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1 Linear Operators On Banach Spaces

1.1 Basic Notions

Definition 1.1. A generalised linear operator from Banach spaces X to Y is a pair
A, D(A) where

e D(A) C X is a linear subspace, and
e A:D(A) — Y is a linear map.
A linear operator is densely defined if D(A) is dense in X.

We will usually consider operators that are densely defined. If D(A) where not dense

in X one could just restrict to X = D(A) and obtain a densely defined operator, so this
is not really a restriction.

Examples 1.2.
a) Let X =Y = /2, and
D(A) = cop = {x € £* : ,, # 0 for finitely many n}. (1.1)
Then for any sequence (a,)neny € CN, (Az),, = a,x, is a densely defined operator.
b) Let X = L%([0,1]), Y = C, D(A) = C([0,1]) and Af := £(0).

Definition 1.3. A densely defined operator B, D(B) extends A, D(A), if D(A) C D(B)
and B|p4) = A. We write A C B.

Definition 1.4. A densely defined operator is called bounded if there exists M > 0 such
that
[Azly < M ] x (1.2)

for all z € D(A).
Remark 1.5. A is bounded iff A is continuous [FA1, Thm 2.29].
Definition 1.6. Let X, Y be Banach spaces. For a bounded operator A from D(A) = X

to Y define the operator norm

| Az|]
[All xSy = sup .
0#£zeX HZ'HX

(1.3)

The Banach space bounded linear maps from X to Y with this norm is denoted by
B(X,Y). The space B(X, X) is denoted by B(X).



1.1 Basic Notions

Proposition 1.7. If A, D(A) is densely defined and bounded there exists a unique con-
tinuous extension A with D(A) = X, i.e. A € B(X).

Proof. Let x € X and z,, — z be a sequence in D(A) converging to z. By linearity and
boundedness Az, is Cauchy in Y, so it has a limit y (with |ly|| < M), and this is unique.
Define Az :=y. O

Recall the graph of A, D(A):
G(A):={(z,Az) ;2 € D(A)} C D(A) xY C X x Y. (1.4)
Since A is linear, 4(A) is a linear subspace of X @Y.
Definition 1.8. The operator A, D(A) is

e closed if the set ¥ (A) is closed in X xY (i.e. for any sequence (2, )nen in D(A) such
that z,, converges to z € X and Az, converges to y € Y, it holds that x € D(A)
and Az = y);

e closable if it has a closed extension.
Remarks 1.9.

a) A is closable iff 4(A) is the graph of an operator A, D(A). A is called the closure of
A. It is the minimal closed extension:

D(A)= (] D(B). (1.5)
ACB
B closed
b) If A is closed and D(A) = X then A is bounded, by the Closed Graph Theorem [FA1,
Thm.4.13].

Proposition 1.10. Let A, D(A) be closed and define the graph norm on D(A) by
1zl peay == 2l x + [|Az[ly-. Then (D(A), ||| p(a)) is a Banach space and A : D(A) =Y
is continuous w.r.t. this norm. Conversely, If (D(A),||:||pa)) is complete then A is
closed.

Proof. ||| p(4y defines a norm by linearity of A. Clearly D(A), with this norm, embeds
continuously into X. D(A) is complete with this norm, since (x,)y Cauchy in D(A)
<= (x,,)y Cauchy in X and (Az,)y Cauchy in Y Adosed € D(A). Continuity
of A : D(A) — Y follows from completeness by the Closed Graph Theorem [FAL,

Thm.4.13]. The converse follows from this continuity. O
Examples 1.11.
a) The operator of 1.2a) is always closable, with
D(A) = {z € *: (apzn)y € 1}, (1.6)
since the graph norm is equivalent to (3,,(1 + |a,|?)22) Y ?_ which is clearly complete.

b) The operator of 1.2b) is not closable, since ¢(A) = L%([0,1]) x C.
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1.2 Resolvent And Spectrum

In this section A, D(A) is a densely defined operator on X, i.e. X =Y and X is a
Banach space over C.

Definition 1.12. The set
p(A):={2€C:A—2z:D(A) — X is bijective, and (A — 2)~! is bounded}  (1.7)
is called the resolvent set of A. For z € p(A) the operator
R.(A) 1= (A—2)") (1.8)
is called the resolvent.

Definition 1.13. The complement o(A) := C\ p(A) is the spectrum of A. We have
o(A) = 0p(A)Uo(A)Jo,(A), with

e The point spectrum

op(A) :={z € C: A— z is not one-to-one}

e The continuous spectrum

0c(A) :={z€ C:A— zis one-to-one, ran(A — z) # X but ran(4 — 2z) = X}

e The residual spectrum
0.(A):={z € C: A~ zis one-to-one but ran(A — z) # X }.
Theorem 1.14. Let A, D(A) be densely defined on X. The resolvent set p(A) is open,
and R,(A) defines an analytic function p(A) — B(X). Moreover, for z,w € p(A)
R-(A) = Ry(A) = (2 — w) R (A) Rw (A), (1.9)
in particular R,(A) and R,,(A) commute.
Proof. Like for A € B(X), [FA1, Thm.5.22]. O

Example 1.15. Take X = /2 and (Az),, = a,z, as in Example 1.2a). Then o(4) = C,

since ran(A — z) C copo # X. However o(A) = 0,(A) = Up{a,}, since for z not an
accumulation point of (a,)y the formula

(RZ(Z)JU) = (an — 2) " ta, (1.10)
defines the resolvent. Thus o(A) depends strongly on D(A)!
Remarks 1.16.

o If A € B(X) then o(A) # (). However, there are unbounded operators with empty
spectrum, and thus p(A) = C can occur (exercise).

o If p(A) # () then A is closed, since R,(A4) € B(X) = (A—2)"!closed = A4
closed.
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1.3 Operators on Hilbert Spaces, Adjoints and Symmetry

We now look at the special case where X = J# is a Hilbert space (over C), that is, it
has a scalar product (-,-) : 7 x S — C that defines its norm via ||| = /{p, ¢).

