattice in the dual space a∗. The root system R
sits naturally in the dual space a∗ and the corresponding finite Weyl group Wsph acts
on a and a∗ in the usual way; Wsph leaves invariant the lattices X∗(T ) and X∗(T ).
Let ∆ ⊂ E be the (positive) Weyl chamber of the group Wsph, determined by the
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parabolic subgroup P . Our goal is to prove that the space K\G/K can be identified
with the “cone”

∆L = ∆ ∩ L.
By definition, a cocharacter φ is a homomorphism from the group Gm(K) to the

group T : note that the map Ψ : X∗(T ) → T given by Ψ(φ) = φ(π) is injective (where
π is a fixed uniformizer). We define the subgroup A by

A = Ψ(X∗(T )).

The following lemma is immediate (it suffices to prove it for GL(1)).

Lemma 3.2. The group T is a direct product T = A×B.

We let A∆L
⊂ A be the image of ∆L = X∗(T ) ∩ ∆ under the map Ψ.

Lemma 3.3. (See [Tits, page 51].) We have the Cartan decomposition

G = K · A∆L
·K,

i.e., each element g ∈ G has a unique representation as a product k1 · a · k2, where
a ∈ A∆L

and ki ∈ K.

Corollary 3.4. The inclusion ι : A∆L
⊂ A ⊂ T ⊂ G induces a bijection

A∆L

ι−→ K\G/K.

Now that we have identified the double coset space

Σinv fact(G) = K\G/K

with ∆L, it is clear that the generalized invariant factor problem Q3 in the Introduc-
tion agrees with the double coset problem R(G). However it may not be clear at this
point why these problems agree with Problem P3 in case G = GL(ℓ).

To see this we note that we can give a second description of the vector Φ(λ) if we
choose coordinates in T . Let χ1, · · · , χn be a basis for the group X∗(T ) and define
χ : T −→ Kn to be the map with components χj , 1 ≤ j ≤ n. We observe that we
may use the derivative of χj at e to obtain coordinates on Te(T ) and accordingly we
obtain a map χ̇ : a −→ Rn. We leave the following lemma to the reader.

Lemma 3.5. χ̇(Φ(λ) is the (integral) vector in Rn obtained by applying the valuation
v to the coordinates of χ(λ(π)).

General Case. We now consider the general case when G is not necessarily
split. Most of the above discussion remains valid, however the Cartan decomposition
for G has a slightly different form and for this reason we cannot use the cocharacter
lattice as LG. We no longer can talk about real points of T , so we do not have the
interpretation of a as a tangent space. We define a as X∗(T ) ⊗ R. We set V := a.

Let E denote the affine space underlying V ; as before, ∆ ⊂ V is the positive Weyl
chamber for Wsph. Note that X∗(Z) ⊂ X∗(T ) is a subgroup of finite index.
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Definition 3.6. Define the homomorphism ν : Z → V by the formula (see [Tits])

〈χ, ν(z)〉 = −v(χ(z)), ∀z ∈ Z, χ ∈ X∗(Z). (3)

Note that on the left hand side of the above formula, the pairing of χ ∈ X∗(Z) ⊂
X∗(T ) with ν(z) is coming from the pairing 〈·, ·〉 between X∗(T ) and X∗(T ). On the
right hand side of the equation (3), the action of χ on z is coming from the fact that
each character χ ∈ X∗(Z) defines a character of the group Z = Z(K), i.e. we have
χ(z) ∈ K×.

Let Zc denote the kernel of ν and let LG denote the image of ν in V . Then Zc is
a maximal compact subgroup of Z, see [C, pg. 135].

Definition 3.7. We will refer to the group L := LG := ν(Z) as the extended cochar-
acter lattice of T .

We have the inclusions

X∗(T ) = Hom(X∗(T ),Z) ⊂ LG ⊂ Hom(X∗(Z),Z)

with equality in the case when G is split over Q. The quotient group N/Zc operates
on the affine space E faithfully, through a discrete group W̃ . The finite Weyl group
Wsph is the linear part of W̃ (the stabilizer of the origin) and we have W̃ = Wsph⋉LG.

We refer to [Tits, section 1.2] for more details. Let ∆L := ∆∩L and Z∆ := ν−1(∆).
Then one has:

Theorem 3.8. [Tits, section 3.3.3] G = KZK and the map K\G/K → V given by

KzK 7→ ν(z), z ∈ Z∆,

descends to a bijection K\G/K → ∆L.

This proves that in the nonsplit case we can also identify ∆L with the parameter
space Σinv fact(G) = K\G/K for the Problem Q3.

3.4 Comparison of the parameter spaces for the four algebra
problems

We can now compare the four algebra problems Q1–Q4 stated in the Introduction.
We have already compared the parameter spaces for Q3 and Q4 in the Introduction.
To compare the first three problems we assume that we are given groups G1, G2, G3

which are connected reductive algebraic groups (possibly all the same), where the first
two are defined over R, and G3 is over F(3) = K, where K is a nonarchimedean valued
field with valuation v and value group Z. Suppose that the fields F(1),F(2) are either
R or C. We assume that all three Lie groups Gi = Gi(F(i)) have the same (relative)
rank l and isomorphic (relative) Weyl groups W = Wsph acting on the appropriately
chosen vector space a. Let ∆ ⊂ a be a (positive) Weyl chamber. Let L = LG3

be the
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extended cocharacter lattice, see Definition 3.7. Then the parameter spaces Σ1,Σ2

for the Problems Q1 and Q2 (for the groups G1, G2 resp.) are exactly the same:
they are equal to ∆. The parameter space Σinv fact(G3) is the intersection ∆L of the
lattice L with ∆.

Note that in the special case when G = Gi, i = 2, 3, is split over Q, L = X∗(T )
and we get a canonical isomorphism

X∗(T ) ⊗ R → a,

described in the previous section (here a is the real Lie algebra of T (R)). This
isomorphism identifies Σinv fact(G3) with the set of “integer points” ∆L in the Weyl
chamber ∆.

3.5 Linear algebra problems

In this section we reformulate problems Q1– Q3 stated in the introduction as linear
algebra problems in the case when the group G is GL(m).

Let α, β and γ be m-tuples of real numbers arranged in decreasing order. In
Problem P3 we let K be a complete, nonarchimedean valued field. We assume that
the valuation v is discrete and takes values in Z. We let O ⊂ K be the subring of
elements with nonnegative valuation.

In order to state Problems P2 and P3 below we recall some definitions from
algebra. The singular values of a matrix M are the (positive) square-roots of the
eigenvalues of the matrix MM∗. To define the invariant factors of a matrix M with
entries in K note first that it is easy to see that the double coset

GL(m,O) ·M ·GL(m,O) ⊂ GL(m,K)

is represented by a diagonal matrix D := D(M). The invariant factors of M are
the integers obtained by applying the valuation v to the diagonal entries of D. If we
arrange the invariant factors in decreasing order they are uniquely determined by M .

Now we can state the three algebra problems that interest us here, following the
presentation in [Fu1].

• P1. Eigenvalues of a sum. Give necessary and sufficient conditions on α, β
and γ in order that there exist Hermitian matrices A, B and C such that the
set of eigenvalues (arranged in decreasing order) of A, resp. B, resp. C is α,
resp. β, resp. γ and

A+B + C = 0.

• P2. Singular values of a product. Give necessary and sufficient conditions
on α, β and γ in order that there exist matrices A, B and C in GL(m,C) the
logarithms of whose singular values are α, β and γ, respectively, so that

ABC = 1.
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• P3. Invariant factors of a product. Give necessary and sufficient conditions
on the integer vectors α, β and γ in order that there exist matrices A, B and
C in GL(m,K) with invariant factors α, β and γ, respectively, so that

ABC = 1.

We now see that the problems Pi are equivalent to the corresponding problems
Qi; we consider the field F = C since for F = R the discussion is similar.

1. We have g = gl(m) and the Cartan subspace p is the space of Hermitian m-by-
m matrices, a is the space of diagonal m-by-m matrices with real entries and the cone
∆ ⊂ a is the cone in which the diagonal entries are arranged in decreasing order. The
maximal compact subgroup K = U(m). Thus the parameter space Σ for the double
coset K\GL(m,C)/K is the cone of m-tuples of real numbers arranged in decreasing
order. This agrees with the parameter space of the Problem P1.

2. Observe that the Cartan subgroup A ⊂ GL(m,C) consists of diagonal matrices
with positive diagonal entries, A∆ consists of matrices D ∈ A with diagonal entries
arranged in the decreasing order, and the projection f of g to KgK ∈ Σ = A∆

∼= ∆
is given by first sending g to h =

√
gg∗, then diagonalizing h, arranging the diagonal

values in the decreasing order and then taking their logarithms. Thus f(g) is given by
the vector whose components are the logarithms of the singular values of the matrix
g. We conclude that Problem P2 is equivalent to the Problem Q2.

3. The torus T ⊂ G = GL(m,K) consists of diagonal matrices with entries in K;
we find that Ψ(φ) = φ(π) is the diagonal matrix with diagonal entries (πx1 , · · · , πxm),
where φ corresponds to the lattice vector (x1, · · · , xm). Therefore P3 ⇐⇒ Q3.

Historic sketch.

To unify the notation, in what follows we will refer to the problem Q4 for the
group GL(m) as P4.

The complete solution of Problems P1–P4 and the relation between them were
established only recently due to the efforts of several people. After much classical
work, A. Klyachko in [Kly1] proved that Sol(P1) is a polyhedral cone in R3m, he
also computed a finite system of linear homogeneous inequalities describing Sol(P1)
in terms of the Schubert calculus in the Grassmannians G(p,Cm). This computation
was subsequently improved by P. Belkale [Bel].

A. Klyachko then proved in [Kly2] that Sol(P1)=Sol(P2), which was known as
Thompson’s conjecture.

The sets of solutions for Problems P3 and P4 are also the same, namely they are
integral points in the above polyhedral cone. This result is due to P. Hall, J. Green
and T. Klein, see [Kle1] and [Kle2]; see also [Mac, pg. 100] for the history of this
problem.

In this paper we show (Theorem 8.19) that the inclusion

Sol(Q4) ⊂ Sol(Q3)
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is true for all split reductive groups over Q. This was the harder of the two im-
plications for GL(m), proved by T. Klein in [Kle1] and [Kle2], see also [Mac, pg.
94–100].

The exceptional (i.e. not true for all split reductive groups) inclusion

Sol(P3) ⊂ Sol(P4)

was first proved for GL(m) by P. Hall but not published. In fact it follows from a
beautiful and elementary observation of J. Green, which is set forth and proved in
[Mac, pg. 91-92], and which we will outline in §8.6.

The description of the solutions to Problem P4 as the set of integral points in the
polyhedral cone Sol(P1) (known as the Saturation Conjecture) is due to A. Knutson
and T. Tao, [KT] (see also [DW] for a proof using quivers and [KM2] for a proof in
the spirit of the present paper using Littelmann’s path model). The Knutson-Tao
theorem combined with the above equivalence of Problems P3 and P4 establishes
that the set of solutions to Problem P3 is also the set of integral points in the above
polyhedral cone.

In the present paper we reverse this path: We first prove directly that the set of
solutions to Problem P3 is the set of integral points in the above polyhedral cone,
then using the above equivalence of Problems P3 and P4 we deduce that this set
is also the set of solutions to Problem P4, thus providing yet another proof of the
saturation conjecture .

We refer to [AW], [AMW], [Bel], [BK], [BeSj] [Fu1], [EL], [KM2], [Kly1], [Kly2]
for more details and further developments.

4 The existence of polygonal linkages and solu-

tions to the algebra problems

In this chapter we will show that the algebra problems R(G) from chapter 3 can
be restated geometrically, in terms of the existence of triangles with the prescribed
“side-lengths” in three classes of spaces of nonpositive curvature, which are:

1. X is an infinitesimal symmetric space (a Cartan motion space), X = p.

2. X is a symmetric space of nonpositive curvature.

3. X is an Euclidean building.

4.1 Setting up the general geometry problem

We start with a purely set-theoretic discussion. Let X be a set with a base-point o,
and let G is a group acting on X. Let K denote the stabilizer of o in G. In general,
the G-action is not transitive (such examples will appear when X is a Euclidean
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building), we let Y denote the orbit G · o. For pairs of points (x, x′) ∈ X2 we define
the invariant

σḠ(x, x′)

as the projection of (x, x′) to G\X2. We will regard σḠ as the “generalized G-invariant
distance” between points in X. Given τ ∈ G\X2 we regard the set

S(o, τ) = {x ∈ X : σḠ(o, x) = τ},

as the “sphere of radius τ” centered at o.

For pairs of points (x, y) ∈ Y 2 one can interpret the invariant σḠ(x, y) as follows:
Let Σ denote the quotient space

Σ = K\Y = K\G/K.

Then for pairs of points (x, y) = (gK, hK) in Y we can identify σḠ(x, y) with the
double coset Kg−1hK. In other words, translate the pair (x, y) by g−1 to (o, z) =
(o, g−1(o)) and then project g−1(o) to the element σḠ(x, y) ∈ K\Y . Then two pairs
(x, y) and (x′, y′) in Y 2 belong to the same G-orbit if and only if σḠ(x, y) = σḠ(x′, y′);
Hence, G\Y × Y can be bijectively identified with Σ = K\G/K.

We will use the notation Υ for the map G→ Σ. For σ ∈ Σ we let Oσ ⊂ G denote
Υ−1(σ).

It is now clear that the Problem R(G) stated in chapter 3 can be restated as a
special case (n = 3) of the following:

Problem 4.1. Give conditions on the vector of generalized side-lengths
→
σ=

(σ1, · · · , σn) ∈ Σn that are necessary and sufficient in order that there exist
elements g1, g2, · · · , gn in G such that

Υ(gi) = σi, 1 ≤ i ≤ n, and
n∏

i=1

gi = id.

We set O =
∏n

i=1 Oσi
. Note that (K×K)n acts on O by right and left multiplications.

Motivated by the connection between the moduli spaces of n-gons and symplectic
quotients when Y is a complete simply-connected 3-dimensional Riemannian manifold
of constant curvature (see [KM1], [KMT]), [Tr]) we define the “momentum map”
µ : O −→ G by

µ(g1, ..., gn) = g1 · g2 · · · gn.
We define the analogue of the symplectic quotient of O by K, by

O//K = {g ∈ O : µ(g) = id}/K.

Here we divide out by the diagonal action of K, where K acts on each factor by
conjugation. This action is the only action of K on O that we will use henceforth.

We let Qσ(G) be the subset of g ∈ O such that µ(g) = id. Thus Qσ(G) is the set
of solutions of the problem 4.1 and O//K is its quotient by K.
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Our goal now is to reformulate the problem 4.1 in more geometric terms.

An n-gon (or a closed n-gonal linkage) in X with the vertices x1, ..., xn ∈ X is

an n-tuple
→
x= (x1, ..., xn) ∈ Xn, regarded as a map Z/nZ → X. The generalized

side-lengths of the polygon
→
x are the elements

σi = σḠ(xi, xi+1) ∈ G\X2, i ∈ Z/nZ.

Thus for each n-gon we get a vector
→
σ= (σ1, ..., σn) of its generalized side-lengths. The

group G acts naturally on the space Poln(X) of all n-gons, preserving the generalized
side-lengths of the polygons.

Fix
→
σ= (σ1, ..., σn) and form the space

Poln,σ(X) := {P ∈ Poln(X) : σḠ(xi, xi+1) = σi},

and its quotient, the moduli space of polygons with the fixed side-lengths in X:

Mn,σ(X) := Poln,σ(X)/G. (4)

In the case when X is a topological space and G acts homeomorphically on X we
give the space Mn,σ(X) the quotient topology.

We note that Poln(Y ) sits naturally in Poln(X) as the subset of polygons with
vertices in Y . The generalized side-lengths of the polygons with vertices in Y are
regarded as elements of Σ = K\Y .

We define a map Φ : Qσ(G) → Y n by

Φ(
→
g ) = (o, g1 · o, g1g2 · o, · · · , g1g2 · · · gn−1 · o).

We see that Φ is K-equivariant (recall that K acts on O by conjugation on each
factor).

Lemma 4.2. The map Φ induces a surjection Φ from O//K onto the moduli space
Mn,σ(Y ).

Proof: We first verify that each polygon Φ(
→
g ) has the “correct” side-lengths. By the

left-invariance of σḠ we have

σḠ(

k∏

i=1

gi · o,
k+1∏

i=1

gi · o) = σḠ(o, gk · o) = σk.

To prove surjectivity of the map Φ let
→
y= (y1, ..., yn) ∈ Pol

n,
→

σ
(X). Choose g such

that g · y1 = o and replace
→
y by g−1· →

y . Since σḠ(y1, y2) = σ1 and (now) y1 = o we
find that y2 ∈ S(o, σ1). Hence there exists g1 ∈ Oσ1

such that y2 = g1 · o. Similarly,
there exists g2 ∈ Oσ2

such that g1g2 ·o = y3. Continuing in this way we get an n-tuple
(g1, . . . , gn−1, g

′
n) ∈ O such that

(o, g1 · o, g1g2 · o, · · · , g1g2 · · · gn−1 · o, g1g2 · · · gn−1g
′
n · o) = (y1, ..., yn, y1),
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where y1 = o. Thus g1g2 · · · gn−1g
′
n = k ∈ K and after replacing g′n with gn = g′nk

−1

we get an n-tuple
→
g= (g1, ..., gn) ∈ O such that µ(

→
g ) = id and Φ(

→
g ) =

→
y .

Thus we find that the problem 4.1 can be solved if and only the moduli space
Mn,σ(Y ) is nonempty.

To prove a version of Lemma 4.2 with a bijective map and to get a better analogy
with the symplectic quotients we have to make a further assumption about the action
G y Y :

Assumption 4.3. Through the rest of this section we assume that G contains a
subgroup B which acts simply-transitively on Y .

Now, instead of the orbits Oσi
and their product O we consider the intersections:

Ôσi
:= Oσi

∩ B, and Ô := O ∩Bn.

The group K no longer acts on Ô by conjugations, instead one has the use a dressing
action, dress(K), see [KMT] for the definition in the case when X = Y = H3,
G = PSL(2,C) and B fixes a point at infinity. In the case of infinitesimal symmetric
spaces X = p (where p ⊕ k = g) one takes B = p and the adjoint action of K as the
dressing action. We now redefine the symplectic quotient as follows:

Ô//K := (Ô ∩ µ−1(id))/dress(K).

Then one gets an analogue of Lemma 4.2 (which we do not need for the purposes of
this paper), we refer the reader to [KMT] for the discussion in the case of X = H3:

Lemma 4.4. The map Φ induces a bijection Φ̂ from Ô//K onto the moduli space
Mn,σ(Y ). Moreover, let Y be a topological space and G ⊂ Homeo(Y ). Then the

quotient spaces Ô//K and Mn,σ(Y ) have natural topology and the bijection Φ̂ is a
homeomorphism.

The above discussion has been completely formal, our next goal is to describe the
spaces X which can be used to analyze the problem 4.1 for various groups G.

4.2 Geometries modeled on Coxeter complexes

Fix a spherical or Euclidean Coxeter complex (A,W ), where A is a Euclidean space E
or a sphere S and W = Waff or W = Wsph is a (possibly nondiscrete) Euclidean or a
spherical Coxeter group acting onA. IfW is discrete then the Coxeter complex (A,W )
is called discrete. In the case of Euclidean Coxeter complexes we let Ltrans ⊂W denote
the translation subgroup of W . Pick a special vertex o ∈ E with stabilizer Wsph (see
chapter 2) and let ∆ ⊂ E be a Weyl chamber of Wsph. We will use the notation ∆sph

to denote the ideal boundary of ∆; ∆sph is contained in the sphere S which will be
regarded as the sphere at infinity of E; thus ∆sph is a fundamental domain for the
action Wsph y S.
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Let Z be a metric space. A geometric structure on Z modeled on (A,W ) consists
of an atlas of isometric embeddings ϕ : A →֒ Z satisfying the following compatibility
condition: For any two charts ϕ1 and ϕ2, the transition map ϕ−1

2 ◦ϕ1 is the restriction
of an isometry in W . The charts and their images, ϕ(A) = a ⊂ Z, are called
apartments. We will sometimes refer to A as the model apartment. We will require
that there are plenty of apartments in the sense that any two points in Z lie in a
common apartment. All W -invariant notions introduced for the Coxeter complex
(A,W ), such as walls, singular subspaces, chambers etc., carry over to geometries
modeled on (A,W ).

One defines the group of automorphisms Aut(A) of the model apartment as the
group of isometries of A which normalize the subgroup W . If X is a space modeled
on (A,W ) then an isometry g : X → X is an automorphism if it sends apartments to
apartments and for each pair of apartments (A,ϕ1), (A,ϕ2) the composition ϕ−1

2 ◦g◦ϕ1

is the restriction of an automorphism of A. The group of automorphisms of X is
denoted Aut(X).

Examples of the above geometries are provided by symmetric spaces of noncom-
pact type and their infinitesimal analogues (infinitesimal symmetric spaces). These
are modeled on Euclidean Coxeter complexes with transitive affine Weyl group. In
the case of a symmetric space X, the apartments are the maximal flats. The associ-
ated Coxeter complex has the form (E,Waff ) where E is an apartment and Waff is
the group generated by reflections at singular hyperplanes.

