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1 Linear Operators On Banach Spaces

1.1 Basic Notions
Definition 1.1. A generalised linear operator from Banach spaces X to Y is a pair
A,D(A) where

• D(A) ⊂ X is a linear subspace, and

• A : D(A)→ Y is a linear map.

A linear operator is densely defined if D(A) is dense in X.

We will usually consider operators that are densely defined. If D(A) where not dense
in X one could just restrict to X̃ = D(A) and obtain a densely defined operator, so this
is not really a restriction.

Examples 1.2.

a) Let X = Y = `2, and

D(A) = c00 = {x ∈ `2 : xn 6= 0 for finitely many n}. (1.1)

Then for any sequence (an)n∈N ∈ CN, (Ax)n = anxn is a densely defined operator.

b) Let X = L2([0, 1]), Y = C, D(A) = C([0, 1]) and Af := f(0).

Definition 1.3. A densely defined operator B,D(B) extends A,D(A), if D(A) ⊂ D(B)
and B|D(A) = A. We write A ⊂ B.

Definition 1.4. A densely defined operator is called bounded if there existsM ≥ 0 such
that

‖Ax‖Y ≤M ‖x‖X (1.2)

for all x ∈ D(A).

Remark 1.5. A is bounded iff A is continuous [FA1, Thm 2.29].

Definition 1.6. Let X,Y be Banach spaces. For a bounded operator A from D(A) = X
to Y define the operator norm

‖A‖X→Y := sup
06=x∈X

‖Ax‖Y
‖x‖X

. (1.3)

The Banach space bounded linear maps from X to Y with this norm is denoted by
B(X,Y ). The space B(X,X) is denoted by B(X).
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1.1 Basic Notions

Proposition 1.7. If A,D(A) is densely defined and bounded there exists a unique con-
tinuous extension A with D(A) = X, i.e. A ∈ B(X).

Proof. Let x ∈ X and xn → x be a sequence in D(A) converging to x. By linearity and
boundedness Axn is Cauchy in Y , so it has a limit y (with ‖y‖ ≤M), and this is unique.
Define Ax := y.

Recall the graph of A,D(A):

G (A) := {(x,Ax) : x ∈ D(A)} ⊂ D(A)× Y ⊂ X × Y. (1.4)

Since A is linear, G (A) is a linear subspace of X ⊕ Y .

Definition 1.8. The operator A,D(A) is

• closed if the set G (A) is closed inX×Y (i.e. for any sequence (xn)n∈N inD(A) such
that xn converges to x ∈ X and Axn converges to y ∈ Y , it holds that x ∈ D(A)
and Ax = y);

• closable if it has a closed extension.

Remarks 1.9.

a) A is closable iff G (A) is the graph of an operator A,D(A). A is called the closure of
A. It is the minimal closed extension:

D(A) =
⋂
A⊂B

B closed

D(B). (1.5)

b) If A is closed and D(A) = X then A is bounded, by the Closed Graph Theorem [FA1,
Thm.4.13].

Proposition 1.10. Let A,D(A) be closed and define the graph norm on D(A) by
‖x‖D(A) := ‖x‖X + ‖Ax‖Y . Then (D(A), ‖·‖D(A)) is a Banach space and A : D(A)→ Y
is continuous w.r.t. this norm. Conversely, If (D(A), ‖·‖D(A)) is complete then A is
closed.

Proof. ‖·‖D(A) defines a norm by linearity of A. Clearly D(A), with this norm, embeds
continuously into X. D(A) is complete with this norm, since (xn)N Cauchy in D(A)
⇐⇒ (xn)N Cauchy in X and (Axn)N Cauchy in Y A closed=⇒ xn → x ∈ D(A). Continuity
of A : D(A) → Y follows from completeness by the Closed Graph Theorem [FA1,
Thm.4.13]. The converse follows from this continuity.

Examples 1.11.

a) The operator of 1.2a) is always closable, with

D(A) = {x ∈ `2 : (anxn)N ∈ `2}, (1.6)

since the graph norm is equivalent to
(∑

n(1 + |an|2)x2
n

)1/2, which is clearly complete.

b) The operator of 1.2b) is not closable, since G (A) = L2([0, 1])× C.
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1 Linear Operators On Banach Spaces

1.2 Resolvent And Spectrum
In this section A,D(A) is a densely defined operator on X, i.e. X = Y and X is a
Banach space over C.

Definition 1.12. The set

ρ(A) := {z ∈ C : A− z : D(A)→ X is bijective, and (A− z)−1 is bounded} (1.7)

is called the resolvent set of A. For z ∈ ρ(A) the operator

Rz(A) := (A− z)−1 (1.8)

is called the resolvent.

Definition 1.13. The complement σ(A) := C \ ρ(A) is the spectrum of A. We have
σ(A) = σp(A)∪̇σc(A)∪̇σr(A), with

• The point spectrum

σp(A) := {z ∈ C : A− z is not one-to-one}

• The continuous spectrum

σc(A) := {z ∈ C : A− z is one-to-one, ran(A− z) 6= X but ran(A− z) = X}

• The residual spectrum

σr(A) := {z ∈ C : A− z is one-to-one but ran(A− z) 6= X}.

Theorem 1.14. Let A,D(A) be densely defined on X. The resolvent set ρ(A) is open,
and Rz(A) defines an analytic function ρ(A)→ B(X). Moreover, for z, w ∈ ρ(A)

Rz(A)−Rw(A) = (z − w)Rz(A)Rw(A), (1.9)

in particular Rz(A) and Rw(A) commute.

Proof. Like for A ∈ B(X), [FA1, Thm.5.22].

Example 1.15. Take X = `2 and (Ax)n = anxn as in Example 1.2a). Then σ(A) = C,
since ran(A − z) ⊂ c00 6= X. However σ(A) = σp(A) = ∪n{an}, since for z not an
accumulation point of (an)N the formula(

Rz(A)x
)
n

= (an − z)−1xn (1.10)

defines the resolvent. Thus σ(A) depends strongly on D(A)!

Remarks 1.16.

• If A ∈ B(X) then σ(A) 6= ∅. However, there are unbounded operators with empty
spectrum, and thus ρ(A) = C can occur (exercise).

• If ρ(A) 6= ∅ then A is closed, since Rz(A) ∈ B(X) =⇒ (A − z)−1 closed =⇒ A
closed.
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1.3 Operators on Hilbert Spaces, Adjoints and Symmetry

1.3 Operators on Hilbert Spaces, Adjoints and Symmetry
We now look at the special case where X = H is a Hilbert space (over C), that is, it
has a scalar product 〈·, ·〉 : H ×H → C that defines its norm via ‖ϕ‖ =

√
〈ϕ,ϕ〉.

The Hilbert space structure allows us to define the adjoint operator, which should
satisfy the formula

〈ϕ,Aψ〉 = 〈A∗ϕ,ψ〉. (1.11)

The question is for what vectors ϕ,ψ. For A ∈ B(H ), we can take any ϕ,ψ ∈ H and
this formula defines A∗ ∈ B(H ) (by the Riesz Representation Theorem). For unbounded
A we certainly want ψ ∈ D(A), but we also need to decide what D(A∗) should be. The
following definition chooses D(A∗) in a maximal way so that the formula holds.

Definition 1.17. Let A,D(A) be densely defined on H . We define the adjoint A∗,
D(A∗) by

D(A∗) := {ϕ ∈H : ∃ηϕ ∈H ∀ψ ∈ D(A) : 〈ϕ,Aψ〉 = 〈ηϕ, ψ〉},
A∗ : D(A∗)→H ,

A∗ϕ := ηϕ

Remarks 1.18.

• A∗ϕ is well-defined, since if ηϕ exists it is unique, by

∀ψ ∈ D(A) : 〈ηϕ − η̃ϕ, ψ〉 = 0 =⇒ ηϕ = η̃ϕ, (1.12)

because D(A) is dense.

• The requirement on D(A∗) can be read as: ϕ ∈ D(A∗) ⇔ the linear functional
〈ϕ,Aψ〉 on D(A) extends continuously to H , since then η exists by the Riesz
Representation Theorem. From this it is immediate that for A ∈ B(H ), D(A∗) =
H and A∗ ∈ B(H ).

• A ⊂ B =⇒ B∗ ⊂ A∗, since there are fewer conditions to be met in D(A∗), and
for ϕ ∈ D(B∗) ⊂ D(A∗), ψ ∈ D(A) ⊂ D(B)

〈B∗ϕ,ψ〉 = 〈ϕ,Bψ〉 A⊂B= 〈ϕ,Aψ〉 = 〈A∗ϕ,ψ〉. (1.13)

• D(A∗) is not always dense.

• If D(A∗) is dense we can define A∗∗ = (A∗)∗.

Theorem 1.19. Let A, D(A) be densely defined on H .

a) A∗ is closed.

b) D(A∗) is dense iff A is closable.
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1 Linear Operators On Banach Spaces

c) If A is closable then A = A∗∗ and A∗ = (A)∗.

Proof. a) Let (ϕn, ηϕn) be in G (A∗) that converges to (ϕ, η) ∈ H ×H . Then for all
ψ ∈ D(A):

〈ϕn, Aψ〉︸ ︷︷ ︸
→〈ϕ,Aψ〉

= 〈ηϕn , ψ〉︸ ︷︷ ︸
→〈η,ψ〉

,

so ϕ ∈ D(A∗) and A∗ϕ = η.
b) If A∗ is densely defined, then A∗∗ extends A, because for every ϕ ∈ D(A) there

exists η = Aϕ ∈H such that

∀ψ ∈ D(A∗) : 〈ϕ,A∗ψ〉 = 〈η, ψ〉. (1.14)

By a), A∗∗ is closed and thus A is closable.
Assume now that A∗ is not densely defined and consider G (A) = (G (A)⊥)⊥. Note

that

G (A∗) = {(ϕ, η) ∈H ×H : ∀ψ ∈ D(A) : 〈ϕ,Aψ〉 − 〈η, ψ〉 = 0}, (1.15)

and since 〈ϕ,Aψ〉 − 〈η, ψ〉 = 〈(−η, ϕ), (ψ,Aψ)〉H ⊕H ,

G (A)⊥〈ϕ,Aψ〉 = 0}
= {(−A∗ϕ,ϕ) : ϕ ∈ D(A∗)}. (1.16)

Now let 0 6= ξ ∈ D(A∗)⊥, and observe that (0, ξ) ∈ (G (A)⊥)⊥, but certainly not in the
graph of any linear operator.
c) We have by (1.15),(1.16)

G (A∗∗) = {(ϕ, η) ∈H ×H : ∀ψ ∈ D(A∗) : 〈η, ψ〉 − 〈ϕ,A∗ψ〉 = 0} = (G (A)⊥)⊥,
(1.17)

so A = A∗∗. This, together with a), implies

A
∗ = A∗∗∗ = A∗

a)= A∗. (1.18)

Definition 1.20. A densely defined operator A,D(A) on H is

• symmetric :⇔ A ⊂ A∗.

• self-adjoint :⇔ A∗ = A.

Remarks 1.21.
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1.3 Operators on Hilbert Spaces, Adjoints and Symmetry

a) In terms of the identity

〈ϕ,Aψ〉 = 〈A∗ϕ,ψ〉 != 〈Aϕ,ψ〉 (1.19)

symmetry means that this holds for all ϕ,ψ ∈ D(A), while self-adjointness means
that additionally D(A∗) = D(A).

b) If A is symmetric, it is closable, since A∗ is a closed extension. If A is self-adjoint,
then A = A∗ is closed.

Definition 1.22. Let A,D(A) be symmetric essentially self-adjoint if A is self-adjoint.
If A,D(A) is symmetric and closed, a subspace C ⊂ D(A) such that A|C = A is called

a core for A.

Corollary 1.23. Let A,D(A) be symmetric. Then A is essentially self-adjoint iff A∗ is
symmetric. If A has any self-adjoint extension A ⊂ B, then D(A) ⊂ D(B) ⊂ D(A∗).

Proof. By Theorem 1.19, A symmetric =⇒ A closable, and A = A∗∗ ⊂ A∗ (since A∗ is
a closed extension of A). Consequently A is essentially self-adjoint iff A∗ ⊂ A∗∗. By the
same argument A ⊂ B, and then B = B∗ ⊂ A∗.

Examples 1.24.

a) Take H = `2 and (Ax)n = anxn as in Example 1.2a). Then A is symmetric iff (an)N
is real. In this case, A is essentially self-adjoint, since 〈x,Ay〉 =

∑
n∈N xnanyn is a

continuous linear functional of y ∈ `2 iff (anxn)N ∈ `2 (compare Remark 1.11).

b) Let H = L2(R), D(P ) = C1
0 (R), P = −i d

dx .
• P is symmetric: integration by parts;
• We will later determine P ∗ and show that P is essentially self-adjoint (Fourier
transform).

c) Let H = L2((0, 1)), D(P0) = C1
0 ((0, 1)), P0 = −i d

dx .
• P0 is symmetric: integration by parts - there are no boundary terms since f(0) =
f(1) = 0 for f ∈ D(P0).
• P0 is not self-adjoint, since C1([0, 1]) ⊂ D(P ∗0 );
• P0 is not essentially self adjoint: For f ∈ C1([0, 1]) we have (using the Cauchy-

Schwarz inequality)

|f(0)|2 =
∫ 1

0
|f(0)|2dx =

∫ 1

0

∣∣∣∣f(x)−
∫ x

0
f ′(y)dy

∣∣∣∣2 dx

≤ 2
(∫ 1

0
|f(x)|2dx+

∫ 1

0
|f ′(x)|2dx

)
= 2

(
‖f‖2L2 + ‖P ∗0 f‖

2
L2

)
.

So if fn → f ∈ D(P0) ∩ C1([0, 1]) ⊂ D(P ∗0 ), then

|f(0)|2 = |f(0)− fn(0)|2 ≤ 2 ‖f − fn‖2D(P0) , (1.20)

and thus f(0) = 0. Consequently, D(P0) 6= D(P ∗0 ).
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1 Linear Operators On Banach Spaces

Remark 1.25. We now have a first picture of what can go wrong with self-adjointness.
If D(A) is chosen very small, then symmetry will be easy to check, but D(A∗) will be
large, so that A∗ will no longer be symmetric. If on the other hand D(A) is “too large”,
then D(A) might no longer be symmetric (boundary terms).
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2 The Fourier Transform

The Fourier transform is an extremely useful tool that will give us many non-trivial
examples of operators whose properties (closedness, self-adjointness) and spectrum can
easily be established.

2.1 The Fourier Transform on L2(Rd)
We want to define the Fourier transform of f ∈ L2(Rd), which formally is given by the
integral formula

f̂(p) = (Ff)(p)“=” 1
(2π)d/2

∫
Rd

e−ip·xf(x)dx. (2.1)

However, the integral only converges for f ∈ L1. Our strategy will be to define F by
the integral formula on a dense subspace of L2(Rd), where manipulations of the formula
will be easy to justify, and then prove that it has a unique extension to the whole of L2.
For α = (α1. . . . , αd) ∈ Nd denote

|α| =
d∑
i=1

αi, (2.2)

and

∂αx :=
d∏
i=1

∂αi

∂xαii
= ∂|α|

∂xα1
1 · · · ∂x

αd
d

(2.3)

and for x ∈ Rd

xα :=
d∏
i=1

xαii = xα1
1 · · · · · x

αd
d . (2.4)

Definition 2.1. The Schwartz space is

S (Rd) :=
{
f ∈ C∞(Rd) : ∀α, β ∈ Nd sup

x∈Rd
|xα∂βxf(x)| <∞

}
, (2.5)

equipped with the coarsest topology such that the maps

f 7→ ‖f‖α,β := sup
x∈Rd

|xα∂βxf(x)| (2.6)

are continuous for every α, β ∈ Nd.

Examples 2.2.
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2 The Fourier Transform

• e−x2 ,

• 1
coshx = 2

ex+e−x ,

• C∞0 (Rd) ⊂ S (Rd).

Proposition 2.3.

a) For all α, β ∈ Nd, ‖·‖α,β defines a semi-norm on S (Rd).

b) A sequence (fn)n∈N converges to f in S (Rd) iff ‖fn − f‖α,β → 0 for all α, β ∈ Nd.

c) A function F : S → X, X a topological space, is continuous iff it is sequentially
continuous.

d) The topology of S (Rd) is metrisable and S (Rd) is complete.

Proof. a): Clear.
b): By definition, convergence in S implies convergence of ‖·‖α,β. Now the family

UI,R := {g ∈ S : ‖f − g‖αi,βi < ri, i = 1, . . . , n} (2.7)

where I = ((α1, β1), . . . , (α1, β1)) is a finite collection of indices (α, β) ∈ (Nd)2 and
R = (r1, . . . , rn) are positive numbers, is a basis of open neighbourhoods at f (otherwise,
the topology would not be the coarsest possible). Then, if ‖fn − f‖α,β → 0 for all α, β,
the sequence is eventually contained in every UI,R, and thus convergent.
c) Since the family of semi-norms is countable, the topology of S satisfies the first

axiom of countability [FA1, Def.1.1]. Continuity is thus equivalent to sequential conti-
nuity [FA1, Thm1.6].
d) A metric on S (Rd) is given by

d(f, g) :=
∑

α,β∈Nd
2−|α|−|β|

‖f − g‖α,β
1 + ‖f − g‖α,β

. (2.8)

Checking that the metric topology is equivalent to the one of Definition 2.1 and com-
pleteness is left as an exercise (tutorials).

Since elements of S are in particular in L1, the Fourier transform is clearly well-
defined.

Definition 2.4. For f ∈ S (Rd) define the Fourier transform as the function p 7→ f̂(p)
given by

f̂(p) = (Ff)(p) = 1
(2π)d/2

∫
Rd

e−ip·xf(x)dx. (2.9)

Proposition 2.5. The linear map F maps S (Rd) continuously to itself. For f ∈
S (Rd), α ∈ Nd and p ∈ Rd we have the identities

∂αp f̂(p) = (−i)|α|x̂αf(p) and ∂̂αx f(p) = i|α|pαf̂(p). (2.10)
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2.1 The Fourier Transform on L2(Rd)

Proof. The first identity follows by differentiating under the integral (which is justified
since f and its derivatives are in L1). The second follows from integration by parts.
Now observe that ‖f̂‖0,0 = ‖f̂‖∞ ≤ (2π)−d/2 ‖f‖L1 <∞. Using the two identities, we

obtain that
∥∥∥f̂∥∥∥

α,β
<∞, and f̂ ∈ S .

By Proposition 2.3, continuity is implied by showing that for all α, β
∥∥∥f̂n − f̂∥∥∥

α,β
→ 0

if ‖fn − f‖γ,δ → 0 for all γ, δ. This follows from the same argument as finiteness of the
norms.

Theorem 2.6 (Fourier Inversion Theorem). The Fourier transform F : S (Rd) →
S (Rd) is a bijection. The inverse is continuous and given by the formula

(F−1g)(x) = 1
(2π)d/2

∫
Rd

eip·xg(p)dp. (2.11)

Proof. Set ϕε := e−εx2/2 and note that ϕ̂ε(p) = ε−d/2e−p2/(2ε) (exercise).
We take the formula for “F−1” as a definition and show that it inverts F . By

dominated convergence,

F−1f̂(x) = lim
ε→0

1
(2π)d/2

∫
Rd

eip·xϕε(p)f̂(p)dp

= lim
ε→0

1
(2π)d

∫
Rd

∫
Rd

eip·xe−ipyϕε(p)f(y)dydp

Fubini= lim
ε→0

1
(2π)d/2

∫
Rd

F
(
ϕε(p)eip·x

)
(y)f(y)dy

= lim
ε→0

1
(2π)d/2

∫
Rd
ε−d/2e

(y−x)2
2ε f(y)dy

z=y−x√
ε= lim
ε→0

1
(2π)d/2

∫
Rd

ez2/2f(x+
√
εz)dz

=f(x),

by dominated convergence and (2π)−d/2
∫
Rd e−z2/2 = ϕ̂1(0) = 1. The fact that FF−1 =

1 is proved in the same way.

Corollary 2.7 (Parseval’s identity). Let f, g ∈ S (Rd), then∫
Rd
f̂(p)ĝ(p)dp =

∫
Rd
f(x)g(x)dx. (2.12)

Proof. By Fubini and the Fourier inversion formula,∫
Rd
f̂(p)ĝ(p)dp =

∫
Rd
f(x)(F−1ĝ)(x)dx =

∫
Rd
f(x)g(x)dx. (2.13)

11



2 The Fourier Transform

Theorem 2.8. There exists a unique unitary operator F2 on L2(Rd) such that F2|S =
F .

Proof. As a consequence of Parseval’s identity, ‖Ff‖L2 = ‖f‖L2 , f ∈ S , so if we
interpret F as an operator on L2(Rd) defined on the dense domain D(F ) = S (Rd), F
is bounded. There thus exists a unique extension F2 to the whole of L2(Rd). The same
applies to F−1, and by continuity we have F2F

−1
2 = F−1

2 F2 = 1. Parseval’s identity
also extends to f, g ∈ L2(Rd) by continuity. Consequently, F2 is a bijective isometry
and thus unitary (Exercise 1)

We will not distinguish F and F2 by the notation.

2.2 Sobolev Spaces and Tempered Distributions

Definition 2.9. The space of tempered distributions on Rd is

S ′(Rd) = {ϕ : S (Rd)→ C linear and continuous} (2.14)

with the topology induced by the coarsest topology such that ϕ 7→ ϕ(f) is continuous
for all f ∈ S (Rd) (the weak-∗ toplogy).

Examples 2.10. • A function g gives rise to a distribution via ϕg(f) :=
∫
Rd g(x)f(x)dx

if g ∈ L1
loc(Rd) and (1 + |x|2)−ng(x) is bounded for some n.

• Finite measures.

• Dirac distribution δa(f) = f(a).

Remarks 2.11.

• The topology of S ′ is generated by the semi-norms ‖ϕ‖f := |ϕ(f)|, f ∈ S (Rd).
A sequence (ϕn)N converges to ϕ in S ′ iff ϕn(f)→ ϕ(f) for all f ∈ S.

Lemma 2.12. Let T : S (Rd)→ S (Rd) be linear and continuous, then

(T ′ϕ)(f) := ϕ(Tf) (2.15)

defines a linear continuous map on T ′ : S ′(Rd)→ S ′(Rd).

Proof. T ′ is clearly well-defined and linear. For continuity, it is sufficient to prove con-
tinuity in 0 ∈ S ′, by linearity. There, it suffices to show that the pre-images of a
neighbourhood basis of zero are open. A neighbourhood basis is given by the sets

UF,R = {ϕ : |ϕ(fi)| < ri, i = 1, . . . , n} (2.16)
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2.2 Sobolev Spaces and Tempered Distributions

where F = (f1, . . . , fn) is a finite collection of functions in S (Rd) and R = (r1, . . . , rn)
are positive numbers. Then

(T ′)−1(UF,R) = {(ϕ : T ′ϕ ∈ UF,R}
= {(ϕ : |T ′ϕ(fi)| < ri, i = 1, . . . , n}
= {(ϕ : |ϕ(Tfi)| < ri, i = 1, . . . , n}
= UTF,R,

with TF = (Tf1, . . . , T fn).

Examples 2.13.

a) Fourier transform F . For g ∈ S (Rd) ⊂ S ′(Rd) we have

((F−1)′ϕg)(f) = ϕg(F−1f) =
∫
g(x)(F−1f)(x)dp Parseval=

∫
ĝ(p)f(p)dp = ϕĝ(f),

(2.17)
so the action of (F−1)′ on S ′ extends the one of F on S . We will also denote this
by (F−1)′ϕ = Fϕ =: ϕ̂.

b) Derivative: For any α ∈ Nd we have (∂α)′ : S ′(Rd)→ S ′(Rd) linear and continuous.
In this way we can define derivatives of all tempered distributions, in particular all
L2-functions.

c) Multiplication by a polynomial: In this case we have (xα)′ϕg = ϕxαg =: xαϕg.

Definition 2.14. Let α ∈ Nd. The α-th distributional derivative on S ′(Rd) is defined
as (∂α)S ′ := (−1)|α|(∂α)′.

Remark 2.15. The definition of (∂α)S ′ ensures that its action is compatible with the
usual derivative and integration by parts: For g ∈ S (Rd) ⊂ S ′(Rd)

((∂α)S ′ϕg) (f) =
∫
g(x)(−1)|α|∂αx f(x)dx =

∫
(∂αx g) (x)f(x)dx = ϕ∂αg(f). (2.18)

For this reason we will not distinguish (∂α)S ′ from the usual derivative by the notation.
The distributional derivative is a local operation: Let ϕ ∈ S ′ have support in the open
set Ω ⊂ Rd (i.e.: supp f ⊂ Ωc =⇒ ϕ(f) = 0), then supp ∂αϕ ⊂ Ω.
Also note that f(p))

(F∂αϕ)(f) = ϕ
(
(−1)|α|∂αF−1f

)
= ϕ

(
F−1(−i)|α|∂αf

)
=
(
(i)|α|pαFϕ

)
(f). (2.19)

Definition 2.16. Let s ∈ R. The Sobolev space of order s is the Banach space

Hs(Rd) :=
{
ϕ ∈ S ′(Rd) : (1 + | · |2)s/2ϕ̂ ∈ L2(Rd)

}
(2.20)

with the norm
‖ϕ‖Hs =

∥∥∥(1 + | · |2)s/2ϕ̂
∥∥∥
L2
. (2.21)
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2 The Fourier Transform

The condition (1 + | · |2)s/2ϕ̂ ∈ L2(Rd) should be read as “f 7→ ϕ̂((1 + p2)s/2f(p))
defines a continuous linear functional on L2(Rd)”. This implies existence of g ∈ L2

loc
such that (1 + |p|2)s/2g(p) ∈ L2(Rd) and ϕ̂ = ϕg. Thus, ϕ̂ is represented by a function
and the norm really is

‖ϕ‖Hs =
(∫

Rd
(1 + p2)s|ϕ̂(p)|2dp

)1/2
. (2.22)

Remarks 2.17.

a) H0 = L2 and Hs ⊂ Ht for s > t, so Hs ⊂ L2 for all s > 0.

b) m ∈ N, then ϕ ∈ Hm ⇔ ϕ ∈ L2 and ∂αϕ ∈ L2 for all |α| ≤ m (exercise).

c) Hs can be considered as a Hilbert space with the scalar product

〈ϕ,ψ〉Hs :=
∫
Rd

(1 + p2)sϕ̂(p)ψ̂(p)dp. (2.23)

However, it is often more natural to identify (Hs)′ not with Hs by Riesz’ Theorem,
but with H−s via

〈ϕ,ψ〉H−s×Hs := 〈(1 + p2)−s/2ϕ̂, (1 + p2)s/2ψ̂〉L2 =
∫
ϕ̂(p)ψ̂(p)dp, (2.24)

which is compatible with the inclusion of L2 into S .