The Hilbert space structure allows us to define the adjoint operator, which should
satisfy the formula

(0, AY) = (A", ). (1.11)

The question is for what vectors ¢, 1. For A € B(), we can take any ¢, € ¢ and
this formula defines A* € B(¢) (by the Riesz Representation Theorem). For unbounded
A we certainly want ¢ € D(A), but we also need to decide what D(A*) should be. The
following definition chooses D(A*) in a maximal way so that the formula holds.

Definition 1.17. Let A, D(A) be densely defined on 7. We define the adjoint A*,
D(A*) by

D(A*) :=={p € :In, € VY € D(A) : (@, AY) = (ny, )},
A" D(AY) = A,
A*p =,
Remarks 1.18.

o A%y is well-defined, since if n, exists it is unique, by

NAUNS D(A) : <77g0 - ﬁsoulm =0 = Ny = 7730: (1-12)

because D(A) is dense.

The requirement on D(A*) can be read as: ¢ € D(A*) < the linear functional
(p, AY) on D(A) extends continuously to 77, since then 7 exists by the Riesz
Representation Theorem. From this it is immediate that for A € B(.%¢), D(A*) =
H and A* € B(J7).

e AC B = B* C A", since there are fewer conditions to be met in D(A*), and
for ¢ € D(B*) C D(A*), ¢ € D(A) C D(B)

(B*,9) = (0, BY) "S” (p, AY) = (A%, 9). (1.13)

e D(A¥) is not always dense.

o If D(A*) is dense we can define A** = (A*)*.
Theorem 1.19. Let A, D(A) be densely defined on .
a) A* is closed.

b) D(A*) is dense iff A is closable.
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c¢) If A is closable then A = A** and A* = (A)*.

Proof. a) Let (pn,7,,) be in 4(A*) that converges to (¢,n) € S x . Then for all
P € D(A):

<‘Pn7 A¢> = <77<Pn7¢>5

—(p, A1) — ()

s0 ¢ € D(A*) and A*p = 1.
b) If A* is densely defined, then A** extends A, because for every ¢ € D(A) there
exists n = Ay € J such that

Vip € D(A") : (@, A™) = (0, ¥). (1.14)

By a), A* is closed and thus A is closable.
Assume now that A* is not densely defined and consider 4(A) = (4(A)*)+. Note
that

G(A*) = {(p,n) € H x I :Vp € D(A) : (¢, AY) — (n,¢) = 0}, (1.15)
and since (p, Av) — (n,¢) = ((=n, ¢), (¥, AY)) war,

G(A)*(p, Ayp) = 0}
= {(-A%p,9) : ¢ € D(A")}. (1.16)

Now let 0 # & € D(A*)*, and observe that (0,¢) € (4(A)4)*, but certainly not in the
graph of any linear operator.
¢) We have by (1.15),(1.16)

G(A™) = {(p,n) € A x A W € D(A) : (1,9) — (0, ") = 0} = ((A)") ",

(1.17)

so A = A**. This, together with a), implies
A = a =AY g (1.18)
O

Definition 1.20. A densely defined operator A, D(A) on . is
e symmetric = A C A*.
o self-adjoint & A* = A.

Remarks 1.21.
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a) In terms of the identity

(o, AY) = (A", 9) = (Ap, ) (1.19)

symmetry means that this holds for all ¢,1¢ € D(A), while self-adjointness means
that additionally D(A*) = D(A).

b) If A is symmetric, it is closable, since A* is a closed extension. If A is self-adjoint,
then A = A* is closed.

Definition 1.22. Let A, D(A) be symmetric essentially self-adjoint if&s self-adjoint.
If A, D(A) is symmetric and closed, a subspace C' C D(A) such that A|c = A is called
a core for A.

Corollary 1.23. Let A, D(A) be symmetric. Then A is essentially self-adjoint iff A* is

symmetric. If A has any self-adjoint extension A C B, then D(A) C D(B) C D(A*).

Proof. By Theorem 1.19, A symmetric = A closable, and A = A** C A* (since A* is
a closed extension of A). Consequently A is essentially self-adjoint iff A* C A**. By the
same argument A C B, and then B = B* C A*. O

Examples 1.24.

a) Take 2 = (% and (Az), = a,, as in Example 1.2a). Then A is symmetric iff (a, )y
is real. In this case, A is essentially self-adjoint, since (z, Ay) = > ,enTn@nyn is a
continuous linear functional of y € 2 iff (a,x, )N € £? (compare Remark 1.11).

b) Let ## = L?(R), D(P) = C4(R), P = —i.
e P is symmetric: integration by parts;

e We will later determine P* and show that P is essentially self-adjoint (Fourier
transform).

c) Let s = L2((0,1)), D(Py) = C3((0,1)), Py = —iL.
e Py is symmetric: integration by parts - there are no boundary terms since f(0) =
f(1) =0 for f € D(P).

e P, is not self-adjoint, since C*(]0,1]) € D(FP});

e Py is not essentially self adjoint: For f € C([0,1]) we have (using the Cauchy-
Schwarz inequality)

s = [ 1ioPa = [ 5@ - [ o
<2 [M1s@Par s [ 17 @Par) =2 (171 + 17712

So if f, — f € D(Py) N C([0,1]) C D(F{), then
LFOF =1£(0) = falO)* < 2|1f = full b - (1.20)
and thus f(0) = 0. Consequently, D(Py) # D(F}).