Take a real or complex reductive Lie group G, the Lie algebra g of G has the
decomposition g = p⊕ k, where K ⊂ G is a maximal compact subgroup, let k denote
the Lie algebra of K. We will identify the Cartan subspace p with the tangent space
TpX to the symmetric space X = G/K at the point p stabilized by K. The subspaces
p ⊂ g, equipped with the affine action of G = p ⋊ K, are infinitesimal symmetric
spaces in the following sense. The (E,Waff )-structure on X induces a (E,Waff )-
structure on the Cartan subspace p = TpX, such that the apartments in p are the
translates of the Cartan subalgebras (i.e. the maximal abelian subalgebras) in p. The
apartments through 0 in p are the tangent spaces to the apartments through p in X.
The term “infinitesimal symmetric space” may be also justified by noting that there
is a one-parameter family of spaces Xǫ parameterized by ǫ ≥ 0 and all isometric to
X for ǫ > 0 such that X0 = p, see [KMT, §5].

The last kinds of geometries considered in this paper are spherical and Euclidean
buildings. We refer the reader to [Ba] for the definitions of CAT (κ) metric spaces.

Definition 4.5. A spherical building is a CAT(1)-space modeled on a spherical Cox-
eter complex.

We will use the notation ∠T its for the metric in a spherical building. Spherical
buildings have a natural structure as polysimplicial piecewise spherical complexes.
We prefer the geometric to the combinatorial view point because it appears to be
more flexible.

Definition 4.6. A discrete Euclidean building is a CAT(0)-space modeled on a dis-
crete Euclidean Coxeter complex.
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In the non-discrete case the definition of Euclidean buildings is more subtle, see
[KL, section 4.1.2]. We refer to [KL] for a thorough discussion of buildings from the
geometric viewpoint.

A building is called thick if every wall is an intersection of apartments. A non-
thick building can always be equipped with a natural structure of a thick building by
reducing the Weyl group.

Example 4.7. If X is a symmetric space of noncompact type or a thick Euclidean
building modeled on the Coxeter complex (E,Waff ), then its ideal boundary ∂T itsX is
a thick spherical building modeled on (∂T itsE,Wsph). In the case that X is a building,
the spaces of directions ΣxX are spherical buildings modeled on (∂T itsE,Wsph). The
building ΣxX is thick if and only if x is a special vertex of X. We note that in the
case when X is a discrete building, ΣxX is just the link of the point x ∈ X.

Let B be a spherical building modeled on a spherical Coxeter complex (S,Wsph).
We say that two points x, y ∈ B are antipodal, if ∠T its(x, y) = π; equivalently, they
are antipodal points in an apartment s ⊂ B containing both x and y. The quotient
map S → S/Wsph

∼= ∆sph induces a canonical projection θ : B → ∆sph folding the
building onto its model Weyl chamber. The θ-image of a point in B is called its type.

Remark 4.8. To define θ(x) pick an apartment s containing x and a chart φ : S → s.
Then θ(x) is the projection of φ−1(x) to S/Wsph

∼= ∆sph. We note that this is clearly
independent of s and φ.

The same definition applies in the case of Euclidean buildings B. The difference
however is that the action Waff y E in general is no longer discrete, so we cannot
identify the image of B → E/Waff with a simplex. If Waff acts as a lattice on E,
then E/Waff can be identified with a fundamental alcove for the action Waff y E.

We now give two properties of the projection θ:

1. If h : a→ a′ is an isomorphism of apartments in B (i.e. φ′−1 ◦ h ◦φ ∈W ) then
θ ◦ h = θ.

2. If B is a spherical building, x, x′ ∈ B which belong to apartments a, a′ re-
spectively and −x ∈ a,−x′ ∈ a′ are antipodal to x, x′, then θ(x) = θ(x′) im-
plies θ(−x) = θ(−x′). To prove this pick an isomorphism h : a → a′. Then
(since θ(x) = θ(x′)) there exists w ∈ W y a′ such that w(h(x)) = x′. Hence
w ◦ h(−x) = −w ◦ (x) = −x′. The claim now follows from 1.

DeRham decomposition of Euclidean buildings. Suppose that X is a thick
Euclidean building modeled on a reducible discrete Coxeter complex (E,Waff ). Con-
sider the deRham decomposition of the building X:

X = X0 ×X1 × ...×Xs,

where each Xi is a thick Euclidean building modeled on the Euclidean Coxeter com-
plex (Ei,W

i
aff ) and X0

∼= E0 is the flat deRham factor. For each i = 1, ..., s the
group W i

aff acts as an irreducible affine Coxeter group on the Euclidean space Ei,
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for i = 0 we get the trivial Coxeter group W 0
aff . Accordingly, the Euclidean space E

splits (metrically) as the product

E0 ×
s∏

i=1

Ei,

this decomposition is invariant under Waff which in turn splits as

Waff =

s∏

i=0

W i
aff ,

as explained in Section 2.

4.3 Bruhat-Tits buildings associated with nonarchimedean
reductive Lie groups

In this section we describe properties of the Euclidean building (the Bruhat-Tits’
building) associated to a reductive nonarchimedean Lie group by Bruhat and Tits.
The reader familiar with [BT] can skip this section.

Let K be a valued field with valuation v and value group Z. Let O denote the
subring in K which consists of elements with nonnegative valuation. Let G be a
connected reductive algebraic group over K which has relative rank l. The subgroup
K := G(O) ⊂ G = G(K) is a maximal bounded subgroup of G. In this section we
review the properties of a Euclidean building X = XG attached to the group G. We
refer the reader to [Tits] and [BT, Chapter 7] for more details.

We begin by recalling the notation from section 3.3. Let T ⊂ G be a maximal K-
split torus, Z ⊂ G and N ⊂ G be its centralizer and normalizer (over K) respectively.
We also get the groups N,Z and T of K-points of the corresponding algebraic groups.
Then V := X∗(T )⊗R, where X∗(T ) is the group of cocharacters of T . The Euclidean
space E is the affine space underlying V with appropriately chosen Euclidean metric.
Let Rrel ⊂ V ∗ denote the relative root system of the pair (G, T ); then Wsph is the
finite Coxeter group corresponding to this system.

Definition 3.6 gives us a homomorphism ν : Z → V , with the kernel Zc ⊂ Z
and the image equal to the extended cocharacter lattice LG. We also get the quotient
group N/Zc, which acts on the Euclidean space E discretely and isometrically through
a group W̃ . Unless G is semisimple, W̃ is not an affine Weyl group.

In the case when the groupG is simply-connected and semisimple, one can take the
pair (E, W̃ ) as the Euclidean Coxeter complex (E,Waff ) of the Bruhat-Tits building
XG attached to the group G. In general however it is not the case and one has to do
more work to define Waff . The construction of this group will be unimportant for us
(we refer to [Tits] for the explicit construction), the important properties of Waff are
the following:

1. dim(E) = l, the relative rank of G or the dimension of T .
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2. Waff ⊂ W̃ is a normal subgroup [Tits, section 1.7, page 34], the index
|W̃ : Waff | is finite in the semisimple case.

3. W̃ = Wsph ⋉ LG.

4. Waff is an affine Coxeter group attached to a root system R ⊂ V ∗.

5. The root system R in general is not the same as Rrel but they have the same
rank and the same finite Weyl group Wsph, [Tits, section 1.7].

6. Waff = Wsph ⋉ Ltrans, where Wsph is the finite Weyl group as above.

7. We have the inclusions

Q(R∨) = Ltrans ⊂ LG ⊂ Naff = P (R∨).

8. If G is a simply-connected semisimple group then Waff = W̃ , [Tits, section
1.13]. If G is split over an unramified extension of K then LG = X∗(T ), [Tits,
section 1.3].

9. If G is split then the reduced (Bruhat-Tits) root system associated with Waff

is the usual reduced root system Rrel of the group G (note that Rrel is also the
absolute root system since we are in the split case).

Here as usual, Ltrans is the translation subgroup of Waff and Naff is the normalizer
of Waff in V . When we are dealing with the root system associated with G, as in 4
or 5 above, we will refer to R, and not to Rrel.

Definition 4.9. We will call R the Bruhat-Tits root system associated with the
algebraic group G.

We refer the reader to Tableau des échelonages in [BT, p. 29-30] for computation
of the Bruhat-Tits root systems.

We note that the root systems R and Rrel are not very different since they have
the same finite Coxeter group. Thus, in the irreducible case, both root systems are
either isomorphic or one of them is of type Bl and the other of type Cl. In particular,
the saturation factors for R and Rrel are exactly the same (see chapter 7.1).

Having described the properties of the Coxeter complex (E,Waff ), we will describe
the properties of the Bruhat-Tits building X = XG associated with the group G:

List 4.10. 1. X is modeled on the Euclidean Coxeter complex (E,Waff ) described
above.

2. The group G acts on X by (isometric) automorphisms.

3. The subgroup K is the stabilizer of a special vertex o in X.

4. G acts transitively on the set of apartments in X.
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5. For each apartment a ⊂ X let Ga be the stabilizer of a in G. Then the image
of Ga in Aut(a) is the group W̃ (containing Waff as a normal subgroup).

6. The building X is thick (see [BT, Prop. 7.4.5]).

7. The group Waff acts discretely and (in the semisimple case) cocompactly on E.

Remark 4.11. The properties in the List 4.10, except the last one, hold in the case
of symmetric spaces and their infinitesimal analogues.

We note that the affine space E has the distinguished point o, the origin (corre-
sponding to the trivial cocharacter). The corresponding vertex in X is also denoted
by o, it is stabilized by K = G(O).

4.4 Geodesic polygons

In this paper we will be considering polygons in the metric spaces modeled on the
Coxeter complexes, which were discussed in section 4.2. With the exception of the
rank zero spherical buildings, all such metric spaces X are geodesic and thus we define
a geodesic polygon in X as a polygon with the vertices z1 . . . zn together with a choice
of sides zizi+1, i.e. the geodesic segments connecting zi to zi+1. We note that in the
case of metric spaces modeled on Euclidean Coxeter complexes the sides are uniquely
determined by the polygon z1 . . . zn. We recall that n-gons in X are regarded as maps
Z/nZ → X.

Let (A,W ) be a spherical or Euclidean Coxeter complex. The complete invariant
of a pair of points (x, y) ∈ A2 with respect to the action W y A, is its image σW (x, y)
under the canonical projection to A×A/W . We define the refined length of a geodesic
segment xy as σref(x, y) := σW (x, y). This notion carries over to geometries modeled
on the Coxeter complex (A,W ): For a pair of points (x, y) pick an apartment a
containing x, y and, after identifying a with the model apartment A, let σref(x, y) be
the projection to A×A/W .

In the case of Euclidean Coxeter complexes there are extra structures associated
with the concept of refined length. Given a Euclidean Coxeter complex (E,Waff ),
pick a special vertex o ∈ E. Then we can regard E as a vector space V , with the
origin 0 = o. Let ∆ ⊂ E denote a Weyl chamber of Wsph, the tip of ∆ is at o.

Suppose that L is a subgroup of the group V of all translations of E so that:

Ltrans ⊂ L ⊂ Naff , (5)

where Naff ⊂ V is the normalizer of Waff . Since o is the origin in E, we will identify
the orbits L · o and Ltrans · o with L and Ltrans respectively. We define the set of
refined L-integral lengths as the subset

(L× L)/Waff ⊂ (E × E)/Waff .

If L = Ltrans then we have a natural bijection

(Ltrans × Ltrans)/Waff
∼= ∆ ∩ Ltrans.
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Since (E,Waff ) is a Euclidean Coxeter complex, there is also a coarser notion of
∆-length obtained from composing σref with the natural forgetful map

E ×E/Waff → E/Wsph
∼= ∆.

To compute the ∆-length σ(x, y) we regard the oriented geodesic segment xy as a
vector in E and project it to ∆.

Again, the concepts of ∆-length, L-integral ∆-lengths, etc., carry over to the
geometries modeled on (E,Waff ). Note that ∆-length and refined length coincide
for symmetric spaces and their infinitesimal analogues because the affine Weyl group
acts transitively. We define the set of L-integral ∆-lengths as the subset ∆ ∩ L ⊂ ∆.
A segment with L-integral ∆-length has L-integral refined length iff its vertices lie in
the distinguished orbit L · o (identified with L). For segments with endpoints of type
Waff · o, the notions of ∆-length and refined length are equivalent.

Given a collection τ = (τ1, ..., τn) ∈ ∆n of ∆-lengths we define the moduli space
Mn,τ(X) as the quotient of the collection of geodesic polygons in X with the ∆-side-
lengths τ by the action of the group G. We give Mn,τ(X) the quotient topology.

We are now ready to state the questions which will be (for n = 3) the geometric
counterparts to the algebra questions in chapter 3:

Problem 4.12. Let X be a symmetric space of noncompact type or an infinitesimal
symmetric space, or a thick Euclidean building. Describe the set Dn(X) ⊂ ∆n of
∆-side lengths which occur for geodesic n-gons in X.

Remark 4.13. The above problem was solved in the papers [KLM1, KLM2]. In these
papers the notation Pn was used in place of Dn. We refer the reader to section 5.2
for the description of the solution of Problem 4.12.

Problem 4.14. Let X be a thick Euclidean building. Describe the set

Dref,L
n (X) ⊂ (W\L× L)n ⊂ (W\A×A)n

of refined L-integral side-lengths which occur for n-gons in X.

One of the key results concerning the above problem is the following

Theorem 4.15 (Transfer Theorem, see [KLM2]). Suppose that X,X ′ are thick
Euclidean buildings modeled on the Coxeter complexes (A,W ), (A′,W ′) respectively,
L,L′ are lattices as in (5), ι : (A,W ) → (A′,W ′) is an embedding of Coxeter com-
plexes such that ι(L) ⊂ L′. Then ι induces an embedding

ι∗ : Dref,L
n (X) → Dref,L′

n (X ′)

Below we explain how given an algebraic problem Q1–Q3 one finds a metric space
X modeled on a Euclidean Coxeter complex, so that the geometric problem 4.14 (for
n = 3) is equivalent to the corresponding algebraic problem.
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As we explained in the beginning of chapter 3, with each problem Qi, i=1, 2, 3,
we can associate a pair of groups K ⊂ G.

1. For the Problem Q1 we take G = K ⋉ p and let X := p. Then X is a metric
space modeled on the Euclidean Coxeter complex (A,W ) = (E,Waff).

2. For the Problem Q2 we take G = G and let X be the symmetric space
X = G/K.

In both cases G acts transitively on X and we apply Lemma 4.2 to the transitive
action G y X, to conclude that Q1 and Q2 are equivalent to Problem 4.12 for the
corresponding space X.

Example 4.16. Let G = GLm(C), K = U(m). Then the symmetric space X asso-
ciated with G is G/K, which is the space Pm of positive-definite Hermitian m × m
matrices. The model apartment A in Pm consists of diagonal matrices with positive
diagonal entries. The finite Weyl Wsph = Sm group acts on A by permutations of the
diagonal elements; the affine Weyl group Waff is isomorphic to Wsph ⋉ Rm−1. Thus
we get a geometric model for analyzing the Problem P2 from the Introduction.

3. For the Problem Q3 we assign to the group G = G(K) the Euclidean (Bruhat-
Tits) building X as it was explained in the previous section. We let Y be the G-orbit
of the special vertex o ∈ X.

Although, unlike in the previous two examples, the group G does not act tran-
sitively on the building X, this group acts transitively on the subset Y ⊂ X and
we apply Lemma 4.2 to the action G y Y to see that the problem Q3 (or, equiva-
lently, R(G)) is equivalent to finding necessary and sufficient conditions for existence
of geodesic triangles in X whose vertices are in Y and whose ∆-lengths are the pre-
scribed elements of ∆L, where L = LG. More generally, there is a surjective map

pr : W\A×A→ G\X ×X,

and by applying the Transfer Theorem 4.15 we get:

Proposition 4.17. Suppose that there exists a polygon P in X whose σG-side-lengths
are (σ1, ..., σn). Then for any choice of σ̃i ∈ pr−1(σi), there exists a polygon P̃ in X
whose σref -side-lengths are σ̃1, ..., σ̃n.

Therefore we will stick to the notion of the refined side-length σref through the
rest of the paper.

5 Weighted configurations, stability and the rela-

tion to polygons

Let X be a symmetric space of nonpositive curvature or a Euclidean building. Recall
that the ideal boundary B = ∂T itsX has the structure of a spherical building, the
metric on B is denoted by ∠T its. Given a Weyl chamber ∆ in X, we get a spherical
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Weyl chamber ∆sph = ∂∞∆ ⊂ ∂T itsX. We will identify ∆sph with the unit vectors in
∆. Recall that there is a canonical projection θ : ∂T itsX → ∆sph, see section 4.2.

Take a collection of weights m1, ..., mn ≥ 0 and define a finite measure space
(Z/nZ, ν) where the measure ν on Z/nZ is given by ν(i) = mi. An n-tuple of ideal
points (ξ1, ..., ξn) ∈ Bn together with (Z/nZ, ν) determine a weighted configuration at
infinity, which is a map

ψ : (Z/nZ, ν) → ∂T itsX.

The type τ(ψ) = (τ1, . . . , τn) ∈ ∆n of the weighted configuration ψ is given by τi =
mi · θ(ξi). Let µ = ψ∗(ν) be the pushed forward measure on B. We define the slope
of a measure µ on B with finite total mass |µ| as

slopeµ(η) = −
∫

B

cos ∠T its(ξ, η) dµ(ξ).

In this paper we will consider only measures with finite support.

Definition 5.1 (Stability). A measure µ on B (with finite support) is called semi-
stable if slopeµ(η) ≥ 0 and stable if slopeµ(η) > 0 for all η ∈ B.

There is a refinement of the notion of semistability motivated by the corresponding
concept in geometric invariant theory.

Definition 5.2 (Nice semistability). A measure µ on B (with finite support) is
called nice semistable if µ is semistable and {slopeµ = 0} is a subbuilding or empty.
In particular, stable measures are nice semistable.

A weighted configuration ψ on B is called stable, semistable or nice semistable,
respectively, if the corresponding measure ψ∗ν has this property.

For the purposes of this paper, i.e. the study of polygons, nice semistability plays
a role in the case of symmetric spaces and infinitesimal symmetric spaces only. We
note however that for these spaces, existence of a semistable configuration ψ on ∂T itsX
implies existence of a nice semistable configuration on ∂T itsX, which has the same
type as ψ, see [KLM1].

Example 5.3. (i) Let B be a spherical building of rank 0. Then a measure µ on B
is stable iff it contains no atoms of mass ≥ 1

2
|µ|, semistable iff it contains no atoms

of mass > 1
2
|µ|, and nice semistable iff it is either stable or consists of two atoms of

equal mass.

(ii) Suppose that B is a unit sphere and regard it as the ideal boundary of a
Euclidean space E, B = ∂T itsE. Each semistable measure µ has slope zero everywhere.

Define the subset ∆n
ss(B) ⊂ ∆n consisting of those n-tuples τ ∈ ∆n for which

there exists a weighted semistable configuration on B of type τ .

Suppose now that G is a reductive complex Lie group, K ⊂ G is a maximal
compact subgroup, X = G/K is the associated symmetric space. Then the spaces
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of weighted configurations in ∂T itsX of the given type τ ∈ ∆n can be identified with
products

F = F1 × ...× Fn

where Fi’s are smooth complex algebraic varieties (generalized flag varieties) on which
the group G acts transitively. Hence G acts on F diagonally.

In case X is the symmetric space associated to a complex Lie group, the notions
of stability (semistability, etc.) introduced above coincide with corresponding notions
from symplectic geometry, and, in the case where the weights τi’s are L-integral (i.e.,
belong to L = LG) they also coincide with the concepts of stability (semistability,
etc.) used in the Geometric Invariant Theory; for a proof of this see [KLM1].

5.1 Gauss maps and associated dynamical systems

We now relate polygons in X (where X is a metric space modeled on a Euclidean
Coxeter complex) and weighted configurations on the ideal boundary B of X, which
plays a key role in [KLM1] and [KLM2]. If X is an infinitesimal symmetric space p we
identify the visual boundary ofX with the Tits boundary ∂T itsX

′ of the corresponding
symmetric space X ′ via the exponential map p → X ′. Thus for all three geometries,
the ideal boundary B is a spherical building.

Consider a (closed) polygon P = x1x2 . . . xn in X, i.e. a map Z/nZ → X. The
distances mi = d(xi, xi+1) determine a finite measure ν on Z/nZ by ν(i) = mi. The
polygon P gives rise to a collection Gauss(P ) of Gauss maps

ψ : Z/nZ −→ ∂T itsX (6)

by assigning to i an ideal point ξi ∈ ∂T itsX so that the geodesic ray xiξi (originating
at xi and asymptotic to ξi) passes through xi+1. This construction, in the case
of the hyperbolic plane, already appears in the letter of Gauss to W. Bolyai, [G].
Taking into account the measure ν, we view the maps ψ : (Z/nZ, ν) → ∂T itsX as
weighted configurations of points on ∂T itsX. Note that ifX is a Riemannian symmetric
space and the mi’s are all non-zero, there is a unique Gauss map due to the unique
extendability of geodesics. On the other hand, if X is a Euclidean building then,
due to the branching of geodesics, there are in general infinitely many Gauss maps.
However, the corresponding weighted configurations are of the same type, i.e. they
project to the same weighted configuration on ∆sph.

The following crucial observation explains why the notion of semistability is im-
portant for studying closed polygons.

Lemma 5.4 ([KLM1], [KLM2]). For each Gauss map ψ the pushed forward mea-
sure µ = ψ∗ν is semistable. If X is a symmetric space or an infinitesimal symmetric
space then the measure µ is nice semistable.