Examples 2.18.

a) Consider the operation −i d
dx on L2(Rd) (cf.Example 1.24). We can define it on the

following domains
Dmin = S (R), (2.25)

and by using the distributional derivative

Dmax =
{
ϕ ∈ L2(R),−i d

dxϕ ∈ L
2(R)

}
= H1(R). (2.26)

Let Pmin = (−i d
dx , Dmin) and Pmax = (−i d

dx , Dmax).
• Pmin is symmetric: Integration by parts.
• Pmax = P ∗min and Pmax is closed: ϕ ∈ D(P ∗min)⇔ ψ 7→ 〈ϕ, Pminψ〉 is a continuous
functional on L2(Rd) ⇔ i d

dxϕ ∈ L
2(R) as a distribution.

• Pmax is self-adjoint: Since Pmax = P ∗min it is enough to check that Pmax is
symmetric (cf. Corollary 1.23). But this is clear, since (compare Exercise 2).

〈ϕ, Pmaxψ〉 =
∫
R
ϕ̂(p)pψ̂(p)dp. (2.27)

14



2.2 Sobolev Spaces and Tempered Distributions

b) Let H = L2(Rd), and consider the operator H = −∆ in the distributional sense, i.e.
onD(H) = H2(Rd). ThenH is self adjoint, sinceH = F ∗p2F and the multiplication
operator by p2 is self-adjoint on its maximal domain (Exercise 2). We

Definition 2.19. Let Ω ⊂ Rd open and s > 0. We define:

• the space of locally Hs-distributions in Ω

Hs
loc(Ω) := {ϕ ∈ S ′(Rd) : χϕ ∈ Hs(Rd) for all χ ∈ C∞0 (Ω)}; (2.28)

• the Space of Hs-distributions in Ω

Hs(Ω) := {ϕ ∈ L2(Ω) : ∃ϕ̃ ∈ Hs(Rd) with ϕ̃|Ω = ϕ}, (2.29)

with the norm
‖ϕ‖Hs(Ω) = inf

ϕ̃|Ω=ϕ
‖ϕ̃‖Hs(Rd) ; (2.30)

• the space of Hs-distributions in Ω vanishing near the boundary

Hs
0(Ω) := C∞0 (Ω)‖·‖Hs(Rd) , (2.31)

with the norm induced by Hs(Rd) on this closed subspace.

Remarks 2.20.

a) Hs
0(Ω) ⊂ Hs(Ω) ⊂ Hs

loc(Ω) and Hs
0(Ω) ⊂ Hs(Ω) ⊂ L2(Ω).

b) The local Hs-space is not a Banach space. The norm on Hs(Ω) is the quotient norm
on Hs modulo the kernel of the restriction to Ω.

c) All the Sobolev spaces defined here in the L2-setting can be naturally defined with
respect to Lp, 1 ≤ p ≤ ∞.

Example 2.21. Let H = L2((0, 1)), P0 = −i d
dx , D(P0) = C1

0 ((0, 1)) (cf. Exam-
ple 1.24c)). We have already seen that P0 is not essentially self-adjoint. We will now
show that

• D(P0) = H1
0 ((0, 1)),

• f ∈ D(P ∗0 ) is continuous up to the boundary, and we have “integration by parts”,
for f, g ∈ D(P ∗0 )

〈f, P ∗0 g〉 = 〈P ∗0 f, g〉 − if(1)g(1) + if(0)g(0), (2.32)

• D(P ∗) = H1((0, 1)).
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2 The Fourier Transform

For the first point, let g ∈ S (R), f ∈ D(P0) and consider

〈f,−i d
dxg〉L2(R) = −i

∫ 1

0
f(x) d

dxg(x)dx = 〈P0f, g〉, (2.33)

so
‖f‖D(P0) = ‖f‖L2 + sup

g∈S ,‖g‖L2=1
〈P0f, g〉 = ‖f‖L2 +

∥∥∥pf̂(p)
∥∥∥
L2

(2.34)

is equivalent to theH1-norm. The closure ofD(P0) in this norm isH1
0 (0, 1), by definition.

For the second point, we first argue that D(P ∗0 ) ⊂ H1
loc(0, 1). Let χ ∈ C∞0 ((0, 1), [0, 1])

and f ∈ D(P ∗0 ). Then χf ∈ H1(R), since for g ∈ S ( R)

〈χf,−i d
dxg〉 = 〈f, χ− i d

dxg〉 = 〈f, P0χg〉L2(0,1) − i〈f, ( d
dxχ)g〉, (2.35)

which extends continuously to g ∈ L2(R). Note also that the weak derivative equals
−i d

dxχf = χP ∗0 f − i( d
dxχ)f . Let χK = 1 on K ⊂ (0, 1), then, by locality of the distri-

butional derivative, −i d
dxχKf |K = −i d

dxf |K = P ∗0 f , and by exhausting the interval with
compact sets we find ∫ 1

0

∣∣∣ d
dxf

∣∣∣2 (x)dx = ‖P ∗0 f‖
2 . (2.36)

Let K ⊂ (0, 1) be a compact interval, and fn ∈ C1((0, 1)) be a sequence such that
such that ‖fn − f‖L2(K)+

∥∥∥ d
dx(fn − f)

∥∥∥
L2(K)

→ 0 (e.g. convolution with a C∞0 -function).
Then for x ∈ K (cf. Example 1.24c))

|fn(x)− fm(x)|2 ≤ 2
(
‖fn − fm‖2L2(K) +

∥∥∥ d
dx(fn − fm)

∥∥∥2

L2(K)

)
, (2.37)

so fn converges to f uniformly on K and f is continuous in the interior of (0, 1). More-
over, for 0 < a < b < 1∫ b

a

d
dxf = fn(b)− fn(a) +

∫ b

a

d
dx(f − fn)dx. (2.38)

The integral is bounded by
√
b− a

∥∥∥ d
dx(f − fn)

∥∥∥
L2([a,b])

by the Cauchy-Schwarz inequal-
ity, so f satisfies the formula analogous to the fundamental theorem of calculus (even
though f is not C1).
Now let (xn)N be a sequence converging to a boundary point, say xn → 0. Then for

f ∈ D(P ∗0 )

|f(xn)− f(xm)|2 =
∣∣∣∣∫ xm

xn

d
dxf(y)dy

∣∣∣∣2 Cauchy-Schwarz
≤ |xm − xn|

∫ 1

0

∣∣∣ d
dxf(y)

∣∣∣2 dy, (2.39)

so f(xn) is Cauchy and converges to a limit y =: f(0). The integration-by-parts formula
follows from this in the same way as (2.38).
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2.2 Sobolev Spaces and Tempered Distributions

It is clear that H1(0, 1) ⊂ D(P ∗0 ). For the reverse inclusion, we need to extend
f ∈ D(P ∗0 ) to f̃ ∈ H1(R). set

f̃(x) =


exf(0) x ≤ 0
f(x) 0 < x < 1

e1−xf(1) x ≥ 1.

This function is piecewise (weakly) differentiable, and by the integration-by-parts for-
mula for all g ∈ S (R):

〈f̃ , d
dxg〉L2(R) = −

∫ 0

−∞
d

dx f̃(x)g(x)dx−
∫ 1

0
d

dx f̃(x)g(x)dx−
∫ ∞

1
d

dx f̃(x)g(x)dx, (2.40)

since the boundary terms cancel. This extends continuously to g ∈ L2, so f̃ ∈ H1(R).

Remark 2.22. For m ∈ N one can define spaces Wm(Ω) by requiring that the weak
derivatives, defined by duality with Cm0 (Ω) in analogy with (2.18), of f ∈ L2(Ω) be
in L2(Ω). In the example above, this corresponds to defining W 1((0, 1)) := D(P ∗0 ).
One can show that Wm(Ω) = Hm(Ω) (with our definition) if the boundary of Ω is
sufficiently regular (say Cm, see [AF]). If d = 1, then the boundary of a connected
open set Ω consists of just finitely many points, and Wm(Ω) = Hm(Ω), as we showed in
Example 2.21.
Warning: These notations are used with variants of the definitions.

2.2.1 Embedding Theorems

Lemma 2.23 (Riemann-Lebesgue). Let C∞(Rd) be the Banach space of continuous
functions with lim|x|→∞ f(x) = 0, equipped with the sup-norm. Then F : L1(Rd) →
C∞(Rd) defines a bounded operator.

Proof. It is clear that ‖Ff‖∞ ≤ (2π)−d/2 ‖f‖L1 , so F defines a bounded operator
L1 → L∞. Now F (S) ⊂ S ⊂ C∞ by Proposition 2.5. Then, by continuity and because
C∞ is closed in L∞, F (L1) ⊂ S ⊂ C∞.

Theorem 2.24 (Sobolev’s Lemma). Every element ϕ ∈ Hs(Rd) for s > d/2 has a
continuous representative, i.e. there exists f ∈ C∞(Rd) with ϕ = f a.e.. Furthermore,
there exists a constant such that for 0 < γ ≤ 1, γ < s− d/2 and x, y ∈ Rd:

|f(x)− f(y)| ≤ C ‖f‖Hs(Ω) |x− y|
γ , (2.41)

that is, f is Hölder continuous of degree γ.

Proof. For ϕ ∈ Hs(Rd), s > d/2, we have F−1ϕ := ϕ̌ ∈ L1, because ϕ̌(p) = (1 +
p2)−s/2(1+p2)s/2ϕ̂(−p) is the product of two L2-functions (the product is L1 by Cauchy-
Schwarz). Then f := F ϕ̌ ∈ C(Rd) by the Riemann-Lebesgue Lemma and f = ϕ a.e. by
Fourier inversion.
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2 The Fourier Transform

Because the exponential function is Hölder-continuous (|(eipx − eipy)| ≤ 21−γ |x −
y|γ |p|γ), we have for f ∈ S

|f(x)− f(y)| = 1
(2π)d/2

∣∣∣∣∫
Rd

(eipx − eipy)f̂(p)dp
∣∣∣∣

≤ 21−γ

(2π)d/2
∫
Rd
|x− y|γ |p|γ |f(p)|dp

≤ C|x− y|γ ‖|p|γ |f(p)|‖L1

We conclude as in the first case, since (1+p2)−s/2+γ/2 ∈ L2, because −s+γ < −d/2.

Corollary 2.25. Every ϕ ∈ Hs(Rd) for s > d/2 + k has a Ck-representative.

Proof. By applying Sobolev’s Lemma to ϕ and F−1(ip)αϕ̂, |α| ≤ k, we see that ϕ has
a representative with k continuous distributional derivatives. These coincide with the
usual derivatives by dominated convergence.

Corollary 2.26. Let Ω ⊂ Rd be open, then every ϕ ∈ Hm
loc(Ω) for m > d/2 + k has a

representative in Ckb (Ω).

Proof. Clear, since continuity is a local property.

Recall from [FA1]:

Definition 2.27. Let X,Y be Banach spaces. An operator T ∈ B(X,Y ) is compact if
for every bounded set B ⊂ X, T (B) is compact in Y (i.e. T (B) is relatively compact).

Since in metric spaces compactness is the same as sequential compactness, this is
equivalent to: For every bounded sequence (xn)N in X, the sequence yn := Txn has a
convergent subsequence in Y .
Recall also:

Definition 2.28. Let (Ω, d) be a metric space. A set F ⊂ C(Ω) is called equi-continuous
if

∀x ∈ Ω ∀ε > 0∃δ > 0∀f ∈ F ∀y with d(x, y) < δ : |f(x)− f(y)| < ε. (2.42)

Theorem 2.29 (Arzelà-Ascoli). Let (Ω, d) be a compact metric space. A set F ⊂ C(Ω)
is relatively compact iff F is bounded and equi-continuous.

[FA1, Thm.1.40]
This gives the following:

Corollary 2.30. Let Ω ⊂ Rd be compact and γ > 0. The inclusion of C0,γ(Ω)→ C(Ω)
is a compact operator.
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Proof. The norm on C0,γ(Ω) is given by

‖f‖C0,γ = ‖f‖∞ + sup
x 6=y∈Ω

|f(x)− f(y)|
|x− y|γ

. (2.43)

Thus, bounded sets in C0,γ(Ω) are mapped to bounded sets in C(Ω) and we only need
to show that these are equi-continuous. We have for all x, y ∈ Ω

|f(x)− f(y)| ≤ ‖f‖C0,γ |x− y|γ , (2.44)

so for ε > 0, (2.42) is satisfied with δ = (ε/ ‖f‖C0,γ )1/γ , and this proves the claim.

Corollary 2.31. Let Ω ⊂ Rd be open with Ω compact and s > d/2. Then the embedding

Hs(Ω)→C(Ω)

is a compact operator.

Proof. By definition, Hs(Ω) is the range of the restriction operator RΩ : Hs(Rd) →
Hs(Ω), ϕ 7→ ϕ|Ω. Using the Hilbert space structure on Hs, we can write Hs(Rd) =
ker(RΩ)⊕ ker(RΩ)⊥ as an orthogonal sum, and RΩ|kerR⊥Ω

is an isometry to Hs(Ω). It is
thus sufficient to prove that that RΩ is a compact operator on the given spaces.
Let Ω̃ ⊃ Ω, then by Sobolev’s Lemma RΩ̃ maps bounded sets in Hs(Rd) to bounded

sets ∈ C0,γ(Ω̃). Thus RΩ = RΩRΩ̃ maps bounded sets in Hs(Rd) to bounded sets in
C0,γ(Ω). The claim then
follows from Corollary 2.30.

All of these statements have generalisations to s ≤ d/2, where spaces of continuous
functions are replaced by Lp-spaces, p ≥ 2. We will only give the important generalisa-
tion of Corollary 2.31 to the L2-case.

Theorem 2.32 (Rellich’s Theorem). Let Ω ⊂ Rd be open with Ω compact and s > 0.
Then the embedding

Hs(Ω)→ L2(Ω)

is a compact operator.

Proof. As in Corollary 2.31 it is sufficient to prove that the restriction R : Hs(Rd) →
L2(Rd) is compact. We will show that R(B) is relatively compact in L2(Ω) for the unit
ball B ⊂ Hm(Rd) by a three-ε-argument.
Let (ϕn)N be a sequence in B. Define ϕ̃n,k by ̂̃ϕn,k(p) = ϕ̂n(p) for |p| ≤ k and̂̃ϕn,k(p) = 0 otherwise. Then

‖Rϕ̃n,k −Rϕn‖2L2(Ω) ≤ ‖ϕ̃n,k − ϕn‖
2
L2(Rd) ≤

∫
|p|>k

|ϕ̂n(p)|2dp ≤ (1 + k2)−s/2 < ε,

(2.45)
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for large enough k. Now ̂̃ϕn,k has compact support, so

‖ϕ̃n,k‖H(d+1)/2(Rd) ≤ ‖ϕ̃n,k‖L2(Rd)

(∫
|p|≤k

(1 + k2)(d+1)/2
)1/2

≤ Ck. (2.46)

Thus, by Corollary 2.31, Rϕ̃n,k has a convergent subsequence in C(Ω) ⊂ L2(Ω) as n→∞
(denoted by the same symbols). Then

‖Rϕn −Rϕm‖L2(Ω) ≤ 2ε+ ‖Rϕ̃n,k −Rϕ̃m,k‖L2(Ω) . (2.47)

This is less than 3ε for m,n > N0, so Rϕn is Cauchy.

Remark 2.33. As remarked before Hm(Ω) is the same as the space Wm,2 of weakly-
differentiable functions if Ω is sufficiently regular. Then the compactness results of
Corollary 2.31 and Theorem 2.32 transfer to these space under such a regularity condi-
tion.
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3 Self-Adjoint Operators and the Spectral
Theorem

3.1 Criteria for Self-Adjointness
Theorem 3.1. Let A, D(A) be symmetric. The following are equivalent

1) A = A∗

2) A is closed and ker(A∗ + i) = ker(A∗ − i) = {0}

3) ran(A+ i) = ran(A− i) = H .

Proof. 1) =⇒ 2): A = A∗ is closed by Theorem 1.19. If 0 6= ϕ ∈ ker(A∗ ± i), then (e.g.
for “+”)

i〈ϕ,ϕ〉 = 〈A∗ϕ,ϕ〉 = 〈ϕ,A∗ϕ〉 = −〈ϕ,ϕ〉 (3.1)

=⇒ ϕ = 0.
2) =⇒ 3) First note ker(A∗ + i) = ran(A− i)⊥:

ϕ ∈ ker(A∗ + i)⇔ ∀ψ ∈ D(A) : 〈(A∗ + i)ϕ,ψ〉 = 0⇔ ∀ψ ∈ D(A)〈ϕ, (A− i)ψ〉 = 0.

Consequently, ker(A∗+i) = {0} =⇒ ran(A− i) = H . Now let η ∈H with (A−i)ϕn →
η. We have the inequality for all ψ ∈ D(A):

‖(A− i)ψ‖2 = 〈(A− i)ψ, (A− i)ψ〉 = ‖Aψ‖2 + ‖ψ‖2 + i (〈ψ,Aψ〉 − 〈Aψ,ψ〉) ≥ ‖ψ‖2 .,
(3.2)

so (ϕn)N is Cauchy, ϕn → ϕ. Since A is closed, ϕ ∈ D(A) and Aϕ = η + iϕ, and
η ∈ ran(A− i).
3) =⇒ 1) Let ϕ ∈ D(A∗) and prove that ϕ ∈ D(A). First, there is ψ ∈ D(A) s.th.

(A∗ − i)ϕ = (A− i)ψ. Since A ⊂ A∗, we thus have (A∗ − i)(ϕ− ψ) = 0. Then for every
η ∈ D(A):

0 = 〈η, (A∗ − i)(ϕ− ψ)〉 = 〈(A+ i)η, (ϕ− ψ)〉, (3.3)

and thus ϕ = ψ ∈ D(A) because ran(A+ i) = H .

From the proof we obtain directly:

Corollary 3.2. Let A, D(A) be symmetric. The following are equivalent

1) A is essentially self-adjoint

2) ker(A∗ + i) = ker(A∗ − i) = {0}
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3) ran(A+ i) = ran(A− i) = H .

Proof. If A is essentially self-adjoint, then A∗ = A is self-adjoint, so 1) =⇒ 2).
2) =⇒ 3) since ran(A∓ i) = ker(A∗ ∓ i).
To see that 3) =⇒ 1), (ψn)n in D(A) be a sequence such that (A− i)ψn → (A∗− i)ϕ.

The bound(3.2) implies that ψn is Cauchy, and thus converges to some ψ. Then (A −
i)ψ → (A∗− i)ϕ, and we conclude as in the proof of the Theorem above that ψ = ϕ and
A = A∗.

We can also note the following property of the spectrum:

Corollary 3.3. Let A,D(A) be symmetric. Then A is self-adjoint iff σ(A) ⊂ R, and in
that case

‖Rz(A)‖ ≤ Im(z)−1. (3.4)

Proof. By Theorem 3.1, A is self-adjoint iff {±i} ⊂ ρ(A). Now z = µ + iλ ∈ ρ(A)
⇔ i ∈ ρ((A− µ)/λ), which gives the statement on the spectrum.
For the bound on the resolvent it is sufficient to consider z = iλ (by passing to A−µ),

and we have by the calculation (3.2) for ϕ ∈ D(A)

‖(A+ λi)ϕ‖2 = ‖Aϕ‖2 + λ2 ‖ϕ‖2 . (3.5)

Applying this to ϕ = (A+ iλ)−1ψ yields

‖ψ‖2 ≥ λ2
∥∥∥(A+ iλ)−1ψ

∥∥∥2
, (3.6)

which proves the claim.

These results give rise to a powerful tool to construct new self-adjoint operators out
of known examples.

Definition 3.4. Let A,D(A), B,D(B) be densely defined. B is bounded relative to A,
for short A-bounded, iff D(A) ⊂ D(B) and there exist constants a, b ≥ 0 such that for
all ψ ∈ D(A)

‖Bψ‖ ≤ a ‖Aψ‖+ b ‖ψ‖ . (3.7)

The relative bound of B with respect to A is then the infimum of all a ≥ 0 such that
the inequality holds for some b ≥ 0.

Theorem 3.5 (Kato-Rellich). Let A,D(A) be self-adjoint and B,D(B) symmetric. If
B is A-bounded with relative bound a < 1, then A + B is self-adjoint on D(A) and
essentially self-adjoint on any core of A.

Proof. It is sufficient to show that ran(A + B − iλ) = H for some λ > 0. Using the
relative bound and Corollary 3.3 we obtain

‖BRiλ(A)‖ ≤ a ‖ARiλ(A)‖+ b ‖Riλ(A)‖ ≤ a+ b

λ
. (3.8)
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If a+b/λ < 1, the bounded operator 1+BRiλ(A) is thus invertible by a Neumann series
([FA1, Thm.5.18]). Since A− λi is onto, then so is

(1 +BRiλ(A)) (A− λi) = A+B − λi. (3.9)

If we work instead of D(A) on any core C(A) of A, then ran(A−λi)|C(A) is dense, and
by continuity and bijectivity of 1 +BRiλ(A) so is the range of (A+B − λi) |C(A).

Corollary 3.6 (Second Resolvent Formula). Let A,D(A) be self-adjoint and B,D(B)
symmetric and A-bounded with relative bound a < 1. Denote by A + B the self-adjoint
operator on D(A) given by the Kato-Rellich Theorem. Then for every z ∈ ρ(A+B)∩ρ(A)
we have

Rz(A+B)−Rz(A) = −Rz(A)BRz(A+B) = −Rz(A+B)BRz(A). (3.10)

Proof. Since A + B is self-adjoint, we have C \ R ⊂ ρ(A). In (3.9) we showed that for
|λ| large enough

Riλ(A+B) = Rλi

∞∑
n=0

(−1)n(BRλi)n

= Rλi −RλiBRλi

∞∑
n=0

(−1)n(BRλi)n = Rλi −RλiBRiλ(A+B).

This establishes the desired equality on two semi-infinite strips on the imaginary axis. By
analytic continuation it must then hold for all z ∈ C \R, and then also for all remaining
points in ρ(A) ∩ ρ(A+B), which are in the closure of C \ R.
The second equality follows from the same reasoning applied to A = A+B −B.

Example 3.7 (Schrödinger operators). The Schrödinger equation is the partial differ-
ential equation

i∂tψ(t, x) = −∆ψ(t, x) + V (x)ψ(t, x), (3.11)
where V is a real function (we denote the multiplication operator by the same symbol).
An important example is V (x) = − 1

|x| in d = 3 dimensions. It corresponds to a
model of an electron in R3 interacting with a nucleus (fixed at x = 0) via electrostatic
interactions – a model for the hydrogen atom.
The function ψ(t, ·) is called the wave-function and accounts for the sate of the electron

at time t. The square modulus |ψ(t, ·)|2 is the probability distribution of the position
of the electron (Born’s rule). It is thus natural to consider the Schrödinger equation on
L2(Rd), where it takes the abstract form

i∂tψ(t) = Hψ(t), (3.12)

where H,D(H) is an unbounded operator. Since the total probability ‖ψ(t)‖L2 should
be equal to one for all times, we are interested in solutions that preserve this norm. This
implies that H must be symmetric since

d
dt ‖ψ(t)‖2 = 2Re(〈ψ(t),−iHψ〉) = −2Im(〈ψ,Hψ〉). (3.13)

23



3 Self-Adjoint Operators and the Spectral Theorem

In particular, if λ ∈ σp(H) is a real eigenvalue with eigenfunction ϕ, then ψ(t) = e−itλϕ
is a periodic solution to the Schrödinger equation. The probability distribution |ψ|2 for
this solution does not change, so it is interpreted as a stationary state.
We will later see that the equation has a good existence theory if and only if H is

self-adjoint. With the tools we have now, we can prove this self-adjointness for many
cases, e.g. d = 3 and V ∈ L2(R3) + L∞(R3). Since the electrostatic potential 1/|x|
is square-integrable for x ≤ 1 and bounded for x ≥ 1, this applies to the Hamiltonian
operator for the Hydrogen atom. We claim that V is −∆-bounded with relative bound
zero, which implies that

H = −∆ + V (x) (3.14)

is self-adjoint on D(H) = D(−∆) = H2(R3). We have Hs(R3) ⊂ L∞(R3) for s > 3/2
(by Sobolev’s Lemma 2.24), and, for s < 2 and ε > 0

|p|s ≤
{
εs/(s−2) |p| ≤ ε1/(s−2)

εp2 |p| > ε1/(s−2),
(3.15)

so |p|s ≤ εp2 + εs/(s−2).
Consequently,

‖ψ‖L∞ ≤ ε ‖−∆ψ‖L2 + Cε ‖ψ‖L2 . (3.16)

Now decompose V = V2 + V∞ with Vp ∈ Lp(R3), then

‖V ψ‖L2 ≤ ‖V2‖L2 ‖ψ‖L∞ + ‖V∞‖L∞ ‖ψ‖L2

≤ ε ‖V2‖L2 ‖−∆ψ‖L2 + (‖V2‖L2 Cε + ‖V∞‖L∞) ‖ψ‖L2 , (3.17)

so V is −∆-bounded with relative bound zero.
From the proof of the Kato-Rellich Theorem we also see that λ ∈ ρ(H) for λ << 0

sufficiently small (exercise). This means that H has no eigenvalues smaller than some
λmin ≤ 0. This means that the electron cannot have arbitrarily small energy, even though
the interaction can be very negative. This implies stability of the Hydrogen atom, which
was a puzzle in the early 20th century.