2
dx
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Remark 1.25. We now have a first picture of what can go wrong with self-adjointness.
If D(A) is chosen very small, then symmetry will be easy to check, but D(A*) will be
large, so that A* will no longer be symmetric. If on the other hand D(A) is “too large”,
then D(A) might no longer be symmetric (boundary terms).



2 The Fourier Transform

The Fourier transform is an extremely useful tool that will give us many non-trivial
examples of operators whose properties (closedness, self-adjointness) and spectrum can
easily be established.

2.1 The Fourier Transform on L*(RY)

We want to define the Fourier transform of f € L?(R%), which formally is given by the

integral formula
N 1

) = (FN0=" s [ e S @) (21)

(2m)%/? Jra

However, the integral only converges for f € L!. Our strategy will be to define .# by

the integral formula on a dense subspace of L?(R?), where manipulations of the formula

will be easy to justify, and then prove that it has a unique extension to the whole of L2.
For a = (a....,a4) € N? denote

d
o] =" e, (2.2)
=1

and 4
oo gl
. — - = 2
% 1;[1 ox Ozt Oxy? (23)
and for z € RY .
"L’a = H x’?z = "L’(l)l ..... :E(dld (2 4)
=1
Definition 2.1. The Schwartz space is
S (RY) = {f € C®(RY) : Vo, € N sup |z°02 f(x)| < oo} : (2.5)
z€R4
equipped with the coarsest topology such that the maps
Fo (1 fllag = sup |2°0; f ()] (2.6)

z€R4
are continuous for every «, 8 € N%.

Examples 2.2.



2 The Fourier Transform

® Coshz eT4e—T)
. C{]’O(Rd) C Y(Rd).
Proposition 2.3.

a) For all o, B € N¢, [lo 5 defines a semi-norm on S (RY).

b) A sequence (fn)nen converges to f in .7 (RY) iff || fr — fllas =0 foralla, B € N,

c) A function F : ¥ — X, X a topological space, is continuous iff it is sequentially
continuous.

d) The topology of . (R?) is metrisable and . (R%) is complete.

Proof. a): Clear.
b): By definition, convergence in . implies convergence of |-, 5. Now the family

Ur:={9€ S :|f—gllo5 <miri=1,...,n} (2.7)

where I = ((ay,p1),...,(a1,51)) is a finite collection of indices (o, 3) € (N%)2 and
R = (ry,...,r,) are positive numbers, is a basis of open neighbourhoods at f (otherwise,
the topology would not be the coarsest possible). Then, if || f, — f|, 5 — 0 for all «, 3,
the sequence is eventually contained in every U g, and thus convergent.

¢) Since the family of semi-norms is countable, the topology of . satisfies the first
axiom of countability [FA1, Def.1.1]. Continuity is thus equivalent to sequential conti-
nuity [FA1, Thm1.6].

d) A metric on .7 (R?) is given by

1f = 9llas

p _ o—lal-1g|_1 ~INap
(f.9) > L+ [If = gllag

o,BENd

(2.8)

Checking that the metric topology is equivalent to the one of Definition 2.1 and com-
pleteness is left as an exercise (tutorials). O

Since elements of .# are in particular in L', the Fourier transform is clearly well-

defined.

Definition 2.4. For f € .#(R?) define the Fourier transform as the function p f(p)
given by

A

F0) = (F00) = g [, e S (2.9)

Proposition 2.5. The linear map . maps ./ (R%) continuously to itself. For f €
(R, a € N and p € R? we have the identities

A

9% f(p) = (—)l*lzof(p)  and 02 f(p) = ip*F(p). (2.10)

10



2.1 The Fourier Transform on L?(R%)

Proof. The first identity follows by differentiating under the integral (which is justified
since f and its derivatives are in L'). The second follows from integration by parts.
Now observe that || f]lo.0 = || flleo < (27)%2||f||;1 < co. Using the two identities, we

obtain that HfH 5 < 00, and f S

)

By Proposition 2.3, continuity is implied by showing that for all «, 5 H fo — -0

if |[fn — fll, 5 — O for all 4, 4. This follows from the same argument as finiteness of the
norms. O

Theorem 2.6 (Fourier Inversion Theorem). The Fourier transform F : & (R?) —
Z(R?) is a bijection. The inverse is continuous and given by the formula

1

(F79)) = oy [, ¢ 00)ap (2.11)

Proof. Set ¢, := ¢~%"/2 and note that ¢.(p) = e~ %2e P"/(2) (exercise).
We take the formula for “#~!” as a definition and show that it inverts .#. By
dominated convergence,

; 1 . A
7 )_25%(27?)6;/2/ . (p) f (p)dp
=tim o [ e e o) )y

Fubini o 1 / (‘Ps (p)e‘p“) () f(y)dy

a—)O (27r)d

=l onae (27)d/2 / © - f(y)dy
L=dE
T Ve

1 -
= il—I}(l](Qﬂ—)d/Q/]Rde /Qf($+\/52)dz
=f(z),

by dominated convergence and (27)~%? [o4 ¢=%*/2 = $,(0) = 1. The fact that .Z.Z ! =
1 is proved in the same way. O

Corollary 2.7 (Parseval’s identity). Let f,g € .7(R%), then

/%@(p)dp:/ f(x)g(x)da. (2.12)
Rd Rd

Proof. By Fubini and the Fourier inversion formula,

L F®awiap = [ F@)(F gapde= [ F@g)ds. (2.13)

11



2 The Fourier Transform

Theorem 2.8. There exists a unique unitary operator o on L?(R?) such that F|y =

F.