We are now interested in finding polygons with prescribed Gauss map. Such
polygons will correspond to the fixed points of a certain dynamical system. For
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ξ ∈ ∂T itsX and t ≥ 0, we define the map φ := φξ,t : X → X by sending x to the
point at distance t from x on the geodesic ray xξ. Since X is nonpositively curved,
the map φ is 1-Lipschitz. Fix now a weighted configuration ψ : (Z/nZ, ν) → ∂T itsX
with non-zero total mass. We define the 1-Lipschitz self-map

Φ = Φψ : X −→ X

as the composition Φn ◦ · · ·◦Φ1 of the maps Φi = φξi,mi
. The fixed points of Φ are the

first vertices of closed polygons P = x1 . . . xn so that ψ is a Gauss map for P . Since
the map Φ is 1-Lipschitz, and the space in question is complete and has nonpositive
curvature, the existence of a fixed point for Φ reduces (see [KLM2]) to the existence
of a bounded orbit for the dynamical system (Φn)n∈N formed by the iterations of Φ.
Of course, in general, there is no reason to expect that (Φn)n∈N has a bounded orbit:
for instance, if the support of the measure µ = ψ∗(ν) is a single point, all orbits are
unbounded.

One of our results is that under the appropriate semi-stability assumption on ψ
the system (Φn)n∈N has a bounded orbit:

Theorem 5.5 ([KLM1], [KLM2]). Suppose that X is either a symmetric space or
a Euclidean building with one vertex. Suppose that ψ is a nice semistable weighted
configuration on ∂T itsX (in the symmetric space case) or a semistable configuration
(in the building case). Then Φψ has a fixed point.

This theorem also holds for arbitrary Euclidean buildings: It was proven in an
early version of [KLM2] under the local compactness assumption, this proof was
superseded by a proof by Andreas Balser [B] who had removed the local compactness
assumption.

Combining the above result with the Transfer Theorem 4.15 we get:

Theorem 5.6 ([KLM1, KLM2]). Suppose that X is a symmetric space of non-
positive curvature or an infinitesimal symmetric space or a Euclidean building with a
model Weyl chamber ∆. Then Dn(X) = ∆n

ss(∂T itsX).

The equivalence of the Problems Q1 and Q2 (and consequently P1 and P2) in the
Introduction follows immediately from the above theorem since for an infinitesimal
symmetric space p and the corresponding symmetric space X the Tits boundaries are
the same. As another corollary of the combination of Theorems 4.15 and 5.6 we get:

Theorem 5.7 ([KLM1, KLM2]). Let X be either a thick Euclidean building, a
symmetric space or an infinitesimal symmetric space. Then Dn(X) depends only on
the associated spherical Coxeter complex and not on the type of the geometry.

For instance, suppose that X is a nonpositively curved symmetric space and X ′

is a Euclidean building which have isomorphic finite Weyl groups and the same
rank. Then Dn(Cone(∂T itsX)) = ∆n

ss(∂T itsX) = Dn(X), Dn(Cone(∂T itsX
′)) =

∆n
ss(∂T itsX

′) = Dn(X
′), where Cone(∂T itsX) and Cone(∂T itsX

′) are Euclidean cones
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over the Tits boundary of X,X ′, i.e. 1-vertex buildings. Since Cone(∂T itsX) and
Cone(∂T itsX

′) have isomorphic spherical Weyl groups, their affine Weyl groups are
isomorphic as well, so the transfer theorem implies that

Dn(Cone(∂T itsX)) = Dn(Cone(∂T itsX
′))

as required.

In the case when the group G is complex, for the ideal boundaries B of sym-
metric spaces X = G/K one constructs the moduli space of semistable weighted
configurations on B as follows.

Given a type τ (so that for each i the vector τi is nonzero), the set of semistable
configurations Confτ,sst(B) (resp. nice semistable configurations Confτ,nsst(B)) of
type τ on B has a natural topological structure. Define a relation ∼ on Confτ,sst(B)
by ψ ∼ ψ′ if

G · ψ ∩G · ψ′ 6= ∅.
One then verifies that ∼ is an equivalence relation, see [HL] and [Sj]. Define the
moduli space Mτ (B) of semi-stable configurations on B of type τ as the quotient
Confτ,sst(B)/ ∼. We note that the moduli space (see (4)) Mn,τ(X) of n-gons in X
with the given side-lengths τ ∈ ∆n, is also a compact topological space.

Theorem 5.8. The moduli space Mτ,sst(B) is Hausdorff. The map P 7→ Gauss(P )
defines a natural homeomorphism h : Mn,τ(X) → Mτ,sst(B).

Proof: It was proven in [HL] and [Sj] that Mτ,sst(B) = Confτ,nsst(B)/G, and that
Mτ,sst(B) is Hausdorff. The surjection h is clearly continuous, it is also easily seen
to be injective. Therefore the map

h : Mn,τ(X) → Confτ,nsst(B)/G.

is also a homeomorphism.

Remark 5.9. For the purposes of this paper we only need to know that Mτ,sst(B) 6= ∅
iff Mn,τ(X) 6= ∅.

Below are few more details concerning the symplectic nature of the moduli space
Mτ,sst(B) in the case when G is a complex Lie group. Recall that g = p⊕ k and p =√
−1k. For τ ∈ ∆n ⊂ an ⊂ pn we identify each τi with the element αi :=

√
−1τi of the

Lie algebra k. We consider the product M :=
∏n

i=1 Oi of the orbits Oi := Ad(K)(αi),
i = 1, ..., n. The manifold M carries a natural symplectic structure which is invariant
under the diagonal adjoint action of the group K. Let f : M → k be the momentum
mapping of this action. Since the map f is given by the formula

f : (β1, .., βn) 7→
n∑

i=1

βi,
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we obtain an identification of the moduli space Mn,τ(p) of polygons in p with the
symplectic quotient:

Mτ,sst(B) = Confτ (B)//G := M//G := {ξ : f(ξ) = 0}/K.
In the case when all τi belong to the cocharacter lattice L, this quotient is the same
as the Mumford quotient of the projective variety Confτ by the group G.

5.2 The polyhedron Dn(X)

One of the main results of [KLM1] is a description of Dn(X) (where X is an in-
finitesimal symmetric space) in terms of the Schubert calculus in the Grassmannians
associated to complex and real Lie groups G (i.e. the quotients G/P where P is a
maximal parabolic subgroup of G). Below we describe Dn(X) for the three classes
of metric spaces considered in the present paper. We first do it in the context of
symmetric spaces of noncompact type (i.e. their deRham decomposition contains no
Euclidean factor1) since the description in this class is more natural.

Let X be a symmetric space of noncompact type and G the identity component of
its isometry group. The ideal boundary ∂T itsX is a spherical building modeled on a
spherical Coxeter complex (S,W ) with model spherical Weyl chamber ∆sph ⊂ S. We
identify S with an apartment in ∂T itsX. Let ∆ denote the Euclidean Weyl chamber
of X. We identify ∆sph with ∂T its∆.

Let B be the stabilizer of ∆sph in G. For each vertex ζ of ∂T itsX one defines the
generalized Grassmannian Grassζ = Gζ = G/P . (Here P is the maximal parabolic
subgroup of G stabilizing ζ .) It is a compact homogeneous space stratified into B-
orbits called Schubert cells. Every Schubert cell is of the form Cη = Bη for a unique
vertex η ∈ Wζ ⊂ S(0) of the spherical Coxeter complex. The closures Cη are called
Schubert cycles. They are unions of Schubert cells and represent well defined elements
in the homology H∗(Grassζ,Z2).

For each vertex ζ of ∆sph and each n-tuple
→
η= (η1, . . . , ηn) of vertices in Wζ

consider the following homogeneous linear inequality for ξ ∈ ∆n:
∑

i

ξi · ηi ≤ 0 (∗
ζ;

→

η
)

Here we identify the ηi’s with unit vectors in ∆.

Let IZ2
(G) be the subset consisting of all data (ζ,

→
η ) such that the intersection of

the Schubert classes [Cη1 ], . . . , [Cηn
] in H∗(Grassζ ,Z2) equals [pt].

Theorem 5.10 ([KLM1]). ∆n
ss(∂T itsX) ⊂ ∆n consists of all solutions ξ to the

system of inequalities (∗
ζ;

→

η
) where (ζ,

→
η ) runs through IZ2

(G).

Remark 5.11. This system of inequalities depends on the Schubert calculus for the
generalized Grassmannians G/P associated to the group G. It is one of the results of
[KLM2] that the set of solutions depends only on the spherical Coxeter complex.

1In the context of Lie groups it corresponds to the case of semisimple algebraic groups.
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Typically, the system of inequalities in Theorem 5.10 is redundant. If G is a
complex Lie group one can use the complex structure to obtain a smaller system of
inequalities. In this case, the homogeneous spaces Grassζ are complex manifolds and
the Schubert cycles are complex subvarieties and hence represent classes in integral

homology. Let IZ(G) ⊂ IZ2
(G) be the subset consisting of all data (ζ,

→
η ) such that

the intersection of the Schubert classes [Cη1 ], . . . , [Cηn
] in H∗(Grassζ,Z) equals [pt].

The following analogue of Theorem 5.10 was proven independently and by com-
pletely different methods in [BeSj] and in [KLM1]:

Theorem 5.12 (Stability inequalities). ∆n
ss(∂T itsX) consists of all solutions ξ to

the system of inequalities (∗
ζ;

→

η
) where (ζ,

→
η ) runs through IZ(G).

We now consider the general case when X is a symmetric space or a Euclidean
building which splits as X0 × X1, where X0 is the flat deRham factor of X. In the
case when X = p is an infinitesimal symmetric space we consider the decomposition
X = X0 ×X1 corresponding to the orthogonal decomposition p = p0 ⊕ p1, where p0

is the Lie algebra of the split part of the of the central torus of G (where g is the Lie
algebra of G). In this case we again refer to p0 := X0 as the Euclidean deRham factor
of X. If p = Tp(X

′), where X ′ is a nonpositively curved symmetric space, then the
above decomposition of p is the infinitesimal version of the splitting off the deRham
factor of X ′.

Let E = E0 × E1 be the corresponding decomposition of the Euclidean Coxeter
complex, the Weyl chamber ∆ ⊂ E splits as ∆0 × ∆1, where ∆1 ⊂ E1 is the Weyl
chamber for the action Wsph y E1 and ∆0 = E0. Let Dn(Xi) ⊂ (∆i)

n denote the
side-lengths polyhedron for the space X1. It is clear that

Dn(X0) = {(σ1, ..., σn) :

n∑

i=1

σi = 0}.

Then we get:
Dn(X) = Dn(X0) ×Dn(X1). (7)

We refer the reader to Proposition 7.15 for the explanation.

Combining our results one obtains the following recipe for determining the poly-
tope Dn(X) for any of the spaces X as in Theorem 5.7 (i.e., infinitesimal symmetric
spaces, symmetric spaces and Euclidean buildings): Given X, first of all, split X as
X0 × X1, where X0 is the Euclidean deRham factor. In view of the formula (7) it
suffices to describe Dn(X1); so we let X := X1. Then find a complex semisimple
Lie group G of noncompact type, whose spherical Coxeter complex is isomorphic
to the one of X. Let X ′ be the symmetric space G/K associated with G. Using
Schubert calculus for the Grassmannians G/P associated to G as in Theorem 5.12
above, compute the system of stability inequalities describing ∆n

ss(∂T itsX
′) = Dn(X

′).
The polytopes Dn(X) and Dn(X

′) are equal. We note that although the polyhedron
Dn(X) depends only on the spherical Coxeter group, the system of stability inequal-
ities describing Dn(X) depends on the root system. In fact in [KLM1] it is shown
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that the systems obtained for the root systems B3 and C3 are different (even though
they have the same number of inequalities).

Example 5.13. Suppose that G is a reductive algebraic over Q and G∨ is its Lang-
lands’ dual. Let g and g∨ be the Lie algebras of G and G∨ and let X = G/K,X∨

be the corresponding symmetric spaces. Let g = k ⊕ p be the Cartan decomposition.
Take a Cartan subalgebra a ⊂ p. The pairing 〈 , 〉 induces an isomorphism a∗ ∼= a∨,
where a∨ is a Cartan subalgera of g∨. We then identify a with a∗ using the invariant
metric. This gives us an isometry f : a → a∨ which conjugates the spherical Coxeter
group Wsph of g to the spherical Coxeter group W∨

sph of g∨. This isometry also carries
a Euclidean Weyl chamber ∆ of Wsph y a onto a Euclidean Weyl chamber for the
action W∨

sph y a∨. Thus f induces a bijection

fn : Dn(X) → Dn(X
∨).

For instance, if G and G∨ are simple complex Lie groups of type Bℓ and Cℓ respec-
tively, then the above construction provides an isometry Dn(X) ∼= Dn(X

∨).

In the next subsection we will write down the inequalities 5.12 for the root system
B2 in the case n = 3.

5.3 The polyhedron for the root system B2

In [KLM1] and [KuLM] the stability inequalities for the polyhedra D3(X) were com-
puted for all X of rank 2 or 3 (the polyhedron for G2 was computed in [BeSj]). We
now give the example of the polyhedron for the root system B2. This example will
be useful to us later.

Since all symmetric spaces with the same root system give rise to the same poly-
hedron we may take X = SO(5,C)/SO(5). The Weyl chamber ∆ is given by

∆ = {(x, y) : x > y > 0}.

Thus the ∆-lengths σi are vectors (x, y) in ∆. Since the root system has rank 2,
∆sph has exactly two vertices ζ1, ζ2. Thus we get two generalized Grassmannians,
Grassζi, i = 1, 2. These Grassmannians are the spaces of isotropic lines and isotropic
planes in C4. Thus the set of stability inequalities breaks into two subsystems, one
for each ζi. This gives a system of 19 inequalities in addition to the inequalities
defining the chamber ∆. Below we have dropped one of these 19 inequalities, which
was implied by the inequalities defining the chamber.

The first subsystem of stability inequalities (corresponding to the Grassmannian
of isotropic lines) is given by

xi ≤ xj + xk, {i, j, k} = {1, 2, 3}
yi ≤ yj + xk, {i, j, k} = {1, 2, 3}.
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In order to describe the second system we let S be the sum of all the coordinates of
the side-lengths, so

S = x1 + y1 + x2 + y2 + x3 + y3.

The second subsystem (corresponding to the Grassmannian of isotropic planes) is
then given by

xi + yj ≤ S/2, 1 ≤ i, j ≤ 3.

To the above system of 18 inequalities we also have to add the “chamber inequalities”:

xi ≥ yi, i = 1, 2, 3 and yi ≥ 0, i = 1, 2, 3.

In total we get 24 inequalities. Thus we have:

Corollary 5.14. Suppose that X is a symmetric space with the (finite) Weyl group
of type B2. Then there exists a triangle in X whose ∆-side lengths are vectors σi =
(xi, yi) ∈ ∆, i = 1, 2, 3 if and only if σi’s satisfy the above system of 18 inequalities.

Remark 5.15. Using a computer we have verified that the above system is minimal,
the polyhedron D3 is a cone over a compact polytope with 15 vertices and 24 top-
dimensional faces.

Note that the Weyl chamber ∆ ⊂ a determines a partial order on a:

α ≤∆ β ⇐⇒ β − α ∈ ∆.

One may ask if the “naive” triangle inequalities

α ≤∆ β + γ

are satisfied by the ∆-side lengths of triangles in a symmetric space X with the Weyl
chamber ∆. Below is a counter-example:

Consider the root system B2 = C2 and the vectors

α =

(
x1

y1

)
, β =

(
x2

y2

)
= γ =

(
x3

y3

)
=

(
t
t

)
,

where 0 < t < y1 < x1 < 2t. The reader will verify that the stability inequalities
above are satisfied by the vectors α, β, γ, however the inequality

α ≤∆ β + γ

fails since it would imply that 0 < x1 − y1 < (x2 − y2) + (x3 − y3) = 0.

Nevertheless, one can rewrite the system of stability inequalities for the root sys-
tem B2 = C2 in terms of the root cone

∆∗ = {(x, y) : x ≥ 0, x+ y ≥ 0} = {v ∈ R2 : ∀u ∈ ∆, u · v ≥ 0}
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as follows:
(α1, α2, α3) ∈ D3(X) ⇐⇒

α1, α2, α3 ∈ ∆,

and
αi ≤∆∗ αj + αk,

τ(αi) ≤∆∗ τ(αj) + αk

for all i, j, k such that {i, j, k} = {1, 2, 3}. Here τ(x, y) = (y, x) ∈Wsph.

6 Polygons in Euclidean buildings and the gener-

alized invariant factor problem

LetX be a thick Euclidean building modeled on a discrete Coxeter complex (E,Waff ).
As in section 4.4, let L be a lattice in E which contains the translation subgroup Ltrans
of Waff and which normalizes Waff . Note that L acts by automorphisms on the
Coxeter complex (E,Waff ). For the algebraic applications we would like to determine

for which
→
τ∈ Dn(X)∩Ln, there exists a polygon in X with L-integral side-lengths

→
τ

and the first vertex at a distinguished special vertex o ∈ X. In other words, we are
interested in the image of the map

ι : Dref,L
n (X) → Dn(X) ∩ Ln. (8)

In this chapter we will show that in general the map (8) is not onto (section 6.2):
The counterexamples are based on the idea of folding triangles into apartments (see
section 6.1). In the subsequent chapter 7 we will prove “positive results”: Some of
them guarantee that the map (8) is onto for certain pairs (Waff , L), the other results
establish sufficient conditions for elements of Dn(X)∩Ln to belong to the image of ι.

6.1 Folding polygons into apartments

In this section we describe a construction which produces billiard triangles in an
apartment from triangles in a building .

Suppose that ∆(x, y, z) is a triangle in a (Euclidean or spherical) building B. In
general it is not contained in an apartment. However (see [KLM2, §3.2]) there exists
a finite subdivision of the edge xy by points x0 = x, x1, ..., xk−1, xk = y such that each
geodesic triangle ∆(z, xi, xi+1) is contained in an apartment in B.

Remark 6.1. It is easy to see that there is a uniform upper bound on the number k
which depends only on the Coxeter group W .

For each i, let ai ⊂ B be an apartment containing ∆(z, xi, xi+1). We will identify
a0 with the model apartment A. We will produce points x′i in the first apartment
a0 such that the triangles ∆(z, x′i, x

′
i+1) are congruent to the triangles ∆(z, xi, xi+1)
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via apartment isomorphisms αi : ai → A. This is done inductively as follows. We
start with x′0 = x0 and x′1 = x1. Suppose that x′i has been constructed. To find x′i+1,

choose αi : ai → a so that it carries zxi to zx′i. Put x′i+1 = αi(xi+1). The procedure

yields a billiard triangle in the apartment A consisting of two geodesic sides zx′0 and
zx′k with the same refined lengths as the corresponding sides of the original triangle
∆(x, y, z), and one piecewise geodesic path x′0x

′
1 . . . x

′
k. The points x′1, ..., x

′
k−1 are the

break points of the broken side of this billiard triangle.

Remark 6.2. If z is a special vertex of X, then, by projecting the apartment A to
a Weyl chamber ∆ (with the tip at z), we can assume that the folded triangle is
contained in ∆.

Consider the spherical building Yi := Σxi
(B) whose Coxeter complex is (Σx′i

A,Wi),
where the group Wi is the stabilizer of xi in W . Let θi be the canonical projection of
Yi to the Weyl chamber in this building.

Remark 6.3. Notice that Wi may be smaller than Wsph.

Since the refined lengths of xixi+1 and x′ix
′
i+1 are equal, it follows that θi(

−−−→xixi−1) =

θi(
−−−→
x′ix

′
i−1), θi(

−−−→xixi+1) = θi(
−−−→
x′ix

′
i+1). Because the directions −−−→xixi−1 and −−−→xixi+1 in the

spherical building Yi = Σxi
(B) are antipodal, the properties of the canonical projec-

tion θi (see section 4.2) imply that the directions
−−−→
x′ix

′
i−1 and

−−−→
x′ix

′
i+1 in the spherical

Coxeter complex (Σx′i
A,Wi) are antipodal modulo the action of Wi.

Definition 6.4. A broken triangle T ⊂ A with two geodesic sides zx′0 and zx′k and
one piecewise geodesic path x′0x

′
1 . . . x

′
k is a billiard triangle if at every break point x′i,

the directions
−−−→
x′ix

′
i−1 and

−−−→
x′ix

′
i+1 in the spherical Coxeter complex Σx′i

A are antipodal
modulo the action of the stabilizer Wi of x′i in the Coxeter group of A.

We note that each broken side x′0x
′
1 . . . x

′
k of a billiard triangle can be straightened

in the model apartment A, i.e. there exists a geodesic segment x′′0x
′′
k ⊂ A (a straight-

ening of x′0x
′
1 . . . x

′
k) such that x′′0 = x′0, the metric length of x′′0x

′′
k is the same as of

x′0x
′
1 . . . x

′
k, and the direction of x′′0x

′′
k at x′0 is the same as the direction of x′0x

′
1.

A billiard triangle T in the model apartment can be unfolded to a geodesic triangle
in the building if and only if, for each break point x′i, 0 < i < k, the following
holds. Let ξ′i, η

′
i, ζ

′
i ∈ Σx′i

A be the directions towards x′i−1, x
′
i+1, z. The necessary and

sufficient condition is:

Condition 6.5. For each i there exists a triangle ∆(ξi, ηi, ζi) in the spherical building
Yi = Σx′i

B so that ∠(ξi, ηi) = π and the refined lengths of ξiζi and ηiζi are the same

as for ξ′iζ
′
i and η′iζ

′
i respectively.

Remark 6.6. A necessary condition for existence of a triangle ∆(ξi, ηi, ζi) is that
∠(ξ′i, ζ

′
i) + ∠(η′i, ζ

′
i) ≥ π, which is just the usual (metric) triangle inequality in the

spherical building Yi.
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Figure 1: A billiard triangle.

Lemma 6.7. Suppose that we have an apartment a′ in a Euclidean building X and a
billiard triangle T ′ ⊂ a′, T ′ has geodesic sides z′x′0, z

′x′k and the broken side x′0x
′
1 . . . x

′
k.