3.1.1 Quadratic Forms
Definition 3.8. A form on a Hilbert space H with form-domain Q ⊂H is a sesquilin-
ear form

q : Q ×Q → C. (3.18)

• q is densely defined if Q is dense in H .

• q is symmetric if q(ψ,ϕ) = q(ϕ,ψ)

• q is bounded from below if q is symmetric and there exists M ≥ 0 such that

∀ψ ∈ Q : q(ψ,ψ) ≥ −M ‖ψ‖2H (3.19)

and non-negative if M = 0.
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3.1 Criteria for Self-Adjointness

• q is closed if it is bounded from below and Q with the scalar product

〈·, ·〉Q := q(·, ·) + (M + 1)〈·, ·〉H (3.20)

is a Hilbert space.

• q is closable if there exists a closed form q̃ with domain Q̃, Q ⊂ Q̃ ⊂ H that
restricts to q. If Q̃ is the completion of the pre-Hilbert space (Q, 〈·, ·〉Q), then q̃ is
called the closure of q and denoted by q.

Remarks 3.9.

a) By polarisation any symmetric form is uniquely determined by the associated quadratic
form ψ 7→ q(ψ,ψ), i.e.

q(ϕ,ψ) = 1
4 (q(ϕ+ ψ,ϕ+ ψ)− q(ϕ− ψ,ϕ− ψ))+ i

4 (q(ϕ+ iψ,ϕ+ iψ)− q(ϕ− iψ,ϕ− iψ)) .
(3.21)

b) A form is symmetric iff q(ψ,ψ) is real.

Example 3.10.

a) Let A, D(A) be a symmetric operator, then

qA(ψ,ϕ) := 〈Aψ,ϕ〉 (3.22)

defines a form on D(A). We call A bounded from below if this form is bounded from
below.

b) Let Q = C0(R) ⊂ L2(R), then

q(f, g) := f(0)g(0) (3.23)

is a densely defined form with domain Q. This form is non-negative since q(f, f) =
|f(0)|2 ≥ 0.

Proposition 3.11. Let A, D(A) be symmetric and bounded from below. Then the
associated form qA is closable.

Proof. Let QA be the completion of D(A) w.r.t. 〈·, ·〉QA
. We need to show that this

can be identified with a subspace of H . The inclusion ι : D(A) → H extends to a
continuous map since D(A) is dense in QA. We need to show that this extension is one-
to-one. Assume that ιψ = 0, ψ ∈ QA and take a sequence (ψn)N in D(A) converging to
ψ in QA. Then (ιψn)N = (ψn)N converges to zero in H , and

‖ψ‖2QA
= lim

n→∞
lim
m→∞

(〈Aψn, ψm〉H + (M + 1)〈ψn, ψm〉H ) = 0, (3.24)

so ψ = 0. This ι is injective and ιQA ⊂H is the domain of the closure

qA(ιψ, ιϕ) = 〈ψ,ϕ〉QA
− (M + 1)〈ιψ, ιϕ〉H . (3.25)
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3 Self-Adjoint Operators and the Spectral Theorem

For A, D(A) symmetric and bounded from below we call the domain of qA the form-
domain of A, and denote it by Q(A).

Example 3.12. Let q be the form of Example 3.10 b). This form is neither closed nor
closable: We can find a sequence (fn) ∈ C0(R) with fn(0) = q(fn, fn) = 1, fn → 0 in
L2(R). Then (fn)N is Cauchy in the norm ‖·‖Q, since

‖fn − fm‖2Q = q(fn − fm, fn − fm)︸ ︷︷ ︸
=0

+ ‖fn − fm‖2H . (3.26)

Consequently the inclusion ι : C0(R) → L2(R) does not extend to an injective map
from the completion Q to L2(R). The Proposition thus implies that this form is not
associated with an operator.

Theorem 3.13 (Riesz-Friedrichs). Let q be a densely defined, bounded from below, and
closed form with domain Q. Then there exists a unique self-adjoint operator A, D(A) ⊂
Q on H such that q = qA.

Proof. Without loss of generality q = 〈·, ·〉Q. Let

Γ := {(ψ,ϕ) ∈ Q ×H : ∀η ∈ Q : q(ψ, η) = 〈ϕ, η〉H }, (3.27)

and
D := {ψ ∈ Q : ∃ϕ ∈H : (ψ,ϕ) ∈ Γ}. (3.28)

We start by showing that Γ is the graph of an operator A with dense domain D := D(A).
Clearly Γ is a linear subspace of Q ×H . To see that it is a graph, we need to check

that for any ψ ∈ Q there exists at most one ϕ ∈H such that (ψ,ϕ) ∈ Γ. But if (ψ,ϕ)
and (ψ, ϕ̃) are both in Γ, then also (0, ϕ− ϕ̃), and 〈ϕ− ϕ̃, η〉H = 0 for all η ∈ Q. Since
Q is dense, this implies ϕ = ϕ̃.
We have thus shown that Γ is the graph of an operator A with domain D. This

operator is onto, for if ϕ ∈ H is arbitrary, then η 7→ 〈ϕ, η〉H is a continuous linear
functional on Q, and by Riesz’ Theorem there is ψ ∈ Q s.th. 〈ϕ, η〉H = 〈ψ, η〉Q, i.e.
(ψ,ϕ) ∈ Γ.
To show that D is dense, it is sufficient to prove that D is dense in Q. Take η ∈ D(A)⊥

(w.r.t. Q). By surjectivity, there is ψ ∈ D s.th. Aψ = η. Then

0 = 〈ψ, η〉Q = ‖η‖2H (3.29)

so η = 0 and D is dense.
Clearly, A is symmetric, as for ψ, η ∈ D(A)

〈Aψ, η〉H = 〈ψ, η〉Q = 〈η, ψ〉Q = 〈Aη, ψ〉H = 〈ψ,Aη〉H . (3.30)

We also know that A is injective, since 〈Aψ,ψ〉H = ‖ψ‖2Q, and surjective – so 0 ∈ ρ(A).
Since the resolvent set is open (see Theorem 1.14), there exists λ ∈ R s.th. {±iλ} ⊂ ρ(A),
so A is self-adjoint by Theorem 3.1.
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By construction, q is a closed extension of qA, and since D(A) is dense in (Q, ‖·‖Q) it
is equal to the closure qA.
It remains to prove uniqueness, so let B,D(B) satisfy the required properties. By the

definition of Γ, A extends B, but since both are self-adjoint this implies A = B.

Remark 3.14. We see that self-adjoint and bounded from below operators are in one-to
one correspondence with closed and bounded-from-below forms.
However, a form may be symmetric but have no closed extensions. A symmetric

operator is automatically closable, but may have no self-adjoint extensions.

Corollary 3.15 (The Friedrichs Extension). Let A, D(A) be symmetric and bounded
from below and let Q(A) be its form-domain (that exists by Proposition 3.11). Then
there exists a unique self-adjoint extension AF of A such that

D(A) ⊂ D(AF ) ⊂ Q(A). (3.31)

Moreover, qAF = qA.

Example 3.16 (The Dirichlet Laplacian). Let Ω ⊂ Rd be open, and define the quadratic
form

q(f, f) =
∫

Ω
|∇f(x)|2dx (3.32)

on Q = H1
0 (Ω). For f ∈ C∞0 (Ω) we have

q(f, f) = −
∫

Ω
f(x)∆f(x)dx. (3.33)

Hence q is the closure of the quadratic form of (−∆, C∞0 (Ω)).
This form is clearly symmetric and non-negative, so there is a unique self-adjoint

extension of (−∆, C∞0 (Ω)) with D(−∆) ⊂ H1
0 (Ω). This extension is called the Dirichlet

Laplacian, or the Laplacian with Dirichlet boundary conditions.
If Ω is compact, then this operator has compact resolvent: We have that Rz(−∆)→

H1
0 (Ω) ⊂ D(−∆) is bounded, and the embedding ι : H1

0 (Ω) → L2(Ω) is compact, by
Rellich’s Theorem. Thus Rz(−∆) = ιRz(−∆) is compact. By Exercise T09, we thus
have that σ(−∆) = σp(−∆) is a discrete subset of R. Since q > 0, σp(−∆) ⊂ R+, and
since −∆ is not bounded, σp(−∆) contains a sequence tending to infinity.
Formulated as a result in PDEs, this proves that if Ω is compact, the equation{

(−∆ + λ)f = g in Ω
f = 0 on ∂Ω

(3.34)

with g ∈ L2(Ω) has a unique solution f = R−λ(−∆)g in H1(Ω), except for λ in some
discrete set, the spectrum of −∆.
If the boundary of Ω is sufficiently regular (say C2) then D(−∆) = H1

0 (Ω) ∩H2(Ω).
In this case the solution f above is an element of H2(Ω).
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3 Self-Adjoint Operators and the Spectral Theorem

Example 3.17 (Elliptic operators with rough coefficients). We can go further and con-
sider the form

q(f, f) =
∫

Ω
a(x)|∇f(x)|2dx (3.35)

with a ∈ L∞(Ω), a(x) ≥ γ > 0, on C∞0 . This form is closable (since ‖·‖Q is equivalent
to the norm of H1(Ω)), so by the Riesz-Friedrichs Theorem it is associated to a non-
negative self-adjoint operator with domain contained in H1

0 (Ω). However, its domain
can be very complicated, as

∑d
i=1 ∂

i
xa(x)∂ix is not necessarily defined from H2(Ω) (or

C2(Ω)) to L2(Ω), if a is not differentiable.

Example 3.18 (Robin boundary conditions on R+). Let H = L2(R+) and consider
the operator Aθ := −∆ on

Dθ := {f ∈ H2(R+) : cos(πθ)f(0)− sin(πθ)( d
dxf)(0) = 0} (3.36)

for some θ ∈ [0, 1) (the boundary condition makes sense by Sobolev’s Lemma). Note
that θ = 0 corresponds to the Dirichlet-condition f(0) = 0 and θ = 1/2 to the Neumann
condition ( d

dxf)(0) = 0. Through integration by parts, we can express the quadratic
form as

qAθ(f, f) =
∫ ∞

0
| d
dxf(x)|2dx−


−|f(0)|2

tan(πθ) for θ /∈ {0, 1/2}

0 for θ ∈ {0, 1/2}.
(3.37)

The operator A is thus symmetric and bounded from below. There is thus a self-adjoint
extension of Aθ for all θ. Its domain is contained in the domain of qAθ . This is

Qθ =
{
H1(R+) for θ 6= 0
H1

0 (R+) for θ = 0.
(3.38)

We observe that the difference between the operators Aθ, which originally lies in the
boundary conditions, is reflected in different ways on the form-level. In particular for
the Neumann case θ = 1/2 it is not evident how θ enters at all!

Theorem 3.19 (The KLMN Theorem). Let A, D(A) be a self-adjoint operator and
bounded from below. Let q be a densely symmetric form on Q ⊃ Q(A) and suppose there
exist b ≥ 0 and 0 < a < 1 such that for all ψ ∈ D(A)

|q(ψ,ψ)| ≤ aqA(ψ,ψ) + b ‖ψ‖2H . (3.39)

Then there exists a unique self-adjoint operator B,D(B) with Q(B) = Q(A) and

qB = qA + q. (3.40)

Proof. We will show that qA + q has a closed extension to Q(A), the result then follows
from the Riesz-Friedrichs Theorem.
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Without loss of generality A is positive. Define the form β = qA + q with domain
Q(A). β is clearly symmetric. We have, using the bound in the hypothesis,

β(ψ,ψ) ≥ (1− a)qA(ψ,ψ)− b ‖ψ‖2H ≥ −b ‖ψ‖
2 , (3.41)

so β is bounded from below by −b. Furtheremore

β(ψ,ψ) + (b+ 1) ‖ψ‖2 ≤ aqA(ψ,ψ) + (2b+ 1) ‖ψ‖2H ≤ (2b+ 1) ‖ψ‖2Q(A) , (3.42)

and, by (3.41),

‖ψ‖2Q(A) = qA(ψ,ψ) + ‖ψ‖2H ≤
1

1− a
(
β(ψ,ψ) + (b+ 1) ‖ψ‖2

)
, (3.43)

so the norms induced by qA and β are equivalent. Hence Q(A) with the norm induced
by β is complete and β is closed. By the Riesz-Friedrichs Theorem there thus exists a
unique self-adjoint operator B, D(B) ⊂ Q(A) with β = qB.

Example 3.20. Let H = L2(R) and define a quadratic form on H2(R) by∫
| d
dxf |

2dx+ |f(0)|2, (3.44)

i.e. the sum of the form of −∆ and the form from example (3.10) b). This is well defined
because H2(R) ↪→ C(R) by Sobolev’s Lemma. It satisfies the hypothesis of the KLMN
theorem for the same reason (and interpolation, as in Example 3.7). Consequently, there
is an associated self-adjoint and bounded below operator, even though part of the from
is not associated with an operator.

3.1.2 Classification of Self-Adjoint Extensions
We now turn to the Classification of self-adjoint extensions of a symmetric operator A,
D(A). From Theorem 3.1 we already know that the spaces

ker(A∗ ∓ i) = ran(A± i)⊥ (3.45)

play an important role.

Definition 3.21. Let A, D(A) be symmetric. We call

K± := ker(A∗ ∓ i) (3.46)

the defect-spaces of A, and
N± := dimK± (3.47)

the defect indices.

We know that A is essentially self-adjoint iff N+ = N− = 0. We will now show that
A has self-adjoint extensions iff K+ and K− are isomorphic, so essentially if N+ = N−.
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Definition 3.22. Let A, D(A) be symmetric. We call

CA : ran(A+ i)→ ran(A− i)
CA := (A− i)(A+ i)−1

the Cayley transform of A.
Note that CA is not necessarily densely defined.

Lemma 3.23. For any symmetric A, D(A), the Cayley transform is isometric and onto.
Proof. We have for all ψ ∈ D(A)

‖(A+ i)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2 = ‖(A− i)ψ‖2 . (3.48)

Thus, for ϕ = (A+ i)ψ ∈ ran(A+ i), we have CAϕ = (A− i)ψ, so CA is onto, and

‖CAϕ‖ = ‖(A− i)ψ‖ = ‖(A+ i)ψ‖ = ‖ϕ‖ , (3.49)

so CA is isometric.

Proposition 3.24. A symmetric operator A, D(A) is self-adjoint if and only if CA is
unitary.
Proof. If A is self-adjoint, then CA is a surjective isometry from ran(A + i) = H to
ran(A− i) = H and thus unitary.
If CA is unitary, then in particular ran(A± i) = H , and A is self-adjoint.

Lemma 3.25. If Ã is a symmetric extension of A then CÃ is an isometric extension of
CA. Conversely, for any isometric extension C̃ of CA there is a symmetric extension Ã
of A.
Proof. Let A ⊂ Ã. Then ran(A + i) ⊂ ran(Ã + i). Moreover, for ϕ = (A + i)ψ,
ψ ∈ D(A) ⊂ D(Ã)

CÃϕ = (Ã− i)(Ã+ i)−1ϕ = (Ã− i)ψ = (A− i)ψ = CAϕ, (3.50)

so CÃ extends CA.
For the converse, let C̃ : L+ → L− be an isometry with ran(A ± i) ⊂ L±. We claim

that

Ã = i(C̃ + 1)(C̃ − 1)−1 (3.51)
D(Ã) = ran(C̃ − 1) (3.52)

is a symmetric extension of A. First, we show that this is well-defined by proving that
C̃ − 1 is one-to-one. Assume that C̃ψ = ψ, then for ϕ ∈ D(A):

−2i〈ψ,ϕ〉 = 〈ψ, ((A− i)− (A+ i))ϕ〉
= 〈ψ, (CA − 1)(A+ i)ϕ〉
= 〈ψ, (C̃ − 1)(A+ i)ϕ〉
= 〈C̃ψ, C̃(A+ i)ϕ〉 − 〈ψ, (A+ i)ϕ〉
isom.= 0.
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This implies ψ = 0 as D(A) is dense.
This calculation shows that for ϕ ∈ D(A)

ϕ = i
2(C̃ − 1)(A+ i)ϕ. (3.53)

Using this, we see that Ã extends A, since

Ãϕ = i
2Ã(C̃−1)(A+ i)ϕ = −1

2(C̃+ 1)(A+ i)ϕ CA⊂C̃= −1
2(CA+ 1)(A+ i)ϕ = Aϕ. (3.54)

To check symmetry of Ã, consider ϕ = (C̃ − 1)ψ ∈ D(Ã), and compute

〈ϕ, Ãϕ〉 = i〈(C̃ − 1)ψ, (C̃ + 1)ψ〉 isom.= i
(
〈C̃ψ, ψ〉 − 〈ψ̃, C̃ψ〉

)
= 2Im(〈ψ, C̃ψ〉, (3.55)

which is real, and by polarisation Ã is symmetric.

Remark 3.26. Note that CA = CA, since if ϕn = (A+ i)ψn is convergent, the so is ψn
(see also Theorem 3.1) and thus (A+i)ψn → (A+i)ψ. Consequently CA maps ran(A+i)
isometrically to ran(A + i), and since the isometric extension of CA is unique it must
equal CA.

Theorem 3.27. Let A, D(A) be symmetric, then there is a one-to-one correspondence
between unitary maps from K+ to K− and self-adjoint extensions of A.

Proof. Let U : K+ → K− be unitary. Then we define

C̃ : H = ran(A+ i)⊕K+ → ran(A− i)⊕K− (3.56)

by (ϕ, k) 7→ (CAϕ,Uk) (where CA is extended to the closure by continuity, where it
equals CA as remarked above). Since the sum is orthogonal this defines a unitary ex-
tension of CA, and by Lemma 3.25 a symmetric extension of A. This is self-adjoint by
Proposition 3.24.
For the converse, let B be a self-adjoint extension of A. Then CB is a unitary extension

of CA by Lemma 3.25 and Proposition 3.24. Thus CB|K+ is a surjective isometry to its
range. Since CB is isometric and extends CA, ranCB|K+ ⊂ K−, and since CB is onto
we must have equality. We thus have a surjective isometry CB : K+ → K−, and this is
unitary by Exercise 01.

Corollary 3.28. A symmetric operator A, D(A) with finite deficiency indices has
self-adjoint extensions if and only if N+ = N−. The self-adjoint extensions are then
parametrised by the elements of U(K+,K−) ∼= U(N). The extension AU corresponding
to U ∈ U(K+,K−) given by

D(AU ) = D(A)⊕ span{Uϕ+ − ϕ+ : ϕ+ ∈ K+} ⊂ D(A)⊕K+ ⊕K−
(3.57)

AU (ψ + Uϕ+ − ϕ+) = Aψ + i(Uϕ+ + ϕ+). (3.58)
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Proof. Clearly there exist unitary maps between the finite dimensional spaces K± iff
their dimensions are equal. By Lemma 3.25 the domain of the extension associated with
U is

D(AU ) = ran(CU − 1) = ran(CA − 1)⊕ ran(U − 1). (3.59)

Now ran(U − 1) = {Uϕ+ −ϕ+ : ϕ+ ∈ K+} and ran(CA − 1) = D(A). The action of AU
on ran(U − 1) is given by

AU (Uϕ+ − ϕ+) = i(CU + 1)(CU − 1)−1(Uϕ+ − ϕ+) = i(Uϕ+ + ϕ+). (3.60)

Examples 3.29.

a) Let P+ = −i d
dx with D(P+) = C1

0 (R+) ⊂ L2(R+). P+ is symmetric, and we have
D(P ∗+) = H1(R+). To calculate K± = ker(P ∗+∓ i), consider the differential equations

− i d
dxf(x) = ±if(x), x > 0. (3.61)

Their unique solutions are f(x) = f(0)e∓x, which is an element of L2(R+) only for
one of the possible signs. To relate this to P ∗+, use Sobolev’s Lemma to see that f(0) is
well-defined, and since also P ∗+f = ±if , f ∈ K± implies that f ∈ H2(R+) ⊂ C1(R+).
We deduce that f ∈ K± is a classical solution to the differential equation, and thus
N+ = 1, N− = 0. There are no self-adjoint extensions of P+.

b) Let H = L2((0, 1)), D(P0) = C1
0 ((0, 1)), P0 = −i d

dx (see Example 1.24 c), 2.21). We
showed that D(P ∗0 ) = H1((0, 1)), and we have the identity

〈f, P ∗0 g〉 − 〈P ∗0 f, g〉 = i
(
f(1)g(1)− f(0)g(0)

)
. (3.62)

We will now classify all self-adjoint extensions of P0 in terms of boundary conditions,
first by elementary methods and then by applying Theorem 3.27.
Let P0 ⊂ A ⊂ P ∗0 be a self-adjoint extension of P0. Symmetry implies that for all
f ∈ D(A) we have |f(0)|2 = |f(1)|2, so there exists α ∈ S1 s.th. f(0) = αf(1). Hence

D(A) ⊂ {f ∈ H1(0, 1) : f(0) = αf(1)} =: D(Pα). (3.63)

We will now prove that Pα = P ∗0 |D(Pα) is self-adjoint for all α ∈ S1, and thus A = Pα
(for some α).
Take g ∈ D(Pα) ⊂ D(P ∗0 ), then for every f ∈ D(Pα)

〈g, P ∗αf〉 = 〈P ∗0 g, f〉+ f(1)
(
g(1)− αg(0)

)
. (3.64)

The right hand side defines a continuous linear functional of f ∈ L2((0, 1)) iff g(1)−
αg(0) = 0, so we must have we also have g(0) = α−1g(1) = αg(1) and thus g ∈ D(Pα).
The operators Pα for α ∈ S1 are thus all self-adjoint extensions of P0.
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3.2 The Spectral Theorem

Now we will use the formalism of Theorem 3.27. We must first determine K±. If
f ∈ H1(0, 1) is a solution of −i d

dxf = ±if , then the weak derivative of f is continuous,
so f is C1. Since the unique solutions to the differential equation (with f(0) = 1) are
e∓x, and normalising in L2 we set

f+(x) :=
√

2√
1− e−2

e−x, f−(x) :=
√

2√
e2 − 1

ex. (3.65)

We thus have K± = span(f±) and N+ = N− = 1. The unitary maps K+ → K− are
of course parametrised by Uγf+ = γf−, γ ∈ S1. Let Aγ be the self-adjoint extension
associated to Uγ . By (3.52),

D(Aγ) = ran(CAγ − 1) = ran(CP0
− 1)⊕ span (Uγf+ − f+)

= H1
0 (0, 1)⊕ span (γf− − f+) .

Consequently, f ∈ D(Aγ) satisfies

f(0)
f(1) = γ − e

eγ − 1 =: α (∈ S1). (3.66)

Hence Aγ ⊂ Pα, and by self-adjointness we have equality.

Corollary 3.30 (Von Neumann’s Theorem). Let J be a conjugation on H , i.e. an
anti-linear isometry with J2 = 1. If A, D(A) is a densely defined symmetric operator
that commutes with J , then A has at least one self-adjoint extension.

Proof. Note that commutation requires that JD(A) ⊂ D(A) as well as AJ = JA. By
J = J−1 we then have JD(A) = D(A). Now let ψ ∈ K+. Then for all ϕ ∈ D(A),

0 = 〈(A∗ − i)ψ,ϕ〉 polarisation= 〈Jψ, J(A+ i)ϕ〉 J anti-linear= 〈Jψ, (A− i)Jϕ〉. (3.67)

Since J : D(A)→ D(A) is onto, this implies that Jψ ∈ K− = ran(A− i)⊥. Since J2 = 1
we obtain JK+ = K−, and the map ψ 7→ 〈Jψ, ·〉 is a linear, surjective isometry from
K+ to K ′−. Thus, K+ is isomorphic to K ′− and then also K−, as Hilbert spaces. Hence,
there exist unitary operators K+ → K−, and by Theorem 3.27 self-adjoint extensions of
A.

3.2 The Spectral Theorem
We will start by discussing different ways of generalising the spectral theorem in finite
dimensions and prove the equivalence of these generalisations. We will then prove the
spectral theorem by proving one of the variants in Section 3.2.2.
The finite-dimensional spectral theorem can be formulated as:

Theorem. Let H be a finite-dimensional complex Hilbert space of dimension n and
A : H → H be a self-adjoint linear map. There exists a unitary map U : H → Cn
such that UAU∗ is a diagonal matrix.
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3 Self-Adjoint Operators and the Spectral Theorem

This can be reformulated in a way that is more amenable to generalisation as follows:
We can think of an element of Cdim(H ) as a function from the finite set f : {1, . . . , n} →
C. The scalar product is then given by the standard form 〈f, g〉 =

∑n
j=1 f(j)g(j).

The sum is the integral with respect to the counting measure ζ, so we can identify
Cn = L2({1, . . . , n}, ζ). A diagonal matrix D = diag(λ1, . . . , λn) then corresponds to
the multiplication operator Df = (j 7→ λjf(j)).
We thus have the equivalent formulation

Theorem. Let H be a finite-dimensional complex Hilbert space of dimension n and
A : H → H be a self-adjoint linear map. There exists a unitary map U : H →
L2({1, . . . , n}, ζ) and a function λ : {1, . . . , n} → R such that UAU∗ equals the operator
of multiplication by λ.