Proof. As a consequence of Parseval’s identity, |.Z f|l;2 = [|fll;2, [ € &, so if we
interpret . as an operator on L?(R%) defined on the dense domain D(.%) = .7 (R%), .F
is bounded. There thus exists a unique extension %, to the whole of L?(R?). The same
applies to .Z 1, and by continuity we have %5.%,; - Fq L%, = 1. Parseval’s identity
also extends to f,g € L?(R%) by continuity. Consequently, .% is a bijective isometry
and thus unitary (Exercise 1) O

We will not distinguish .# and %3 by the notation.

2.2 Sobolev Spaces and Tempered Distributions

Definition 2.9. The space of tempered distributions on R? is
(R = {p : S (R?) — C linear and continuous} (2.14)

with the topology induced by the coarsest topology such that ¢ — ¢(f) is continuous
for all f € #(RY) (the weak-* toplogy).

Examples 2.10. o A function g gives rise to a distribution via ¢4 (f) := [ga g(2) f(x)dx
if g € Ll (R%) and (1 + |2|?)""g(x) is bounded for some n.

loc
e Finite measures.
e Dirac distribution d,(f) = f(a).
Remarks 2.11.

e The topology of .7 is generated by the semi-norms |||, == [¢(f)l, f € S (RY).
A sequence (¢, )n converges to ¢ in ' iff o, (f) = p(f) forall f e S.

Lemma 2.12. Let T : .7 (R%) — Z(R?) be linear and continuous, then

(T'o)f) = o(TS) (2.15)
defines a linear continuous map on T' : .7 (R?) — &' (R?).
Proof. T' is clearly well-defined and linear. For continuity, it is sufficient to prove con-

tinuity in 0 € ., by linearity. There, it suffices to show that the pre-images of a
neighbourhood basis of zero are open. A neighbourhood basis is given by the sets

Urr={¢:lp(fi)l <rii=1,...,n} (2.16)

12
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where F' = (f1,..., f) is a finite collection of functions in .#(R%) and R = (r1,...,7,)
are positive numbers. Then

(T "' (Upr) = {(¢: T'¢ € Upr}
={(¢:|T'o(fi)l <ri,i=1,...,n}
={(p:leTf)l<rii=1,...,n}
= UrF,R,
with TF = (Tf1,...,Tfn). 0

Examples 2.13.
a) Fourier transform .Z. For g € .7(R?) C .#/(R?) we have

(F Ve = o) = [ D @ap = [ 11 0)an = p4(1),
(2.17)
so the action of (:#~1)" on .7’ extends the one of .# on .. We will also denote this

by (F Ve=Fp=¢.

b) Derivative: For any a € N¢ we have (0%) : .7/ (R%) — .#'(R?) linear and continuous.
In this way we can define derivatives of all tempered distributions, in particular all
L2-functions.

c¢) Multiplication by a polynomial: In this case we have (z) ¢y = @zog =: 2%py.

Definition 2.14. Let o € N%. The a-th distributional derivative on .#'(R?) is defined
as (0) 0 1= (—1)//(2).

Remark 2.15. The definition of (0%) s ensures that its action is compatible with the
usual derivative and integration by parts: For g € .7(RY) c .7/(R%)

(07)720) () = [ 9@)(~1)10g fla)da = [ (©59) (@) f@)do = womg (S (218)

For this reason we will not distinguish (9%) s+ from the usual derivative by the notation.
The distributional derivative is a local operation: Let ¢ € .’ have support in the open
set Q C R? (i.e.: supp f C Q° = o(f) = 0), then suppd®p C Q.

Also note that f(p))

(Z°)(f) = ¢ (-D)N0°F 1 f) = o (F =)0 F) = ()" F ) (). (2.19)
Definition 2.16. Let s € R. The Sobolev space of order s is the Banach space
H'(RY) = {p e (R : (1 4] )25 € L*(RY)} (2.20)

with the norm
lollge = | +1- 1220

(2.21)

L2’

13



2 The Fourier Transform

The condition (1 + | -|?)*/2¢ € L?*(R%) should be read as “f — @((1 + p?)*/2f(p))
defines a continuous linear functional on L2(RY)”. This implies existence of g € L2 _
such that (1 + |p|?)*/%g(p) € L?*(RY) and ¢ = ¢,. Thus, ¢ is represented by a function
and the norm really is

1/2
el = ([ 0+ l0)Pdp) 2.2

Remarks 2.17.
a) H* =L? and H* C H! for s > t, so H* C L? for all s > 0.
b) m € N, then p € H™ < ¢ € L? and 9%p € L? for all |a| < m (exercise).

c) H? can be considered as a Hilbert space with the scalar product
(o) = [ (142 BB, (223)

However, it is often more natural to identify (H*) not with H® by Riesz’ Theorem,
but with H~* via

(0, 0) gsmrs == ((1+ %) 7/2¢, (1 + p*)*/ %) 2 = /i(p)lﬁ(p)dp, (2.24)

which is compatible with the inclusion of L? into ..
Examples 2.18.

a) Consider the operation —i% on L%*(R%) (cf.Example 1.24). We can define it on the
following domains
Dpin = Z(R), (2.25)

and by using the distributional derivative

Dinax = {go € I2(R), —i%gp E LZ(R)} — H'(R). (2.26)

Let Pyin = (_idix)Dmin) and Ppax = (_ic%>Dmax)~
e Py is symmetric: Integration by parts.

o Phax = P, and Py is closed: ¢ € D(Pr,) < ¥ — (@, Pnin?) is a continuous

functional on L?(RY) < i%g@ € L?(R) as a distribution.

o Phax is self-adjoint: Since Ppax = P, it is enough to check that Ppax is
symmetric (cf. Corollary 1.23). But this is clear, since (compare Exercise 2).