Suppose that for each break point x′i, i = 1, ..., k−1, there is a wall Hi ⊂ a′ through x′i
which weakly separates2 {x′i−1, x

′
i+1} from the vertex z′. Assume that the reflection w

in the wall Hi carries the direction
−−−→
x′ix

′
i+1 to the direction antipodal to

−−−→
x′ix

′
i−1. Then

there exists a geodesic triangle T = ∆(x, y, z) ⊂ X so that

σref(z′x′0) = σref (zx), σref(z′x′k) = σref(zy)

and the refined side-length of xy is the same as for the straightening of the broken
side x′0x

′
1 . . . x

′
k.

Proof: We prove the lemma by verifying Condition 6.5 for each i = 1, ..., k − 1. The
spherical building Y := Σx′i

X contains the apartment s′ = Σx′i
(a′) and the directions

ξ′, ζ ′, η′ of the geodesic segments

x′ix
′
i−1, x

′
ix

′
i+1, x

′
iz

′.

The wall F := Σx′i
(Hi) in the spherical apartment s′ separates s′ into half-apartments

s′+, s
′
−, so that cl(s′+) contains ζ ′ and cl(s′−) contains the directions ξ′, η′. Because the

building Y is thick, there exists an apartment s ⊂ Y which intersects s′ along the half-
apartment s′+. Let s− := cl(s\s′+). There exists an isomorphism of Coxeter complexes
ι : s′ → s which restricts to the identity on s+. Set η := ι(η′), ζ := ζ ′, ξ := ξ′. Clearly,

σref (ζξ) = σref (ζ ′ξ′), σref(ζη) = σref(ζ ′η′).

It remains to verify that ∠(ξ, η) = π, i.e. that the points ξ and η are antipodal. Note
that we also have the third apartment s′′ = s′− ∪ s− and the isomorphism of Coxeter
complexes

j : s′ → s′′

2I.e., Hi separates a′ into half-apartments a′

+, a−′ such that z is in the closure of a′

+ and x′

i−1, x
′

i+1

are in the closure of a′

−
.
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Figure 2: Unfolding.

which is the identity on s′−, see Figure 2. The restriction of j to s′+ equals ι◦w. Thus
j carries w(η′) (which is antipodal to ξ′ by assumption) to the point η, and j(ξ′) = ξ.
Thus the points η, ξ are antipodal.

We now state a conjecture describing unfoldable billiard triangles. Let ∆ ⊂ E
be a Weyl chamber with the tip at a special vertex o. We first define a weak LS
path between two special vertices x = x0, y = xk ∈ ∆ to be a broken geodesic
x0x1 . . . xk ⊂ ∆ which satisfies Littelmann’s axioms for an LS path in [L2, §4] except
we do not require dist(λi−1, λi) = 1 in the definition of an a-chain. A billiard triangle
is a Littelmann triangle if the broken side x0x1 . . . xk is an LS path. We say that a
billiard triangle in ∆ with the geodesic sides ox0, oxk and a broken side x0x1 . . . xk is
a generalized Littelmann triangle if x0x1 . . . xk is a weak LS path. We recall (see [L2])
that there exists a Littelmann triangle with geodesic sides ox0, oxk and the broken
side x0x1 . . . xk−1xk iff Vγ ⊂ Vα ⊗ Vβ where α := σ(ox0), γ = σ(oxk) and β is the
∆-length of the straightening of the broken geodesic x0x1 . . . xk−1xk, provided that
α, β, γ are characters of the split torus T∨ ⊂ G∨(C). Here Vα, Vβ, Vγ are irreducible
representations of the group G∨(C), cf. §1.

Conjecture 6.8. A billiard triangle in ∆ with the sides ox0, oxk and x0x1 . . . xk−1xk
and with the special vertices 0, x0, xk, is unfoldable iff it is a generalized Littelmann
triangle.

6.2 A Solution of Problem Q2 is not necessarily a solution
of Problem Q3

In this section we first construct an example of a discrete thick Euclidean building X
(modeled on discrete Euclidean Coxeter complex with the root system R of type B2)
and a triangle P ⊂ X with the ∆-side lengths τ1, τ2, τ3 ∈ L = Q(R∨) so that:

1. The vertices of P are at vertices of X.
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2. There is no triangle P ′ ⊂ X with vertices at special vertices of X and the
∆-lengths τ1, τ2, τ3.

In terms of our basic algebra problems, (α, β, γ) is a solution of Problem Q2 but
not of Problem Q3 for the simply-connected group G = Spin(5),

O

p

v

q

u

x

y

s

Figure 3: A folded triangle.

We next describe (without proof) analogous counterexamples for the root systems
Cℓ, ℓ ≥ 2 and L = Q(R∨). In terms of our basic algebra problems, this shows that
there are solutions of Problem Q2 that are not solutions to Problem Q3 for the
simply-connected groups G = Sp(2ℓ), ℓ ≥ 2.

Example 6.9. Let X be a thick Euclidean building with associated discrete Euclidean
Coxeter complex (E,Waff ) of type B2. Then the map (8) is not surjective for n = 3
and L = Q(R∨).

We recall that the simple roots for the root system B2 are (1,−1) and (0, 1)
and the simple coroots are (1,−1) and (0, 2). The folded triangle T is represented
in Figure 3. It has three vertices: s, p and q and two geodesic sides: sp and sq.
The third side is the broken geodesic segment which consists of three pieces: pv, vu
and uq. The vectors in the Weyl chamber ∆ = {(x, y) ∈ R2 : 0 ≤ y ≤ x} which
represent the corresponding ∆-side lengths are (2, 2), (3, 1) and (2, 2), where (2, 2)
represents the broken side. To see that T can be unfolded into a geodesic triangle in
the corresponding building X one can either use Lemma 6.7 or simply verify that the
vectors (2, 2), (3, 1) and (2, 2) satisfy the inequalities of Section 5.3. Note that the
vectors (3, 1) and (2, 2) belong to the coroot lattice.

We now prove that there is no triangle ∆(s′′, p′′, q′′) in the building X whose ∆-side
lengths are the vectors (2, 2), (3, 1) and (2, 2) and whose vertices are special vertices
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Figure 4: A billiard triangle.

of X. Suppose that such triangle exists. As described in section 6.1, we subdivide
the side p′′q′′ and fold ∆(s′′, p′′, q′′) to a billiard triangle T ′ in the model apartment A.
Without loss of generality we can assume that the side s′′p′′ folds onto the geodesic
segment oc, where o is the origin in A and c = (2, 2). By Remark 6.2 we can assume
that this triangle is contained in the Weyl chamber ∆ = {(x, y) : x ≥ y ≥ 0}. Hence
the side s′′q′′ folds onto the geodesic segment oa where a = (3, 1). Note that d(a, c) is
strictly less than 2

√
2, which is the magnitude of the vector (2, 2). Thus the broken

geodesic segment f(p′′q′′) (which is the image of p′′q′′ under folding) has to have at
least one break point. Next, observe that the only break points in f(p′′q′′) can occur
at the vertices of the affine Coxeter complex. Any vertex other than one in the set

S := {(2, 2), (3, 1), (2.5, 0.5), (1.5, 1.5),

(2.5, 1.5), (2.5, 2.5), (3.5, 0.5), (3.5, 1.5)}

would be too far from a, c for a billiard triangle to exist. We note that all points
in S \ {a, c} are nonspecial vertices of the Coxeter complex. Thus the only break in
f(p′′q′′) which can occur at such a point is “backtracking”.

Below we exclude breaks at various points of S and will leave the rest of the
possibilities to the reader, since the arguments are similar. Suppose that the broken
geodesic path f(p′′q′′) is the concatenation of the geodesic segments

ca, ab, ba,

where b = (3.5, 1.5), see Figure 4. The point b is one of two break points of f(p′′q′′).
At the link Σb(A) consider the directions:

ξ′, η′, ζ ′
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towards the points a, a and o. Then

∠(ζ ′, ξ′) + ∠(ζ ′, η′) = 2∠(ζ ′, ξ′) < π.

Hence, according to Remark 6.6, the billiard triangle T ′ cannot be unfolded into a
geodesic triangle ∆(s′′, p′′, q′′) ⊂ X. Contradiction.

O
x

y

1 2 3 4

1

2

3

c

a

b

Figure 5: A billiard triangle.

Lastly, consider a break point at the vertex b = (2.5, 2.5); the broken geodesic
path f(p′′q′′) is the concatenation of the geodesic segments

ca, ab, ba,

see Figure 5. At the link Σa(A) of the break point a consider the directions:

ξ′, η′, ζ ′

towards the points c, b and o. Again,

∠(ζ ′, ξ′) + ∠(ζ ′, η′) = 2∠(ζ ′, ξ′) < π,

contradiction. (Note that in this example we do not get a contradiction by considering
the link of the break point b.)

Remark 6.10. Consider the usual embedding R2 → Rℓ of the root system R2 = B2 to
Rℓ = Bℓ. The ∆-side length vectors (2, 2), (3, 1) and (2, 2) correspond to the vectors

α = β = (2, 2, 0, ..., 0), γ = (3, 1, 0, ..., 0) ∈ L = Q(R∨
ℓ ).

One can show that for each ℓ ≥ 3 and the appropriate discrete building X, the vectors
α, β, γ belong to the image of ι : Dref,L

3 (X) → D3(X).
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Consider now a thick building X ′
ℓ modeled on the discrete Euclidean Coxeter complex

of type R′
ℓ := Cℓ, ℓ ≥ 3. Set L = Q((R′

ℓ)
∨). To obtain examples of triples of vectors

which do not belong to the image of Dref,L
3 (X ′

ℓ)
ι→֒ D3(X

′
ℓ) we do the following:

Choose the vectors α′ = β ′ = (2, 0) and γ′ = (2, 1). Then α′, β ′, γ′ are in the coroot
lattice L of C2. We claim this choice of side-lengths gives a solution of Problem Q2
that is not a solution of Problem Q3 for the root system C2.

Lemma 6.11. There exists an isomorphism of algebraic groups φ : Spin(5) → Sp(4)
carrying a split torus of Spin(5) to a split torus of Sp(4) such that the induced map
on Cartan subalgebras (relative to the coordinates of [Bo, pg. 252-255]), is given by
the matrix

1

2

[
1 1
1 −1

]
,

Proof: Let φ : Spin(5) → SL(4) be the spin representation. By Theorem G (b) of
[Sam], the spin representation of Spin(2n+1) is symplectic if and only if either n ≡ 0
mod 4 or n ≡ 1 mod 4. Hence, the image of φ lies in Sp(4). If follows easily that φ
is an isomorphism. Let ǫi, i = 1, 2 be the coordinate functionals as in [Bo], loc. cit.
Since the weights of the spin representation relative to the basis of the dual of the
Cartan subalgebra are (1/2, 1/2), (1/2,−1/2), (−1/2, 1/2) and (−1/2,−1/2) we find
that the pull-back by the map, induced on the duals of the Cartan subalgebras, of
the coordinate functional ǫ1 = (1, 0) is (1/2, 1/2) and the pull-back of the coordinate
functional ǫ2 = (0, 1) is (1/2,−1.2). Thus the above matrix is the matrix of the map
on the duals. Since it is symmetric is also the matrix of the map on the Cartan
subalgebras.

Since the vectors α, β, γ (from the previous example) map to the vectors α′ = β ′

and γ′ = (2, 1) respectively, the claim follows.

Now consider the natural embedding of root systems C2 →֒ Cℓ = Rℓ, ℓ ≥ 2. One
can verify (similarly to the arguments presented in Example 6.9) that the vectors
α′ = β ′, γ′ ∈ L = Q(R∨

ℓ ) satisfy the property that

(α′, β ′, γ′) ∈ DL
3 (Xℓ) \ ι(Dref,L

3 (Xℓ)),

where Xℓ is a discrete Euclidean building modeled on the Euclidean Coxeter complex
associated with the root system Cℓ. Thus the triple (α′, β ′, γ′) is a solution of Problem
Q2 for Sp(2ℓ,C) but not a solution of Problem Q3 for Sp(2,K) where K is an
nonarchimedean local field with value group Z.

7 The existence of fixed vertices in buildings and

computation of the saturation factors for reduc-

tive groups

As we have seen in the previous chapter, the map

ι : Dref,L
n (X) → Dn(X) ∩ Ln. (9)
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in general is not surjective. The goal of this chapter is to find conditions on the root
systems, etc., which would guarantee existence of polygons P in Euclidean buildings
X with the prescribed L-integral ∆-side lengths and vertices at the vertices of X.
Moreover, we will find conditions under which the vertices of P are in G · o, where
o ∈ X is a certain special vertex. We will also see that the image of ι is always
contained in the set

DL,0
n (X) = {(τ1, ..., τn) ∈ Dn(X) ∩ Ln :

n∑

i=1

τi ∈ Q(R∨) = Ltrans}.

We will show that for each data (Waff , L) (where Ltrans ⊂ L ⊂ Naff ), there exists a
natural number k such that for each τ ∈ Dn(X) ∩ Ln, the vector kτ belongs to the
image of the map (8). We will compute the saturation factors k for various classes
of (Waff , L). In few cases we are fortunate and k = 1, i.e. the map (9) is onto. We
then apply these results to the algebra Problem Q3.

7.1 The saturation factors associated to a root system

In this section we define and compute saturation factors associated with root systems.

Definition 7.1. Let (E,Waff ) be a Euclidean Coxeter complex, Waff = WR,Z. We
define the saturation factor kR for the root system R to be the least natural number k
such that k ·E(0) ⊂ E(0),sp = Naff ·o. The numbers kR for the irreducible root systems
are listed in the table (11).

Below we explain how to compute the saturation factors kR. First of all, it is
clear that if the root system R is reducible and R1, ..., Rs are its irreducible com-
ponents, then kR = LCM(kR1

, ..., kRs
), where LCM stands for the least common

multiple. Henceforth we can assume that the system R is reduced, irreducible and
n = dim(V ). Then the affine Coxeter group Waff is discrete, acts cocompactly on E
and its fundamental domain (a Weyl alcove) is a simplex.

Let {α1, ..., αn} be the collection of simple roots in R (corresponding to the positive
Weyl chamber ∆) and α0 := θ be the highest root. Then

θ =

n∑

i=1

miαi. (10)

We can choose as a Weyl alcove C for Waff the simplex bounded by the hy-
perplanes Hαj ,0, Hθ,1, j = 1, ..., n. The vertices of C are: o = x0 (the origin) and
the points x1, ..., xn. Each xi, i 6= 0, belongs to the intersection of the hyperplanes
Hα0,1, Hαj ,0, 1 ≤ j 6= i ≤ n. The set of values (mod Z) of the linear functionals α

(α ∈ R) on the vertex set E(0) of the Coxeter complex, equals {αi(xi) : i = 1, ..., n}.
Note that 1 = θ(xi) = miαi(xi) where the numbers mi are the ones which appear in
the equation (10). Thus αi(xi) = 1

mi
.

Lemma 7.2. kR = LCM(m1, ..., mn).
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Proof: We have: αi(kxi) ∈ Z for each i, which in turn implies that α(kxi) ∈ Z for all
α ∈ R, i = 1, ..., n. Hence α(kE(0)) ⊂ Z for each α ∈ R. Since Naff = P (R∨), this
proves that kE(0) ⊂ Naff · o. If k ∈ N is such that k ·E(0) ⊂ P (R∨), then mi divides
k for each i = 1, ..., n.

In our paper we will also need a generalization of the numbers kR, which we discuss
for the rest of this section. (The reader who is interested only in simply-connected
groups can ignore this material.) We again consider a general reducible root system
R. Suppose that L′ is a subgroup of Naff containing the lattice Ltrans = Q(R∨);
we will assume that L′ acts as a lattice on E (i.e. a discrete cocompact group). Set
L := L′ ∩ V1 ⊕ ... ⊕ Vs, where Vi are the vector spaces underlying Ei. We note that
since Ltrans ⊂ L and Ltrans acts as a lattice on E1 ⊕ ...⊕Es, the discrete group L also
acts as a lattice on E1 ⊕ ...⊕Es.

Let pi denote the orthogonal projections E → Ei. Consider the images Li of L
under the projections pi (i = 0, ..., s); since L ⊂ Naff and pi(Naff ) = N i

aff , we have
the inclusions

Litrans ⊂ Li ⊂ N i
aff , i = 1, ..., s,

where Litrans is the translation subgroup of W i
aff .

Example 7.3. Suppose that (E,Waff ) is the Coxeter complex associated with the root
system of the group GL(n). Then E = Rn, L′ = LGL(n) = Zn is the cocharacter group
of the maximal torus T (represented by diagonal matrices) in GL(n). The group L′

is generated by the cocharacters ei = (0, ..., 0, 1, 0...0) (1 is on the i-th place). The
coroot lattice Q(R∨) is generated by the simple coroots α∨

i = ei− ei+1, i = 1, ..., n− 1.
The metric on E is given by the trace of the product of matrices. We have the
decomposition E = E0 × E1 where E0 is 1-dimensional and is spanned by the vector
e = e1 + ... + en, and the space E1 is the kernel of the map

tr : (x1, ..., xn) 7→
n∑

i=1

xi.

Thus E1 is the (real) Cartan subalgebra of the Lie algebra sl(n) of SL(n), the derived
subgroup of GL(n).

The projection p1 : E → E1 is given by p1(u) = u − 1
m
tr(u)e. The group Waff

equals W 1
aff , which acts on E1 as the Euclidean Coxeter group with the extended

Dynkin diagram of type Ãn−1.

The intersection L = L′ ∩ E1 = Q(R∨), where R∨ is a root system contained in
E1. It is the coroot system of the Lie algebra sl(n) The projection L1 = p1(L

′) is
P (R∨), the coweight lattice of the Lie algebra sl(n).

Consider the group of isometries W̃ generated by elements of Waff and L. Then
W̃ is a Euclidean Coxeter group with the linear part Wsph and translation part L,
W̃ = Wsph⋉L. Since W̃ i = W i

sph⋉Li normalizes W i
aff , for each i we get the induced

action of the finite abelian group Fi := W̃ i/W i
aff

∼= Li/L
i
trans on the Weyl alcove ai

of W i
aff .
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Definition 7.4. A face δi ⊂ ai of a Weyl alcove ai of W i
aff , will be called Li-

admissible if there exists an element g ∈ Fi which preserves δi and 〈g〉 acts transitively
on its vertices (i = 1, ..., s).

Note that in the case Li = Litrans, the only Li-admissible simplices are the vertices
of δi.

Definition 7.5. For each pair of groups (W i
aff , Li), define the saturation factor ki =

k(W i
aff , Li) ∈ N, to be the smallest natural number ki such that for each Li-admissible

face c ⊂ ai, the multiple of its barycenter kibc, belongs to E
(0),sp
i = N i

aff · o. We let
k(Waff , L) = k(Waff , L

′) denote LCM(k1, ..., ks). In the case L = Naff we will use
the notation kw for k(Waff , L).

We note that in the case L = Ltrans we get k(Waff , L) = kR and if L is the weight
lattice, L = P (R∨) we have k(Waff , L) = kw.

Our next goal is to compute the saturation factors for various irreducible root
systems and various lattices L.

We again assume that the root system R is irreducible and that its rank n equals
dim(V ). Note that the group F = L/Ltrans acts by automorphisms on the extended
Dynkin diagram Γ̃ of the root system R (since F acts on the Weyl alcove a which is
uniquely determined by the labelled graph Γ̃, whose nodes correspond to the faces of
a). For i = 1, ..., n we mark the i-th node (corresponding to αi) of Γ̃ with the natural
number mi which appears the formula for the highest root (10). We mark the 0-th
node of Γ̃ (corresponding to θ) with 1. Then the automorphisms of Γ̃ preserve this
labelling; the action of the full group Naff on Γ̃ is transitive on the set of all the
nodes labelled by 1. Not all automorphisms of Γ̃ can be induced by F even if one
takes L as large as possible, i.e. L = Naff . Recall that the action on a comes from
the action of W̃ by conjugation on Waff ; this action induces inner automorphisms of
the spherical Weyl group Wsph. Thus, if g is an automorphism of Γ̃ induced by an
element of F and g fixes a vertex with the label 1, then g acts trivially on Γ̃. This
does not completely determine the image of Naff in Aut(Γ̃) but it will suffice for the
computation of the saturation factors.

Here is the procedure for computing the saturation factor k = k(Waff , L). Given
g ∈ F (including the identity) consider the orbits of 〈g〉 in the vertex set of the graph
Γ̃. Here and in what follows 〈g〉 denotes the cyclic subgroup of Isom(E) generated
by g. Let O = {xi1 , ..., xit} be such an orbit. This orbit corresponds to the orbit
O = {xi1 , ..., xit} of 〈g〉 on the vertex set of the Weyl alcove. Take the barycenter

b(O) =
1

t

t∑

j=1

xij

of the corresponding vertex set (also denoted O) of the Euclidean Coxeter complex.
For the point b = b(O) compute the rational numbers αi(b), i = 0, ..., n.

Then find the GCD (the greatest common denominator) of the rational numbers
αi(b), i = 0, ..., n, call it kO. Finally, let

k := LCM({kO, where O runs through all orbits of all 〈g〉 ⊂ F}).
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Remark 7.6. Instead of taking all g ∈ F it is enough to consider representatives of
their conjugacy classes in W̃/Waff (under the conjugation by the full automorphism
group of Γ̃).

It is clear that the number k computed this way satisfies the required property:

1. For the barycenter b of each L-admissible face of a, the multiple kb belongs to
the coweight lattice (which equals Naff · o)

2. The number k is the least natural number with this property.

The numbers kR and kw are listed in the table (11) below (the number i in the table
is the index of connection). We will verify the computation in the most interesting
case, namely for the root system of the A-type.