Here it is more clear where we can modify the statement to accommodate more general
cases by allowing for more general L2-spaces. Consider the example of the Laplacian
of H = L2(Rd), H = −∆, D(H) = H2(R). In this case, there exists a unitary map
U = F , U : H → L2(Rd) such that F−1HF is multiplication by the function p 7→ p2.
Hence, a modification of the theorem holds also for the unbounded operator H that has
no eigenvalues.
Formulating the statement in this way, we immediately obtain the ability to define

arbitrary functions of A, by composition with the function λ:

Corollary. Let H be a finite-dimensional complex Hilbert space of dimension n and
A : H →H be a self-adjoint linear map. Let A be the algebra of functions from σ(A)
to C. There exists a unique map

Φ : A → B(H ) (3.68)

satisfying

i) Φ is a homomorphism of algebras,

ii) Φ(f) = Φ(f)∗,

iii) Φ(1) = 1H and Φ(x 7→ x) = A.

Existence of Φ is clear, since Φ(f) = U∗(f ◦ λ)U satisfies all the properties (note
that σ(A) = ran(λ), so the composition makes sense exactly for functions f defined
on σ(A)). Uniqueness follows from the fact that the polynomial functions x 7→ xr, r =
0, . . . , |σ(A)|−1 form a basis of the space of all functions on σ(A), and by multiplicativity
we must have Φ(xr) = Ar.
The map Φ is called the functional calculus, and we write Φ(f) =: f(A). Note that

for an arbitrary linear map on H we can only define f(A) if f is analytic near σ(A), by
power series.
On the other hand, the existence of a functional calculus implies that A is equivalent

to multiplication operator, as we will now show.
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3.2 The Spectral Theorem

Consider the linear map f 7→ 〈v,Φ(f)v〉. By duality, there is an element mv ∈ Cσ(A)

such that 〈v,Φ(f)v〉 =
∑
a∈σ(A)mv(a)f(a). By ii), mv is real, and since for any non-

negative f = g2, 〈v,Φ(f)v〉H = ‖Φ(g)v‖2 ≥ 0, mv is non-negative. We can thus think
of mv as a measure.
Let v ∈H be any vector and define the cyclic subspace generated by v as

Hv := span{Φ(f)v : f : σ(A)→ C}. (3.69)

The vector v is called a cyclic vector (for A) if Hv = H . Then the map f 7→ Φ(f)v
induces an isomorphism from L2(σ(A),mv) to Hv, since it is onto by definition and

〈Φ(g)v,Φ(f)v〉 = 〈v,Φ(g)Φ(f)v〉 = 〈v,Φ(gf)v〉 =
∑

a∈σ(A)
mv(a)g(a)f(a) = 〈g, f〉L2(σ(A),mv),

(3.70)
so in particular it is isometric.
If we denote this unitary map by Uv, then

(U∗vAUvf)(x) = (U∗vΦ(x 7→ x)Φ(f)v)(x) = (U∗vΦ(x 7→ xf(x))v)(x) = xf(x), (3.71)

so U∗vAUv acts as multiplication by x ∈ σ(A). Since H is finite dimensional, there are
finitely many v1, . . . , vk such that

H =
k⊕
j=1

Hvj , (3.72)

the map

U∗ :=
k⊕
j=1

U∗v : H → L2 (σ(A)× {1, . . . , k},mv1 ⊗ · · · ⊗mvk) (3.73)

is unitary, and U∗AU acts as multiplication with x ∈ σ(A). We see that A is equivalent
to a multiplication operator if and only if A has a functional calculus. Note also that
depending on the starting point we find different representations of A as a multiplication
operator on different spaces, so this is not unique.
There is a different way to formulate the spectral theorem:

Theorem. Let H be a finite-dimensional complex Hilbert space and A : H → H be
a self-adjoint linear map. Then there exists an orthonormal basis of H consisting of
eigenvectors of A.

Of course, an operator on an infinite dimensional space may not have eigenvectors at
all, so this will not generalise as such. More abstractly, we can forget about the eigen-
vectors and just consider the corresponding subspaces, or their orthogonal projections.
We have the following properties:

• For every Borel subset B ⊂ R, there exists an orthogonal projection P (B) on H
(=
∑
a∈B∩σ(A) Pa).
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3 Self-Adjoint Operators and the Spectral Theorem

• If B1, B2 ⊂ R are disjoint, then P (B1) + P (B2) = P (B1 ∪B2),

• P (R) = 1

So we can think of the family (PB)B∈B(R) as a measure on R (σ-additivity is easy to
check), taking values in the orthogonal projections on H – a projection-valued-measure
(PVM). This PVM is called the spectral measure of A. For all v ∈H , B 7→ 〈v, P (B)v〉
defines an actual measure µv. The operator A then has the representation

〈v,Av〉 =
∑

a∈σ(A)
〈v, aPav〉 =

∫
aµv(da). (3.74)

The measure µv is called the spectral measure of v with respect to A. By polarisation,
the formula above together with knowledge of µv for all v ∈H completely determine A
and the family of projections (PB)B∈B(R). We thus write

A =
∫
R
aP (da). (3.75)

Our reformulation of the spectral theorem in terms of PVM’s is then

Theorem. Let H be a finite-dimensional complex Hilbert space and A : H → H be
a self-adjoint linear map. There exists a unique projection-valued measure P : B(R)→
B(H ) such that

A =
∫
R
aP (da). (3.76)

Moreover, for any real function f ∈ C(R), the formula

∀v ∈H : 〈v,Φ(f)v〉 =
∫
R
f(a)µv(da) (3.77)

determines Φ(f), and thus the functional calculus of A.
Now consider the example of the Laplacian on Rd as above. For any Borel set B ⊂ R,

we define the corresponding projection P (B) as the projection to those functions whose
Fourier transform has support in {p ∈ Rd : p2 ⊂ B}, i.e.,

P (B) = F−1χB(p2)F , (3.78)

where χ is the operator of multiplication by the characteristic function. This clearly
satisfies the properties listed above (σ-additivity is not clear, we will see in what sense
it holds later). Let f ∈ D(H) = H2(Rd), then

µf (B) = 〈f, P (B)f〉 =
∫
Rd
χB(p2)|f̂(p)|2dp

=
∫ ∞

0
χB(p2)

∫
Sd−1
|f̂(ωp)|2dωrd−1dr

=
∫
B

(∫
Sd−1
|f̂(ω
√
a)|2dω

)
1
2a

(d−2)/2da,
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3.2 The Spectral Theorem

so µf is absolutely continuous w.r.t. to the Lebesgue measure on R with density given
above. Thus by the same integral transformations

〈f,Hf〉 =
∫
Rd
p2|f̂(p)|2dp =

∫
R
aµf (da) (3.79)

holds.

3.2.1 Variants of the Spectral Theorem and Their Equivalence
We will now formulate more precisely the variants of the spectral theorem discussed
above and prove their equivalence according to the following scheme

∃ functional calculus =⇒ equivalence to multiplication operator
=⇒ ∃ spectral measure =⇒ ∃ funct. calc.

Definition 3.31. Let A be a subalgebra of B∞ (the bounded Borel-measureable func-
tions from R to C without identification on null sets) that is invariant under complex
conjugation. A map Φ : A → B(H ) is a continuous ∗-morphism if

a) Φ is linear,

b) Φ is multiplicative: ∀f, g ∈ A: Φ(fg) = Φ(f)Φ(g),

c) Φ is involutive: ∀f ∈ A: Φ(f) = Φ(f)∗,

d) if the constant function x 7→ 1 is in A, then Φ(1) = 1H ,

e) Φ is bounded: ‖Φ(f)‖B(H ) ≤ ‖f‖∞.

Note that if Φ is bounded at all, then the constant must be one, for if there exists a
function f , with |f | ≤ 1 and ‖Φ(f)ψ‖H > 1 for some normalised ψ, then |f |2 ≤ 1, and∥∥∥Φ(|f |2)ψ

∥∥∥
H

= sup
‖η‖=1

〈η,Φ(f)∗Φ(f)ψ〉 ≥ ‖Φ(f)ψ‖2 . (3.80)

Hence if the bound on Φ is larger than a > 1, then it is also larger than a2 > a > 1, and
thus infinity.

Definition 3.32. Let A, D(A) be a closed operator and σ(A) ⊂ R. A continuous
functional calculus for A is a continuous ∗-morphism Φ : C∞(R)→ B(H ) such that for
z ∈ C \ R, Φ((x− z)−1) = Rz(A).

Theorem 3.33. Let A, D(A) be a closed operator on H with σ(A) ⊂ R that admits
a continuous functional calculus. There exists a measure space (Ω,Σ, µ), a function
λ : Ω→ R and and a unitary map U : L2(Ω, µ)→H such that

• U∗D(A) = D(Mω) = {f ∈ L2(Ω) : ω 7→ λ(ω)f(ω) ∈ L2(Ω)}.

• U∗AU = Mλ, the operator of multiplication by λ.
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3 Self-Adjoint Operators and the Spectral Theorem

In particular, A is self-adjoint. If H is separable then µ is σ-finite.

Proof. Let ψ ∈H be a normalised vector, and define a linear functional on C∞(R) by

`ψ(f) = 〈ψ, f(A)ψ〉H , (3.81)

where f(A) := Φ(f) is defined by the functional calculus. This linear functional is
continuous and positive, since

`ψ(|f |2) = ‖f(A)ψ‖2 ≥ 0. (3.82)

By the Riesz-Markov Theorem [RS1, Thm.IV.18] there exists a unique measure µψ on
R such that

`ψ(f) =
∫
R
f(x)µψ(dx) (3.83)

The measure of an open set V ⊂ R is given by

µψ(V ) = sup{`ψ(f) : f ∈ C∞(R) with f |V c = 0 and f |V ≤ 1}, (3.84)

so in particular µψ(R) ≤ ‖ψ‖2 = 1. Now define the cyclic subspace generated by ψ as

Hψ := {f(A)ψ : f ∈ C∞(R)}. (3.85)

We claim that f 7→ f(A)ψ induces a unitary

Uψ : L2(R, µψ)→Hψ (3.86)

This is well defined, since if f(A)ψ = g(A)ψ, then

0 = ‖f(A)ψ − g(A)ψ‖2H =
∫
|f(x)− g(x)|2µψ(dx), (3.87)

so f(x) = g(x) for µψ-a.e. x. The map is clearly isometric and onto, so it is unitary.
If Hψ = H , then we are almost finished, since on the dense set spanned by the

elements ϕ = f(A)ψ,

U(x− z)−1U∗ϕ = U(x− z)−1U∗f(A)ψ = U(x− z)−1f(x) = Rz(A)f(A)ψ = Rz(A)ϕ,
(3.88)

and thus

U{f ∈ L2(R, µψ) : xf(x) ∈ L2(R, µψ)} = Uran(x− i)−1 = ranRi(A) = D(A), (3.89)

and

(U∗AU − i) (x− i)−1 = U∗(A− i)Rz(A) = 1 = (x− i)−1 (U∗AU − i) . (3.90)

To finish the proof if H 6= Hψ, first note that, by the reasoning above,

f(A)Hψ ⊂Hψ (3.91)
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3.2 The Spectral Theorem

for all f ∈ C∞(R). Then also f(A)H ⊥
ψ ⊂ H ⊥

ψ , since for every ϕ ∈ Hψ = (H ⊥
ψ )⊥ and

η ∈H ⊥
ψ

〈ϕ, f(A)η〉 = 〈f(A)ϕ, η〉 = 0.

The domainD(A)∩H ⊥
ψ = ranRz(A)|H ⊥

ψ
is thus dense, andA|H ⊥

ψ
admits a continuous

functional calculus, and we can iterate our argument. To complete the proof, we must
thus show that H is a direct sum of A-invariant cyclic subspaces Hψi . We will do this
using Zorn’s Lemma.
Let I be the subset of the set of collections of closed linear subspaces of H such that

for all I ∈ I

• V,W ∈ I =⇒ V ⊥W ,

• V ∈ I =⇒ ∃ψ ∈H : V = Hψ is the A-cyclic subspace generated by ψ.

The set I is partially ordered by inclusion. Now let J ⊂ I be a totally ordered set, then

K =
⋃
J∈J

J = {V ⊂H : ∃J ∈ J with V ∈ J}. (3.92)

The elements of K are clearly A-cyclic subspaces of H . They are mutually orthogonal,
since if V,W ∈ K, V ∈ J ∈ J , W ∈ I ∈ J , then either I ⊂ J or J ⊂ I, since J is
totally ordered, and thus V ⊥ W . Hence, K ∈ I and J ≤ K for all J ∈ J , i.e. every
totally ordered set has an upper bound in I. Thus, by Zorn’s Lemma, there exists a
maximal element M ∈ I. Setting

HM :=
⊕
V ∈M

V, (3.93)

we must have HM = H , since otherwise there exists 0 6= ψ ∈H ⊥
M andM ∪{Hψ} ⊃M .

Note that the direct sum is in the sense of Hilbert spaces, i.e. we take the completion
(or closure in H ) of the linear span. Then, by definition of I (and choice), there exists
a subset C ⊂H such that

H =
⊕
V ∈M

V =
⊕
ψ∈C

Hψ. (3.94)

Then
U :=

⊕
ψ∈C

Uψ :
⊕
ψ∈C

L2(R, µψ)→H (3.95)

is unitary. We have ⊕
ψ∈C

L2(R, µψ) = L2(R× C, µ) (3.96)

by the identification f(x)ψ := f(x, ψ), where the measure is given by

µ(E) =
∑
ψ∈C

µψ(πR(E ∩ (R× {ψ}))), (3.97)
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3 Self-Adjoint Operators and the Spectral Theorem

where πR : R×S → R is the projection to the first factor (as σ-algebra one can take the
product of the Borel sets on R and the σ-algebra generated by finite subsets of C).
If H is separable, then the set C can be at most countable, so µ is σ-finite because

the µψ are finite.

Corollary 3.34 (Measurable functional Calculus). Let A, D(A) admit a continuous
functional calculus. There exists a continuous ∗-morphism Φ : B∞(R) → B(H ) such
that ∀z ∈ C \ R: Φ((x− z)−1) = Rz(A). Moreover, for every bounded sequence (fn)n∈N
that converges point-wise to f , Φ(fn) converges to Φ(f) in the strong operator topology.

Proof. In view of Theorem 3.33, we define the measurable functional calculus by

f(A) := UMf◦λU
∗. (3.98)

Then ‖(fn(A)− f(A))ψ‖H = ‖((fn − f) ◦ λ)U∗ψ‖L2(Ω,µ), and for a bounded sequence
fn,

lim
n→∞

‖(fn − f) ◦ λU∗ψ‖2L2(Ω,µ) = lim
n→∞

∫
R
|fn(λ(ω))− f(λ(ω))|2µψ(dω) = 0, (3.99)

by dominated convergence, since µψ is a finite measure.

Remark 3.35. The extension of the functional calculus from continuous functions to
measurable functions is unique (this follows from Lusin’s theorem).

Definition 3.36. A projection-valued-measure (PVM) is a map P : B(R) → B(H )
satisfying

1. ∀B ∈ B(R), P (B) is an orthogonal projection, i.e. P (B)2 = P (B) = P (B)∗;

2. P (R) = 1H and P (∅) = 0;

3. P is strongly σ-additive: For every disjoint family of Borel sets (Bn)n∈N and every
ψ ∈H

P

⋃
n∈N

Bn

ψ = lim
N→∞

N∑
n=1

P (Bn)ψ (3.100)

Proposition 3.37. Let A, D(A) admit a measurable functional calculus. Then B 7→
PA(B) := χB(A) defines a PVM. Moreover,

D(A) = {ψ ∈H :
∫
λ2µψ(dλ) <∞}, (3.101)

and
〈ψ,Aψ〉 :=

∫
λµψ(dλ). (3.102)
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Proof. The map χB(A), where χB is the characteristic function of B, defines an or-
thogonal projection because χB is real and χ2

B = χB. Strong σ-additivity follows from
Corollary 3.34, since for a disjoint family of sets,

∑N
n=1 χBn converges point-wise to

χ∪nBn and is bounded by one.
The Isomorphism Uψ : L2(R, µψ) → Hψ from the proof of Theorem 3.33 maps the

constant function f ≡ 1 to ψ, so ψ ∈ D(A) ⇔
∫
λ2µψ(dλ) < ∞. The representation of

A then follows from the fact that U∗ψAUψ = Mλ.

Definition 3.38. Let P be a PVM and for any ϕ,ψ ∈H define the complex measure

µϕ,ψ(B) := 〈ϕ, P (B)ψ〉. (3.103)

For any f ∈ B∞(R) the integral of f with respect to P , denoted
∫
f(x)P (dx) is defined

to be the unique bounded operator such that for every ϕ,ψ ∈H

〈ϕ,
∫
f(x)P (dx)ψ〉 :=

∫
f(x)µϕ,ψ(dx). (3.104)

Of course, the measures µϕ,ψ can be obtained from the measures µψ = µψ,ψ by polar-
isation:

µϕ,ψ = 1
4(µψ+ϕ − µψ−ϕ)− i

4(µψ+iϕ − µψ−iϕ). (3.105)

Proposition 3.39. Let P be a PVM on H . Then Φ(f) :=
∫
f(λ)P (dλ) defines a

continuous ∗-morphism from B∞(R) to B(H ) and there exists a unique self-adjoint
operator A, D(A) such that Φ((x− z)−1) = Rz(A).

Proof. Linearity follows directly from the properties of the integral. Boundedness follows
from the fact that µψ(R) = ‖ψ‖2 by

‖Φ(f)‖ = sup
ϕ,ψ∈H ,‖ϕ‖=‖ψ‖=1

|〈ϕ,Φ(f)ψ〉|

≤ ‖f‖∞
1
4 (µψ+ϕ(R) + µψ−ϕ(R) + µψ+iϕ(R) + µψ−iϕ(R))

≤ 4 ‖f‖∞ .

For multiplicativity, consider first characteristic functions χB. Clearly Φ(χB) = P (B).
Since

P (B1)P (B2) = P (B1 ∩B2) = Φ(χB1∩B2) = Φ(χB1χB2), (3.106)

multiplicativity holds for (multiples of) characteristic functions. By linearity, it then
holds for simple functions, and then by continuity for all functions in B∞(H ), since
these can be approximated uniformly by step functions. The same argument shows that
Φ(f)∗ = Φ(f), since this also holds for χB. With multiplicativity and involutivity we
then obtain the improved bound

‖Φ(f)ψ‖2 = 〈ψ,Φ(f)∗Φ(f)ψ〉 = 〈ψ,Φ(|f |2)ψ〉 ≤ ‖f‖2∞ µψ(R) = ‖f‖2∞ ‖ψ‖
2 . (3.107)

We have thus shown that the integral w.r.t. P defines a continuous ∗-morphism.
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3 Self-Adjoint Operators and the Spectral Theorem

It remains to show that the family of operators Φ(f) is associated with a self-adjoint
operator A. This follows from the Lemma below if we can show that there is no nonzero
ψ ∈H that is contained in all of the kernels of Φ((x− z)−1), z ∈ C \R. Assume to the
contrary that there exist such ψ. Then for all λ 6= 0

0 = λ〈ψ,Φ((x− iλ)−1ψ)〉 =
∫

λ

x− iλµψ(dx). (3.108)

But by dominated convergence

lim
λ→∞

∫
λ

x− iλµψ(dx) = i
∫
µψ = i ‖ψ‖2 , (3.109)

so ψ = 0. The claim now follows from the Lemma below.

Lemma 3.40. Let U ⊂ C be an open set and invariant under complex conjugation. Let
{R(z), z ∈ U} be a family of bounded operators on H satisfying

1. ∀z ∈ U :R(z)∗ = R(z),

2. ∀z, w ∈ U : R(z)−R(w) = (z − w)R(z)R(w)

3.
⋂
z∈U kerR(z) = {0}.

Then there exists a unique self-adjoint operator A, D(A) on H such that U ⊂ ρ(A) and
R(z) = Rz(A).

Proof. By 2), we have kerR(z) = kerR(w), so all of the R(z) are injective. We thus
tentatively define D(A) = ranR(z0) for some z0 ∈ U . This is independent of z0, since
for all w ∈ U

R(z0)ψ = R(w)ψ + (z0 − w)R(w)R(z0)ψ ∈ ranR(w), (3.110)

It is also dense, since if ψ ∈ D(A)⊥, then ψ ∈ kerR(z0)∗ = kerR(z0) = {0}.
Now set A(z) := R(z)−1 + z, which is well-defined on D(A). To see that this is

independent of z, we use again 2) and the fact that A(z)R(z) = 1 + zR(z) in

A(z)R(w) = A(z)R(z) + (w − z)A(z)R(z)R(w)
= 1 + zR(z) + (w − z)(1 + zR(z))R(w)
= 1 + zR(z) + (w − z)R(w) + z(R(w)−R(z))
= 1 + wR(w) = A(w)R(w).

This shows that A(z)R(w)ψ = A(w)R(w)ψ for all ψ ∈H , so A(w) = A(z). This implies
that A is symmetric, since for ϕ = R(z)ϕ̃, ψ ∈ D(A)

〈ϕ,Aψ〉 = 〈R(z)ϕ̃, (R(z)−1 +z)ψ〉 = 〈ϕ̃, ψ〉+〈zR(z)ϕ̃, ψ〉 = 〈(R(z)−1 +z)ϕ,ψ〉, (3.111)

and R(z)−1 + z = A. Since ranA − z = ranR(z)−1 = H for all z ∈ U . Since U is
invariant by conjugation this proves that A is self-adjoint, by Theorem 3.1. Uniqueness
of A is clear since the inverse is unique.

42



3.2 The Spectral Theorem

3.2.2 Proof of the Spectral Theorem

We will now prove the spectral theorem. To this end, we first prove existence of a
functional calculus for continuous functions. We then state the spectral theorem in
multiplication operator form, and in PVM form, as follows from the equivalence shown
in the previous section.

Definition 3.41. The one-point compactification of R is the set R := R∪{∞} with the
topology such that U ⊂ R is open iff

• U ⊂ R is open, or

• there exists a compact set K ⊂ R such that U = R \K(= {∞} ∪ R \K).

Note that R is homeomorphic to the circle S1 via stereographic projection. Let A
be the algebra of continuous functions such that their limits for x→ ±∞ exist and are
equal. Then A is isomorphic to C(R) by setting f(∞) = limx→±∞ f(x).

Theorem 3.42 (Continuous Functional Calculus). Let A, D(A) be a self-adjoint op-
erator on a complex Hilbert space H . There exists a unique continuous ∗-morphism
Φ : C(R) → B(H ) such that for z ∈ C \ R, Φ((x − z)−1) = Rz(A). In particular, A
admits a continuous functional calculus.

For the proof, recall (see [RS1, Thm.IV.10])

Theorem (Stone-Weierstrass). Let X be a compact Hausdorff space and A ⊂ C(X) a
subalgebra. Suppose that

• A separates points: ∀x 6= y ∈ X ∃f ∈ A: f(x) 6= f(y),

• A is invariant under conjugation: f ∈ A =⇒ f ∈ A

• 1 ∈ A,

then A = C(X).

Proof of Theorem 3.42. LetA ⊂ C(R) be the algebra generated by the constant function
x 7→ 1 and the functions x 7→ (x − z)−1 for z ∈ C \ R. This algebra consists of finite
linear combinations of finite products of generating elements. By the requirements that
Φ(1) = 1H and Φ((x−z)−1) = Rz(A) (which exists by self-adjointness of A 3.3) together
with multiplicativity, we must have

Φ

 m∏
j=1

(x− zj)−1

 =
m∏
j=1

Rzj (A). (3.112)

This is well-defined because Rz(A) and Rw(A) commute, by the resolvent formula. By
linearity, this extends uniquely to a homomorphism Φ : A → B(H ). This homomor-
phism is involutive since Rz(A)∗ = Rz(A), because A is self-adjoint.
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3 Self-Adjoint Operators and the Spectral Theorem

If this is continuous, then it extends to the closure of A in C(R). By the Stone-
Weierstrass Theorem, this equals C(R). This gives existence, and since Φ is uniquely
determined on the dense set A also uniqueness.
We thus only need to prove boundedness of Φ. We deduce this from the fact that

if f ∈ A is a non-negative function, then f = |g|2 for some g ∈ A, which is proved in
Lemma 3.43 below.
Consider now the non-negative function x 7→ ‖f‖2∞ − |f(x)|2. By Lemma 3.43 there

exists g ∈ A such that ‖f‖2∞ − |f(x)|2 = |g(x)|2. We then have

Φ(|f |2) = Φ(f)∗Φ(f) = Φ(‖f‖2∞ − |g|
2) = ‖f‖2∞ − Φ(g)∗Φ(g), (3.113)

and thus for all ψ ∈H

‖Φ(f)ψ‖2 = 〈ψ, ‖f‖2∞ ψ〉 − ‖Φ(g)ψ‖2 ≤ ‖f‖2∞ ‖ψ‖
2 . (3.114)

It remains to prove the existence of the “square root” of positive elements of A.

Lemma 3.43. Let A ⊂ C(R) be the algebra generated by the constant function x 7→ 1
and the functions x 7→ (x − z)−1 for z ∈ C \ R. If f ∈ A is a non-negative function,
then there exists g ∈ A with f = |g|2.

Proof. Let f ∈ A be a generic element. By bringing all terms to a common denominator,
we can write

f(x) = P (x)
Q(x) (3.115)

with complex polynomials P,Q such that degP ≤ degQ and Q has no real roots. We
can reduce this fraction so that P and Q have no common roots and Q is normalised.
Writing

P (x) = c
J∏
j=1

(x− aj)mj
K∏
k=1

(x− wk)pk , (3.116)

where aj , j = 1, . . . , J are the real roots of P and wk, k = 1, . . . ,K the roots in C \ R,
and

Q(x) =
L∏
`=1

(x− z`)q` . (3.117)

Then f is a real function if and only if for all x ∈ R P (x)Q(x) = P (x)Q(x), i.e.,

c
K∏
k=1

(x− wk)pk
L∏
`=1

(x− z`)q` = c
K∏
k=1

(x− wk)pk
L∏
`=1

(x− z`)q` . (3.118)

This implies that c, the coefficient of the highest-order term, is real. Furthermore, since
P and Q have no common roots, this also shows that for all k = 1, . . . ,K, wk is a root
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of P with the same multiplicity as wk, and the same for Q. Hence, a real function f ∈ A
has the form (after re-numbering the roots)

f(x) = c
J∏
j=1

(x− aj)mj
∏K/2
k=1 |x− wk|2pr∏L/2
`=1 |x− z`|2q`

. (3.119)

This function is non-negative iff all the mj are even and c ≥ 0, and in that case f(x) =
|g(x)|2 with

g(x) =
√
c

J∏
j=1

(x− aj)mj/2
∏K/2
k=1(x− wk)pr∏L/2
`=1(x− z`)q`

. (3.120)

By partial fraction decomposition, g is an element of A and the proof is complete.