(0, Pmaxt) = /R (p)pib(p)dp. (2.27)

14



2.2 Sobolev Spaces and Tempered Distributions

b) Let 2# = L%*(R%), and consider the operator H = —A in the distributional sense, i.e.
on D(H) = H?(R%). Then H is self adjoint, since H = .#*p?.% and the multiplication
operator by p? is self-adjoint on its maximal domain (Exercise 2). We

Definition 2.19. Let Q € R? open and s > 0. We define:

e the space of locally H*-distributions in 2

HE (Q) := {p € L' (RY) : xo € H¥(RY) for all x € C5°(Q)}; (2.28)

e the Space of H*-distributions in {2
H(Q) = {p € L}(Q) : 35 € H*(RY) with 3o = ¢}, (2.29)
with the norm
lelars oy = inf @l s ) (2.30)
e the space of H*-distributions in €2 vanishing near the boundary
Hy () := Ce(@) e, (2.31)
with the norm induced by H*(R?) on this closed subspace.
Remarks 2.20.
a) Hy(Q) C HY(Q) C HE (Q) and Hi(Q) € H¥(Q) C L2(Q).

b) The local H*-space is not a Banach space. The norm on H*({2) is the quotient norm
on H* modulo the kernel of the restriction to (.

c) All the Sobolev spaces defined here in the L2-setting can be naturally defined with
respect to LP, 1 < p < oc.

Example 2.21. Let 57 = L?((0,1)), Py = —if, D(R) = C}((0,1)) (cf. Exam-

ple 1.24c)). We have already seen that P is not essentially self-adjoint. We will now
show that
o D(?w = H&((Ov 1))7

e f € D(Fy) is continuous up to the boundary, and we have “integration by parts”,
for f,g € D(P;)

(f. Pyg) = (P f,g) —if(1)g(1) +1f(0)g(0), (2.32)

e D(P*) = HY(0,1)).

15



2 The Fourier Transform

For the first point, let g € #(R), f € D(Fy) and consider

(il g) pog) = —i / F(2) Lg(z)dz = (Pof. g), (2.33)

SO

1 £l = £z +  sup (Pofig) = [ fll= +|pf )] ,
9€7llgll2=1

(2.34)

is equivalent to the H'-norm. The closure of D(F) in this norm is H{ (0, 1), by definition.
For the second point, we first argue that D(Pg) C H{.(0,1). Let x € C5°((0,1),[0,1])
and f € D(Pg). Then xf € HY(R), since for g € ( R)

o —igz9) = (fox = iqz9) = (fs Poxg) 2.0y — ilfs (8509), (2.35)

which extends continuously to g € L?(R). Note also that the weak derivative equals
—i%xf =xFf — i((f—xx)f. Let xxk =1 on K C (0,1), then, by locality of the distri-
butional derivative, —i%x xkflx = —i% flx = Py f, and by exhausting the interval with
compact sets we find
1
J

Let K C (0,1) be a compact interval, and f,, € C'((0,1)) be a sequence such that
such that || f,, — fHLz(K)"i“ i (fa — f)\
Then for z € K (cf. Example 1.24c))

Lol @z = 1R 1P (2.36)

— 0 (e.g. convolution with a C§°-function).
L*(K)

w— Fm)

150(0) = Fn@)? <2 (1150 = F sy + [ ) (23D

so f, converges to f uniformly on K and f is continuous in the interior of (0,1). More-
over, for0<a<b<1

b d b d
| s = fa0) = fula) + [0 = fu)de, (2.38)

The integral is bounded by vb — a ‘ %( - fn)’ L2(at]) by the Cauchy-Schwarz inequal-

ity, so f satisfies the formula analogous to the fundamental theorem of calculus (even
though f is not C1).
Now let (z,)n be a sequence converging to a boundary point, say x, — 0. Then for

f € D(Fg)
|7 sy

so f(zy) is Cauchy and converges to a limit y =: f(0). The integration-by-parts formula
follows from this in the same way as (2.38).

2 Cauchy-Schwarz
<

£ ()~ flam)P = Liw)| dy. (239
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2.2 Sobolev Spaces and Tempered Distributions

It is clear that H 1(0,1) € D(FP}). For the reverse inclusion, we need to extend
f€D(P) to f € HY(R). set
e” f(0) <0
f(z) = f(z) 0<z<l1
e T (1) x> 1.
This function is piecewise (weakly) differentiable, and by the integration-by-parts for-

mula for all g € .7(R):

0

D-“Q_.

Fom = [ Ei@o@ae - [ Ewgar - [~ Ei@gwas, @10)

—00
since the boundary terms cancel. This extends continuously to g € L2, so f € H L(R).

Remark 2.22. For m € N one can define spaces W (Q2) by requiring that the weak
derivatives, defined by duality with CJ*(2) in analogy with (2.18), of f € L?(f2) be
in L?(Q). In the example above, this corresponds to defining W1((0,1)) := D(F}).
One can show that W™(Q) = H™() (with our definition) if the boundary of § is
sufficiently regular (say C™, see [AF]). If d = 1, then the boundary of a connected
open set ) consists of just finitely many points, and W (Q2) = H™(f2), as we showed in
Example 2.21.
Warning: These notations are used with variants of the definitions.

2.2.1 Embedding Theorems

Lemma 2.23 (Riemann-Lebesgue). Let Coo(R?) be the Banach space of continuous
functions with limy_,, f(z) = 0, equipped with the sup-norm. Then F : L'(RY) —
Coo(R?) defines a bounded operator.