Lemma 7.7. Suppose that the Dynkin diagram Γ has type An and that F ∼= Z/m.
Then k = k(Waff , L) equals m. In particular, if L = Naff then we get kw = n+ 1.

Proof: The group F ∼= Z/m acts on the graph Γ̃ = Ãn by cyclic permutations. Let
g ∈ F be a permutation of order t; note that t divides m. Then for each orbit O of
g (in the vertex set of the Weyl alcove a) we get:

b(O) =
1

t

∑

xj∈O

xj .

For each i 6= 0, αi(b(O)) = 0 if xi /∈ O, and αi(b(O)) = 1/t if xi ∈ O. For the highest
root we get: θ(b(O)) = t−1

t
if x0 ∈ O and θ(b(O)) = 1 if x0 /∈ O . In any case, kO = t.

Since all t’s divide the order m of the group F (and for the generator of F , t = m),
the LCM of kO’s taken over all orbits and all elements of F , equals m.

Similarly we have

Lemma 7.8. Suppose that the Dynkin diagram Γ has type Dℓ and F ∼= Z/2. Then
k = k(Waff , L) equals 4 if F permutes at least two roots labelled by 2 and k = 2 if it
does not (the latter holds for the orthogonal groups).

We note that for all classical root systems except D4 where kw = kR, kw equals
the index of connection i and for all exceptional root systems, kR = kw (so for the
computation of saturation constants for Problem Q3 D4 behaves like an exceptional
root system).

IfG is a reductive algebraic group with the cocharacter lattice L and the associated
affine Weyl group Waff , we let K(G) = kinv fact(G) := k(Waff , L). The numbers
kinv fact listed below appear in the discussion of the saturation for the invariant factor
problem for the group G, see section 7.
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We then obtain:

Root system G θ i kR kw k(G)

Aℓ SL(ℓ+ 1) α1 + ...+ αℓ ℓ+ 1 1 ℓ+ 1 1

Aℓ GL(ℓ+ 1) 1

Aℓ PSL(ℓ+ 1) ℓ+ 1

Bℓ Spin(2ℓ+ 1), SO(2ℓ+ 1) α1 + 2α2 + ...+ 2αℓ 2 2 2 2

Cℓ Sp(2ℓ), PSp(2ℓ) 2α1 + 2α2 + ...+ 2αℓ−1 + αℓ 2 2 2 2

Dℓ Spin(2ℓ), SO(2ℓ) α1 + α2 + α3 + 2α4 + ...+ 2αℓ 4 2 4 2

Dℓ, ℓ > 4 PSO(2ℓ) 4

D4 PSO(8) α1 + α2 + α3 + 2α4 4 2 2 2

G2 G 3α1 + 2α2 1 6 6 6

F4 G 2α1 + 3α2 + 4α3 + 2α4 1 12 12 12

E6 G̃,Ad(G) α1 + α2 + 2α3 + 2α4 + 2α5 + 3α6 3 6 6 6

E7 G̃,Ad(G) α1 + 2α2 + 2α3 + 2α4 + 3α5+ 2 12 12 12
+3α6 + 4α7

E8 G 2α1 + 2α2 + 3α3 + 3α4 + 4α5+ 1 60 60 60
+4α6 + 5α7 + 6α8

(11)

Here G̃ denotes the simply-connected algebraic group, the symbol Ad(G) denotes
the algebraic group of adjoint type, i.e. the quotient of G̃ by its center. In the case of
root systems with the index of connection equal to 1, Ad(G) = G̃, so we have used the
symbol G to denote the unique connected algebraic group with the given root system.
Note that for the non-simply-connected classical groups we always get the order of
the fundamental group as the saturation factor (except for the group PSO(8)).

7.2 The existence of fixed vertices

We begin this section with few simple remarks about existence of polygons in X with
the vertices of a given type. As before, G ⊂ Aut(X) is such that the G-stabilizer
of the model apartment A acts on A through the group W̃ , whose translational part
is L = LG. Thus, if xy ⊂ X is a geodesic segment with x ∈ G · o, then y ∈ G · o
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iff σ(x, y) ∈ L. Therefore the following are equivalent for a polygon P ⊂ X, whose
∆-lengths are in L = L · o:

1. All vertices of P are in G · o.
2. One (say, the first) of the vertices of P is in G · o.
We also have

Lemma 7.9. For a vector
→
τ∈ Dn(X) ∩ Ln the following are equivalent:

1. There exists a polygon P ⊂ X with the ∆-lengths
→
τ , such that all (equivalently,

one of) the vertices of P are in G · o.
2. There exists a polygon P ⊂ X with the ∆-lengths

→
τ , such that all (equivalently,

one of) the vertices of P are special.

Proof: It is clear that (1)⇒(2), let’s prove the converse. Let P = x1 · · ·xn be a

polygon in X with the ∆-lengths
→
τ , such that the first vertex x1 of P is special.

Let y1, ..., yn+1 ∈ E be such that yiyi+1 ⊂ E have the same refined lengths as the
segments xixi+1, i = 1, ..., n. By assumption, the vertex y1 is special. Recall that
the normalizer Naff of Waff in the group of translations of E, acts transitively on
the set of special vertices. We identify the model apartment E with an apartment in
X containing the origin o. Let T ∈ Naff be such that T (y1) = o. Set zi := T (yi),
i = 1, ..., n. Then zi are in L-orbit of o for each i and according to the Transfer
Theorem 4.15, there exists a geodesic polygon Q = u1 · · ·un ⊂ X with the refined
side-lengths same as for zizi+1, i = 1, ..., n. In particular, σ(ui, ui+1) = τi for each i
and all vertices of Q are in G · o.

Thus a vector
→
τ belongs to the image of the map (9) iff there exists a polygon

P ⊂ X with special vertices and the ∆-side lengths
→
τ .

As we have seeing in chapter 5, the existence problem for polygons with the given
∆-side lengths in X is equivalent to the existence of a fixed point for a certain map
Φψ : X → X. In this section we will try to find conditions under which Φψ fixes
a special vertex in the building X. We first analyze the case when the Euclidean
Coxeter complex is irreducible.

We therefore assume that the affine Coxeter group Waff corresponds to a reduced
irreducible root system R of rank ℓ in an ℓ-dimensional vector space V , with the
underlying affine space E, see chapter 2. Recall that L is a lattice such that

Ltrans = Q(R∨) ⊂ L ⊂ Naff = P (R∨). (12)

As before, W̃ denotes the subgroup of Isom(E) generated by elements of Waff and
L. Then W̃ is a Euclidean Coxeter group with the linear part Wsph and translation
part L. Since W̃ normalizes Waff , we get the induced action of the finite abelian
group W̃/Waff

∼= L/Ltrans = F on the Weyl alcove α of Waff . The notion of L-
admissible faces of Weyl alcoves of (E,Waff ) introduced in section 7.1, carries over
to the building X. Note that in the case L = Ltrans, the only L-admissible faces are
the vertices of X.
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Suppose that τ = (τ1, ..., τn), where τi ∈ L for each i. Let

ψ = ((m1, ξ1), ..., (mn, ξn))

be a weighted configuration on ∂T itsX of the type τ , where mi = τi/|τi|. Consider
the map Φ = Φψ : X → X. Then Φ = Φn ◦ ... ◦ Φ1 : X → X where each Φi acts on
every apartment ai asymptotic to ξi by the translation Ti (by the vector which has
the same ∆-length as τi). Thus the assumption τi ∈ L ⊂ Naff implies that each Ti is
an automorphism of the Euclidean Coxeter complex (which we identify with ai). In
particular, the map Φ preserves the simplicial structure of X.

Theorem 7.10. Assume in addition that Φ has a fixed point in X. Then:

1. Φ fixes the barycenter of an L-admissible face in X.

2. If
∑n

i=1 τi ∈ Ltrans then Φ fixes a vertex of X.

3. More generally, if L̂ is a lattice normalized by Wsph, such that Ltrans ⊂ L̂ ⊂ L,

and
∑n

i=1 τi ∈ L̂, then Φ fixes the barycenter of an L̂-admissible face in X.

4. If Φ fixes a special vertex of X then
∑n

i=1 τi ∈ Ltrans. In particular, if the
Coxeter complex associated with X is the irreducible Coxeter complex (E,Waff ) of
type Aℓ, we have:

n∑

i=1

τi ∈ Ltrans ⇐⇒ Φ fixes a vertex of X.

Proof: 1. For a fixed point x = x1 of Φ, let δ denote the smallest face (a simplex)
in X containing x. Consider the apartments a1 ⊂ X (containing x1, x2, ξ1), a2 ⊂ X
(containing x2, x3, ξ2),..., an ⊂ X (containing xn, x1, ξn). Then Φ1(δ) ⊂ a1 ∩ a2,
Φ2 ◦ Φ1(δ) ⊂ a2 ∩ a3,..., Φn ◦ ... ◦ Φ1(δ) ⊂ an ∩ a1. Since Φ preserves the simplicial
structure of X and δ is the smallest simplex containing x, we get: Φ(δ) = δ.

The map Φ|δ : δ → δ is the composition of maps

(Tn ◦ ... ◦ T2 ◦ T1)|δ,

where each Ti : ai → ai is a translation. Let ϕ1 : E → a1 be an (isometric) parameter-
ization as in the definition of a space modeled on a Coxeter complex. We can assume
that δ′ := ϕ−1

1 (δ) is a face of the Weyl alcove α ⊂ E. There exists a parameterization
ϕ2 : E → a2 so that ϕ−1

2 ◦ ϕ1 = id on the domain of this composition. Similarly (like
in the definition of a developing map of a geometric structure) we choose parame-
terizations ϕi, i = 1, ..., n, so that for each i, ϕ−1

i+1 ◦ ϕi = id on the domain of this
composition. Then we get:

(Tn ◦ ... ◦ T2 ◦ T1)|δ = (Tn ◦ ϕn ◦ ϕ−1
n−1 ◦ Tn−1 ◦ ... ◦ ϕ−1

2 ◦ T2 ◦ ϕ2 ◦ ϕ−1
1 ◦ T1)|δ.

Let T ′
i := ϕ−1

i ◦ Ti ◦ ϕi : E → E; these maps are translations by the vectors τ ′i , which
are in the Waff -orbits of the vectors τi, i = 1, ..., n. Set T ′ := T ′

n ◦ ... ◦ T ′
1. Then the

“holonomy map”

T ′ = ϕ−1
n ◦ Tn ◦ ϕn ◦ ϕ−1

n−1 ◦ ... ◦ ϕ−1
2 ◦ T2 ◦ ϕ2 ◦ ϕ−1

1 ◦ T1 ◦ ϕ1 : E → E
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sends the simplex δ′ to itself. Moreover,

T ′|δ′ = ϕ−1
n ◦ Φ ◦ ϕ1|δ′ = ϕ−1

n ◦ ϕ1 ◦ ϕ−1
1 ◦ Φ ◦ ϕ1|δ′ = w ◦ ϕ−1

1 ◦ Φ ◦ ϕ1|δ′ ,

where w ∈ Waff . Thus, by letting Φ′|δ′ := ϕ−1
1 ◦ Φ ◦ ϕ1|δ′ , we conclude that Φ′|δ′

admits the extension by w−1T ′ to the entire E. Since w−1T ′ ∈ W̃ , Φ induces an
automorphism of the simplex δ by an element of the group W̃ . We note that Φ does
not necessarily permute all the vertices of δ. Consider however an orbit of 〈Φ〉 on the
vertex set of δ. It is clear that this orbit spans an L-admissible simplex c in δ ⊂ X;
since Φ|δ is a 1-Lipschitz automorphism, it preserves the barycenter of the simplex c
and hence the first assertion of the theorem follows.

2. Let us prove the second assertion. Set t =
∑n

i=1 τi. Note that the map T ′
i is

the translation in E by the vector τ ′i where τ ′i = wi(τi) for some wi ∈ Wsph. The
composition T ′ = T ′

n ◦ ... ◦ T ′
1 is the translation by the vector

v =
n∑

i=1

τ ′i =
n∑

i=1

wi(τi).

We claim that v ∈ Ltrans iff t ∈ Ltrans. We leave the proof of the following elementary
lemma to the reader:

Lemma 7.11. If τ ∈ P (R∨) then for each w ∈Wsph we have:

w(τ) − τ ∈ Q(R∨).

Therefore

v =
n∑

i=1

(wi(τi) − τi) +
n∑

i=1

τi = s+ t,

where s ∈ Q(R∨) = Ltrans. This proves the claim.

Recall that Φ′|δ′ admits the extension by w−1T ′ (where w ∈ Waff ) to the entire
model apartment E. Thus, if t ∈ Ltrans then Φ′|δ′ is the restriction of an element
g ∈ Waff . Since the alcove α is a fundamental domain for the action of Waff on E
and δ′ is a face of α, we conclude that Φ′|δ′ = id. Hence Φ fixes a vertex of X.

3. The proof of 3 is analogous to the proof of 2 and we leave it to the reader.

4. Lastly, suppose that Φ fixes a special vertex x of X, then δ = {x}, δ′ = {x′} is
a special vertex in E, and Φ′(x′) = x′ implies that T ′(x′) = w(x′), where w ∈ Waff .
Since x′ is a special vertex, w = T ◦ w′, where w′ ∈ Waff fixes x′ and T ∈ Ltrans.
Thus T ′(x′) = T (x′), which implies that T ′ ∈ Ltrans, and hence t ∈ Ltrans.

As an immediate corollary of the above theorem we get:

Corollary 7.12. 1. For each
→
τ= (τ1, ..., τn) ∈ Dn(X) ∩ Ln such that

∑
i τi ∈ Ltrans,

there exists a polygon P ⊂ X such that σ(P ) =
→
τ and the vertices of P are at the

vertices of X.

2. If there exists a polygon P ⊂ X with special vertices and σ(P ) =
→
τ , then∑

i τi ∈ Ltrans.
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Example 7.13. For the irreducible Coxeter complex (E,Waff ) of the type C2, there
are vectors τ1, τ2, τ3 ∈ L = P (R∨) such that Φ fixes a vertex of X but

∑3
i=1 τi /∈

Q(R∨) = Ltrans.

Proof: Consider the billiard triangle T shown in Figure 6. It has geodesic sides zx, zy
and the broken side xuy. Its ∆-side lengths are Ltrans-integral and it has non-special
vertices.

z

y
u

x

l

1

10 0.5

0.5

1.5

Figure 6: A billiard triangle.

Let us check that this triangle can be unfolded to a geodesic triangle ∆(z, x, y′) in
X (with vertices at the vertices of X), in the sense of section 6.1. This can be done
as follows. We note that the geodesic l (weakly) separates z from x and y. Hence we
can unfold the billiard triangle T to a geodesic triangle in X using Lemma 6.7.

Then the vectors τ1, τ2 representing the sides xz and xy′ of ∆(x, y′, z) are in the
coroot lattice Q(R∨), but the vector τ3 representing the side zy is not in the coroot
lattice. Hence

∑3
i=1 τi /∈ Q(R∨).

Thus the fixed point of Φ may not be special. However, if Naff acts transitively
on the vertices of E, every vertex is special and we get:

Corollary 7.14. Suppose that the normalizer Naff of Waff in V acts transitively on
the vertices of E. Then the image of Dref,L

n (X) in Dn(X) equals

DL,0
n (X) := {(τ1, ..., τn) ∈ Dn(X) ∩ Ln,

n∑

i=1

τi ∈ Ltrans}.

The example of a Coxeter complex for which the hypothesis of Corollary 7.14
holds is given by (E,Waff ) for which the finite Weyl group Wsph is of type Aℓ. Then
each vertex of the Coxeter complex (E,Waff ) is special.
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Next we consider the general case when the Coxeter complex (E,Waff) is re-
ducible. As in section 4.2, we have the corresponding deRham decomposition of the
building X:

X = X0 ×X1 × ...×Xs,

where X0 is the flat deRham factor, the group W i
aff (i > 0) acts as an irreducible

affine Coxeter group on the Euclidean space Ei. The Weyl chamber ∆ is the product∏s
i=0 ∆i of Weyl chambers, where of course ∆0 = E0. Let pi denote the orthogonal

projection X → Xi, i = 0, 1, ..., s; by abusing notation we will also use pi to denote
the orthogonal projections E → Ei. Given a lattice L′ in E we get the inclusions

Litrans ⊂ pi(L) = Li ⊂ N i
aff , i = 1, ..., s.

Note that

Dn(X0) = {(τ1, ..., τn) :

n∑

i=1

τi = 0}.

We have

Proposition 7.15. 1. Dn(X) =
∏s

i=0Dn(Xi).

2. For each
→
τ∈ ∆n, there is a polygon P ⊂ X with the ∆-side lengths

→
τ and the

vertices at the (special) vertices of X iff for each i there exists a polygon Pi ⊂ Xi with

the ∆i-side lengths pi(
→
τ ) and the vertices at the (special) vertices of Xi.

3. Dref,L′

n (X) =
∏s

i=0D
ref,L′

i
n (Xi).

Proof: We will prove the third assertion since the proofs of (1) and (2) are similar.
First of all, if P ⊂ X is a polygon with L′-integral refined side-lengths then its
projections Pi := pi(P ) ⊂ Xi are also polygons with Li-integral refined side-lengths.
Conversely, if Pi ⊂ Xi are polygons with L′

i-integral refined side-lengths and xij is
the j-th vertex of the polygon Pi, we set

xj := (x0j , ..., xsj) ∈ X,

this point is a vertex of X since all xij ’s are vertices of the corresponding buildings Xi.
This defines the polygon P = x1 · · ·xn in X. It is clear that the refined side-lengths
of P are L′-integral.

The above proposition implies that Corollaries 7.12 and 7.14 remain valid for
Euclidean buildings with reducible Coxeter complexes.

As in section 7.1, given a lattice L′ in E we define the lattice L as the intersection
of L′ and the translation group of E1 ⊕ ... ⊕ Es. We now can compute the image of
the map (9) “up to saturation”:

Theorem 7.16. 1. Let k = k(Waff , L
′) = k(Waff , L) be the saturation factor defined

in section 7.1. Then for each
→
τ∈ Dn(X)∩ (kL′)n, there exists an n-gon P ⊂ X with

special vertices and ∆-side lengths τ1, ..., τn.
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2. Let R be the root system corresponding to the Coxeter complex (E,Waff) and
let k := kR = k(Waff , Ltrans) be the saturation factor defined in section 7.1. Then for

each
→
τ∈ Dn(X) ∩ (kL′)n satisfying

∑

i

τi ∈ Ltrans = Q(R∨)

there exists an n-gon P ⊂ X with special vertices and ∆-side lengths τ1, ..., τn.

Proof: 1. We first consider the case when the root system R is reduced, irreducible and
has rank equal the dimension of the space V ; then L = L′. Let P ′ ⊂ X be a polygon
with the ∆-lengths 1

k
τ1, ...,

1
k
τn. Since 1

k
τi ∈ L for each i, Theorem 7.10 implies that the

polygon P ′ can be chosen so that its first vertex is the barycenter of an L-admissible
simplex in X. Let xixi+1, i = 1, 2, ..., n, be oriented segments in the model apartment
E, which represent the refined side-lengths of the polygon P ′; the point x1 (and hence
xi for each i = 2, ..., n+1) is the barycenter of an L-admissible simplex in E. We regard
E as the vector space V by identifying the origin with the special vertex o. Then,
according to the definition of k = k(Waff , L), the segments (kxi)(kxi+1) = yiyi+1 have
end-points at the special vertices of E. Consider the affine transformation ι : E → E
which is the homothety x 7→ kx. Then ι : (E,Waff) → (E,Waff ) is an injective
endomorphism of the affine Coxeter systems and the Transfer Theorem 4.15 implies
that there exists a polygon P in X whose refined side-lengths are represented by
yiyi+1, i = 1, ..., n. The vertices of P are special and its ∆-side-lengths are τ1, ..., τn.

We now consider the general case when the Coxeter complex (E,Waff ) is re-
ducible. Let P ′ ⊂ X be a polygon with the ∆-lengths 1

k
τ1, ...,

1
k
τn. Since p0(

∑n
i=1 τi) =

0, we have
1

k

n∑

i=1

τi ∈ L′ ∩ V1 ⊕ ...⊕ Vs = L.

Hence for each j = 1, ..., s we get

1

k

n∑

i=1

pj(τi) ∈ Lj = pj(L).

Therefore, by Theorem 7.10 (part 3, where we take L̂ = Lj , j = 1, ..., s), the polygon
P ′ can be chosen so that for each j = 1, ..., s, the vertices of pj(P

′) are barycenters
of Lj-admissible faces of Xj . Recall that k = LCM(k1, ..., ks).

By the irreducible case, for each j = 1, ..., s there is a polygon P ′
j ⊂ Xj with special

vertices and side-lengths
kj

k
pj(τ1), ..., pj(τn). Let xi,jxi+1,j, i = 1, 2, ..., n, j = 1, ..., s,

be oriented segments in the model apartment Ej , which represent the refined side-
lengths of the polygon P ′

j . It follows from the Transfer Theorem 4.15 that for each
j = 1, ..., s there exists a polygon Pj ⊂ Xj whose refined side-lengths are represented

by the segments (mjxi,j)(mjxi+1,j), where mj = k/kj . Note that mj
kj

k
pj(τi) = pj(τi)

for each i and j. By the definition of kj, for each j the vertices of Pj are special
vertices of Xj . Now Proposition 7.15 implies that there exists a polygon P ⊂ X with
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the special vertices, whose projections to Xj are Pj for each j and the ∆-side lengths
of P are τ1, ..., τn.