In view of the equivalences of the previous section, we have now proved the following
two variants of the spectral theorem.

Theorem 3.44 (Spectral Theorem in Multiplication Operator Form). Let A, D(A) be
a self-adjoint operator on a complex Hilbert space H . There exists a measurable space
(Ω,Σ), a measure µ on (σ(A)×Ω,B(R)⊗Σ) and a unitary map U : L2(σ(A)×Ω, µ)→H
such that

• U∗D(A) = D(Mλ) = {f ∈ L2(σ(A)× Ω) : (λ, ω) 7→ λf(λ, ω) ∈ L2(σ(A)× Ω)}.

• U∗AU = Mλ, the operator of multiplication by (λ, ω) 7→ λ.

If H is separable then Ω is countable and µ is σ-finite.

Proof. This follows from the existence of the functional calculus by Theorem 3.33, since
C∞(R) ⊂ C(R).

Theorem 3.45 (Spectral Theorem in PVM form). Let H be a Hilbert space. The
densely defined self-adjoint operators on H are in one-to-one correspondence with the
PVMs on H .
More precisely, for any self-adjoint operator A, D(A), the functional calculus defines

a PVM by B 7→ PA(B) := χB(A). We have

D(A) = {ψ ∈H :
∫
λ2µψ(dλ) <∞}, (3.121)

and
〈ψ,Aψ〉 :=

∫
λµψ(dλ). (3.122)

Conversely, for any PVM P , choosing D(A) and A as above defines a self-adjoint oper-
ator A, D(A), and χB(A) = P (B).

Proof. This follows from the Spectral Theorem in Multiplication Operator Form and
Propositions 3.37, 3.39.

45



3 Self-Adjoint Operators and the Spectral Theorem

3.3 Applications of the spectral theorem
3.3.1 Unitary groups
Let A, D(A) be a self-adjoint operator and consider the abstract Schrödinger equation:{

i d
dxψ(t) = Aψ(t)
ψ(0) = ψ0.

(3.123)

We can define by the functional calculus the operator e−itA. Formally t 7→ ψ(t) =
e−itAψ0 is a solution to the abstract Schrödinger equation. Since the functional calculus
is multiplicative, we have

e−i(t+s)A = e−itAe−isA, (3.124)

and
(e−itA)−1 = eitA = (e−itA)∗, (3.125)

so for every t this operator is unitary. This is called the unitary group generated by A
(and A is called the generator).
We will now explain in which sense exactly these groups solve the Schrödinger equa-

tion, and the question of uniqueness of this solution.

Lemma 3.46. Let A, D(A) be a self-adjoint and U(t) := e−itA be the unitary group
generated by A. We have

1. ∀t, s ∈ R: U(t)U(s) = U(t+ s)

2. ∀t ∈ R: U(−t) = U(t)∗

3. U(0) = 1H

4. U is strongly continuous: ∀ψ ∈H : limt→0 U(t)ψ = ψ.

5. ∀t ∈ R: U(t)D(A) ⊂ D(A)

6. U is strongly differentiable on D(A) and solves (3.123): ∀ψ ∈ D(A):

d
dtU(t)ψ := lim

h→0

U(t+ h)ψ − U(t)ψ
h

= −iAU(t)ψ. (3.126)

Proof. Properties 1)-3) follow directly from the functional calculus. Since e−itλ converges
to one point-wise as t → 0 and is bounded, 4) follows from continuity of the calculus
w.r.t. such limits, see Corollary 3.34. Note that by the group property 1) this implies
continuity in all t ∈ R, not just t = 0.
5) is clear since for a multiplication operator with a real function D(A) = D(Ae−itA).
For 6) it is again enough to prove this for t = 0. There we have, by the same argument

as in Corollary 3.34,∥∥∥(h−1(U(h)− 1) + iA
)
ψ
∥∥∥2

H
=
∫
|h−1(e−ihλ − 1) + iλ|2µψ(dλ). (3.127)
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This tends to zero by dominated convergence if λ2 ∈ L1(R, µψ), which by the Spectral
Theorem (in PVM form) is equivalent to ψ ∈ D(A).

For general ψ ∈ H , e−itAψ is not differentiable but only continuous. It is still a
solution to the Schrödinger equation in the following weak sense: Let ϕ ∈ D(A), then

〈ϕ, e−itAψ〉 = 〈eitAϕ,ψ〉 (3.128)

is differentiable in t, and the derivative equals

− i〈Aϕ,ψ〉. (3.129)

We interpret this as a linear functional on D(A), which is a Banach space with the graph
norm. Hence, e−itAψ is differentiable when interpreted as a function t 7→ D(A)′, and its
derivative equals ϕ 7→ −i〈Aϕ,ψ〉. We call any function t 7→ ψ(t) with this property a
weak solution to the Schrödinger equation.

Proposition 3.47. Let I ⊂ R be an open interval containing zero and ψ(t) ∈ C(I,H )∩
C1(I,D(A)′) be a weak solution to the Schrödinger equation with ψ(0) = ψ0. Then
ψ(t) = e−iAtψ0.

Proof. Let ϕ0 ∈ D(A) and consider the quantity f(t) = 〈e−itAϕ0, ψ(t)〉. We have f ∈
C1(I), and using the equations satisfied by ψ(t) and e−itAϕ0

d
dtf(t) = i〈Ae−itAϕ0, ψ(t)〉 − i〈Ae−itAϕ0, ψ(t)〉 = 0. (3.130)

Consequently f(t) = f(0) = 〈ϕ0, ψ0〉, and

〈ϕ0, eiAtψ(t)− ψ0〉 = 0 (3.131)

for all ψ ∈ D(A), whence eiAtψ(t) = ψ0 and ψ(t) = e−iAtψ0.

Example 3.48. In quantum mechanics, the evolution of a system is described by the
Schrödinger equation with a self-adjoint operator of the form

H = −∆ + V, (3.132)

where V is a multiplication operator (cf. Example 3.7).
We have now established that, under the hypothesis ensuring that H is self-adjoint

on some domain D(H) ⊂ L2(Rd) this equation has a unique solution. The solution
operator U(t) maps the initial condition to the state at time t. The unitarity of this
map is important, since |ψ(t)|2 is to be interpreted as a probability density (Born’s rule),
so unitarity ensures that total probability is conserved.

We will now prove that any linear “dynamical system” in H that is implemented by
unitary maps comes from a solution to an abstract Schrödinger equation.

Theorem 3.49 (Stone’s Theorem). Let t 7→ U(t) ∈ B(H ) be a strongly continuous
unitary group, that is
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3 Self-Adjoint Operators and the Spectral Theorem

1. ∀t, s ∈ R: U(t)U(s) = U(t+ s)

2. U(0) = 1H

3. U is strongly continuous: ∀ψ ∈H : limt→0 U(t)ψ = ψ.

Then there exists a self-adjoint operator A, D(A) on H such that U(t) = e−itA.

Proof. The idea is to define A = i d
dtU |t=0, the main challenge being to find a suitable

dense domain.
Set

D := {ψ ∈H : ∃ lim
h→0

h−1(U(h)− 1)ψ}. (3.133)

We start by proving that D is dense. For this, let ψ ∈H be arbitrary and consider for
ε > 0 the vector ψε defined by

∀ϕ ∈H : 〈ϕ,ψε〉 = 1
ε

∫ ε

0
〈ϕ,U(t)ψ〉dt. (3.134)

We will show that ψε → ψ as ε → 0 and ψε ∈ D. For the first point, note that by
dominated convergence

1
ε

∫ ε

0
〈ϕ,U(t)ψ〉dt =

∫ 1

0
〈ϕ,U(εt)ψ〉dt→ 〈ϕ,ψ〉, (3.135)

so ψε ⇀ ψ weakly in H . Since also

‖ψε‖2 = 1
ε2

∫ ε

0

∫ ε

0
〈U(s)ψ,U(t)ψ〉dsdt =

∫ 1

0

∫ 1

0
〈ψ,U(ε(t− s))ψ〉dsdt→ ‖ψ‖2 , (3.136)

we have ψε → ψ in norm (compare Exercise T00.3).
Now to see that ψε ∈ D for fixed ε > 0 and h < ε, consider

〈ϕ, h−1(U(h)− 1)ψε〉 = 1
hε

∫ ε

0
〈ϕ,U(t+ h)− U(t)ψ〉dt

= 1
hε

∫ h+ε

h
〈ϕ,U(t)ψ〉 − 1

hε

∫ ε

0
〈ϕ,U(t)ψ〉dt

= 1
hε

∫ h

0
〈ϕ,U(t+ ε)ψ〉 − 1

hε

∫ h

0
〈ϕ,U(t)ψ〉dt.

By the argument that shows ψε → ψ, the vector defined by the first term converges
to ε−1U(ε)ψ, and the second to −ε−1ψ as h → 0, so in particular the limit exists and
ψε ∈ D.
We will now prove that A := i d

dtU |t=0 is essentially self-adjoint on D. To check that
A is symmetric, let ϕ,ψ ∈ D, then

〈ϕ,Aψ〉 = lim
h→0
〈ϕ, ih−1(U(h)− 1)ψ〉 = lim

h→0
〈ih−1(1− U(−h))ϕ,ψ〉 = 〈Aϕ,ψ〉. (3.137)
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To prove essential self-adjointness, suppose that ϕ ∈ ker(A+ i) (the argument for −i is
the same). Then for ψ ∈ D(A):

d
dt〈ϕ,U(t)ψ〉 = 〈ϕ,−iAU(t)ψ〉 = 〈ϕ,U(t)ψ〉. (3.138)

The unique solution to the differential equation above then is 〈ϕ,U(t)ψ〉 = et〈ϕ,ψ〉. But
since U is an isometry this gives for all t ∈ R

et〈ϕ,ψ〉 ≤ ‖ϕ‖ ‖ψ‖ , (3.139)

whence 〈ϕ,ψ〉 = 0 for all ψ ∈ D(A), and thus ϕ = 0. Hence, A is essentially self-adjoint
on D and A is self-adjoint (actually A is already closed, but we will not show this). Then
e−iAtψ and U(t)ψ are both solutions to the abstract Schrödinger equation for ψ ∈ D.
By the uniqueness of this solution, Proposition 3.47, we thus have U(t) = e−iAt, first on
D and then by continuity on H .

Remark 3.50. Stone’s theorem can be read as a classification of all unitary represen-
tations of the group (R,+) subject to the condition of strong continuity.
Without the continuity condition there are additional representations. For example,

let H = C and F : R→ R be Q-linear (i.e., we view R as a vector space over Q). Then
U(t) = eiF (t) is a unitary representation of R, which continuous only if F is a multiple
of the identity.

Examples 3.51.

• The translation group on R. Define on L2(R), (U(t)f)(x) := f(x− t). This is
clearly a strongly continuous unitary group. For f ∈ S (R) we can calculate the
generator

i d
dt

∣∣∣
t=0

f(x− t) = −i d
dxf. (3.140)

Hence the generator is a self-adjoint extension of the operator Pmin of Example 2.18
a). But this operator is essentially self-adjoint, with unique self-adjoint extension
P given by (−i d

dx , H
1(R)). We thus have

f(x− t) = (e−itP f)(x) = (e−t
d

dx f)(x). (3.141)

• Translations on [0, 1]. If we want to define a unitary translation on the interval
[0, 1] we have to make sure that no mass is lost at the boundaries. This can be
achieved by identifying the boundary points and setting for 0 ≤ t ≤ 1

(U(t)f)(x) =
{

f(x− t) 1 ≥ x− t > 0
f(x− t+ 1) 0 > x− t ≥ −1.

(3.142)

More generally, we can set for θ ∈ [0, 2π)

(Uθ(t)f)(x) =
{

f(x− t) 1 ≥ x− t > 0
e−iθf(x− t+ 1) 0 ≥ x− t ≥ −1.

(3.143)
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The generator is always given by the local expression−i d
dx , but the domain depends

on θ. Note that the set of functions with f(1) = e−iθf(0) is invariant under Uθ.
Uθ is thus the group generated by Pα from Example 3.29 b) with α = eiθ.
Geometrically, all of these groups correspond to translations on a vector bundle
over the circle, with different identifications of the fibres at x = 0 and x = 1. The
operators Pα are different connections on the vector bundle S1 × R.

• Right Translation on R+. Define an isometry T (t) : L2(R+)→ L2(R+) by

(T (t)f) (x) :=
{

0 x ≤ t
f(x− t) x > t.

(3.144)

By differentiating one can see that this solves the equation

d
dtf = − d

dxT (t)f, (3.145)

but the derivative can exist in x = 0 only if f(x) = 0, so the generator is
(−i d

dx , H
1
0 (R+)). We saw in Example 3.29 a) that this is not self-adjoint. This

is reflected in the fact that T (t) is not unitary as ran(T (t)) ⊂ L2(t,∞).

We also have a perturbation theory for unitary groups:

Theorem 3.52. Suppose A,D(A), B,D(B) are self-adjoint and A+ B self-adjoint on
D(A+B) = D(A) ∩D(B). Then for all t ∈ R

e−i(A+B)t = s− lim
n→∞

(
e−i tnAe−i tnB

)n
(3.146)

Proof. Since the difference of the two expressions is uniformly bounded (by two), it is
sufficient to prove strong convergence on the dense set D((A+B)2). Now set τ = t

n and
note that(

e−iτAe−iτB
)n
−e−i(A+B)t =

n−1∑
j=0

(
e−iτAe−iτB

)n−1−j (
e−iτAe−iτB − e−i(A+B)τ

) (
e−i(A+B)τ

)j
.

(3.147)
Consequently ∥∥∥(e−iτAe−iτB

)n
− e−i(A+B)tψ

∥∥∥ ≤ |t|max
s≤t

Fτ (s) (3.148)

with
Fτ (s) =

∥∥∥ 1
τ

(
e−iτAe−iτB − e−i(A+B)τ

)
e−i(A+B)sψ

∥∥∥ . (3.149)

For ϕ ∈ D(A+B),
lim
τ→0

1
τ

(
e−iτAe−iτB − e−i(A+B)τ

)
ϕ = 0, (3.150)

so we have convergence of Fτ (s)→ 0, for every s. To improve this to uniform convergence
in s, note that in particular we have a bound∥∥∥ 1

τ

(
e−iτAe−iτB − e−i(A+B)τ

)
ϕ
∥∥∥ ≤ Cϕ. (3.151)
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Now D(A+B) with the graph norm is a Banach space, so by the uniform boundedness
principle, there exists a constant such that∥∥∥ 1

τ

(
e−iτAe−iτB − e−i(A+B)τ

)
ϕ
∥∥∥ ≤ C ‖ϕ‖D(A+B) . (3.152)

Consequently,

|Fτ (s)− Fτ (r)| ≤
∥∥∥ 1
τ

(
e−iτAe−iτB − e−i(A+B)τ

) (
e−i(A+B)s − e−i(A+B)r

)
ψ
∥∥∥

≤ C
∥∥∥(1− e−i(A+B)(s−r)

)
ψ
∥∥∥
D(A+B)

≤ C ′|s− r|,

as ψ ∈ D((A+B)2). Now assume that

lim sup
τ→0

max
s≤t

Fτ (s) > 0. (3.153)

Then there exists a sequence τn → 0 and s(τn) such that

lim sup
n→∞

Fτn(sn) > 0. (3.154)

But the sequence sn has a convergent subsequence sn → s, and since limn→∞ Fτn(s) = 0
and |Fτn(sn)− Fτn(s)| < C|sn − s| we must have convergence to zero. This shows that

lim
τ→0

max
s≤t

Fτ (s) = 0. (3.155)

3.3.2 Spectrum and Dynamics
If ψ is an eigenfunction of a self-adjoint operator A, D(A), then the action of the unitary
group e−itA is very simple – the orbit e−itA is periodic. We will now discuss a more
sophisticated way of relating the spectrum of A to the dynamics.

Definition 3.53. Let µ be a finite measure on (R,B(R)). We define:

• µ is supported on a set M if µ(M c) = 0;

• the support of µ is

supp(µ) = {x ∈ R|∀ε > 0 : µ((x− ε, x+ ε) > 0} =
⋂
{C ⊂ R closed : µ(Cc) = 0}.

(3.156)

• µ is pure-point if µ is supported on a finite or countable set;

• µ is continuous (w.r.t. the Lebesgue measure) if µ and has no atoms, i.e. for all
x ∈ R: µ({x}) = 0;

• µ is absolutely continuous (w.r.t. the Lebesgue measure) if every Lebesgue null set
is a µ null set,
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• µ is singular (w.r.t. the Lebesgue measure) if µ is supported on a set of Lebesgue
measure zero;

• µ is singular-continuous (w.r.t. the Lebesgue measure) if µ is singular and has no
atoms. Then µ is supported on an uncountable set of Lebesgue measure zero (such
as the Cantor set).

Remark 3.54. In terms of the function F (t) = µ((0, t]) this means:

• µ continuous ⇔ F continuous;

• µ absolutely continuous ⇔ F absolutely continuous, i.e. f = F ′ exists a.e. and∫ t
0 f(s)ds = F (t) (cf. the Radon-Nikodym Theorem);

We have the Lebesgue decomposition decompose any measure µ as µ = µpp + µac + µsc,
with measures having the respective properties. We can also decompose R = Mpp ∪
Mac∪Msc, such that µ• is supported onM•. However, this decomposition is not unique.

Now let ψ ∈H and let µψ denote the spectral measure of ψ w.r.t A.

Definition 3.55. Let A, D(A) be a self-adjoint operator on H . We define the following
subspaces of H :

• Hpp := {ψ ∈H : µψ is pure-point}

• Hc := {ψ ∈H : µψ is continuous}

• Hac := {ψ ∈H : µψ is absolutely continuous}

• Hsc := {ψ ∈H : µψ is singular continuous}

Proposition 3.56. The following hold true:

a) Hpp = span{ψ ∈H : ψ is an eigenvector of A},

b) Hc = H ⊥
pp ,

c) Hsc = {ψ ∈Hc : ∃ Leb. null set M : PA(M)ψ = ψ} and this subspace is closed,

d) Hac = Hc ∩H ⊥
sc .

In particular, H = Hpp ⊕Hac ⊕Hsc and this sum is orthogonal.

Proof. a): “⊃” If ψ is in the closure of the span of eigenvectors, there exist normalised
mutually orthogonal eigenvectors (ψn)N and coefficients (an)N so that ψ =

∑∞
n=1 anψn.

Let M be the corresponding countable set of eigenvalues. Then the spectral measure of
ψn is supported on a single point in M and

µψ(M) = 〈ψ, PA(M)ψ〉 =
∞∑
n=1
|an|2〈ψn, PA(M)ψn〉 =

∞∑
n=1
|an|2 = ‖ψ‖2 = µψ(R).

(3.157)
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3.3 Applications of the spectral theorem

Thus supp(µψ) ⊂M is countable and ψ ∈Hpp.
“⊂” Let C = supp(µψ) be the countable set of atoms. Then

µψ =
∑
λ∈C

µψ({λ}) =
∑
λ∈C
〈ψ, PA({λ})ψ〉) =

∑
λ∈C
‖PA({λ})ψ‖2 . (3.158)

The spectral measure of PA({λ})ψ is clearly supported on the point λ, so APA({λ})λψ
is an eigenvector of A with eigenvalue λ. For λ 6= λ′ these are orthogonal, so ψ =∑
λ∈C PA({λ})ψ is a sum of eigenvectors.
b): If µψ is continuous, then ‖PA({λ})ψ‖2 = µψ({λ}) = 0 for all λ ∈ R. Since by

the proof of a) ϕ ∈ Hpp can be written as a sum of PA({λ})ϕ and the PA({λ}) are
orthogonal projections, we have 〈ψ,ϕ〉 = 0 and thus Hc ⊂ H ⊥

pp . If on the other hand
ψ ∈H ⊥

pp , then PA({λ})ψ for all λ ∈ R and thus µψ({λ}) = 0 and ψ ∈Hc.
c): If ψ ∈ Hsc the ψ ∈ Hc by b). The support of µψ is then a Lebesgue null set

with PA(supp(µψ))ψ = ψ. If ψ ∈ Hc and M has Lebesgue measure zero and satisfies
PA(M)ψ = ψ, then supp(µψ) ⊂M , and µψ is singular continuous.
To see that Hsc is closed, let (ψn)N be sequence in Hsc converging to ψ ∈H and let

(Mn)N be a corresponding sequence of null sets. Then M = ∪∞n=1Mn has measure zero,
and

PA(M)ψ = lim
n→∞

PA(M)ψn = lim
n→∞

ψn = ψ, (3.159)

so ψ ∈Hsc.
d): Exercise!

Corollary 3.57. Let P• be the orthogonal projector to H• for • ∈ {pp, c, ac, sc}. Then
AP• = P•AP• and A = P•AP• + P⊥• AP

⊥
•

Proof. If µψ is supported by M , then so is µAψ. Hence AP• ⊂H•. The statement then
follows from the fact that P• is an orthogonal projection.

In view of this corollary we define

Definition 3.58. Let A, D(A) be self-adjoint. We call

• σpp(A) := σ(PppAPpp) the pure-point spectrum of A,

• σac(A) := σ(PacAPac) the absolutely continuous spectrum of A,

• σsc(A) := σ(PscAPsc) the singular continuous spectrum of A.

Proposition 3.59. Let A, D(A) be self-adjoint. Then

a) σ(A) = σpp(A) ∪ σac(A) ∪ σsc(A) ,

b) σpp(A) = {λ ∈ R : ker(A− λ) 6= {0}},

c) σac(A) is either empty or has positive Lebesgue measure,

d) σsc(A) is either empty or uncountable.
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3 Self-Adjoint Operators and the Spectral Theorem

Proof. By Corollary 3.57 we have

A− λ = Ppp(A− λ)Ppp + Pac(A− λ)Pac + Psc(A− λ)Psc. (3.160)

a) In the decomposition H = Hpp ⊕Hac ⊕Hsc this is a block-diagonal matrix, which
is invertible iff each block is invertible. Hence ρ(A) = ρ(PppAPpp) ∩ ρ(PacAPac) ∩
ρ(PscAPsc), and the spectrum is the union of the spectra.
b) If λ ∈ R can be approximated by eigenvalues, there exists a sequence of normalised

eigenvectors ψn ∈Hpp such that ‖(A− λ)ψn‖ ≤ |λn−λ| → 0, so λ ∈ σ(A|Hpp) by Weyl’s
criterion (Exercise 11).
If on the other hand λ ∈ σpp(A). Then there exists a Weyl sequence for λ in Hpp and in

particular a normalised element ψδ ∈Hpp with ‖(A− λ)ψδ‖ ≤ δ, for any δ > 0. Assume
now that |λ − µ| > δ for every eigenvalue of A and some δ > 0. Write ψδ =

∑
γ anψn

with orthonormal eigenvectors ψn and a sequence
∑∞
n=1 |an|2 = 1. Then

‖(A− λ)ψδ‖2 =
∞∑
n=1
|an|2 ‖(A− λ)ψn‖2 =

∞∑
n=1
|an|2|µn − λ|2 > δ, (3.161)

a contradiction.
c) Assume σac(A) = N is a set of zero Lebesgue measure. Then, by Exercise 23

1Hac = χN (PacAPac), and thus for every ψ ∈Hac

‖ψ‖2 = µψ(R) =
∫
χN (PacAPac)µψ(dx) = µψ(N) = 0, (3.162)

so Hac = {0} and σac(A) = ∅ (since B({0}) = {1}).
d) Same as c).

Examples 3.60.

a) Let H = L2(R)⊕ C and A(f, γ) = (x2f(x), γ), then Hac = L2(R)⊕ {0}, σac = R+,
Hpp = {0} ⊕ C, σpp = {1}.

b) Let α : N → Q ∩ [0, 1] be a bijection and (ψn)N a complete orthonormal set in H .
Then

ϕ 7→ Aϕ =
∞∑
n=1

α(n)ψn〈ψn, ϕ〉 (3.163)

defines a bounded self-adjoint operator. We clearly have Hpp = H and thus σ(A) =
σpp(A) = Q ∩ [0, 1] = [0, 1].

c) For • ∈ {pp, c, ac, sc} one can obtain an operator such that σ(A) = σ•(A) and
H• = H by taking a measure µ from the respective class and letting A be the
multiplication operator by x 7→ x on L2(R, µ). The spectrum is then exactly the
support of the measure.
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3.3 Applications of the spectral theorem

The decomposition of the spectrum by properties of the spectral measure can be
related to the dynamical behaviour under U(t) := e−iAt. Let ϕ,ψ ∈ H be normalised
vectors. Then

〈ϕ,U(t)ψ〉 =
∫
R

e−itλµϕ,ψ(dλ) = µ̂ϕ,ψ (3.164)

is just the Fourier transform of the associated spectral measure (as an element of S ′).
This implies, for example, that if µϕ,ψ is absolutely continuous (i.e. if ϕ,ψ ∈Hac), then
limt→∞〈ϕ,U(t)ψ〉 = 0, by the Riemann-Lebesgue Lemma. More generally, we have

Theorem 3.61 (Wiener’s Theorem). Let µ be a finite complex Borel measure and µ̂ its
Fourier transform. Then the Cèsaro mean of |µ̂(t)|2 is convergent and

lim
T→∞

1
T

∫ T

0
|µ̂(t)|2dt =

∑
λ∈R:µ({λ})>0

|µ({λ})|2 (3.165)

Proof. By Fubini we have

1
T

∫ T

0
|µ̂(t)|2dt = 1

T

∫ T

0

∫
R

∫
R

e−iηteiλtµ(dη)µ∗(dλ)dt

=
∫
R

∫
R

(
1
T

∫ T

0
eit(λ−η)eiλtdt

)
µ(dη)µ∗(dλ).