Proof. Tt is clear that | Zf|. < (27)"%2|/f||;1, so F defines a bounded operator

L' — L. Now Z(S) C ¥ C Cs by Proposition 2.5. Then, by continuity and because
Cy is closed in L>®, Z(L') C .7 C Cx. O

Theorem 2.24 (Sobolev’s Lemma). Every element ¢ € H*(R?) for s > d/2 has a
continuous representative, i.e. there exists f € Cuoo(R?) with ¢ = f a.e.. Furthermore,
there exists a constant such that for 0 <y <1, v < s—d/2 and x,y € R%:

F@) = FW)] < Cllf el — oI, (2.41)

that is, f is Holder continuous of degree .

Proof. For ¢ € H*(R%), s > d/2, we have .Z 1y := ¢ € L', because ¢(p) = (1 +
p2)_3/2(1 +p2)3/2g5(—p) is the product of two L2-functions (the product is L' by Cauchy-
Schwarz). Then f := .Z @ € C(R?) by the Riemann-Lebesgue Lemma and f = ¢ a.e. by
Fourier inversion.
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2 The Fourier Transform

Because the exponential function is Holder-continuous (\(eim _ eipy)’ < 2177‘37 _
y|"|p|?), we have for f € .7

1
|f(z) = f(y)| = W

21
< Gy Jou e w1 )y

< Clz—y[" lpI"f @)l 10

[ =) fp)dp
Rd

We conclude as in the first case, since (1+p?)~%/>*7/2 € L? because —s+v < —d/2. [

Corollary 2.25. Every ¢ € H*(R?) for s > d/2 + k has a C*-representative.
Proof. By applying Sobolev’s Lemma to ¢ and .Z ~!(ip)*$, |a| < k, we see that ¢ has

a representative with k continuous distributional derivatives. These coincide with the
usual derivatives by dominated convergence. O

Corollary 2.26. Let Q C R? be open, then every ¢ € H"(Q) for m > d/2+ k has a
representative in Cr(€2).

Proof. Clear, since continuity is a local property. O

Recall from [FA1]:

Definition 2.27. Let X,Y be Banach spaces. An operator T' € B(X,Y) is compact if
for every bounded set B C X, T(B) is compact in Y (i.e. T'(B) is relatively compact).

Since in metric spaces compactness is the same as sequential compactness, this is
equivalent to: For every bounded sequence (x,)y in X, the sequence y,, := Tx, has a
convergent subsequence in Y.

Recall also:

Definition 2.28. Let (€2, d) be a metric space. A set F' C C(€2) is called equi-continuous
if

Vo € QVe > 030 > 0Vf € FVy with d(z,y) < d:|f(z) — f(y)| <e. (2.42)

Theorem 2.29 (Arzela-Ascoli). Let (2,d) be a compact metric space. A set F' C C(Q)
1s relatively compact iff F' is bounded and equi-continuous.

[FA1, Thm.1.40]
This gives the following:

Corollary 2.30. Let Q C R? be compact and v > 0. The inclusion of C*(Q) — C(Q)
18 a compact operator.

18



2.2 Sobolev Spaces and Tempered Distributions

Proof. The norm on C%7(Q) is given by
(@) )]

2.43
|z —y[" (2:43)

[fllcon = [[flloe + sup_
THAYEN

Thus, bounded sets in C%7(Q2) are mapped to bounded sets in C () and we only need
to show that these are equi-continuous. We have for all z,y € Q

[f (@) = fW) < [ fllcor |z =yl (2.44)
so for € > 0, (2.42) is satisfied with § = (¢/ | f[|co,)'/7, and this proves the claim. O
Corollary 2.31. Let Q C R be open with Q compact and s > d/2. Then the embedding
H*(Q) -C(Q)
18 a compact operator.

Proof. By definition, H*(f) is the range of the restriction operator Rq : H*(RY) —
H*(Q), ¢ — ¢|g. Using the Hilbert space structure on H®, we can write H%(RY) =
ker(Rq) @ ker(Rgq)® as an orthogonal sum, and Rgq,, RS 1s an isometry to Hs(Q). Tt is
thus sufficient to prove that that Rq is a compact operator on the given spaces.

Let Q D Q, then by Sobolev’s Lemma Rg maps bounded sets in H*® (R4 to bounded
sets € C%7(Q). Thus Rg = RoRg maps bounded sets in H*(R?) to bounded sets in
C7(Q). The claim then

follows from Corollary 2.30. O

All of these statements have generalisations to s < d/2, where spaces of continuous
functions are replaced by LP-spaces, p > 2. We will only give the important generalisa-
tion of Corollary 2.31 to the L?-case.

Theorem 2.32 (Rellich’s Theorem). Let © C RY be open with Q compact and s > 0.
Then the embedding

H*(Q) — L*(Q)

18 a compact operator.

Proof. As in Corollary 2.31 it is sufficient to prove that the restriction R : H*(RY) —
L%*(R%) is compact. We will show that R(B) is relatively compact in L2(2) for the unit
ball B ¢ H™(R?) by a three-c-argument.

Let (¢n)n be a sequence in B. Define @, by @ni(p) = @n(p) for [p| < k and
@nx(p) = 0 otherwise. Then

| RPn.ie — RSOnHiQ(Q) < | @nk — QOTLH%Q(]Rd) < /p|>k 1Gn(p)2dp < (1 + K2)™%/2 < ¢,
(2.45)
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2 The Fourier Transform

for large enough k. Now gﬁ/n\k has compact support, so

1/2
H@n,k H(@+1)/2(Rd) < H‘ﬁn,kHL2(Rd) </ |<k(1 + k2)(d+1)/2> < C}. (2.46)
P>

Thus, by Corollary 2.31, R@,, » has a convergent subsequence in C(Q) C L?(Q) as n — oo
(denoted by the same symbols). Then