2. The proof of this assertion is analogous to the proof of 1. First, suppose that
the Coxeter complex is irreducible. Then, according to Theorem 7.10 (part 2), a
polygon P ′ ⊂ X with the ∆-lengths 1

k
τ1, ...,

1
k
τn can be chosen so that its vertices are

vertices of X. Let xixi+1, i = 1, 2, ..., n, be oriented segments in the model apartment
E, which represent the refined side-lengths of the polygon P ′. Then, by the definition
of k = kR, the end-points of the segments (kxi)(kxi+1) are special vertices of X. The
rest of the argument is the same as for (1).

7.3 Saturation factors for reductive groups

We now apply the results from the previous section to the generalized Invariant Factor
Problem for nonarchimedean reductive Lie groups G. Suppose that G is a connected
reductive algebraic Lie group over K, where K is a field with discrete valuation v. Let
G := G(K). The group G determines a Bruhat-Tits building X, Bruhat-Tits root
system R, the corresponding affine Coxeter group Waff and the extended cocharacter
lattice L := LG satisfying the double inclusion (12). Define kinv fact(G) := k(Waff , L).

As an immediate corollary of Theorem 7.16, we obtain:

Corollary 7.17. 1. For k = kinv fact(G) and any τ ∈ Ln ∩ Dn(X), there exists an
n-gon P in X with ∆-side-lengths equal to kτ and vertices in G · o.

2. For k = kR and any

→
τ∈ DL,0

n (X) = {→
τ∈ Dn(X) ∩ Ln :

n∑

i=1

τi ∈ Q(R∨)},

there exist an n-gon P with ∆-side lengths equal to kτ and vertices in G · o.
3. If G is semisimple and simply-connected then DL,0

n (X) = DL
n (X) and

kinv fact(G) = kR.

Proof: Parts (1) and (2) follow from Theorem 7.16 (parts (1) and (2) respectively)
and Lemma 7.9.

To prove (3) note that in this case Q(R∨) = L and thus

kinv fact(G) = kR = k(Waff , Q(R∨)).

Remark 7.18. We emphasize that kinv fact(G) and kR depend only on G and not the
choice of τ .

By specializing to the case n = 3 and using the equivalence (see §4.4) of Problem
RGTI for Euclidean buildings with the Problem Q3, we get:
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Corollary 7.19. For each k ∈ N divisible by kinv fact(G) and each triple (α, β, γ) ∈
k(L ∩ ∆)3 which satisfies the generalized triangle inequalities for the space X, there
exist representatives A,B,C of the double coset classes

G(O)α(π)G(O), G(O)β(π)G(O), G(O)γ(π)G(O),

such that ABC = 1.

Example 7.20. Let G = Spin(5). Then Example 6.9 shows that there is a triple
(α, β, γ) ∈ (L ∩ ∆)3, L = Q(R∨), such that α, β, γ satisfy the generalized triangle
inequalities and such that one cannot find A,B,C in the corresponding double cosets
of Spin(5,K) such that ABC = 1.

Thus one cannot take k = 1 for the case G = Spin(5).

Example 7.21. kinv fact(GL(m)) = 1. In other words, let X be the Bruhat-Tits
building associated with the group GL(m,K), where K is a field with nonarchimedean

discrete valuation and the value group Z. Let
→
τ∈ Zm have entries arranged in de-

creasing order. Then
→
τ satisfies the generalized triangle inequalities (i.e.

→
τ∈ Dn(X))

if and only if there exists an n-gon P in X with the first vertex at the origin (the

point stabilized by GL(m,O)) and ∆-side lengths
→
τ .

Although this example is a special case of Theorem 7.16 (part 2), we present a
complete proof for the benefit of the reader.

Proof: Recall (see Example 7.3) that the Euclidean Coxeter complex (E,Waff ) of X
is reducible, E = E0 ⊕E1, where E1 is the kernel of the map

tr : (x1, ..., xm) 7→ x1 + ...+ xm,

and E0 is the span of (1, ..., 1). Let V1 be the vector space underlying E1. We may
identify V1 with the Lie algebra of traceless real diagonal matrices, the real Cartan
subalgebra of the Lie algebra of SL(m). Moreover (see Example 7.3), L = LGL(m) =
Zm, is the cocharacter lattice; the orthogonal projection of L to V1 is the coweight
lattice of SL(m), and the root system is of type Am−1. On the other hand, suppose

that
→
τ= (τ1, ..., τn). Then, since

→
τ∈ Dn(X), there exists a polygon P̂ in X with the

∆-side lengths τi. Let X = X0 × X1 be the deRham decomposition of X, where
X0 = E0

∼= R is the flat factor. Since the projection of P̂ to the flat deRham factor
E0 of X is also a polygon, we get:

p0(τ1 + ... + τn) = tr(τ1 + ... + τn) = 0.

Hence τ1 + ... + τn ∈ L ∩ E1 = Q(R∨). Therefore we can apply Theorem 7.10 (part
2 or 4) to conclude that there exists a polygon P ′ ⊂ X1 whose vertices are (special)
vertices of X1 and whose ∆-side lengths are p1(τ1), ..., p1(τn). By combining this with
the polygon p0(P̂ ) via Proposition 7.15 we conclude that there exists a polygon P ⊂ X
whose vertices are (special) vertices of X and whose ∆-side lengths are τ1, ..., τn. Thus
kinv fact(GL(m)) = 1.
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Theorem 7.22. 1. Let DG be the derived (i.e. commutator) subgroup of G. Then

kinv fact(G) = kinv fact(DG). (13)

2. Moreover, if G1, ..., Gs are the simple factors of DG then

kinv fact(G) = LCM(kinv fact(G1), ..., kinv fact(Gs)).

Proof: The equation (13) follows from three observations:

We first claim that the lattice L′ = LG ∩V1 ⊕ ...⊕Vs equals LDG. This is because
we can assume that the maximal split tori TDG and TG of DG and G are related by

TDG = TG ∩DG.

Hence the cocharacter lattice of DG is the sublattice of LG consisting of those cochar-
acters whose image is contained in DG. Passing to tangent vectors at the identity
yields the claim.

Second, by definition, the coroot system R∨
DG of DG is the same as the coroot

system R∨
G of G regarded as a root system in E1 ⊕ ...⊕Es. Thus G and DG have the

same affine Weyl group Waff .

Lastly, the projection of the lattice LG into V1 ⊕ ...⊕ Vs is contained in P (R∨) ∩
V1 ⊕ ...⊕ Vs.

With these observations, the same argument as in the case ofGL(m) goes through:

k(Waff , LG) = k(Waff , LDG)

(the saturation factor kinv fact depends only on the group Waff and the cocharacter
lattice), which implies (13).

To prove the second assertion of the Theorem note that the Euclidean Coxeter
complex for DG is the direct product of the Euclidean Coxeter complexes for its
factors Gi, i = 1, ..., s. Let T i be maximal split tori of Gi, i = 1, ..., s and Li = X∗(T i)
be their cocharacter lattices. Let TG :=

∏
i T i, and L′ := X∗(TG); then each Li

is the projection of L′ to Vi, where (Vi,W
i
aff ) are the Euclidean Coxeter complexes

associated with Gi.

Then Definition 7.5 implies that

k(Waff , L
′) = LCM(k(W 1

aff , L1), ...., k(W
s
aff , Ls)).

We can also give a complete solution (in terms of the stability inequalities) for the
Invariant Factor Problem Q3 in the case of nonarchimedean reductive Lie groups G
with root system of type Am−1. For instance, G could be the quotient of SL(m) by
a subgroup of its center. As before, let L denote the lattice LG and let X := XG be
the Bruhat-Tits building associated with G.
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Theorem 7.23. Let G be a reductive algebraic group over K, so that the group G
has the associated root system R of type Am−1. Then the natural embedding

Dref,L
3 (X) →֒ DL

3 (X) = {(α, β, γ) ∈ D3(X) ∩ L3 : α+ β + γ ∈ Q(R∨)} (14)

is onto.

Proof: The assertion follows from Corollary 7.17 and the fact that kR = 1 for the
root system of type A.

Specializing to the case of GL(m) and SL(m) we get the following corollary:

Corollary 7.24. Let X = Pm be the symmetric space of symmetric positive-definite
m × m-matrices. Then there exists a solution to the Invariant Factor Problem Q3
for the case G = SL(m,K) (or GL(m,K)) and K = SL(m,O) (resp. GL(m,O)) if
and only if α, β and γ are integer diagonal matrices so that tr(α + β + γ) = 0 and
the projections

α− 1

m
tr(α)I, β − 1

m
tr(β)I, γ − 1

m
tr(γ)I

satisfy the stability inequalities 5.12 for the space X. Here I is the identity matrix.

8 The comparison of Problems Q3 and Q4

8.1 The Hecke ring

In this section we will (for the most part) follow the notation of [Gro]. We urge the
reader to consult this paper for more details. However we will let K and O be as
in section 3.3. We will assume that the valuation v is discrete, the field K is locally
compact and the residue field is finite of order q and uniformizer π.

Remark 8.1. The assumption that K is locally compact is equivalent to K being a
totally-disconnected local field, see [Ta, pg. 5]. By applying Theorem 4.15, it follows
that the main result of this section, Theorem 8.19, also holds in the case when K is
not locally compact, for example the case in which K = C((t)) the field of fractions of
the ring of formal power series C[[t]].

We let G be a connected reductive algebraic group over K. We will assume that
G is split over K. Then G is the general fiber of a group scheme (also denoted G)
over O with reductive special fiber. We fix a maximal split torus T ⊂ G defined over
O. We put G = G(K), K = G(O) and T = T (K). We let B ⊂ G be a Borel subgroup
normalized by T and put B = B(K). We let U be the unipotent radical of B whence
B = TU . Let X = XG denote the Bruhat-Tits building associated with the group G;
o ∈ X is a distinguished special vertex stabilized by the compact subgroup K.

We have already defined in section 3.3 the free abelian groups (of rank l = dim(T ))
X∗(T ) and X∗(T ) and a perfect Z-valued pairing 〈 , 〉 between them. The first
contains the coroots R∨, the second contains the roots R of G.
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The roots are the characters of T that occur in the adjoint representation on the
Lie algebra of G. The subset R+ of the roots that occur in representation on the
Lie algebra of B forms a positive system and the indecomposable elements of that
positive system form a system of simple roots Π. We let W denote the corresponding
(finite) Weyl group.

The root basis Π determines a positive Weyl chamber P+ in X∗(T ), by

P+ = {λ ∈ X∗(T ) : 〈λ, α〉 ≥ 0, α ∈ Π}.

We define a partial ordering on P+ by λ > µ iff the difference λ − µ is a sum of
positive coroots.

We will use the notation 0 for the trivial cocharacter.

We define the element ρ ∈ X∗(T ) ⊗ Z[1/2] by

2ρ =
∑

α∈R+

α.

We recall that ρ is the sum of the fundamental weights of R. Then, for all nontrivial
λ ∈ P+, the half-integer 〈λ, ρ〉 is positive.

Definition 8.2. The Hecke ring H = H(G,K) is the ring of all locally constant, com-
pactly supported functions f : G −→ Z which are K-biinvariant. The multiplication
in H is by the convolution

f · g(z) =

∫

G

f(x) · g(x−1z)dx

where dx is the Haar measure on G giving K volume 1.

We claim that the function f · g also takes values in Z. Indeed, f and g are finite
sums of characteristic functions of K-double cosets. Thus it suffices to prove the claim
in the case that f and g are both characteristic functions of K-double cosets. In this
case it is immediate that their convolution product is the characteristic function of
the set of products of the elements in the two double cosets. This product set is itself
a finite union of K-double cosets. This implies that the structure constants mλ,µ(ν) of
the Hecke ring, defined below, are nonnegative integers. The characteristic function
of K is the unit element of H. For the proof of the next lemma see [Gro, §2].

Lemma 8.3. H is commutative and associative.

In fact much more is true. For λ ∈ X∗(T ) let cλ be the characteristic function of
the corresponding K-double coset λ(π) ∈ K\G/K.

Lemma 8.4. 1. The assignment λ −→ cλ induces an isomorphism of free abelian
groups Z[P+] −→ H.
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2. The Hecke ring is a filtered ring with the filtration levels indexed by the ordered
abelian semigroup P+. In particular, we have

cλ · cµ = cλ+µ +
∑

ν<λ+µ

mλ,µ(ν)cν . (15)

Here and in what follows
∑
ν<µ

denotes the sum over elements ν from P+. We note

that this sum is finite.

We will prove in Lemma 8.17, that the structure constantsmλ,µ(ν) are polynomials
in q with integer coefficients. Here and below we will keep track of the dependence
of certain quantities on the cardinality q of the residue field. Thus q will play the
role of a variable in what follows. One of the main points here is that the structure
constants nλ,µ(ν) of the representation ring R(G∨) do not depend on q. They will be
encoded in the coefficients of the polynomials mλ,µ(ν) (along with the coefficients of
the Kazhdan-Lusztig polynomials bλ(µ)).

We recall the definition of the structure constants mα,β,γ(δ): Given double cosets
of α(π), β(π), γ(π) in K\G/K, consider the characteristic functions cα , cβ and cγ of
these double cosets; then decompose the triple product

cα · cβ · cγ =
∑

δ

mα,β,γ(δ) cδ

in the Hecke algebra H. This defines mα,β,γ(δ). Our primary interest is mα,β,γ(0)
(where 0 is the trivial character); it will be viewed as a function of the variable q.

In our proof of the saturation conjecture for GL(m) we will need the following
lemma, where γ∗ denotes the weight contragredient to γ. Then γ∗(π) is a represen-
tative for the double coset obtained by inverting the elements in the one represented
by γ(π).

Lemma 8.5.
mα,β,γ(0) = vol(Kγ(π)K) mα,β(γ

∗).

Proof: We define an inner product (( , )) on C0(G), the space of compactly supported
complex-valued functions on G, by

((f, g)) :=

∫

G

f(x)g(x)dx.

We first claim that

((cα, cβ)) =

{
vol Kα(π)K, if α = β

0, otherwise.

Indeed

((cα, cβ)) =

∫

G

cα(x)cβ(x)dx.
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The claim follows by noting that the product function is identically one if the cosets
coincide and otherwise it is identically zero.

Next we observe that
((cα, cβ)) = cα · cβ∗(1).

Indeed, the right-hand side is equal to

∫

G

cα(x)cβ∗(x−1)dx =

∫

G

cα(x)cβ(x)dx.

Hence

cα · cβ∗(1) =

{
vol Kα(π)K, if α = β

0, otherwise.

Finally

mα,β,γ∗(0) =
∑

δ

mα,β(δ)(cδ · cγ∗)(1) = mα,β(γ)vol Kγ(π)K.

8.2 A geometric interpretation of mα,β,γ(0)

In this section we will prove the following

Theorem 8.6. mα,β,γ(0) is the number of triangles in the building X with first vertex
o and side-lengths α, β, γ.

We recall that given τ ∈ ∆ we define S(o, τ) = {x ∈ X : σ(o, x) = τ}, the
“∆-sphere of radius τ and center at o”.

Lemma 8.7. For each τ ∈ ∆ the group K acts transitively on S(o, τ).

Proof: Let x ∈ S(o, τ). By the properties of the action of G on the building X,
presented in the List 4.10, there exists g ∈ G such that g · o = o and g · x ∈ ∆ ⊂ A
where A is the model apartment. Since g · o = o we have g = k ∈ K, whence

−−−→
o k · x = −→o τ , (equality of vectors).

If follows that k · x = τ and x = k−1τ .

As a consequence we can identify the right K–quotients of the K–double cosets
in G to the ∆–spheres S(o, τ) in the building. The proof of the following lemma is
then clear.

Lemma 8.8. Let α ∈ X∗(T ). Then the map k −→ k ·α(π) induces a bijection between
the quotient Kα(π)K/K and S(o, α(π)).
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We define
f : Kα(π)K/K ×Kγ∗(π)K/K −→ K\G/K

by sending (g1, g2) to the double coset represented by f(g1, g2) := g−1
1 · g2. The reader

will observe that f is well-defined. Thus f induces a map (again denoted f) from
S(o, α(π)) × S(o, γ∗(π)) to K\G/K.

Now let α, β, γ ∈ X∗(T ). We define the set

Tα,β,γ := {(x, y) ∈ Kα(π)K/K ×Kγ∗(π)K/K : f(x, y) ∈ Kβ(π)K}.
Note that this set is finite since q <∞. Let ∆(o, x1, x2) be a triangle in the building
X with the ∆-side lengths α, β, γ. Then f(x1, x2) ∈ Kβ(π)K and we obtain a map
F : ∆(o, x1, x2) 7→ (x1, x2) from the space of triangles in X with side-lengths α, β, γ
and first vertex at o into the set Tα,β,γ . We leave the proof of the following lemma to
the reader.

Lemma 8.9. F is a bijection.

Remark 8.10. The appearance of the contragredient coweight γ∗ comes about because
we require σ(x2, o) = γ, but σ(x2, o) is the contragredient of the σ(o, x2).

Write
Kα(π)K = ∪Ii=1xiK and Kγ∗(π)K = ∪Jj=1yjK,

where both I and J are finite (since q < ∞). The theorem will be a consequence of
the following lemma.

Lemma 8.11. mα,β,γ(0) = #(Tα,β,γ).

Proof: We have

mα,β,γ(0) = cα · cβ · cγ(1) =

∫

G

(

∫

G

cα(x)cβ(x
−1y)cγ(y

−1)dx)dy

=

∫

G

(
I∑

i=1

∫

K

cα(xik)cβ(k
−1x−1

i y)dk

)

cγ(y
−1)dy

=
I∑

i=1

cα(xi)

∫

G

cβ(x
−1
i y)cγ(y

−1)dy

=

I∑

i=1

J∑

j=1

cα(xi)

∫

K

cβ(x
−1
i yjk)cγ(k

−1y−1
j )dk

=

I∑

i=1

J∑

j=1

cα(xi)cβ(x
−1
i yj)cγ(y

−1
j )

=
I∑

i=1

J∑

j=1

cβ(x
−1
i yj) = #(Tα,β,γ)

As a consequence of Theorem 8.6 and Lemma 8.5, we find that the structure
constants for the Hecke algebra are determined by the geometry of the building.
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Theorem 8.12. Let α, β, γ ∈ X∗(T ). Then we have

mα,β(γ) =
#(Tα,β,γ∗)

#(S(o, γ(π)))
. (16)

Proof: We have only to apply Lemma 8.5 and observe that since we are assuming
that vol(K) = 1 we have vol(Kγ(π)K) = vol(Kγ(π)K/K) = #(S(o, γ(π))).

8.3 The Satake transform

In this section we define an integral transform S, the Satake transform, from com-
pactly supported, K-biinvariant functions on G to left K-invariant, right U -invariant
functions on G.

Let δ : B −→ R∗
+ be the modular function of B, [Gro, §3]. We may regard δ as

a left K-invariant, right U -invariant function on G. By the Iwasawa decomposition
for G, [Tits, pg. 51], any such function is determined by its restriction to T . We
normalize the Haar measure du on U so that the open subgroup K ∩ U has measure
1. For a compactly supported K-biinvariant function f on G we define its Satake
transform as a function Sf(g) on G given by

Sf(g) = δ(g)1/2 ·
∫

U

f(gu)du.

Then Sf is a left K-invariant, right U -invariant function on G with values in
Z[q1/2, q−1/2]; this function is determined by its restriction to T/T ∩K ∼= X∗(T ). The
main result of [Sat] (see also [C, pg. 147]), is that the image of S lies in the subring

(Z[X∗(T )])W ⊗ Z[q1/2, q−1/2] ∼= R(G∨) ⊗ Z[q1/2, q−1/2],

where ∼= is a ring isomorphism. Here and below, G∨ = G∨(C). Furthermore we have
(see [Sat], [C, pg. 147]):

Theorem 8.13. The Satake transform gives a ring isomorphism

S : H⊗ Z[q1/2, q−1/2] ∼= R(G∨) ⊗ Z[q1/2, q−1/2].

For λ ∈ P+ let chVλ be the character of the irreducible representation Vλ of
G∨ (see e.g. [FH, pg. 375]). We may identify chVλ with a W -invariant element of
Z[X∗(T∨)] = Z[X∗(T )].

In what follows we will need two bases for the free Z[q1/2, q−1/2]-module R(G∨)⊗
Z[q1/2, q−1/2]. The first basis is

S := {S(cλ) : λ ∈ P+},

the second basis is
R := {chVλ : λ ∈ P+}.
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The change of basis matrices relating these two bases are both upper triangular
(see Lemma 8.14 below) with entries in the ring Z[q1/2, q−1/2]. We define the order (at
∞) ord(f) of the element f =

∑k=N
k=−M akq

k/2 ∈ Z[q1/2, q−1/2] by ord(f) = N , provided
that aN 6= 0. Note that if f is a polynomial in q then ord(f) = 2deg(f) where deg(f)
is the degree of f in q. We will accordingly extend the degree to Z[q1/2, q−1/2] by
defining

deg(f) = 1/2 ord(f).

Thus the extended degree takes values in the half integers. We define degS(F ) for
F ∈ R(G∨) ⊗ Z[q1/2, q−1/2] to be the maximum of the degrees of the components
of F when F is expressed in the basis S. We will use a similar convention (i.e.,
expanding it terms of the basis S) when we speak of the “leading term” of F . We
retain the notation deg (without subscript) for the ordinary notion of degree ∈ 1

2
Z

for the Laurent polynomials in Z[q1/2, q−1/2]. Analogously, we define degR(F ) when
F is expanded in terms of the basis R.

In what follows we will need two formal properties of degR and degS . We leave
their proofs to the reader. The first is the ultrametric inequality which we state for
degS

degS(
n∑

i=1

Fi) ≤ max
1≤i≤n

(degS(F1), · · · , degS(Fn)).