The function in parenthesis converges pointwise to χ{0}(η − λ) and is bounded by one,
so by dominated convergence the whole expression tends to∫

R

∫
R
χ{0}(η − λ)µ(dη)µ∗(dλ) =

∫
R
µ({λ})µ∗(dλ) =

∑
λ:µ({λ})>0

|µ({λ})|2. (3.166)

Corollary 3.62. Let A, D(A) be self-adjoint and ψ ∈Hc. Then

1
T

∫ T

0
e−iAtψdt (3.167)

converges weakly to zero as T →∞. If ψ ∈Hac this holds without the mean.

Proof. As noted above, we have∣∣∣〈ϕ, 1
T

∫ T

0
e−iAtψdt

〉∣∣∣2 =
∣∣∣ 1
T

∫ T

0
µ̂ϕ,ψ(t)dt

∣∣∣2 ≤ 1
T

∫ T

0
|µ̂ϕ,ψ|2(t)dt. (3.168)

Now since ψ = Pcψ, µϕ,ψ = µPcϕ,ψ has no atoms, this converges to zero as T →∞. The
statement for ψ ∈Hac follows from the Riemann Lebesgue Lemma.

This means that if ψ0 ∈Hac, ψ(t) = e−iAt eventually becomes (essentially) orthogonal
to any ϕ. It is also of interest to follow what happens e.g. to the support of ψ(t) for
large times. For this we will the following notion.
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3 Self-Adjoint Operators and the Spectral Theorem

Definition 3.63. Let A, D(A) be self-adjoint. An operator K, D(K) with D(A) ⊂
D(K) is called relatively compact with respect to A (or A-compact) ifKRi(A) is compact.

Example 3.64. Let χ ∈ C∞(Rd). Then multiplication by χ is not a compact operator
on H = L2(Rd) (except for χ = 0). However, χ is −∆-compact by Exercise 09.

Proposition 3.65. Let A, D(A) be self-adjoint and K relatively compact. Then for
every ψ ∈ D(A)

lim
T→∞

1
T

∫ T

0

∥∥∥Ke−itAPcψ
∥∥∥2

dt = 0 (3.169)

and
lim
t→∞

∥∥∥Ke−itAPacψ
∥∥∥ = 0. (3.170)

If K is bounded then the statement holds for all ψ ∈H .

Proof. Let ψ ∈Hc, resp. Hac. If K is a rank-one operator, i.e. Kψ = ϕ1〈ϕ2, ψ〉, then∥∥∥Ke−itAψ
∥∥∥2

= ‖ϕ1‖2 |〈ϕ2, e−itAψ〉|2 = ‖ϕ1‖2 |µ̂ψ2,ψ(t)|2 (3.171)

and the statement follows from Wiener’s Theorem, resp. the Riemann-Lebesgue Lemma.
The statement thus holds for any finite-rank operator, and by approximation for any
compact K.
For relatively compact K, take ψ ∈ H• ∩ D(A). Then ψ = Riψ0 for some ψ0 ∈ H•

since these spaces are A-invariant. The statement thus follows from the argument above
since Ri(A) commutes with e−itA.
If K is bounded and ψ ∈H•, we can find ψn ∈ D(A)∩H• with ‖ψ − ψn‖ < 1/n, and

then ∥∥∥Ke−itAψ
∥∥∥ ≤ ∥∥∥Ke−itAψn

∥∥∥+ ‖K‖ /n. (3.172)

Choosing first n and then T , resp. t, sufficiently large concludes the proof.

Example 3.66. Let H = −∆ and χ ∈ C∞(Rd). Then H = Hac and thus for all
ψ ∈ H2(Rd) = D(H)

lim
t→∞

∥∥∥χ(x)e−itHψ
∥∥∥ = 0, (3.173)

i.e. the support of e−itHψ “moves to infinity”. The solution disperses (as can also be
seen from the explicit solution).

We have the following characterisation of spectral types by the long-time behaviour
of the dynamics due to Ruelle, Amrein, Georgescu and Enß.

Theorem 3.67 (RAGE). Let A, D(A) be self-adjoint and (Kn)N a sequence of bounded
relatively compact operators converging strongly to the identity. Then

Hc =
{
ψ ∈H : lim

n→∞
lim
T→∞

1
T

∫ T

0

∥∥∥Kne−itAψ
∥∥∥dt = 0

}
,

Hpp =
{
ψ ∈H : lim

n→∞
sup
t≥0

∥∥∥(1−Kn)e−itAψ
∥∥∥ = 0

}
.
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Proof. We start with the first equation. By the previous theorem and Cauchy-Schwarz
we have for ψ ∈Hc

lim
T→∞

1
T

∫ T

0

∥∥∥Kne−itAψ
∥∥∥dt ≤ lim

T→∞

(
1
T

∫ T

0

∥∥∥Kne−itAψ
∥∥∥2

dt
)1/2

= 0. (3.174)

For the converse it is sufficient to show that if Pppψ 6= 0, then
∥∥∥Kne−itAPppψ

∥∥∥ > ε for t
sufficiently large. We will achieve this by showing that

lim
n→∞

sup
t≥0

∥∥∥(1−Kn)e−itAPppψ
∥∥∥ = 0. (3.175)

To see this, write Pppψ =
∑∞
j=1 αjψj with orthonormal eigenvectors ψj of A (cf. Propo-

sition 3.56). The sequence of operators Kn is bounded, and it converges in norm on
any finite dimensional subspace, e.g. the span of ψ1, . . . , ψN . Thus denoting by PN the
projection to this span, with is invarriant under e−itA,∥∥∥(1−Kn)e−itAPppψ

∥∥∥
H

≤ ‖(1−Kn)PN‖B(H )

∥∥∥e−itAPppψ
∥∥∥+ ‖1−Kn‖B(H )

∥∥∥(1− PN )e−itAPppψ
∥∥∥ (3.176)

converges to zero uniformly by choosing first N and then n sufficiently large. This
completes the proof of the first equality, and the inclusion of the left hand side in the
right for the second equality.
To complete the proof, we have to show that limn→∞ supt≥0

∥∥∥(1−Kn)e−itAψ
∥∥∥ 6= 0 if

Pcψ 6= 0. But if this is zero, then we have

0 = lim
n→∞

lim
T→∞

1
T

∫ T

0

∥∥∥(1−Kn)e−itAPcψ
∥∥∥dt

≥ ‖Pcψ‖ − lim
n→∞

lim
T→∞

1
T

∫ T

0

∥∥∥Kne−itAPcψ
∥∥∥dt = ‖Pcψ‖ ,

a contradiction.

Proposition 3.68. Let A, D(A) be self-adjoint and K relatively compact. Then for
every ψ ∈ D(A)

lim
T→∞

1
T

∫ T

0
eitAKe−itAψdt =

∑
λ∈σp(A)

PA({λ})KPA({λ})ψ. (3.177)

If K is bounded then the statement holds for all ψ ∈H .

Proof. By replacing K with KRi(A) as in the proof of Proposition 3.65, it is sufficient
to prove the statement for bounded K. By compactness of K, it is then sufficient to
show weak convergence, i.e. that we have (3.177) after taking the scalar product with
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3 Self-Adjoint Operators and the Spectral Theorem

any ϕ ∈ H . Writing 1 = Ppp + Pc, Proposition 3.65 implies that the contributions of
Pcψ and Pcϕ vanish. It thus remains to calculate

lim
T→∞

1
T

∫ T

0
eitAPppKe−itAPppψdt =

∑
λ,η∈σp(A)

lim
T→∞

1
T

∫ T

0
eit(η−λ)PA({λ})KPA({η})ψdt,

(3.178)
which yields the claim by the argument from the proof of Wiener’s Theorem.

We can also directly obtain the projections onto H• from the dynamics.

Corollary 3.69. Let A, D(A) be self-adjoint and (Kn)N a sequence of bounded relatively
compact operators converging strongly to the identity. Then

lim
n→∞

lim
T→∞

1
T

∫ T

0
eitAKne−itAψdt = Pppψ (3.179)

and
lim
n→∞

lim
T→∞

1
T

∫ T

0
eitA(1−Kn)e−itAψdt = Pcψ. (3.180)
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We will discuss the (approximate) stability of the spectrum of a self-adjoint operator A,
D(A) under “small” perturbations. We will first introduce the new notions of discrete
and essential spectrum that are well adapted to this. We will then see in examples
that the spectral types ac, pp, sc introduced in the previous section are not stable in the
same way. Then, we will consider the stability of σac in more detail, in the context of
scattering theory.

Definition 4.1. Let A, D(A) be self-adjoint. The discrete spectrum of A is

σdisc(A) := {λ ∈ σ(A)|∃ε > 0 : dim ran(PA(λ− ε, λ+ ε)) <∞}. (4.1)

The essential spectrum of A is σess(A) = σ(A) \ σdisc(A).

The set σdisc is the set of isolated eigenvalues of finite multiplicity (Exercise).

4.1 The Essential Spectrum

Examples 4.2.

a) If A is compact then σess(A) ⊂ {0}. If the resolvent of A is compact, then σ(A) =
σdisc(A).

b) If V ∈ L∞(R,R) is an operator of multiplication on L2(R) then (compare Exercise
02)

σ(V ) = σess(V ) = essran(V ). (4.2)

Note that the spectrum as a set, or any of its components, cannot be exactly stable
under addition of bounded operators, since adding a multiple of the identity to A applies
a shift to the spectrum. We thus have to either reduce the class of perturbations, or
consider the weaker notion of approximate stability.

Proposition 4.3 (Weyl’s Criterion for the Essential Spectrum). A point λ ∈ R is
an element of σess(A) if and only if it has a singular Weyl sequence, that is there exist
normalised (ψn)n such that w−limn→∞ ψn = 0 and ‖(A− λ)ψn‖ = 0. If such a sequence
exists, the vectors ψn can be chosen to be orthonormal.

Proof. If there exists a Weyl sequence at λ, then λ ∈ σ(A) by Exercise 11. Now assume
there exists a singular Weyl sequence for λ ∈ σdisc. Let ε be such that dim ran(PA(λ−
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4 Spectral Theory of Self-Adjoint Operators

ε, λ+ε)) <∞ and denote this spectral projection by Pε. Then ψ̃n := Pεψn is a sequence
in a finite dimensional space that converges weakly, and thus also in norm, to zero. But∥∥∥ψn − ψ̃n∥∥∥2

= ‖(1− Pε)ψn‖2

=
∫
R\(λ−ε,λ+ε)

µψn(dt)

≤ ε−2
∫
R\(λ−ε,λ+ε)

(t− λ)2µψn(dt)

= ε−2 ‖(A− λ)ψn‖2
n→∞→ 0,

and thus
∥∥∥ψ̃n∥∥∥→ 1, a contradiction.

Conversely, if λ ∈ σess(A), then for every ε > 0

dim ranPA((λ− ε, λ+ ε)) =∞. (4.3)

Let Pn be this projection with ε = 1/n. We then obtain an orthonormal singular Weyl
sequence by taking ψn ∈ ranPn to orthogonal to {ψ1, . . . , ψn−1} (in P1H – note that
the projection Pn is orthogonal to the projection onto Pn−1H \ PnH ).

Proposition 4.4. Let A, D(A) be self-adjoint. The essential spectrum of A is invariant
under addition of self-adjoint compact operators, and it exactly characterised by this
property, that is

σess(A) =
⋂

K=K∗ compact
σ(A+K). (4.4)

Proof. Since K is bounded, it is also A-bounded with relative bound zero, so A+K is
self-adjoint on D(A) by Kato-Rellich. Now let λ ∈ σess(A) and let (ψn)N be a singular
Weyl-sequence for λ. Then, since ψn converges weakly to zero, Kψn converges to zero
in norm and thus

‖(A+K − λ)ψn‖ ≤ ‖(A− λ)ψn‖+ ‖Kψn‖ → 0. (4.5)

Hence (ψn)N is also a singular Weyl sequence for A+K and λ ∈ σess(A+K). Reversing
the roles of A and A+K shows that σess(A) = σess(A+K) for every compact K.
It remains to prove that ⋂

K=K∗ compact
σdisc(A+K) = ∅. (4.6)

For this, let λ ∈ σdisc(A) (i.e. for K = 0).Then PA({λ}) has finite and nonzero rank,
and we denote this projection by P . Then

A = PAP + (1− P )A(1− P ) = λP + (1− P )A(1− P ). (4.7)

Hence A+ P is a compact perturbation of A, and

λ ∈ ρ((λ+ 1)P ) ∩ ρ((1− P )A(1− P )) = ρ(A+ P ). (4.8)
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4.1 The Essential Spectrum

Theorem 4.5 (Weyl). Let A, D(A) and B, D(B) be self-adjoint. If Rz(A)−Rz(B) is
compact for some z ∈ ρ(A) ∩ ρ(B), then

σess(A) = σess(B). (4.9)

Proof. Let λ ∈ σess(A) and let (ψn)N be a singular Weyl-sequence for λ. Then

(
Rz(A)− (λ− z)−1

)
ψn = Rz(A)

λ− z
(A− λ)ψn, (4.10)

so
∥∥(Rz(A)− (λ− z)−1)ψn∥∥→ 0. Since the difference of the resolvents is compact and

ψn tends weakly to zero, then also
∥∥(Rz(B)− (λ− z)−1)ψn∥∥ → 0. Consequently for

ϕn = Rz(B)ψn

‖(B − λ)ϕn‖ = |z − λ|
∥∥∥(Rz(B)− (λ− z)−1

)
ψn
∥∥∥→ 0, (4.11)

and
‖ϕn‖ = ‖Rz(B)ψn‖

n→∞→ |λ− z|−1 6= 0. (4.12)

Hence by normalising the sequence (ϕn)N we obtain a singular Weyl sequence for B and
λ ∈ σess(B). Reversing the roles of A and B yields the claim.

Example 4.6. Let V ∈ L2(R3) + L∞(R3) with lim|x|→∞ V (x) = 0 then V is −∆-
compact (this was shown in Exercise 09 for continuous V and follows for general V by
approximation), so by the second resolvent formula

Ri(−∆)−Ri(−∆ + V ) = Ri(−∆ + V )V Ri(−∆) (4.13)

is compact. Hence for all such V , we have

σess(−∆ + V ) = [0,∞). (4.14)

The spectrum of such an operator thus always looks similar, with the same essential spec-
trum and possibly some negative eigenvalues of finite multiplicity, as for the Hydrogen
atom.

Corollary 4.7. Let A, D(A) be symmetric with equal finite deficiency indices. Then all
self-adjoint extensions of A have the same essential spectrum.

Proof. Let A1, A2 be two self-adjoint extensions. Then for ψ = (A + i)ϕ ∈ ran(A + i),
Ri(A1)ψ = Ri(A2)ψ = ϕ, since both extend A. Thus, the difference of resolvents
is nonzero only on ran(A + i)⊥ = ker(A∗ − i), which has finite dimension, and thus
the difference of resolvents has finite rank. The statement now follows from Weyl’s
Theorem.
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4.2 The Discrete Spectrum
We already know that the discrete spectrum consists of eigenvalues of finite multiplicity.
We will now prove a variational characterisation of these eigenvalues in the case of
operators that are bounded from below. After, we will prove approximate stability of
such eigenvalues under perturbations.

Theorem 4.8 (Courant-Fischer). Let A, D(A) be self-adjoint and bounded from below.
Denote

Σ(A) := min σess(A).

Define a sequence µn, n ≥ 1 of real numbers by the min-max values

µn(A) := inf
V⊂D(A)

dim(V )=n

max
ψ∈V

‖ψ‖H =1

〈ψ,Aψ〉 = inf
V⊂Q(A)

dim(V )=n

max
ψ∈V

‖ψ‖H =1

qA(ψ,ψ). (4.15)

Then for every n ≥ 1 we have µn(A) ≤ Σ(A), and if µn(A) < Σ(A) then A has hat least
n eigenvalues (counted with multiplicity) below Σ(A) and µn(A) is the n-nth smallest
eigenvalue of A.
The min-max values are equal to the max-min values

µn(A) = sup
W⊂D(A)

dim(W⊥)=n−1

inf
ψ∈W
‖ψ‖H =1

〈ψ,Aψ〉. (4.16)

Proof. The two expressions on the right of (4.15) are equal since D(A) is dense in Q(A).
To see that µn(A) ≤ Σ(A), we argue by contradiction: Assume that for some n ≥ 1,

µn(A)−Σ(A) = δ > 0. Then, by definition of the essential spectrum, PA((Σ(A),Σ(A) +
δ/2) has infinite rank, and so µk(A)−Σ(A) < δ/2 for all k ≥ 1, by taking a k-dimensional
subspace of the range of PA.
Denote by λn, n = 1, . . . , Nmax the eigenvalues of A below Σ(A), ordered and counted

with multiplicity, and ψn a corresponding sequence of orthonormal eigenvectors (where
Nmax =∞ is allowed). Set Vn = span{ψk : k ≤ n}. Then for ψ ∈ Vn

〈ψ,Aψ〉 =
n∑
k=1

λk|〈ψ,ψk〉|2 ≤ λn ‖ψ‖2 , (4.17)

and thus µn(A) ≤ λn.
For the reverse inequality, and existence of the eigenvalues, we argue recursively. Start-

ing with n = 1, we have µ1(A) ∈ σ(A) by Exercise 12. Assuming that µ1(A) < Σ(A)
we then have that µ1(A) ∈ σdisc(A), and thus µ1(A) = λ1 is an isolated eigenvalue.
Now assume we have µk(A) = λk for all k ≤ n and µn+1(A) < Σ(A). Denote by P⊥n
the projection to the orthogonal complement of Vn (defined above). Then for any sub-
space V ⊂ D(A) of dimension at least n + 1, P⊥n V 6= {0}. Let ψV be a maximiser of
〈ψ,Aψ〉/ ‖ψ‖2 in V . Then, since µk+1 ≥ λk we may assume that P⊥n ψV 6= 0 and we have

max
ψ∈V

‖ψ‖H =1

〈ψ,Aψ〉 = max
ψ∈Ṽ

‖ψ‖H =1

〈ψ,Aψ〉. (4.18)
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with Ṽ = Vn ⊕ span(ψV ). Now P⊥n ψV = ψV − PnψV ∈ Ṽ , so

max
ψ∈Ṽ

‖ψ‖H =1

〈ψ,Aψ〉 ≥ σ(P⊥n AP⊥n ). (4.19)

Consequently
µn+1(A) ≥ min σ(P⊥n AP⊥n ) ≥ λn+1, (4.20)

so µn+1 = λn+1 and µn+1 is an eigenvalue of P⊥n AP⊥n by the same argument as for n = 1.
The proof of the max-min formulation is an exercise.

Corollary 4.9. Let A, D(A) and B, D(B) be self adjoint and bounded from below with
Q(B) ⊂ Q(A) and

qA(ψ,ψ) ≤ qB(ψ,ψ) (4.21)

for all ψ ∈ Q(B). Then Σ(A) ≤ Σ(B) and for all n ≥ 1 we have µn(A) ≤ µn(B).

Example 4.10. Let Ω ⊂ R be open, bounded with C1-boundary. Then the quadratic
form of the Dirichlet Laplacian −∆D is defined on H1

0 (Ω) and the form of the Neumann-
Laplacian −∆N on H1(Ω) ⊃ H1

0 (Ω), and both are given by the expression∫
Ω
|∇ψ(x)|2dx. (4.22)

Both operators have compact resolvent (this is where the regularity condition on the
boundary plays a role). By the Corollary, we have λn(−∆N ) ≤ λn(−∆D).

4.3 Approximate Stability of Isolated Spectrum
While the spectrum as a set is not stable under perturbations, in applications one often
wants to know how a certain part of the spectrum, for example an isolated eigenvalue,
changes precisely. In this section we will establish that isolated parts of the spectrum
stay isolated if the perturbation is sufficiently small. In particular, isolated eigenvalues
stay isolated eigenvalues and their dependence on a small perturbation can be calculated.
An important tool for this is an integral formula for the spectral projection that

generalises Chauchy’s integral formula. Let E ⊂ σ(A) be a connected component and
compact. Then there exists some contour γ in the complex plane such that γ ⊂ ρ(A)
and σ(A) ∩ int(γ) = E. We will show that

PA(E) = i
2π

∫
γ
Rz(A)dz. (4.23)

Of course, we need to define the operator-valued integral first. Since z 7→ Rz(A) is
a continuous function on γ we could define it as a Riemann integral. However, for
simplicity we will stick to the weak integral and define it by the identity〈

ϕ,
i

2π

∫
γ
Rz(A)dzψ

〉
= i

2π

∫
γ
〈ϕ,Rz(A)ψ〉dz, (4.24)
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4 Spectral Theory of Self-Adjoint Operators

for any ϕ,ψ ∈H .
The following proposition shows that the integral formula defines a projection also if

A is just closed, in which case the spectral projection is not defined.

Proposition 4.11. Let A, D(A) be a closed operator and assume that there exist λ ∈ R,
r > 0 such that γ := {z ∈ C : |z − λ| = r} ⊂ ρ(A). Then the operator defined by (4.24)
is a projection. If A is self-adjoint, then this projection is orthogonal.

Proof. Denote the operator in question by Pγ . We first note that Pγ is bounded, since

|〈ϕ, Pγψ〉| ≤ r ‖ϕ‖ ‖ψ‖ sup
z∈γ
‖Rz(A)‖ , (4.25)

and the supremum is in fact a maximum because z → Rz(A) is continuous on ρ(A) and
γ is compact.
Let γ′ be defined like γ but with a larger radius r′ < r. Since ρ(A) is open we can

choose r′ so that γ′ ⊂ ρ(A). Then 〈ϕ,Rz(A)ψ〉 is a holomorphic function on the annulus
between γ and γ′, so Pγ = Pγ′ by the Cauchy integral theorem. We can thus prove that
Pγ is a projection by showing that Pγ′Pγ = Pγ . Inserting the definition and using the
resolvent formula, we have

〈ϕ, Pγ′Pγψ〉 = i
2π

∫
γ′
〈ϕ,Rz(A)Pγψ〉dz

=
( i

2π

)2 ∫
γ

∫
γ′
〈ϕ,Rz(A)Rw(A)ψ〉dzdw

=
( i

2π

)2 ∫
γ

∫
γ′

1
z − w

〈ϕ, (Rz(A)−Rw(A))ψ〉dzdw.

Now w 7→ (z−w)−1 is a holomorphic function on the disc bounded by γ, since |z−λ| =
r′ > r, and thus

∫
γ

dw
z−w = 0. This gives with Cauchy’s formula

〈ϕ, Pγ′Pγψ〉 =
( i

2π

)2 ∫
γ

∫
γ′

1
w − z

〈ϕ,Rw(A)ψ〉dzdw

= i
2π

∫
γ
〈ϕ,Rw(A)ψ〉dw = 〈ϕ, Pγψ〉.

If A is self-adjoint, one easily checks that 〈ψ, Pγψ〉 is real, since the map z 7→ z reverses
the orientation of γ.

Theorem 4.12. Let A, D(A) be self-adjoint and assume that there exist λ ∈ R, r > 0
such that γ = {µ ∈ R : |λ− µ| = r} ⊂ ρ(A). Then

PA((λ− r, λ+ r)) = i
2π

∫
γ
Rz(A)dz. (4.26)
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4.3 Approximate Stability of Isolated Spectrum

Proof. Let γ, Pγ be the same objects as in the previous proposition. Fix an arbitrary
ψ ∈H . Since Rz(A) leaves the space Hψ (the A-cyclic space generated by ψ) invariant,
we have 〈ϕ, Pγψ〉 = 0 for ϕ ∈ H ⊥

ψ . It is thus sufficient to consider ϕ = f(A)ψ with
f ∈ C∞(R), since the set of these vectors is dense in Hψ and Pγ is continuous. For such
a ϕ, we have

〈ϕ, Pγψ〉 = i
2π

∫
γ
〈f(A)ψ,Rz(A)ψ〉 = i

2π

∫
γ

∫
R

f(x)
x− z

µψ(dx)dz. (4.27)

Since
i

2π

∫
γ

1
x− z

dz =
{

1 x ∈ Br(λ)
0 x /∈ Br(λ)

(4.28)

this equals∫
R
f(x) i

2π

∫
γ

1
x− z

dzµψ(dx) =
∫
R
χBr(λ)(x)f(x)µψ(dx) = 〈ϕ, PA((λ− r, λ+ r))ψ〉,

(4.29)
by Fubini’s theorem.

Theorem 4.13 (Analytic Perturbation Theory). Let A, D(A) be self-adjoint, B, D(B)
symmetric and A-bounded. If there exist λ ∈ R, r > 0 such that γ = {µ ∈ R : |λ− µ| =
r} ⊂ ρ(A), there is ε0 > 0 such that for ε < ε0

{µ ∈ R : |λ− µ| = r} ⊂ ρ(A+ εB). (4.30)

The spectral projection
Pε := PA+εB((λ− r, λ+ r)) (4.31)

is an analytic B(H )-valued function of ε < ε0. In particular, the rank of Pε is constant.

Proof. For ε small enough, A+εB is self-adjoint by the Kato-Rellich Theorem. Moreover,
the resolvent can be written as

Rz(A+ εB) = Rz(A)(1 + εBRz(A))−1 = Rz(A)
∞∑
k=0

(−εBRz(A))k , (4.32)

for ε < ‖BRz(A)‖. We deduce that {µ ∈ R : |λ − µ| = r} ⊂ ρ(A + εB) for ε small
enough, and that Rz(A + εB) is an analytic function of ε in a neighbourhood of γ
(with the notation as above). Analyticity of the spectral projection now follows from
Theorem 4.12. If the rank of Pε is finite for some ε < ε0, then rk(Pε) = tr(Pε) is a
continuous function taking integer values, and thus constant.