[1Bon — Romll 120y < 26 + | BPnk — BPmkll p2(q) - (2.47)
This is less than 3¢ for m,n > Ny, so Ry, is Cauchy. O

Remark 2.33. As remarked before H™(2) is the same as the space W™? of weakly-
differentiable functions if €2 is sufficiently regular. Then the compactness results of
Corollary 2.31 and Theorem 2.32 transfer to these space under such a regularity condi-
tion.
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3 Self-Adjoint Operators and the Spectral
Theorem

3.1 Criteria for Self-Adjointness

Theorem 3.1. Let A, D(A) be symmetric. The following are equivalent
1) A= A*
2) A is closed and ker(A* +1i) = ker(A* —1i) = {0}
3) ran(A +1i) =ran(A —i) = 7.
Proof. 1) = 2): A= A* is closed by Theorem 1.19. If 0 # ¢ € ker(A* +1), then (e.g.
for “—I_”)
i{p, ) = (A%, ) = (p, A"p) = —(0, ¥) (3.1)

= ¢ =0.

2) = 3) First note ker(A* +1i) = ran(A —i)*:

p €ker(A*+1i) &V € D(A) : (A" +1)p, ) =0 VY € D(A)(p, (A—1)y) =0.

Consequently, ker(A*+1i) = {0} = ran(A —i) = .. Now let n € 7 with (A—i)¢, —
7. We have the inequality for all ¢ € D(A):

(A = D)e)1* = (A=), (A= D)) = [|AQ]* + 911+ (9, Ap) — (Ap,4)) > \w(\z )

3.2

so (n)n is Cauchy, ¢, — ¢. Since A is closed, ¢ € D(A) and Ap = n + ip, and
n € ran(A — i).

3) = 1) Let ¢ € D(A*) and prove that ¢ € D(A). First, there is ¢ € D(A) s.th.
(A* —1i)p = (A —1)y. Since A C A*, we thus have (A* —1i)(¢p —¢) = 0. Then for every
n € D(A):

0 = {m, (A" — i)( — 1)) = (A + D), (9 — ), (3.3)

and thus ¢ = ¢ € D(A) because ran(A +1) = J. O
From the proof we obtain directly:

Corollary 3.2. Let A, D(A) be symmetric. The following are equivalent

1) A is essentially self-adjoint

2) ker(A* +1) = ker(A* — i) = {0}
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3 Self-Adjoint Operators and the Spectral Theorem

3) ran(A +1i) =ran(A —i) = .

Proof. If A is essentially self-adjoint, then A* = A is self-adjoint, so 1) = 2).

2) = 3) since ran(A F1i) = ker(A* F1).

To see that 3) = 1), (¢n), in D(A) be a sequence such that (A —1i)y, — (A" —1)ep.
The bound(3.2) implies that 1, is Cauchy, and thus converges to some ¢. Then (A —
i)y — (A* —1i)¢, and we conclude as in the proof of the Theorem above that ¢ = ¢ and
A= A*. O

We can also note the following property of the spectrum:

Corollary 3.3. Let A, D(A) be symmetric. Then A is self-adjoint iff c(A) C R, and in
that case
[R-(A)|| <Tm(z)~". (3.4)

Proof. By Theorem 3.1, A is self-adjoint iff {£i} C p(A). Now z = pu+ i\ € p(A)
< 1€ p((A—p)/N), which gives the statement on the spectrum.

For the bound on the resolvent it is sufficient to consider z = i\ (by passing to A — p),
and we have by the calculation (3.2) for ¢ € D(A)

1A+ M)l = | Apl® + X (|| (3.5)
Applying this to ¢ = (A +i\) "1 yields

Rol? > 22| a+ iy

(3.6)

which proves the claim. O

These results give rise to a powerful tool to construct new self-adjoint operators out
of known examples.

Definition 3.4. Let A, D(A), B, D(B) be densely defined. B is bounded relative to A,
for short A-bounded, iff D(A) C D(B) and there exist constants a,b > 0 such that for
all Y € D(A)

1Byl < a|[Ag[l + b4l (3.7)

The relative bound of B with respect to A is then the infimum of all a > 0 such that
the inequality holds for some b > 0.

Theorem 3.5 (Kato-Rellich). Let A, D(A) be self-adjoint and B, D(B) symmetric. If
B is A-bounded with relative bound a < 1, then A + B is self-adjoint on D(A) and
essentially self-adjoint on any core of A.

Proof. Tt is sufficient to show that ran(A + B — i\) = ¢ for some A\ > 0. Using the
relative bound and Corollary 3.3 we obtain

b
IBEA(A)]] < allARA(A)]| + ]| Bir(A)] < a + <. (3.8)
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If a+b/X < 1, the bounded operator 1+ BR;)(A) is thus invertible by a Neumann series
([FA1, Thm.5.18]). Since A — Ai is onto, then so is

(14 BRiy(A)) (A— M) =A+ B — Al (3.9)

If we work instead of D(A) on any core C(A) of A, then ran(A — Ai)|¢(4) is dense, and
by continuity and bijectivity of 1 + BR;\(A) so is the range of (A + B — Ai) [¢a). U

Corollary 3.6 (Second Resolvent Formula). Let A, D(A) be self-adjoint and B, D(B)
symmetric and A-bounded with relative bound a < 1. Denote by A + B the self-adjoint
operator on D(A) given by the Kato-Rellich Theorem. Then for every z € p(A+B)Np(A)
we have

R.(A+ B) — R.(A) = —R.(A)BR.(A+ B) = —R.(A+ B)BR.(A). (3.10)

Proof. Since A + B is self-adjoint, we have C\ R C p(A). In (3.9) we showed that for
|A| large enough
Rix(A+ B) =Ry Y (-1)"(BRy)"

n=0
)