The second is the obvious identity (again stated for degS)

degS(p · F ) = deg(p) + degS(F ), p ∈ Z[q1/2, q−1/2].

For the following lemma, due to Lusztig, we refer the reader to [Gro, (3.11) and
(3.12)], [Lu2, (6.10)]. See [Ha1, §2], for the statement of the lemma in the generality
we require here.

Lemma 8.14. 1. There exist polynomials aλ(µ) in q such that

S(cλ) = q〈λ,ρ〉chVλ +
∑

µ<λ

aλ(µ)q〈µ,ρ〉chVµ.

2. Conversely, there exist polynomials bλ(µ) in q such that

q〈λ,ρ〉chVλ = S(cλ) +
∑

µ<λ

bλ(µ)S(cµ).

The degree estimate below follows from [Lu2], who proved that the polynomials
bλ(µ) are Kazhdan-Lusztig polynomials. These polynomials have many remarkable
properties but the only property we need here is the degree estimate. The inequality
of the next lemma will play a critical role in our proofs.

Lemma 8.15. For all µ < λ, µ ∈ P+ we have:

deg(bλ(µ)) < 〈λ− µ, ρ〉 ≤ 〈λ, ρ〉.
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This lemma when combined with Lemma 8.14 has the following consequences.

Lemma 8.16.

1. degS(chVλ) < 0, for all λ ∈ P+ \ {0} .

2. degS ≤ degR.

Proof: By Lemma 8.14 we get

chVλ = q−〈λ,ρ〉S(cλ) +
∑

µ<λ

q−〈λ,ρ〉bλ(µ)S(cµ).

Hence Lemma 8.15 implies
degS(chVλ) < 0.

Since degR(chVλ) = 0 we find that the inequality of the second statement of the
lemma holds on a basis. Consequently it holds for all F ∈ H⊗Z[q1/2, q−1/2] ∼= R(G∨)⊗
Z[q1/2, q−1/2]. Indeed, writing F =

∑n
i=1 pi chVi we obtain, using the ultrametric

inequality and the first statement of the lemma,

degS(F ) ≤ max
1≤i≤n

(degS(p1chV1), · · · , degS(pnchVn))

≤ (deg(p1), · · · , deg(pn)) = degR(F ).

Recall that 0 denote the trivial cocharacter.

Lemma 8.17. There exists a polynomial Mα,β,γ(q) in the variable q, such that we
have the equality of functions in q:

mα,β,γ(0) = Mα,β,γ(q).

Furthermore, all structure constants mα,β(γ) are polynomials in q.

Proof: We will prove that all the structure constants mα,β(γ) are polynomials in q.
The first statement will follow from this.

Following [Gro] we define φλ ∈ R(G∨) ⊗ Z[q1/2, q−1/2] by

φλ = q〈λ,ρ〉chVλ.

The elements {φλ : λ ∈ X∗(T∨)} give a new basis for the Z[q1/2, q−1/2]-module
R(G∨) ⊗ Z[q1/2, q−1/2].

We claim that the structure constants for the ring relative to this basis are poly-
nomials in q. Indeed, we have

φα · φβ =q〈α+β,ρ〉chVα · chVβ = q〈α+β,ρ〉
∑

γ≤α+β

nα+β(γ) chVγ

=
∑

γ≤α+β

nα+β(γ) q
〈α+β−γ,ρ〉φγ.
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Now, since γ ≤ α + β, the coweight α + β − γ is a sum of positive coroots and
consequently 〈α+ β − γ, ρ〉 is an nonnegative integer.

We can now prove the second statement. Let α and β be given. We expand S(cα)
and S(cβ) in terms of the basis of φλ’s thereby introducing the polynomials aλ(µ). We
then multiply the resulting expressions. According to the paragraph above, the result
is an expression in the φλ’s with polynomial coefficients in q. We then substitute for
the φλ’s using Lemma 8.14 introducing the polynomials bλ(µ).

8.3.1 A remarkable nonvanishing property of the polynomials Mα,β,γ

It follows from Theorem 8.6 that if q is a prime power then the values Mα,β,γ(q) are
nonnegative. We now show that if for some prime power q the value Mα,β,γ(q) is
nonzero then all values at prime powers are nonzero. We note that the examples we
computed below show that the polynomial Mα,β,γ can have coefficients of both signs.

Theorem 8.18. If a polynomial Mα,β,γ is nonzero for some prime power q = pe then
it is nonzero at all prime powers.

Proof: We assume that q is given such that

Mα,β,γ(q) 6= 0.

This means that
(α, β, γ) ∈ Sol(Q3, G(Kq)),

where Kq is a local field with residue field of order q. In other words, in the Euclidean
building Xq corresponding to the group G(Kq) there exists a triangle τ with ∆-side
lengths α, β, γ, whose vertices are special vertices of X. It then follows from Part 5
of Theorem 1.2 or, equivalently, from the Transfer Theorem 4.15, that

(α, β, γ) ∈ Sol(Q3, G(K)),

for an arbitrary local field K (with any order q′ ≥ 2 of the residue field). Therefore
Mα,β,γ(q

′) 6= 0 for all prime powers q′.

8.4 A solution of Problem Q4 is a solution of Problem Q3

We recall the definition of the structure constants nα,β,γ(δ):

ch(Vα) · ch(Vβ) · ch(Vγ) =
∑

δ∈P+

nα,β,γ(δ) ch(Vδ).

We are interested in comparing the coefficient nα,β,γ(0) (corresponding to the trivial
character 0 of G∨) with mα,β,γ(0).

The main goal of this section is to prove the following
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Theorem 8.19. If the triple α, β, γ is a solution of Problem Q4 then it is also a
solution of Problem Q3. More precisely,

nα,β,γ(0) 6= 0 =⇒ mα,β,γ(0) 6= 0.

We first prove the following:

Theorem 8.20. Suppose that G is of a reductive algebraic group over K which is
split over K. Then:

(a) The degree of the polynomial Mα,β,γ(q) is at most 〈α + β + γ, ρ〉.
(b) The leading coefficient of Mα,β,γ(q), i.e., the coefficient at q〈α+β+γ,ρ〉, is equal

to nα,β,γ(0).

Proof of Theorem 8.20. For the benefit of the reader, below we explain the idea
behind the proof of Theorem 8.20. We have to compute the coefficient of 0 in the
Hecke triple product cα · cβ · cγ . Instead, we will compute the coefficient of 0 in the
triple product S(cα) · S(cβ) · S(cγ) in the representation ring R(G∨) ⊗ Z[q1/2, q−1/2]
where the triple product is expanded relative to the basis S. In order to do this we will
use the formula from Lemma 8.14 and compute (initially) in the basis R. However,
to prove the theorem we must again apply Lemma 8.14 to rewrite the result in terms
of the basis S.

The theorem will follow from the next three lemmas. We owe the first of these to
Jiu-Kang Yu.

Lemma 8.21. For all µ ∈ P+ satisfying µ < λ we have:

deg(aλ(µ)q〈µ,ρ〉) < 〈λ, ρ〉.

Proof: The proof is by induction on λ with respect to the partial order <. We remind
the reader that each set {µ ∈ P+ : µ < λ} is finite. If the set {µ ∈ P+ : µ < λ} is
empty then there is nothing to prove.

Now assume that we are given λ ∈ P+ and that we have proved the above estimate
for all predecessors of λ in the partial order <. We have, according to Lemma 8.14,

S(cλ) = q〈λ,ρ〉chVλ −
∑

µ<λ

bλ(µ)S(cµ)

and
S(cµ) = q〈µ,ρ〉chVµ +

∑

η<µ

aµ(η)q
〈η,ρ〉chVη.

Thus

S(cλ) = q〈λ,ρ〉chVλ −
∑

µ<λ

bλ(µ)q〈µ,ρ〉chVµ −
∑

µ<λ

∑

η<µ

bλ(µ)aµ(η)q
〈η,ρ〉chVη.
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We make the change of variable µ→ τ, η → µ in the last sum to obtain

S(cλ) = q〈λ,ρ〉chVλ −
∑

µ<λ

bλ(µ)q〈µ,ρ〉chVµ −
∑

µ<λ

∑

{τ :µ<τ<λ}

bλ(τ)aτ (µ)q〈µ,ρ〉chVµ.

Since chVµ, µ ∈ P+, is a basis of the Z[q−1/2, q1/2]-module R(G∨) ⊗ Z[q1/2, q−1/2],
by combining the previous formula with the part 1 of Lemma 8.14, we obtain:

aλ(µ)q〈µ,ρ〉 = −bλ(µ)q〈µ,ρ〉 −
∑

{τ :µ<τ<λ}

bλ(τ)aτ (µ)q〈µ,ρ〉.

The degree of the first term satisfies the required estimate by Lemma 8.15. We
estimate the degrees of the terms in the second sum. By the induction hypothesis,
deg(aτ(µ)q〈µ,ρ〉) < 〈τ, ρ〉 and by Lemma 8.15 we have

deg(bλ(τ)) < 〈λ− τ, ρ〉.

Consequently, for all µ, we get

deg(bλ(τ)aτ (µ)q〈µ,ρ〉) < 〈λ− τ, ρ〉 + 〈τ, ρ〉 = 〈λ, ρ〉.

Corollary 8.22. deg(aλ(µ)) < 〈λ− µ, ρ〉.

Lemma 8.23. For α, β, γ ∈ P+ such that α + β + γ is a nontrivial character, we
have:

1. degR(S(cα) · S(cβ) · S(cγ) − q〈α+β+γ,ρ〉chVα · chVβ · chVγ) < 〈α+ β + γ, ρ〉.

2. degR(S(cα) · S(cβ) · S(cγ) = 〈α+ β + γ, ρ〉.

Proof: By expanding the triple product

S(cα) · S(cβ) · S(cγ) =

(q〈γ,ρ〉chVγ +
∑

λ<γ

aγ(λ)q〈λ,ρ〉chVλ)

·(q〈β,ρ〉chVβ +
∑

µ<β

aβ(µ)q〈µ,ρ〉chVµ)

·(q〈α,ρ〉chVα +
∑

ν<α

aα(ν)q
〈ν,ρ〉chVν)

in terms of the basis R := {chVτ} we get the following types of summands:

q〈α+β+γ,ρ〉chVα · chVβ · chVγ,

q〈α+β,ρ〉chVα · chVβ
∑

λ<γ

aγ(λ)q〈λ,ρ〉chVλ,
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q〈γ,ρ〉chVγ · (
∑

µ<β

aβ(µ)q〈µ,ρ〉chVµ) · (
∑

ν<α

aα(ν)q
〈ν,ρ〉chVν),

and similar ones obtained by permuting α, β, γ, and finally:

aα(ν)aβ(µ)aγ(λ)q〈ν+µ+λ,ρ〉chVα · chVβ · chVγ ,

where in the latter case ν < α, µ < β, λ < γ, ν, µ, λ ∈ P+. The first term
(q〈α+β+γ,ρ〉chVα · chVβ · chVγ) cancels out, we estimate the degree of each of the re-
maining terms separately. We will do it in the case of the 2-nd and 4-th term and
leave the 3-rd term to the reader:

First, since λ < γ,

degR[q〈α+β,ρ〉chVα · chVβ · aγ(λ)q〈λ,ρ〉chVλ] ≤
〈α+ β, ρ〉 + deg(aγ(λ)q〈λ,ρ〉) <

(by Lemma 8.21)

< 〈α+ β, ρ〉 + 〈γ, ρ〉 = 〈α + β + γ, ρ〉.

Similarly,

degR[aα(ν)aβ(µ)aγ(λ)q〈ν+µ+λ,ρ〉chVα · chVβ · chVγ ] =

deg[aα(ν)q
〈ν,ρ〉] + deg[aβ(µ)q〈µ,ρ〉] + deg[aγ(λ)q〈λ,ρ〉] <

(by Lemma 8.21)

< 〈α + β + γ, ρ〉.

The first statement immediately implies the second and the lemma follows.

Corollary 8.24. Under the assumptions of the above lemma, we have:

degS(S(cα) · S(cβ) · S(cγ) − q〈α+β+γ,ρ〉chVα · chVβ · chVγ) < 〈α + β + γ, ρ〉.

Proof: The assertion follows from Lemma 8.23 since by Lemma 8.16 we have degS ≤
degR.

Now we can prove the degree estimate in Theorem 8.20. Observe that since
Mα,β,γ(q) is one of the coefficients (the coefficient of the trivial double coset) of the
triple product cα · cβ · cγ when expressed in terms of the double coset basis for the
Hecke ring, we have

deg(Mα,β,γ(q)) ≤ degS(cα · cβ · cγ)
and hence

deg(Mα,β,γ(q)) ≤ degS(S(cα)·S(cβ)·S(cγ)) ≤ degR(S(cα)·S(cβ)·S(cγ)) = 〈α+β+γ, ρ〉.

Here the last equality follows from Lemma 8.23. This proves the first assertion of
Theorem 8.20.

We now identify the leading term of Mα,β,γ(q).
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Let Nα,β,γ be the element of the Hecke ring defined by

Nα,β,γ := q〈α+β+γ,ρ〉chVα · chVβ · chVγ ,

Let I denote the identity element of the representation ring (i.e. the character
of the trivial representation). We identify this element (via the Satake isomorphism)
with the trivial double coset c0. We have

Lemma 8.25.

degS(Nα,β,γ − nα,β,γ(0)q〈α+β+γ,ρ〉I) < 〈α + β + γ, ρ〉.

Proof: By definition of the structure constants nα,β,γ(δ) we have

q〈α+β+γ,ρ〉chVα · chVβ · chVγ =
∑

δ≤α+β+γ

nα,β,γ(δ) q
〈α+β+γ−δ,ρ〉q〈δ,ρ〉chVδ.

But by Lemma 8.16, δ 6= 0 =⇒ degS(q〈δ,ρ〉chVδ) < 〈δ, ρ〉. Noting that I is the character
of the trivial representation the lemma follows.

We now combine the previous lemma, the ultrametric inequality and Corollary
8.24 to obtain the estimate

degS(S(cα) · S(cβ) · S(cγ)) − nα,β,γ(0)q〈α+β+γ,ρ〉I)

≤ max(degS(S(cα) · S(cβ) · S(cγ) −Nα,β,γ), degS(Nα,β,γ − nα,β,γ(0)q〈α+β+γ,ρ〉I))

< 〈α + β + γ, ρ〉.

Now the previous estimate on the difference of elements in the Hecke ring implies
that degrees of all coefficient polynomials of the difference when expanded in terms of
the double coset basis satisfy the same estimate. Now the coefficient of the identity
element c0 = I of the triple product is mα,β,γ(0) = Mα,β,γ(q). Thus applying the
above observation to the identity coefficient of the difference we obtain

deg(Mα,β,γ(q) − nα,β,γ(0)q〈α+β+γ,ρ〉) < 〈α + β + γ, ρ〉.
This proves Theorem 8.20 and in particular implies that the polynomial Mα,β,γ is

nonzero. Hence for nonarchimedean local fields with sufficiently large residue fields
(i.e. sufficiently large q) the structure constant mα,β,γ(0) is nonzero. But by Theorem
8.18 if the structure constant mα,β,γ(0) is nonzero for some nonarchimedean local field
K it is nonzero for all nonarchimedean local fields. Hence Theorem 8.19 is proved.

The above theorem also immediately implies the following

Corollary 8.26. If nα,β,γ(0) 6= 0 then 〈α + β + γ, ρ〉 ∈ Z.

We now give another explanation why

nα,β,γ(0) 6= 0 =⇒ 〈α + β + γ, ρ〉 ∈ Z.
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Theorem 8.27. 1. mα,β,γ(0) 6= 0 =⇒ α+ β + γ ∈ Q(R∨) =⇒ 〈α+ β + γ, ρ〉 ∈ Z.

2. nα,β,γ(0) 6= 0 =⇒ α + β + γ ∈ Q(R∨).

Proof: (1) follows from Theorem 7.10, part 4. Hence (2) follows from (1) via Theorem
8.20, however we give a direct proof below.

The center of G∨ acts on each of the factors of the triple tensor product by a scalar,
hence it acts by a scalar on the triple tensor product itself. But if nα,β,γ(0) 6= 0 this
scalar is necessarily 1. Hence the center fixes the (highest) weight vector with weight
α+β+ γ, whence α+β+ γ annihilates the center. Accordingly it is in the character
lattice of the adjoint group Ad G∨. Thus α + β + γ ∈ Q(R∨).

8.5 A solution of Problem Q3 is not necessarily a solution of
Problem Q4

In this section we consider two examples: G = SO(5), whence G∨ = Sp(4,C) and
the group G of type G2 and G∨ = G2(C).

We begin with G = SO(5); we assume that we have chosen Witt bases for C5 and
C4. We let T∨ be the split torus consisting of diagonal matrices in Sp(4,C) and T
be the split torus of SO(5) consisting of diagonal matrices. We use the rectangular
coordinates x1, x2 in the Cartan subalgebra a∨ ⊂ sp(4,C) such that the simple roots
are x1 − x2, 2x2. We set

α = β = γ = (1, 1) ∈ X∗(T∨) = X∗(T ).

Note that α+ β + γ belongs to the coroot lattice of SO(5), i.e., the condition stated
in Theorem 8.27 is satisfied.

We give two proofs of the next lemma, the first computational, the second con-
ceptual.

Lemma 8.28.

nα,β,γ(0) = 0.

mα,β,γ(0) = q5 − q.

Thus this choice of side-lengths is a solution Problem Q3 but not of Problem Q4.

Remark 8.29. In fact the second equality implies the first because, in this case,
〈α + β + γ, ρ〉 = 6. Hence, (according to Theorem 8.20) Mα,β,γ(q) = nα,β,γ(0)q6 +
lower terms. But the coefficient of q6 in the above formula for mα,β,γ(0) is 0.

Proof: The first equality is obvious if we observe that under the isomorphism between
Sp(4) and Spin(5) the representation of Sp(4,C) with the highest weight (1, 1) cor-
responds to the standard (vector) representation of SO(5,C) on C5 (considered as a
nonfaithful representation of Spin(5,C)). Now it is standard that the tensor square of
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this representation consists of three irreducible summands, the trivial representation
(corresponding to the invariant quadratic form), the exterior square of the standard
representation and the harmonic quadratic polynomials on C5. Since none of these
are equivalent to the standard representation and all representations of Sp(4,C) are
self-dual the first statement follows.

The proof of the second statement requires more work. From [Gro, pg. 231], we
have:

S(c(1,1)) = q2chV(1,1) − 1.

Upon taking the cube and calculating in the representation ring of Sp(4,C) one
obtains

S(c(1,1))
3 = q6[chV(3,3) + 2chV(3,1) + chV(2,0) + 3chV(1,1)]

−3q4[chV(2,2) + chV(2,0) + 1] + 3q2chV(1,1) − 1.

Upon substituting for the chVλ using Lemma 8.14 (and computing the appropriate
Kazhdan-Lusztig polynomials bλ(µ)) the lemma follows.

As for the conceptual proof of (the second part of) the lemma, note that the
side-lengths belong to the root-subgroup SL(2) corresponding to the positive root
x1 + x2. But it is evident that one can construct an equilateral triangle with side-
lengths equal to the positive root and vertices of the correct type in the tree for
SL(2,K). Since this tree is convex in the building for SO(5,K) and the fixed vertex
for SL(2,O) in this embedded tree is o (the fixed vertex for SO(5,O)), the lemma
follows. Equivalently if we can realize the trivial double coset as a product of the
three SL(2,O)–double cosets in SL(2,K) belonging to (1, 1), (1, 1), (1, 1) then we can
certainly do it in SO(5,K).

Remark 8.30. This last sentence is the essence of the counterexample. The solutions
to Problems Q3 and Q4 behave differently with respect to inclusions of subgroups. The
solutions of Problem Q3 “push forward”, the solutions of Problem Q4 do not.

We now give another example of a triple of coroots α, β, γ such that the triple is
a solution to Problem Q3 but not of Problem Q4. This example was motivated by
unpublished observations of S. Kumar and J. Stembridge.

We take G = G2. Hence G∨ = G2 as well. We take α = λ1 and β = γ = λ2. Here
λ1 is the first fundamental weight (the highest weight of the unique irreducible seven
dimensional representation) and λ2 is the second fundamental weight (the highest
weight of the adjoint representation).

Lemma 8.31. mλ1,λ2,λ2
(0) = q5(q + 1)(q6 − 1).

Proof: From [Gro, pg. 231, (5.7)], we have

S(cλ1
) =q3chVλ1

− 1

S(cλ2
) =q5chVλ2

− q3chVλ2
− q4.
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Multiplying (using LiE) one obtains

S(cλ1
) ·S(cλ2

) = q8chVλ1+λ2
+(q8 − q6)(chV2λ1

+ chVλ1
)− q6chVλ2

− q4S(cλ1
)−S(cλ2

).

Hence, by Lemma 8.14 we have

mλ1,λ2
(λ2) = bλ2,λ1+λ2

(q) + (q2 − 1)bλ2,2λ1
(q) − q − 1.

Using bλ2,λ1+λ2
(q) = 1 + q and bλ2,2λ1

(q) = 1 we obtain

mλ1,λ2
(λ2) = q2 − 1.

Now Lemma 8.5 implies that

mλ1,λ2,λ2
(0) = mλ1,λ2

(λ2) · vol(Kλ2(π)K).

From [Gro, pg. 735], we get vol(Kλ2(π)K) = deg(cλ2
) = q10 + q9 + q8 + q7 + q6 + q5.

The lemma follows.

Corollary 8.32.
nλ1,λ2,λ2

(0) = 0.

Proof: From [Gro, pg. 231, (5.7)], we have 〈λ1, ρ〉 = 3 and 〈λ2, ρ〉 = 5 whence
〈λ1 + λ2 + λ2, ρ〉 = 13. Hence, the structure constant has degree (one) less than the
maximum possible degree.