Corollary 4.14. Let A, B satisfy the hypothesis of Theorem 4.13 and assume that A
has an isolated simple eigenvalue λ0. Then for ε < ε0, A + εB has an isolated simple
eigenvalue λε, and λε is an analytic function of ε < ε0.
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4 Spectral Theory of Self-Adjoint Operators

Proof. Let ψ0 be a normalised element of ker(A−λ0). By Theorem 4.13, Pε is a rank-one
projection for ε < ε0. By continuity of Pε, Pεψ0 6= 0 for ε sufficiently small, and thus
the range of Pε is spanned by Pεψ0. Since Pε is a spectral projection of A+ εB,

(A+ εB)Pεψ0 = λεPεψ0, (4.33)

and
λε = 〈Pεψ0, (A+ εB)Pεψ0〉

‖Pεψ0‖2
. (4.34)

Since BPε is bounded and Pεψ0 6= 0, λε is analytic.

4.4 Stability and Instability of σpp, σsc, σac
We will know discuss the instability of σpp and σsc in the simple example of rank-one
perturbations. We will then show that σac is stable under such perturbations and discuss
the ac-spectrum in more detail in the context of scattering theory.

4.4.1 Rank-one Perturbations
We start by discussing in some detail rank-one perturbations, which provide a family of
models that can be solved more or less exactly.
Let A, D(A) be a self-adjoint operator on H and ψ ∈H . If P denotes the orthogonal

projection to span{ψ}, then
Tα := A+ αP (4.35)

with domain D(Tα) = D(A) defines a one-parameter familiy of self adjoint operators.
These have have following properties (cf. Exercise 29)

Proposition 4.15. With the notation above we have

a) The A-cyclic subspace Hψ is Tα-invariant for all α ∈ R and Tα|H ⊥
ψ

= A|H ⊥
ψ
.

b) The resolvent of Tα can be expressed as

Rz(Tα)ϕ = Rz(Tβ)ϕ+Rz(Tβ)ψ (β − α)〈ψ,Rz(Tβ)ϕ〉
1 + (α− β)Φβ(z) (4.36)

for z ∈ C \ R and β 6= α, where

Φβ(z) = 〈ψ,Rz(Tβ)ψ〉 =
∫
R

µβ(dt)
t− z

(4.37)

is the Borel transform of the spectral measure µβ = µβψ of ψ with respect to Tβ.

By point a) it is not really a restriction to assume that ψ is A-cyclic, since on the
orthogonal complement of Hψ nothing interesting happens. By b), the spectrum of Tα
is completely encoded by the functions Φβ(z) for any β 6= α. We will now study these
in some more detail.
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4.4 Stability and Instability of σpp, σsc, σac

Remark 4.16. The function Φα is a Herglotz (or Nevanlinna) function, meaning that
it is holomorphic on the upper (lower) complex half-plane and maps this to itself. It
clearly satisfies |Φα(z)| ≤ C|Im(z)|−1.

Theorem 4.17. Let F be a Herglotz function on the upper complex half plane satisfying

|F (z)| ≤ C

Im(z) (4.38)

for some C > 0. Then there exists a unique finite Borel measure µ so that F is the Borel
transform of µ.

Proof (sketch). Fix z = x+ iy with y > ε > 0. By Cauchy’s formula we can write

F (z) = 1
2πi

∫
γ

( 1
ζ − z

− 1
ζ − z − 2iε

)
F (ζ)dζ, (4.39)

where γ is the contour

γ = (x+ iε+ [−R,R]) ∪ {x+ iε+Reiϕ : ϕ ∈ [0, π]} (4.40)

(note that z − 2iε lies outside the contour). Due to the bound on F , the integrand over
the semi-circle decays like R−2, so letting R→∞ we have

F (z) = 1
π

∫
R

y − ε
t2 + (y − ε)2F (t+ iε+ x)dt. (4.41)

Let V (z) := ImF (z), which is positive, then

V (z) = 1
π

∫
R

y − ε
t2 + (y − ε)2V (t+ iε+ x)dt. (4.42)

We have for all ε > 0 by Fatou

C ≥ lim inf
y→∞

yV (x+ iy) = 1
π

∫
R
V (t+ iε+ x)dt. (4.43)

Consequently, the measures µε := π−1V (t+iε+x)dt for ε > 0 form a bounded set in the
dual of C∞(R). They thus have an accumulation point µ (by Banach-Alaoglu) which
(by Riesz-Markov) is a Borel measure. Then

V (z) = lim
ε→0

∫
R

y − ε
t2 + (y − ε)2µε(dt) =

∫
R

y

t2 + (y − ε)2µ(dt) = Im
(∫ 1

t− z
µ(dt)

)
.

(4.44)
Hence F (z) and the Borel transform of µ have the same imaginary parts, and as holo-
morphic functions they must be equal up to a real constant. Since both tend to zero as
Imz →∞ this constant must be zero.
Uniqueness of µ follows from the formula

1
2 (µ((λ1, λ2)) + µ([λ1, λ2])) = lim

ε→0

1
π

∫ λ2

λ1
ImF (t+ iε)dt, (4.45)

see [Te, Thm 3.21] and Exercise 25.
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Since we are interested in the (in-)stability of the singular and absolutely continuous
spectrum we want to recover these from the Borel transform.

Lemma 4.18. Let µ be a finite Borel measure and Φ its Borel transform. Denote by
Iε(x) the interval (x−ε, x+ε) and define the lower and upper Radon-Nikodym derivatives
of µ as

Dµ(x) := lim inf
ε→0

µ(Iε)
2ε

Dµ(x) := lim sup
ε→0

µ(Iε)
2ε .

Then

Dµ(x) ≤ lim inf
ε→0

1
π

ImΦ(x+ iε) ≤ lim sup
ε→0

1
π

ImΦ(x+ iε) ≤ Dµ(x). (4.46)

In particular, if Dµ(x) = Dµ(x) then limε→0
1
π ImΦ(x+ iε) exists and equals the Radon-

Nikodym derivative of µ.

Proof. See [Te, Thm 3.22].

Theorem 4.19. Let µ be a finite Borel measure and Φ its Borel transform. Then

lim
ε→0

1
π

ImΦ(x+ iε) (4.47)

exists Lebesgue a.e.. Moreover, the sets

Mac := {x ∈ R : lim
ε→0

ImΦ(x+ iε) exists and is finite} (4.48)

and
Ms := {x ∈ R : lim inf

ε→0
ImΦ(x+ iε) =∞} (4.49)

are supports for µac and µs, respectively.

Proof (sketch). Consider the Lebesgue decomposition µ = µac + µs, where the singular
part µs is supported on some set of Lebesgue measure zero. Since µac is absolutely
continuous, its Radon-Nikodym derivative exists a.e. in Mac (w.r.t. to the Lebesgue
measure and µac). By Lemma 4.18 we thus have convergence of ImΦ(x + iε) a.e., and
the set where this holds is a support for µac. To prove the statement on the singular
part, one proves that the restriction of µ to the set

{x ∈ R : Dµ(x) <∞} (4.50)

is absolutely continuous (see [Te, Thm A.38]), so µs is supported on the complement.

Corollary 4.20. Let µ be a finite Borel measure and Φ its Borel transform. For
Lebesgue-almost every x ∈ R, Φ(x+ iε) has a limit as ε→ 0.
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Proof. For the imaginary part this was already shown in Theorem 4.19. We will reduce
the convergence of the real part to this result. For this, note that

√
Φ is a Herglotz

function with positive real part, so i
√

Φ is also a Herglotz function. By Theorems 4.171

and 4.19 the limit of√
Φ(x+ iε) = Im

√
Φ(x+ iε) + Im

(
i
√

Φ(x+ iε)
)

(4.51)

exists a.e., and then so does the limit of its square.

In Exercise 32 we have seen that a real number λ can be an eigenvalue of Tα for at
most one α ∈ R. This shows that the pure-point parts µβpp, µαpp are mutually sigular for
α 6= β. We will now show this for the entire singular parts, and discuss some examples
(following [Don]).

Proposition 4.21 (Instability of the singular spectrum). Let Tα, α ∈ R be the family
of self-adjoint operators defined above and suppose that ψ is an A-cyclic vector. Then
for α 6= β the measures µαs and µβs are mutually singular.

Proof. Using the formula (compare Exercise 29)

Φα(z) = Φβ(z)
1 + (α− β)Φβ(z) , (4.52)

we take the imaginary part, writing Φα(z) = Uα(z) + iVα(z) and obtain

Vα(z) =
Im
(
Φβ(z)

(
1 + (α− β)Φβ(z)

))
(1 + (α− β)Uβ(z))2 + (α− β)2Vβ(z)2

= Vβ(z)
(1 + (α− β)Uβ(z))2 + (α− β)2Vβ(z)2 . (4.53)

If x ∈Mβ
s (defined as above with Φ = Φβ), then this implies that

lim
ε→0

Vα(x+ iε) = 0, (4.54)

so x /∈Mα
s . Hence µαs and µβs have disjoint supports and are mutually singular

Example 4.22 (Disappearing singular spectrum). Let ρ ∈ L1(R) be a continuous and
strictly positive function and let ν be a finite measure singular with respect to Lebesgue
measure (for example ν = δ0). We set µ to be the normalised sum of the two measures,

µ = ρdx+ ν

‖ρ‖L1 + ν(R) , (4.55)

1Actually, we cannot apply this theorem as such, since it requires the growth estimate |F (z)| ≤
MIm(z)−1. There is a more general representation theorem without this assumption, see [Te2,
Thm.3.20] (second edition)

69
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and let A = T0 be multiplciation by x on L2(R, µ). Then

σs(T0) = supp(ν)
σac(T0) = R.

Now let ψ ≡ 1 be the natural cyclic vector for A and consider the corresponding family
Tα. Since Φ has positive imaginary part, we see from Exercise 33 that for all λ ∈ R

lim inf
ε→0

ImΦ0(λ+ iε) ≥ ρ(λ) > 0. (4.56)

In view of (4.53) this implies that for all α 6= 0

lim sup
ε→0

ImΦα(λ+ iε) ≤ 1
αρ(λ) , (4.57)

and thus Mα
s = ∅. The operators Tα have only absolutely continuous spectrum.

If we do not assume that ρ is positive everywhere, then the reasoning still holds
wherever ρ > 0, but Tα can have sigular sepctrum where ρ vanishes.

Example 4.23 (Dense point spectrum and singular continuous spectrum). We start
by constructing a pure-point measure on [0, 1]. Let (an)N ∈ `2 be a square-summable
sequence of positive numbers that is not summable. Set

λk =

 k∑
j=1

aj

 mod 1. (4.58)

Then the sequence (λn)N is dense in the unit interval, since the sequence an tends to
zero but is not summable. Define a measure µ on the unit interval as

µ|[0,1] =
∞∑
k=1

a2
kδλk , (4.59)

and on R by translation and normalising µ|[n−1,n] = n−2. Now clearly A = Mλ on
L2(R, µ) has a dense set of eigenvalues in R given by {λk + n : n, k ∈ N}. Let ψ ≡
1 ∈ L2(R, µ) and consider the corresponding family of operators Tα. From Exercise 32
we know that the eigenvalues above are not eigenvalues of Tα for α 6= 0 and by the
proposition the spectral measure µαψ is supported on the compement of this set. Now
any λ ∈ [0, 1] in this complement satisfies

λkn−1 < λ < λkn (4.60)

for an infinite sequence of integers (kn)N. Then∫
R

1
(t− λ)2µ

0
ψ(dt) ≥

∞∑
k=1

a2
k

(λk − λ)2 ≥
∞∑
n=1

a2
kn

(λkn − λkn−1)2 =
∞∑
n=1

1 =∞. (4.61)

Hence, in view of Exercise 32, Tα has no eigenvalues in [0, 1], and by the same argument
anywhere. The spectrum of Tα for α 6= 0 is purely singular continuous, by the next
Proposition.
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Proposition 4.24 (Stability of the absolutely continuous spectrum). Let Tα, α ∈ R be
the family of self-adjoint operators of Proposition 4.15 and suppose that ψ is an A-cyclic
vector. Then for α 6= β the measures µαac and µβac are mutually absolutely continuous,
and Pac(Tα)Tα is unitarily equivalent to Pac(Tβ)Tβ.

Proof. By Theorem 4.19 and Corollary 4.20, the set

Sα := {x ∈ R : lim
ε→0

Φ(x+ iε) exists and has non-zero imaginary part} (4.62)

is a support for µαac. On Sβ, we have

lim
ε→0

Vα(x+ iε) = lim
ε→0

Vβ(x+ iε)
(1 + (α− β)Uβ(x+ iε))2 + (α− β)2Vβ(x+ iε)2 , (4.63)

which is non-zero, and by the corresponding formula for the real parts, Sα = Sβ. By
Lemma 4.18, the a density of µαac w.r.t. the Lebesgue measure is given (a.e.) by setting

ρα(x) = 1
π lim
ε→0

Vα(x+ iε), (4.64)

for x ∈ Sα. We then find the density of µβac with respect to µαac as

dµαac
dµβac

= lim
ε→0

1
|1 + (α− β)Φβ(x+ iε)|2 , (4.65)

and the unitary equivalence is given, e.g., by

U : L2(R, µαac)→ L2(R, µβac)

f 7→ lim
ε→0

f(·)
1 + (α− β)Φβ(·+ iε) .

4.4.2 Instability of spectral types under Hilbert Schmidt perturbations
We have shown that the singular spectrum is unstable under rank one perturbations,
while the absolutely continuous part is stable. When taking sums of rank-one perturba-
tions, the situation depends on the norm in which the sum converges.

Definition 4.25. Let H be a separable Hilbert space, K ∈ B(H ) compact operator
and κ = (κn)N be the sequence of its singular values (c.f. [FA1, Thm.5.37]; these are the
eigenvalues in case K is symmetric). The operator K is an element of the p-th Schatten
class Sp(H ) if κ ∈ `p. We call S1(H ) the trace class and S2(H ) the Hilbert-Schmidt
class.

Proposition 4.26. The space Sp(H ), 1 ≤ p <∞ is a Banach space with the norm

‖K‖Sp = tr
(
(K∗K)p/2

)1/p
= ‖κ‖`p
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where the trace is defined by

tr(K) =
∞∑
j=1
〈ψj ,Kψj〉, (4.66)

for any complete orthonormal set (ψn)N and K ≥ 0. The Hilbert Schmidt operators,
p = 2, form a Hilbert space, and the Hölder-type inequality

‖K1K2‖S1
≤ ‖K1‖Sp ‖K2‖Sq (4.67)

holds for K1 ∈ Sp,K2 ∈ Sq, p−1 + q−1 = 1.

Proof. The case p = 2 follows by checking that tr(A∗B) defines a scalar product on
finite-rank operators. The case p = 1 is an exercise. For the general case see [Te,
Lem.6.12].

We will now prove the following result on instability of the spectral type under pertur-
bations of Hilbert-Schmidt class. Later we will also prove that the absolutely continuous
part is stable under perturbations of trace-class.

Theorem 4.27 (Weyl-von Neumann). Let A, D(A) be self-adjoint on the separable
Hilbert space H . For every ε > 0 there exists a self-adjoint Hilbert-Schmidt operator K
with norm ‖K‖S2

< ε so that A+K has pure point spectrum.

Remark 4.28. The theorem means in particular that if A has absolutely continuous
spectrum Hac(A) = H , there exists a small operator K as above such that Hac(A +
K) = {0}. The same holds for singular continuous spectrum. Of course, the absolutely
continuous spectrum is part of the essential spectrum, so as a set this remains stable
under the compact perturbation K.
On the other hand, we have already shown that there are operators A with pure

point spectrum such that A+αP has no eigenvalues, for a rank-one projection P and α
arbitrarily small 4.23. This shows that the spectral types are generally unstable.

For the proof of Theorem 4.27 we need:

Lemma 4.29. Let A, D(A) be self-adjoint on H , and ψ ∈ H . For any δ > 0
there exists a projection P of finite rank and a self-adjoint K ∈ S2(H ) such that
‖(1− P )ψ‖ < δ, ‖K‖S2

< δ and the range of P is invariant under A+ P .

Proof. Given δ > 0 we may choose L large enough so that∥∥∥(1− χ[(−L/2,L/2](A))ψ
∥∥∥ < δ. (4.68)

Let n ∈ N to be chosen later, and set for k = 1, . . . , n

Pk := PA
(
(−L/2+(k−1)L/n,−L/2+kL/n]

)
= χ(−L/2+(k−1)L/n,−L/2+kL/n](A). (4.69)
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Set ϕk = 0 if Pkψ = 0 and otherwise ϕk := Pkψ/ ‖Pkψ‖. Then the set {ϕk, k = 1, . . . n}
is orthonormal by the basic properties of the PVM. Let P be the orthogonal projection
onto the span of this set. Then P has rank at most n, and

Pψ =
n∑
k=1

ϕk〈ϕk, ψ〉 =
∑

k∈{1,...,n:ϕk 6=0}
Pkψ
〈ψ, Pkψ〉
‖Pkψ‖2

= χ[(−L/2,L/2](A))ψ, (4.70)

so ‖(1− P )ψ‖ < δ.
Now set K = −PA(1−P )− (1−P )AP . This operator is well-defined since ran(P ) ⊂

D(A) (even ‖AP‖ ≤ L/2), symmetric, and has rank r ≤ n. We have

A+K = PAP + (1− P )A(1− P ), (4.71)

and this leaves the range of P invariant.
It remains to prove the bound on the Hilbert-Schmidt norm ofK, by choosing n. First,

we clearly have Aϕk ∈ ranPk, and thus also PAϕk ∈ ranPk and (1 − P )ϕk ∈ ranPk.
Consequently,

‖(1− P )AP‖2 = sup
‖ϕ‖=1

n∑
j,k=1
〈ϕ,ϕj〉〈ϕk, ϕ〉〈(1− P )Aϕj , (1− P )Aϕk〉

= sup
‖ϕ‖=1

n∑
k=1
|〈ϕk, ϕ〉|2 ‖(1− P )Aϕk‖2

≤ max
k∈{1,...,n}

‖(1− P )Aϕk‖2

We estimate this, using that (1− P )P = 0 and setting λk = −L/2 + kL/n, by

‖(1− P )Aϕk‖ = ‖(1− P )(A− λk)ϕk‖ ≤ ‖(A− λk)ϕk‖ ≤ L/n. (4.72)

Let ηj , j = 1, . . . , r ≤ n be an orthonormal basis of ranK(= ranK∗), then

‖K‖2S2
=

r∑
j=1
〈ηj ,K∗Kηj〉 ≤ r ‖K‖2 ≤ n(2L/n)2. (4.73)

The claim now follows by choosing n large enough.

Proof of Theorem 4.27. Let (ψn)N be a dense subset of H . we will prove the Theorem
by applying Lemma 4.29 recursively. Start with ψ = ψ1, δ = ε/2, and denote by P1,
K1 the resulting projection and Hilbert Schmidt operator. In the second step, apply the
Lemma to (1− P1)(A+K1)(1− P1) with ψ = (1− P1)ψ2 and δ = ε/22, and extend the
resulting P2, K2 to the whole space H by zero. Then A+K1 +K2 leaves the ranges of
both P1 and P2 invariant, since

(A+K1 +K2)P1 = (A+K1)P1 = P1(A+K1)P1,

(A+K1 +K2)P2 = ((1− P1)(A+K1)((1− P1) +K2)P2 = P2(A+K1 +K2)P2.
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Continuing this procedure, we obtain a sequence of finite-dimensional projections Pj ,
j = 1, . . . with PjP` = 0 and self-adjoint operators Kj with ‖Kj‖S2

< ε2−j . The sum∑n
j=1Kj converges in S2 to an operator K with ‖K‖S2

< ε. For the projection, note
that

‖(1− P1 − · · · − Pn)ψn‖ = ‖(1− P1 − · · · − Pn−1)ψn − Pn(1− P1 − · · · − Pn−1)ψn‖ < ε2−n,

and thus for N > n,∥∥∥∥∥∥
N∑

j=n+1
Pjψn

∥∥∥∥∥∥ =

∥∥∥∥∥∥
N∑

j=n+1
Pj(1− P1 − · · · − Pn)ψn

∥∥∥∥∥∥ ≤ ε2−n
This implies that

∑∞
j=1 Pj = 1 (with convergence in the strong operator topology),

because the set (ψn)N is dense (note that after removal of ψ− 1, . . . , ψn−1 the set is still
dense, so we may choose n large).
To prove the Theorem we show now that A+K has pure point spectrum. Since the

ranges of the projections Pn are finite dimensional and span H it is sufficient to prove
that each of these is invariant under A+K, since Pn(A+K)Pn has finite rank and thus
pure point spectrum. By construction, PnH is a subspace of (1 − P1 − · · · − Pn−1)H
and Kj , j > n vanishes on ranPn, so

(A+K)Pn = (A+K1 + · · ·+Kn)Pn +
∞∑

j=n+1
KjPn︸ ︷︷ ︸

=0

= Pn(A+K1 + · · ·+Kn)Pn
= Pn(A+K)Pn.

This completes the proof.

We remark that the above proof works similarly with K ∈ Sp, p > 1. For p = 1 it is
not possible to choose n in (4.73) large to make the norm of K small. We will see below
that the ac-spectrum is actually stable under trace-class perturbations.

4.4.3 Perturbation of absolutely continuous spectrum: Scattering theory

We will now investigate in greater generality the stability of the a.c. spectrum that
we found in the example of rank-one perturbations. We will take a different point
of view that emphasizes the dynamics. This is best illustrated in the example of the
Schrödinger operator H = −∆ + V with a bounded and decaying potential V (e.g. of
compact support). Consider the behaviour of e−iHtψ for ψ ∈ Hac. We know from the
RAGE theorem (or more precisely Proposition 3.65) that e−iHtψ tends to zero locally,
in particular on the support of V , and

lim
t→∞

∥∥∥V e−iHtψ
∥∥∥ = 0. (4.74)
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Hence after a long time the influence of V becomes negligible and we expect that e−iHtψ
behaves like a solution to the equation with V = 0 for large t, i.e. that there exists
ψ+ ∈H so that

lim
t→∞

∥∥∥e−iHtψ − ei∆tψ+
∥∥∥ = 0. (4.75)

Using the unitarity of the groups, this is equivalent to

ψ = lim
t→∞

eiHtei∆tψ+. (4.76)

The same argument would hold for t→ −∞ and some ψ−.

Definition 4.30. Let A, D(A) and B, D(B) be self-adjoint operators on H . We define
the wave-operators by

Ω±(A,B) = s− lim
t→±∞

eitAe−itB

on the domains

D(Ω±(A,B)) = {ψ ∈Hac(B) : ∃ lim
t→±∞

eitAe−itBψ}. (4.77)

The elements of D(Ω±(A,B)) correspond to the asymptotic outgoing/incoming states
ψ±, and the range of Ω± correspond to the elements ψ ∈H for which such states exist.

Proposition 4.31. The sets D(Ω±(A,B)) and ran Ω± are closed in H , and

Ω±(A,B) : D(Ω±(A,B))→ ran Ω±(A,B) (4.78)

is unitary.

Proof. If the strong limit Ω± of a uniformly bounded sequence exists on some set, it also
exists on the closure, so D(Ω±) are closed. We have

‖Ω±ψ‖ = lim
t→±∞

∥∥∥eitAe−itBψ
∥∥∥ = ‖ψ‖ , (4.79)

so Ω± are isometric, and thus unitary to their range by Exercise 01.
Since ran Ω± are isometric to D(Ω±), they are complete and thus closed in H . other

Theorem 4.32. The subspaces D(Ω±(A,B)) are B-invariant and ran Ω±(A,B) are A-
invariant. Moreover

ran Ω±(A,B) ⊂Hac(A), (4.80)

Ω±(A,B) (D(B) ∩D(Ω±)) ⊂ D(A) and we have the intertwining property

Ω±(A,B)B = AΩ±(A,B) (4.81)

on D(B) ∩D(Ω±).
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Proof. First observe that for s ∈ R

Ω±(A,B)e−isBψ = lim
t→±∞

eitAe−i(t+s)Bψ = lim
τ→±∞

e−isAeiτAe−iτBψ = e−isAΩ±(A,B)ψ,
(4.82)

so ψ ∈ D(Ω±) iff e−isBψ ∈ D(Ω±) and D(Ω±) is B-invariant. The equation also shows
that if ϕ = Ω±ψ ∈ ran Ω±, then e−isAϕ = Ω±e−isBψ ∈ ran Ω±, and ran Ω± is A-
invariant.
Equation (4.82) can be differentiated w.r.t. s iff ψ ∈ D(B), which is thereby equiv-

alent to Ω±ψ ∈ D(A) (see Theorem 3.49). The derivative then yields the intertwining
property.
This property together with the unitarity of Ω± means that the restriction of B to

D(Ω±) is unitarily equivalent to the restriction of A to ran Ω±. Since D(Ω±) ⊂Hac(B)
by definition this yields that ran Ω± ⊂Hac(A).

Of course, we have not yet shown that D(Ω±(A,B)) really is non-trivial.

Definition 4.33. Let A,D(A) and B,D(B) be as above. We say that

• the wave operators exist if D(Ω±(A,B)) = Hac(B),

• the wave operators are complete if ran Ω±(A,B) = Hac(A),

• the wave operators are asymptotically complete if they exist, are complete and
Hsc(B) = {0} = Hsc(A).

Existence means that any ψ± ∈Hac(B) is an asymptotic incomming/outgoing state.
Completeness means that the dynamics for any ψ ∈ Hac(A) can be described in terms
of asymptotic states. If the wave operators exist and are complete, then the ac-parts
of A and B are unitarily equivalent. Asymptotic completeness then means that the
dynamics e−iAt decompose into periodic parts, acting on Hpp(A) and a part with an
asymptotic description in terms of B, acting on Hac(B). If the wave operators exist
and are complete, then the scattering operator

S := Ω+(A,B)−1Ω−(A,B) (4.83)

is unitary on Hac(B).

Lemma 4.34 (Cook’s Criterion). Suppose D(A) ⊂ D(B). If for ψ ∈ D(B) ∩Hac(B)
and some T ∈ R we have ∫ ∞

T

∥∥∥(B −A)e∓itBψ
∥∥∥dt <∞, (4.84)

then ψ ∈ D(Ω±(A,B)), respectively. In particular, if this condition is fulfilled for all
ψ ∈ D(B) ∩Hac(B) then the wave operators exist.
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Proof. For ψ ∈ D(B) we have

eitAe−itBψ = eiTAe−iTBψ + i
∫ t

T
eisA(A−B)e−isBψds (4.85)

by the fundamental theorem of calculus. The integrability condition then implies that
the left hand side is Cauchy, so its limit as t→ ±∞ exists. The final statement follows
from the fact that D(Ω±) are closed.

This criterion allows for a simple proof of existence of the wave operators for −∆ +V
if V decays sufficiently (here in d = 3).

Proposition 4.35. Let V ∈ L2(R3,R) and set H = −∆ + V , H0 = −∆ with D(H) =
D(H0) = H2(Rd) ⊂ L2(Rd). Then the wave operators Ω±(H,H0) exist.

Proof. We use the explicit form of the unitary group for H0:(
eit∆ψ

)
(x) = 1

(4πit)d/2
∫
Rd

ei |x−y|
2

4t ψ(y)dy. (4.86)

For ψ ∈ L1(R3) this implies ∥∥∥eit∆ψ
∥∥∥
L∞
≤ ‖ψ‖L1

(4π|t|)3/2 , (4.87)

so we have ∫ ∞
1

∥∥∥V e±it∆ψ
∥∥∥
L2

dt ≤ ‖V ‖L2

(4π)3/2

∫ ∞
1
|t|−3/2dt <∞. (4.88)

Thus, by Cook’s Criterion, we have D(H0) ∩ L1(R3) ⊂ D(Ω±). Since this set is dense
in H this shows that the wave operators exist, D(Ω±) = H = Hac(H0).

Lemma 4.36. Let A,D(A) be self-adjoint, ψ ∈ H be A-cyclic, P the projection to
span{ψ}, and Tα = A + αP be the family of rank-one perturbations of Section 4.4.1.
Assume additionally that (µψ)ac = ρ(x)dx with ρ ∈ S (R), where µψ is the spectral
measure of ψ w.r.t. A. Then for all α ∈ R the wave operators Ω±(Tα, A) exist.

Proof. Let ϕ ∈ Hac(A), and assume additionally that ϕ = f(A)ψ with f ∈ S (R) (the
set of such ϕ is dense). We have

eitTα(Tα −A)e−itAϕ = αeitTαψ〈ψ, e−itAϕ〉. (4.89)

Now
∥∥∥eitTαψ

∥∥∥ = ‖ψ‖, and

〈ψ, e−itAϕ〉 = 〈Pac(A)ψ, e−itAϕ〉 =
∫

e−itxρ(x)f(x)dx. (4.90)

Since ρ, f ∈ S , the Fourier transform ρ̂f(t) ∈ S . In particular, it is integrable in t, so
the wave operators exist.
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In the following, we will sometimes need the subspace M (A) ⊂Hac(A) given by

M (A) := {ϕ ∈Hac(A) : µϕ(dx) = ρϕ(x)dx, ρϕ ∈ L∞(R)}. (4.91)

This is a Banach space with the norm

‖ϕ‖M (A) := ‖ρϕ‖1/2L∞ , (4.92)

and a dense subspace of Hac(A) (Exercise; the only property we will need is density).
The main use of this concept is the following:

Lemma 4.37. Let A, D(A) be self-adjoint. For all ψ ∈H and ϕ ∈M (A) we have∫
R
|〈ψ, e−itAϕ〉|2dt ≤ 2π ‖ψ‖2H ‖ϕ‖

2
M (A) . (4.93)

Proof. Let Uϕ : H → L2(R, µϕ) be the partial isometry given by composition of the
projection to Hϕ and the unitary to L2(R, µϕ) used in the spectral theorem. Then

〈ψ, e−itAϕ〉 =
∫

e−itx(Uϕψ)(x)µϕ(dx), (4.94)

so by Plancherel’s Theorem∫
|〈ψ, e−itAϕ〉|2dt ≤ 2π

∫
ρ2
ϕ(x)|Uϕψ|2(x)dx ≤ 2π ‖ρϕ‖L∞ ‖Uϕψ‖

2
L2(µϕ) ≤ 2π ‖ϕ‖2M ‖ψ‖

2 .

(4.95)

Lemma 4.38. Assume the hypothesis of Lemma 4.36 and let ϕ ∈M (A), then

‖(Ω±(Tα, A)− 1)ϕ‖ ≤
√

4π|α| ‖ϕ‖M (A) ‖ψ‖ . (4.96)

Proof. Using the formula (4.85) for t =∞ and T = 0, we find

‖(Ω± − 1)ϕ‖2 = 2 ‖ϕ‖2 − 2Re〈Ω±ϕ,ϕ〉 = 2Re (〈Ω±ϕ, (Ω±ϕ− 1)ϕ〉)

= −2αIm
∫ ∞

0
〈Ω±ϕ, eitTαψ〉〈ψ, e−itAψ〉dt

≤ 2|α|
(∫ ∞

0
|〈Ω±ϕ, eitTαψ〉|2dt

)1/2 (∫ ∞
0
|〈ϕ, e−itAψ〉|2dt

)1/2
. (4.97)

By Lemma 4.37 we have(∫ ∞
0
|〈ϕ, e−itAψ〉|2dt

)1/2
≤
√

2π ‖ψ‖ ‖ϕ‖M . (4.98)

For the term with Ω± we additionally use the intertwining property to obtain(∫ ∞
0
|〈Ω±ϕ, eitTαψ〉|2dt

)1/2
=
(∫ ∞

0
|〈ϕ, eitAΩ∗±Pac(Tα)ψ〉|2dt

)1/2

≤
√

2π ‖ϕ‖M
∥∥Ω∗±Pac(Tα)ψ

∥∥ ≤ √2π ‖ϕ‖M ‖ψ‖ .

Together these yield the claim.
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Theorem 4.39. Let Tα = A+αP be the family of rank-one perturbations of Section 4.4.1
and ψ A-cyclic. For all α, β the wave operators Ω±(Tα, Tβ) exist and are complete.

Proof. Completeness of Ω±(Tα, Tβ) follows from existence of Ω±(Tβ, Tα) (Exercise), so
it is sufficient to prove the latter for arbitrary α, β. We follow a similar reasoning as for
Cook’s Criterion. Set

W (t) := eitTαe−itTβ . (4.99)

Assume first that ψ satisfies the conditions of Lemma 4.36 for A = Tβ and that ϕ ∈
M (Tβ). Then the wave operators Ω±(Tα, Tβ) exist and by the reasoning of (4.97) satisfy

‖(Ω± −W (s))ϕ‖ ≤
√

2|α− β|
√

2π ‖ϕ‖M ‖ψ‖
(∫ ∞

s
|〈ϕ, e−itTβψ〉|2dt

)1/4
. (4.100)

Using this twice together with the triangle inequality gives

‖(W (t)−W (s))ϕ‖ ≤ 2
√

2|α− β|
√

2π ‖ϕ‖M ‖ψ‖
(∫ ∞

min{s,t}
|〈ϕ, e−itTβψ〉|2dt

)1/4

.

(4.101)
Note that this inequality is again independent of Ω± with both sides depending con-
tinuously on ψ ∈ H (for fixed s, t). The set of ψ ∈ Hac(Tβ) with ρψ ∈ S is dense2

in Hac(Tβ), so the inequality above holds for arbitrary ψ ∈ H by approximation. By
Lemma 4.37 the right hand side converges to zero as min{s, t} → ∞, so the sequence
W (t)ϕ is Cauchy and ϕ ∈ D(Ω±). Since M (Tβ) is dense this shows that Ω± exists.

Corollary 4.40. Let A, D(A) be self-adjoint and K = K∗ an operator of finite rank.
Then the wave operators Ω±(A+K,A) exist and are complete.

Proof. The operator K can be written as a finite sum of rank-one operators

K =
N∑
j=1

αjPj . (4.102)

Denote for n ≤ N , An = A+
∑n
j=1 αjPj . Then An+1 = An +αjPj and by Theorem 4.39

the wave operators Ω±(An+1, An) exist and are complete. By the chain rule for the wave
operators (Exercise 39), we then have existence of the wave operators

Ω±(A+K,A) = Ω±(AN , AN−1) · . . .Ω±(A1, A0). (4.103)

Completeness follows from considering Ã = A+K, K̃ = −K and Exercise (?).

We can also compare the wave operators Ω± with the unitary U : L2(R, µβac) →
L2(R, µαac) found in Proposition 4.24. By the following proposition we have U∗ =
UαψΩ+(Tα, Tβ)

2Hψ is isomorphic to L2(R, ρψdx) and in the latter space the set of functions g = fρ−1
ψ with f ∈ S

is dense. The spectral measure of g(Tβ)ψ has density |f |2 ∈ S . Density in Hac(Tβ) of such vectors
follows by decomposing into cyclic subspaces.
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Proposition 4.41. Let Tα, ψ be as in Theorem 4.39, assuming additionally that µβ =
µβac(dx) = ρ(x)dx with ρ ∈ C0,r, r > 0. Denote by Uαψ the unitary Uαψ : Hac(Tα) →
L2(R, µαac). Then (

UαψΩ±(Tα, Tβ)ψ
)

(x) = lim
ε→0

1
1 + (β − α)Φα(x± iε) . (4.104)

Proof. Let f ∈ L2(R, µαac), ϕ = (Uαψ )∗f , then we can calculate

〈f, Uαψ (Ω±(Tα, Tβ)− 1)ψ〉 = i(α− β)
∫ ±∞

0
〈ϕ, eitTαψ〉〈ψ, e−itTβψ〉dt

= i(α− β)
∫ ±∞

0

∫
R
f(x)eitx〈ψ, e−itTβψ〉µαac(dx)dt.

Using Exercise T26 this equals

〈ϕ, (Ω± − 1)ψ〉 = lim
ε→0

∫ ±∞
0

∫
R
f(x)〈ψ, e−it(Tβ−x∓iε)ψ〉µαac(dx)dt. (4.105)

The dt-integral yields

i
∫ ±∞

0
〈ψ, e−it(Tβ−x∓iε)ψ〉dt =

〈
ψ,

1
Tβ − x∓ iεψ

〉
=
∫

ρ(y)dy
y − x∓ iε. (4.106)

Thus
〈ϕ, (Ω± − 1)ψ〉 = (α− β) lim

ε→0

∫
f(x)

∫
ρ(y)dy

y − x∓ iεµ
α
ac(dx). (4.107)

In the limit, we have
We thus find

〈f, UαψΩ±ψ〉 = lim
ε→0

∫
f(x)(1 + (β − α)Φβ(x± iε))µαac(dx)

= lim
ε→0
〈f, (1 + (β − α)Φβ(· ± iε))〉L2(R,µαac)

Using Hölder continuity of ρ we can pass the limit under the integral (compare Exercise
30) and obtain (

UαψΩ±ψ
)

(x) = lim
ε→0

(1 + (β − α)Φβ(x± iε))

= lim
ε→0

1
1 + (α− β)Φα(x± iε) .

Remark 4.42. Supposing additionally that ρ = f2 for f ∈ C0,r, r > 1/2 (say for
β = 0) we can show that Hsc(Tα) = {0} for α 6= β, so assuming that Hsc(A) = {0}
we have asymptotic completeness. With what we have proved, we can at least see
that every element of Mα

s is an eigenvalue: If λ ∈ Mα
s then necessarily ρ(λ) = 0 and
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limε→0 Φ0(λ ± iε) = −α−1, since otherwise ImΦα has a finite limit. Then, using that
r > 1/2, ∫

R

f2

(x− λ)2 dx <∞. (4.108)

This implies that λ is an eigenvalue of Tα by Exercise 32. Showing that λ cannot also
be part of the singular continuous spectrum requires additional tools.
In general, one does not have asymptotic completeness, since a dense set of eigenvalues

of A may turn into sc-spectrum of Tα, as we have seen in Example 4.23.

We will now generalise our results on existence and completeness of wave operators to
perturbations of trace-class and relative trace-class. For this, we will use a more general
notion of wave operator. Let H1, H2 be Hilbert spaces, A, D(A) self-adjoint on H1, B,
D(B) self-adjoint on H2, and J : H1 → H2 a bounded operator. Then the generalised
wave operator is defined by

Ω±(A,B, J) = s− lim
t→±∞

eitAJe−itB,

D(Ω±(A,B, J)) = {ψ ∈ Pac(B)H1 : ∃ lim
t→±∞

eitAJe−itBψ}. (4.109)

We will use these as a technical tool, but such operators are also relevant in many-
body scattering. For example, a system with three particles may have asymptotic states
that consist of two freely moving particles, one of which is a bound system of two of the
original particles, like an atom or molecule.

Theorem 4.43 (Pearson). Let H1 = H2 and J ∈ B(H ). If there exists C ∈ S1(H )
such that for all ϕ ∈ D(A), ψ ∈ D(B)

〈Aϕ, Jψ〉 − 〈J∗ϕ,Bψ〉 = 〈ϕ,Cψ〉, (4.110)

then D(Ω±(A,B, J)) = Pac(B)H .

Proof. The condition means that AJ − JB = C in the sense of quadratic forms. For
simplicity we assume additionally that J maps D(B) to D(A), so we may treat this as
an equality of operators. Let

WJ(t) := eitAJe−itB, (4.111)

then it suffices to prove that

‖(WJ(t)−WJ(s))η‖2 = 〈η,W ∗J (t)((WJ(t)−WJ(s))η〉 − 〈η,W ∗J (s)((WJ(t)−WJ(s))η〉
(4.112)

tends to zero as s, t→ ±∞ for all η in some dense set D ⊂Hac(B). Let us consider the
case s, t→ +∞. We can express the difference as

WJ(t)−WJ(s) = i
∫ t

s
eiτA (AJ − JB)︸ ︷︷ ︸

=C

e−iτBdτ. (4.113)
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This operator is compact since C is compact and the integrand is uniformly bounded
(take a bounded sequence (ψn)N converging weakly to zero and use dominated conver-
gence to see that (WJ(t) −WJ(s))ψn converges to zero in norm). By Proposition 3.65
we thus have for all η ∈Hac(B)

lim
ρ→∞

(WJ(t)−WJ(s))e−iρBη = 0. (4.114)

This implies that

〈η,W ∗J (t)((WJ(t)−WJ(s))η〉
= lim

ρ→∞
〈η,W ∗J (t)((WJ(t)−WJ(s))η〉 − 〈η, eiBρW ∗J (t)((WJ(t)−WJ(s))e−iBρη〉.

Now assuming that η ∈ D(B)

〈η,W ∗J (s)WJ(t)η〉 − 〈η, eiBρW ∗J (s)WJ(t)e−iBρη〉

= −i
∫ ρ

0
〈η, eiτB[B,W ∗J (s)WJ(t)]e−iτBη〉dτ.

We have, since JB = −C +AJ ,

[B,W ∗J (s)WJ(t)] = eisBBJ∗ei(t−s)AJe−itB − eisBJ∗ei(t−s)AJBe−itB

= −eisBC∗ei(t−s)AJe−itB + eisBJ∗ei(t−s)ACe−itB.

Inserting this into the equation before, we obtain

i
∫ ρ

0
〈e−i(τ+s)Bη,

(
C∗ei(t−s)AJ − J∗ei(t−s)AC

)
e−i(τ+t)Bη〉dτ. (4.115)

An upper bound of, e.g., the second term is given by expanding C =
∑
cnϕn〈ψn, ·〉 with

(ϕn)N, (ψn)N orthonormal and using the Cauchy-Schwarz inequality∣∣∣∣∣
∞∑
n=1

∫ ρ

0
cn〈e−i(τ+s)Bη, J∗ei(t−s)Aϕn〉〈ψn, e−i(τ+t)Bη〉dτ

∣∣∣∣∣
≤
( ∞∑
n=1

∫ ∞
s
|cn||〈e−iτBη, J∗ei(t−s)Aϕn〉|2dτ

)1/2( ∞∑
n=1

∫ ∞
t
|cn||〈ψn, e−iτBη〉|2dτ

)1/2

(4.116)

Assume that η ∈M (B). Then by Lemma 4.37∫ ∞
0
|〈ψn, e−iτBη〉|2dτ ≤ 2π ‖ψn‖2H ‖η‖

2
M , (4.117)

and ∫ ∞
0
|〈e−iτBη, J∗ei(t−s)Aϕn〉|2dτ ≤ 2π ‖ϕn‖2H ‖J‖

2 ‖η‖2M . (4.118)
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Collecting all the terms (there are four, which all satisfy a similar estimate), we obtain
the upper bound

|〈η,W ∗J (t)((WJ(t)−WJ(s))η〉|

≤ 4
√

2π ‖C‖S1
‖η‖M ‖J‖

( ∞∑
n=1

∫ ∞
min{s,t}

|cn||〈ψn, e−iτBη〉|2dτ
)1/2

, (4.119)

and the right hand side tends to zero as s, t→∞. This shows that η ∈ D(Ω+(A,B, J))
and, since M (B) ∩D(B) is dense in Hac(B), that D(Ω+(A,B, J)) = Hac(B).

Corollary 4.44. Assume the hypothesis of Theorem 4.43 and let ϕ ∈M (B). Then

‖(Ω±(A,B, J)− J)ϕ‖2 ≤ 16π ‖C‖S1
‖J‖ ‖ϕ‖2M (B) (4.120)

Proof. Set s = 0 in (4.119) and let t→∞.

Corollary 4.45 (Kato-Rosenblum). Let A, D(A) and B, D(B) = D(A) be self-adjoint
on H and suppose that A−B ∈ S1(H ). Then Ω±(A,B) exist and are complete.

Proof. In the previous theorem take J = 1. This condition is now symmetric, so
Ω±(B,A) also exist, and this gives completeness by Exercise 40.

Theorem 4.46 (Kuroda-Birman). Let A, D(A) and B, D(B) be self-adjoint on H and
suppose that

Ri(A)−Ri(B) ∈ S1(H ). (4.121)
Then Ω±(A,B) exist and are complete.

Proof. Take J = Ri(A)Ri(B), then

〈Aϕ, Jψ〉 − 〈J∗ϕ,Bψ〉 = 〈(A+ i)ϕ, Jψ〉 − 〈J∗ϕ, (B − i)ψ〉 = 〈ϕ, (Ri(A)−Ri(B))ψ〉.
(4.122)

By Theorem 4.43, the limit

lim
t→±∞

eitARi(A)Ri(B)e−itBψ (4.123)

exists for all ψ ∈Hac(B). Since Ri(A)−Ri(B) is compact,

lim
t→±∞

eitA (Ri(A)−Ri(B))Ri(B)e−itBψ = 0, (4.124)

for all ψ ∈Hac(B) and the limit

lim
t→±∞

eitARi(B)2e−itBψ (4.125)

exists. In particular, we may choose ψ = (B− i)2ϕ with some ϕ ∈ D(B2), and conclude
that

lim
t→±∞

eitAe−itBϕ (4.126)

exists. By density of D(B2) in H , we find that Ω±(A,B) exists, and by symmetry of
the conditions that Ω±(B,A) exists and is complete.
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The trace-class condition for the difference of resolvents is much more useful than the
simple trace condition, since it can be applied to −∆ + V .

Corollary 4.47. Let d ≤ 3 and V ∈ L1(Rd,R)∩L2(Rd) and set H = −∆+V , H0 = −∆
with D(H) = D(H0) = H2(Rd) ⊂ L2(Rd). Then the wave operators Ω±(H,H0) exist
and are complete.

Proof. We have to show that Ri(H)−Ri(H0) ∈ S1(L2(Rd)). We have

Ri(H)−Ri(H0) = −Ri(H)V Ri(H0) = Ri(H)(H0 − i)︸ ︷︷ ︸
∈B(H )

Ri(H0)V Ri(H0). (4.127)

By the boundedness of the pre-factor (which follows from Kato-Rellich, since V ∈ L2) it
is sufficient to show that Ri(H0)V Ri(H0) is trace-class. This can be achieved by proving
that Ri(H0)V Ri(H0) = T ∗S with S, T ∈ S2. We choose

T = |V |1/2R−i(H0)
S = sgn(V )|V |1/2Ri(H0),

which clearly yields the right result for T ∗S. Both T and S have the form fF−1gF ,
where |f | = |V |1/2 ∈ L2 if V ∈ L1 and g(k) = (k2 ∓ i), which is an element of L2(Rd)
for d ≤ 3. It thus follows from Exercise 42 that S, T ∈ S2.

For d = 3 we can apply both this Corollary and the earlier Proposition. The Corollary
needs the additional assumption that V ∈ L1, but it also gives completeness of the wave
operators!

Theorem 4.48. Let A, D(A) and B, D(B) be self-adjoint on H and suppose that for
some integer m ≥ 1 and all z ∈ C \ R

Rz(A)m −Rz(B)m ∈ S1(H ). (4.128)

Then Ω±(A,B) exist and are complete.

Proof. We use the same strategy as for the Kuroda-Birman Theorem. Let

J =
m−1∑
`=0

Ri(A)m+`Ri(B)m−`. (4.129)

Then

(A− i)J − J(B − i) = Ri(A)m−1
m−1∑
`=0

(
Ri(A)`Ri(B)m−` −Ri(A)`+1Ri(B)m−`−1

)
= −Ri(A)m−1 (Ri(A)m −Ri(B)m) ∈ S1.
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This gives existence of Ω±(A,B, J). Now

J −mRi(B)2m =
m−1∑
`=0

Ri(A)m+`Ri(B)m−` −Ri(B)2m

=
m−1∑
`=0

(
Ri(A)m+` −Ri(B)m+`

)
Ri(B)m−`.

The summand for ` = 0 is compact, and this also holds for ` > 0, since

Rz(A)m+` = (−1)`(`− 1)!
(m+ `− 1)!

d`

dz`Rz(A)m, (4.130)

so Ri(A)m+`−Ri(B)m+` can be approximated in norm by compact operators by writing
out the difference quotients. We conclude that for ψ = (B − i)2mϕ, ϕ ∈ D(B2m), the
limits

lim
t→±∞

eitARi(B)2me−itBψ = lim
t→±∞

eitAe−itBϕ (4.131)

exist. By density of D(B2m) this gives existence of Ω±(A,B), and by symmetry of the
conditions completeness.

Theorem 4.49. Let V ∈ L1(Rd,R)∩H2m(Rd) with m = min{n ∈ N : n > d/2− 1} and
set H = −∆ + V , H0 = −∆ with D(H) = D(H0) = H2(Rd) ⊂ L2(Rd). Then the wave
operators Ω±(H,H0) exist and are complete.

Proof (sketch). We want to apply the previous theorem for the given m. We have

Rz(H)m −Rz(H0)m =
m−1∑
`=0

Rz(H)` (Rz(H)−Rz(H0))Rz(H0)m−`−1

= −
m−1∑
`=0

Rz(H)`+1V Rz(H0)m−`,

so it is sufficient to prove that Rz(H)`+1V Rz(H0)m−` ∈ S1(L2(Rd)) for every ` ≤ m−1.
Using that V ∈ H2m(Rd) one can show that Hk

0Rz(H)k is bounded for all k ≤ m,
so we may replace Rz(H) by Rz(H0) for this purpose. We now use the inequality
‖KL‖S1

≤ ‖K‖Sp ‖L‖Sq , with p
−1 + q−1 = 1, splitting the operator as

K = Rz(H0)`+1sgn(V )|V |1/p

L = |V |1/qRz(H0)m−`.

To prove the Sp-bounds with the appropriate p, q, we use the Kato-Seiler-Simon inequal-
ity

‖MfF
∗MgF‖Sp ≤ Cp ‖f‖Lp ‖g‖Lp (4.132)

(we have proved this for p =∞, in Exercise 09, and for p = 2, Exercise 42; the inequality
for general p follows from an interpolation argument). Under the condition that m+1 >
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d/2, we can choose p > d
2(`+1) and q > d

2(m−`) , p
−1 + q−1 = 1, which give the necessary

Lp-bounds.
The claim now follows from Theorem 4.48.
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Symbol Explanation Page
X Usually a complex Banach space
B(X,Y ) Banach space of bounded linear operators from X to Y
B(X) Banach space of bounded linear operators from X to X
X ′ Space of continuous linear functionals on X (=B(X,C))
H Complex Hilbert space
A,D(A) Densely defined linear operator
G (A) Graph of A 3
A Closure of (A,D(A)) 3
‖·‖D(A) Graph norm on D(A) 3
A∗ (Hilbert-) adjoint of (A,D(A)) 5
ker(A) Kernel of A
ran(A) Range of A
ρ(A) Resolvent set of A 4
Rz(A) Resolvent of A in z ∈ ρ(A) 4
σ(A) Spectrum of A 4
`p Banach space of p-summable sequences N→ C
c0 Banach space of sequences converging to zero
c00 Space of sequences that are eventually zero
Ck(Ω) Space of k-times differentiable functions Ω→ C
Ck0 (Ω) Space of k-times differentiable functions Ω→ C with compact support,

supp f b Ω
Hk(Ω) Sobolev space of functions in L2(Ω) with k weak derivatives in L2 13
Hk

0 (Ω) Closure of Ck0 (Ω) in Hk(Ω) 15
Sp p-th Schatten class 71
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