We now give a geometric proof (using unfolding) that mλ1,λ2,λ2
(0) is nonzero.

We show that there exists a triangle T ′ (with ∆-side-lengths λ1, λ2, λ2) in a discrete
Euclidean building X modeled on the discrete affine Coxeter complex of type G2, so
that all vertices of T ′ are special. We start with the billiard triangle T in Figure 7,
contained in a model apartment A ⊂ X; this triangle has two geodesic sides zx, zy
and one broken side xuy. Note that all three vertices of this billiard triangle are
special vertices of the Coxeter complex. The break point u on the broken side of the
billiard triangle belongs to the wall l of the Coxeter complex, the wall l separates the
broken side xuy from the vertex z = o. Thus, by Lemma 6.7, one can unfold the
billiard triangle T to a geodesic triangle T ′ ⊂ X preserving the refined side-lengths.
One can also easily see that nλ1,λ2,λ2

(0) = 0 using Littelmann’s path model.

8.6 The saturation theorem for GL(ℓ)

In this subsection we explain Green’s idea for proving that for GL(ℓ)

Sol(Q3) ⊂ Sol(Q4).

Let K be a valued field with a discrete complete valuation v and let O ⊂ K be the
subring of elements with nonnegative valuation. Pick a uniformizer π ∈ K for the
valuation v. We will assume that the residue field is finite.
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Figure 7: A billiard triangle in the affine Coxeter complex of type G2.

Let G be a connected reductive group algebraic group over K and set G = G(K)
and let G∨ = G∨(C) be its Langlands dual. We will assume that G is split over K.
Recall that the structure constants mα,β(γ) and nα,β(γ) for the Hecke ring of G and
the representation ring of G∨ respectively, are given by

cα · cβ =
∑

γ

mα,β(γ)cγ,

ch(Vα) · ch(Vβ) =
∑

γ

nα,β(γ) ch(Vγ).

We will say that a dominant weight µ for GL(ℓ) is a partition if all components of
the integer vector µ are nonnegative.

The starting point is that if the dominant weights α, β, γ are partitions then there
is a standard formula [Mac, pg. 161] that expresses the structure constant mα,β(γ)
as the number of finite O-module extensions

1 → A→ B → C → 1,

where A ∼= ⊕ℓ
i=1O/(παi), B ∼= ⊕ℓ

i=1O/(πγi) and C ∼= ⊕ℓ
i=1O/(πβi).

We will say that such an extension is of type (α, β, γ). Now for GL(ℓ) there is an
explicit formula (the Littlewood- Richardson rule) for the structure constant nα,β(γ)
(in case α, β, γ are partitions) as the number of Littlewood–Richardson sequences (of
partitions) of type (α, β, γ), see [Mac, pg. 68, 90]. Then the observation of J. Green
is the following

Lemma 8.33. Suppose there exists an extension of O-modules of type (α, β, γ). Then
there exists a Littlewood-Richardson sequence (of partitions) of type (α, β, γ).
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Thus for the group GL(ℓ) we find that if α, β, γ∗ are partitions and the structure
constant mα,β(γ

∗) is nonzero then the structure constant nα,β(γ
∗) is nonzero (the

superscript ∗ denotes the contragredient dominant weight).

We next remove the assumption that α, β, γ∗ are partitions. To this end let λ be
the cocharacter of GL(ℓ) that sends z ∈ Q \ {0} to the scalar matrix with diagonal
entries equal to z. If α is a cocharacter then there exists k such that λk · α is a
partition. Now since the matrix λ(π) is scalar it is clear that for any α cα · cλ = cα·λ.
It then follows that

mλk·α,λk·β(λ
2k · γ∗) = mα,β(γ

∗).

Now the previous operation of convolving with the function cλ1
corresponds, under

Langlands’ duality, to multiplying a character by χ1, the character of the determinant
representation. Thus

mα,β(γ
∗) 6= 0 ⇔ mλk ·α,λk·β(λ

2k · γ∗) 6= 0 ⇔ nχk·α,χk·β(χ
2k · γ∗) 6= 0 ⇔ nα,β(γ

∗) 6= 0.

Finally, by Lemma 8.5 we have

mα,β,γ(0) 6= 0 ⇔ mα,β(γ
∗) 6= 0.

Also it is immediate that nα,β(γ
∗) = nα,β,γ(0). Thus, if (α, β, γ) ∈ Sol(Q3) then

(α, β, γ) ∈ Sol(Q4) as well. By combining this with Theorem 8.19, we conclude that
for GL(ℓ) Problems Q3 and Q4 are equivalent. Since we have proved that 1 is a
saturation factor for the Problem Q3 it is also a saturation factor for Q4.

8.7 Computations for the root systems B2 and G2

Given a root system R, the intersection D3(X) ∩ P (R∨) is a semigroup whose finite
generating set (a Hilbert basis) can be computed once we know the explicit stability
inequalities defining the convex cone D3(X). We have performed these computations
for the root systems R = B2, G2 using the program 4ti2 (which could be found at
http://www.4ti2.de) and the stability inequalities established in [KLM1]. Let ̟1, ̟2

be the long and short fundamental coweights for the root system R; below we will
use the coordinates [x, y] for the coweight x̟1 + y̟2.

B2 computation. The Hilbert basis in the case R = B2 consists of the following
8 triples (α, β, γ) and their permutations under the S3 action:

([
0
1

]
,

[
0
1

]
,

[
0
0

])
,

([
1
0

]
,

[
1
0

]
,

[
0
0

])
,

([
1
0

]
,

[
0
1

]
,

[
0
1

])
,

([
1
0

]
,

[
1
0

]
,

[
0
2

])
,

([
1
0

]
,

[
1
0

]
,

[
1
0

])
,

([
1
0

]
,

[
1
0

]
,

[
1
1

])
,

79

http://www.4ti2.de


([
0
1

]
,

[
0
1

]
,

[
0
1

])
,

([
1
0

]
,

[
1
0

]
,

[
0
1

])
.

We note that the first 5 generators are represented by flat triangles contained in an
apartment in X and therefore are solutions of Q4 (and of course of Q3). The last
three generators are not solutions of Q3 since α + β + γ /∈ Q(R∨).

However, a direct computation (using Littelmann triangles) shows that for every
generator (α, β, γ) among the last 3 generators in our list, (2α, 2β, 2γ) is a solution
of Q4. Therefore, since the solution set of Q4 forms a semigroup, we obtain

Proposition 8.34. If (α, β, γ) belongs to D3(X)∩X∗(T ) then the triple (2α, 2β, 2γ)
is a solution of the problem Q4 for the group Sp(4).

We next observe that the solution set of the problem Q3 for the group Spin(5) is
not a semigroup. Indeed, using the coordinates as in the Example 6.9, consider the
triples (α′ = (1, 1), β ′ = (1, 1), γ′ = (1, 1)), (α′′ = (1, 1), β ′′ = (1, 1), γ′′ = (2, 0)). As
in section 8.5, the first triple is a solution of the problem Q3 for Spin(5), the second
triple represents a flat triangle with the vertices (0, 0), (1, 1), (2, 0) in the apartment.
However (α′ +α′′, β ′ + β ′′, γ′ + γ′′) = (α, β, γ) is the triple from the Example 6.9, and
therefore is not a solution of Q3.

G2 computation. The Hilbert basis in the case R = G2 consists of the following
triples (α, β, γ) and their permutations under the S3 action:

([
0
1

]
,

[
0
1

]
,

[
0
0

])
,

([
1
0

]
,

[
1
0

]
,

[
0
0

])
,

([
0
1

]
,

[
0
1

]
,

[
0
1

])
,

([
1
0

]
,

[
1
0

]
,

[
1
0

])
,

([
1
0

]
,

[
1
0

]
,

[
0
3

])
,

([
1
0

]
,

[
2
0

]
,

[
0
3

])
,

([
1
0

]
,

[
0
1

]
,

[
0
1

])
,

([
1
0

]
,

[
0
1

]
,

[
0
2

])
,

([
1
0

]
,

[
1
0

]
,

[
0
2

])
,

([
1
0

]
,

[
1
0

]
,

[
0
1

])
,

([
1
0

]
,

[
1
0

]
,

[
1
1

])
.

The first 9 generators are solutions of Q4 and the last two generators are only solutions
of Q3. However one can show (arguing analogously to the Example 6.9) that the sum
of the last two generators, ([

2
0

]
,

[
2
0

]
,

[
1
2

])
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is not a solution of Q3. Hence the solution set of Q3 for the root system G2 is not a
semigroup. On the other hand, a direct computation shows that for both k = 2, k = 3
the triples

k ·
([

1
0

]
,

[
1
0

]
,

[
0
1

])
, k ·

([
1
0

]
,

[
1
0

]
,

[
1
1

])

are solutions of Q4. Therefore, since the solution set of Q4 is a semigroup and
because each natural number k ≥ 2 has the form 2n+ 3m,n,m ∈ N ∪ {0}, we get:

Proposition 8.35. For each k ∈ N \ {1} the semigroup

k · (D3(X) ∩ P (R∨))

is contained in the solution set of Q4.

9 Appendix: Decomposition of tensor products

and Mumford quotients of products of coadjoint

orbits

9.1 The existence of semistable triples and nonzero invariant
vectors in triple tensor products

In this section we will assume that G is a reductive complex Lie group with Lie algebra
g and Weyl group W . We let K be a maximal compact subgroup of G and T be a
maximal torus in G and B be a Borel subgroup containing T . We let h denote the
Lie algebra of T . We may choose T so that it is preserved by the Cartan involution
of G corresponding to K. Let g = k ⊕ p denote the Cartan decomposition of the
Lie algebra g of G and let a := h ∩ p. Then multiplication by

√
−1 interchanges p

and k. We let X := G/K be the associated symmetric space. The choice of B is
equivalent to a choice of positive roots or a positive chamber ∆ ⊂ a. We will be
sloppy throughout with the difference between the solution sets for Problem Q1 for
G and G∨ since these sets are canonically isomorphic (say by using an AdK invariant
metric on k). In the similar fashion we will identify k with k∗ and p with p∗.

We will use the following notation. Let λ ∈ a∗ be a dominant weight for the
torus T . Then we let Vλ be an irreducible G–module with the highest weight λ
(so Vλ is unique up to isomorphism). We let λ∗ be the highest weight of the dual
representation, so λ∗ = w0(−λ) where w0 is the longest element in W .

For each fundamental weight λ belonging to a∗ ⊂ p∗ we define the coadjoint orbit,
Oλ ⊂ k∗, to be the Ad∗K–orbit of

√
−1λ.

Let λ ∈ a∗ be a dominant weight. Then the coadjoint orbit Oλ as above carries
a natural homogeneous complex structure (see [Vo, Chapter 1]) so that the coadjoint
action of K on Oλ extends to a holomorphic action of G. The dominant weight λ
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defines a very ample line bundle Lλ over Oλ and the action of G on Oλ extends to a
holomorphic action G y Lλ.

The key point in what follows is the famous theorem of Borel and Weil below,
Theorem 9.1, see e.g. [Vo, Chapter 1].

Theorem 9.1. The space of holomorphic sections Γ(Oλ,Lλ) of Lλ is isomorphic as
a G–module to the G–module Vλ.

Now let α and β be dominant weights. In this section we will discuss the problem
of finding the possible irreducible constituents of tensor products Vα ⊗ Vβ. Of course
this is equivalent to finding for which triples α, β, γ, the space of G–invariants

(Vα ⊗ Vβ ⊗ Vγ)
G ∼= HomG(Vγ∗ , Vα ⊗ Vβ)

is nonzero.

Given dominant weights α, β, γ we define complex G–manifold

Oα,β,γ := Oα ×Oβ ×Oγ .

We also have the outer tensor product

Lα,β,γ := Lα ⊠ Lβ ⊠ Lγ

which is a very ample G–invariant line bundle over Oα,β,γ .

Since the line bundle Lα,β,γ is very ample, it determines a G—equivariant holo-
morphic embedding F of Oα,β,γ into P((Vα ⊗ Vβ ⊗ Vγ)

∗). We will use the notation

Mα,β,γ := F (Oα,β,γ)//G

for the Mumford quotient associated with this line bundle. See the end of section 5.1
for further discussion; note that here we have shortened the notation M(α,β,γ),sst(B)
(in §5.1) to Mα,β,γ.

Lemma 9.2. The moduli space of triangles in the infinitesimal symmetric space p

with ∆–side lengths α, β, γ is canonically homeomorphic to the Mumford quotient
Mα,β,γ defined above.

Proof: By a theorem of Kempf and Ness [KN], the Mumford quotient Mα,β,γ is
canonically homeomorphic to the symplectic quotient Oα,β,γ//Ad

∗(K). It is a stan-
dard argument (essentially the formula for the moment map of the action of the
diagonal subgroup of a product) that

Oα,β,γ//Ad
∗(K) = {(λ, µ, ν) ∈ Oα,β,γ : λ+ µ+ ν = 0}/Ad∗(K).

However the latter is canonically isomorphic to the moduli space of triangles in p

with the ∆–side lengths α, β, γ ∈ ∆.
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Thus

Mα,β,γ 6= ∅ ⇐⇒ (α, β, γ) ∈ D3(p) ⇐⇒ (α, β, γ) ∈ D3(X).

The main goal of this section is to prove Theorem 9.3, that relates the existence
of semistable triples in Oα,β,γ and the existence of nonzero invariants in triple tensor
products of irreducible representations of G.

Theorem 9.3. For each triple of dominant weights α, β, γ ∈ a∗ the following are
equivalent:

1. There exists a positive integer k > 0 such that (Vkα ⊗ Vkβ ⊗ Vkγ)
G 6= 0.

2. Mα,β,γ 6= ∅, i.e. there exists a semistable point in Oα,β,γ.

Remark 9.4. Theorem 9.3 implies that if (Vα ⊗ Vβ ⊗ Vγ)
G 6= 0 then there exists a

weighted semistable configuration on ∂T itsX of type (α, β, γ). However the converse
is false as we have seen in section 8.5.

Theorem 9.3 will follow from the next two lemmas.

Let A be the graded ring associated to the projective variety F (Oα,β,γ). Then by
definition A(k) is the set of restrictions to F (Oα,β,γ) of the homogeneous polynomials
of degree k in the projective coordinates given by a basis of

Vα ⊗ Vβ ⊗ Vγ = ((Vα ⊗ Vβ ⊗ Vγ)
∗)∗.

Thus
A(k) = Γ(Oα,β,γ,Lα,β,γ)

⊗k/I(k).

Here I(k) is the degree k–summand of the graded ideal of polynomials in the sections
of Lα,β,γ that vanish on Oα,β,γ . Equivalently, I(k) is the degree k component of the
ideal I of polynomials that vanish on F (Oα,β,γ) in the ring of polynomials on
P((Vα ⊗ Vβ ⊗ Vγ)

∗).

Now another definition of the Mumford quotient is Proj(AG) where AG is the
subring of G–invariants of the graded ring A. We define another graded ring R by

R =
∞⊕

k=0

Γ(Oα,β,γ, (Lα ⊠ Lβ ⊠ Lγ)
⊗k).

Below and in what follows, if U1, U2 are G1, G2–modules, then U1 ⊠ U2 denotes the
G1×G2–module with the underlying vector space equal to the tensor product U1⊗U2.

We define a graded G×G×G–module R′ by

R′ =

∞⊕

k=0

(Vkα ⊠ Vkβ ⊠ Vkγ).

We will abuse notation and use R′ to denote the restriction of the previous module
to the diagonal in G×G×G. Then, we have an isomorphism of G–modules

R′ =
∞⊕

k=0

(Vkα ⊗ Vkβ ⊗ Vkγ).
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Lemma 9.5. There is a canonical isomorphism of graded (G×G×G)–modules
R ∼= R′.

Proof: The lemma follows from the following three equations. First, let M1 and M2

be complex manifolds and L1, resp. L2, be a holomorphic line bundle over M1, resp.
M2. First we have

(L1 ⊠ L2)
⊗k = L⊗k

1 ⊠ L⊗k
2 .

Next, we have

Γ(M1 ×M2,L1 ⊠ L2) ∼= Γ(M1,L1) ⊗ Γ(M2,L2).

Finally, for a natural number k, a dominant weight α and the corresponding orbit Oα

we have
Γ(Oα,L

⊗k
α ) ∼= Γ(Oα,Lkα).

Next we show that A and R are isomorphic. This is the exceptional feature of
the homogeneous situation. The key point, the surjectivity of the natural map below,
was pointed out to us by Lawrence Ein.

Lemma 9.6. There is a natural G×G×G–equivariant isomorphism from the graded
ring A to the graded ring R.

Proof: To obtain the desired map from the graded ring A to the graded ring R we
observe that for any complex manifold M and holomorphic line bundle L over M
there is a natural map (usually not onto) from Γ(M,L)⊗k to Γ(M,L⊗k). Hence there
is a natural map from A(k) to R(k). The exceptional feature here is that this natural
map is onto.

To see this we note that by the theorem of Borel and Weil the action of G×G×G
on R(k) is irreducible. But the image of A(k) in R(k) is an invariant subspace. Hence
A(k) maps onto R(k). Clearly the map is injective (because we have divided by the
ideal I(k)).

Theorem 9.3 follows by taking G–invariants from the G–isomorphism A ∼= R′.
Indeed, there exists a triangle with ∆–side lengths α,β,γ ⇔ the Mumford quotient
Mα,β,γ is nonempty ⇔ (

⊕∞
k=1A

(k))G 6= 0 ⇔⊕∞
k=1(Vkα ⊗ Vkβ ⊗ Vkγ)

G 6= 0.

Remark 9.7. The reason that the existence of a nonzero G–invariant does not follow
from the existence of a triangle is that the lowest degree G–invariant might not have
degree 1, that is, it is possible that

(R(1))G = {0} but (R(k))G 6= 0 for some k > 1.
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9.2 The semigroups of solutions to Problems Q1 and Q4

We will use SG to denote the semigroup of dominant characters of T henceforth. We
begin this section by noting that the set of triples of dominant characters (α, β, γ)
that belong to D3(X) is a subsemigroup Striangle ⊂ S3

G (since it is determined by a
system of homogeneous linear inequalities). Moreover, since these inequalities have
integral coefficients, the subsemigroup Striangle is finitely generated. We set

Srep := Sol(Q4, G) ⊂ D3(X) ∩ S3
G,

i.e. the set of triples (α, β, γ) for which

(Vα ⊗ Vβ ⊗ Vγ)
G 6= 0.

We recall that if S1 ⊂ S2 is an inclusion of semigroups then the saturation of S1

in S2 is the semigroup of elements of s ∈ S2 such that for some positive integer n we
have ns ∈ S1.

Theorem 9.8. 1. The set Srep is a subsemigroup of the semigroup S3
G (and of

Striangle).

2. The saturation of Srep in S3
G is Striangle.

First we need a general lemma. Let G1 be a complex reductive group, B1 be a
Borel subgroup of G1 and λ and µ be dominant characters (as in the beginning of the
appendix). We recall that the irreducible representation Vλ+µ is always an irreducible
constituent of multiplicity 1 in the tensor product Vλ ⊗ Vµ. Let π : Vλ ⊗ Vµ → Vλ+µ

be the G1–equivariant projection.

Lemma 9.9. Let v1 ∈ Vλ and v2 ∈ Vµ be nonzero vectors. Then

π(v1 ⊗ v2) 6= 0.

Proof: Let M = G1/B1. We apply the Borel-Weil Theorem to obtain Vλ = Γ(M,Lλ),
Vµ = Γ(M,Lµ) and Vλ+µ = Γ(M,Lλ+µ). Then v1 corresponds to a section s1 and
v2 corresponds to a section s2. Hence π(v1 ⊗ v2) corresponds to the product section
s1 ·s2 of the product line bundle Lλ+µ. But since M is irreducible the product section
cannot be zero.

Now we can prove the theorem.

Proof: Let (αi, βi, γi) ∈ Srep and let vi be a nonzero G–invariant vector in

Vαi
⊗ Vβi

⊗ Vγi
, i = 1, 2.

We take G1 := G×G×G and B1 := B × B ×B, where B ⊂ G is a Borel subgroup
as before; we have the G1–modules

Vλ := Vα1
⊠ Vβ1

⊠ Vγ1 , Vµ := Vα2
⊠ Vβ2

⊠ Vγ2 .
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Then
Vλ ⊗ Vµ ∼= (Vα1

⊗ Vα2
) ⊠ (Vβ1

⊗ Vβ2
) ⊠ (Vγ1 ⊗ Vγ2).

By the above lemma, the vector π(v1 ⊗ v2) is nonzero. Since it is clearly G–invariant,

(Vα1+α2
⊠ Vβ1+β2

⊠ Vγ1+γ2)
G 6= 0.

Hence (α1 + α2, β1 + β2, γ1 + γ2) ∈ SG and the first statement of Theorem follows.

The second statement follows from Theorem 9.3.

An alternative proof of Part 1 of Theorem 9.8 follows from the description of Srep
given in [BZ] by Berenstein and Zelevinsky.

Theorem 9.10. There exists a (nonzero) k ∈ N depending only on the group G so
that k · Striangle ⊂ Srep.

Proof: By Gordan’s lemma, see [Fu2, Proposition 1, Page 12], the semigroup Striangle
is finitely generated. Choose a finite set of generators s1, ..., sm of this semigroup. For
each generator si there exists a positive integer ki such that

kisi ∈ Srep,

see Theorem 9.3. Then take k = LCM(k1, ..., km).

Therefore, since Srep contains finitely generated semigroup k · Striangle as a sub-
semigroup of finite index, we get

Corollary 9.11. Srep is finitely generated.
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