= Ry — RyiBRy Y (—1)"(BRx)" = Ry — R\iBRiz(A+ B).
n=0
This establishes the desired equality on two semi-infinite strips on the imaginary axis. By
analytic continuation it must then hold for all z € C\ R, and then also for all remaining
points in p(A) N p(A + B), which are in the closure of C \ R.
The second equality follows from the same reasoning applied to A=A+ B—B. [

Example 3.7 (Schrodinger operators). The Schrodinger equation is the partial differ-
ential equation

i0wp(t,x) = —AY(t,x) + V(z)Y(t, x), (3.11)

where V' is a real function (we denote the multiplication operator by the same symbol).
An important example is V(z) = —ﬁ in d = 3 dimensions. It corresponds to a
model of an electron in R? interacting with a nucleus (fixed at # = 0) via electrostatic
interactions — a model for the hydrogen atom.

The function (¢, -) is called the wave-function and accounts for the sate of the electron
at time t. The square modulus [(t,-)|? is the probability distribution of the position
of the electron (Born’s rule). It is thus natural to consider the Schrodinger equation on

L?(R%), where it takes the abstract form

10pp(t) = Hy(t), (3.12)

where H, D(H) is an unbounded operator. Since the total probability |[1(t)|;. should
be equal to one for all times, we are interested in solutions that preserve this norm. This
implies that H must be symmetric since

& 19D = 2Re((4(t), —iHY)) = —20m((y, HY)). (3.13)
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3 Self-Adjoint Operators and the Spectral Theorem

In particular, if A € o,(H) is a real eigenvalue with eigenfunction ¢, then ¥(t) = e "y
is a periodic solution to the Schrédinger equation. The probability distribution |i|? for
this solution does not change, so it is interpreted as a stationary state.

We will later see that the equation has a good existence theory if and only if H is
self-adjoint. With the tools we have now, we can prove this self-adjointness for many
cases, e.g. d = 3 and V € L*(R3) + L>®(R?). Since the electrostatic potential 1/|x|
is square-integrable for z < 1 and bounded for x > 1, this applies to the Hamiltonian
operator for the Hydrogen atom. We claim that V' is —A-bounded with relative bound

zero, which implies that
H=—-A+V(x) (3.14)

is self-adjoint on D(H) = D(—A) = H?*(R?). We have H*(R?) c L>®(R?) for s > 3/2
(by Sobolev’s Lemma 2.24), and, for s < 2 and £ > 0

p|* < {ES/(H) e (3.15)
Pl = .
ep? p| >V,
S0 |p|s < 6]92 +€s/(s—2).
Consequently,
[Pl e < ell=Allp2 + Ce ¥l L2 - (3.16)
Now decompose V =V + Vi with V,, € LP(R3), then
IVl < Vallge 191 oo + Vool Lo (191l 2
<elVallpz =A% L2 + (Vall 2 Cc + [Vooll o) 191l 2 (3.17)

so V is —A-bounded with relative bound zero.

From the proof of the Kato-Rellich Theorem we also see that A € p(H) for A << 0
sufficiently small (exercise). This means that H has no eigenvalues smaller than some
Amin < 0. This means that the electron cannot have arbitrarily small energy, even though
the interaction can be very negative. This implies stability of the Hydrogen atom, which
was a puzzle in the early 20th century.

3.1.1 Quadratic Forms

Definition 3.8. A form on a Hilbert space 5 with form-domain 2 C ¢ is a sesquilin-
ear form
q: 2x2—C. (3.18)

e ¢ is densely defined if 2 is dense in J7.

e ¢ is symmetric if q(v, p) = q(p, )

e g is bounded from below if ¢ is symmetric and there exists M > 0 such that

Vi€ 2 q(,) > —M ¥, (3.19)

and non-negative if M = 0.
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3.1 Criteria for Self-Adjointness

e ¢ is closed if it is bounded from below and 2 with the scalar product

is a Hilbert space.

C C S that
5 <‘7 >Q)7 then (j is

® g is closable if there exists a closed form ¢ with domain :@v,
restricts to ¢. If 2 is the completion of the pre-Hilbert space (
called the closure of ¢ and denoted by g.

2
2

Remarks 3.9.

a) By polarisation any symmetric form is uniquely determined by the associated quadratic

form ¢ — q(¢, ), i.e.

q(e,¥) = 3 (ale+ ¥, 0+ ¥) — q(o — ¥, 0 — )+ (ale + i, o + i) — Q(so—i(?,b790>—i¢))-
3.21

b) A form is symmetric iff (¢, ) is real.
Example 3.10.

a) Let A, D(A) be a symmetric operator, then

qa(Y, @) == (AP, p) (3.22)

defines a form on D(A). We call A bounded from below if this form is bounded from
below.

b) Let 2 = Cy(R) C L*(R), then
a(f.9) = f(0)g(0) (3.23)

is a densely defined form with domain 2. This form is non-negative since ¢(f, f) =
[£(0)* > 0.

Proposition 3.11. Let A, D(A) be symmetric and bounded from below. Then the
associated form qa is closable.

Proof. Let 24 be the completion of D(A) w.r.t. (-,-)2,. We need to show that this
can be identified with a subspace of 7. The inclusion ¢ : D(A) — J¢ extends to a
continuous map since D(A) is dense in 24. We need to show that this extension is one-
to-one. Assume that 1) =0, ¥ € 24 and take a sequence (¢, )y in D(A) converging to
¥ in Z4. Then (w),)ny = (¢n)N converges to zero in S, and

1l%, = lim 1im (A, dm)e + (M + 1), m).) =0, (3.24)

n—oo m—r

so ¢ = 0. This ¢ is injective and 124 C 7 is the domain of the closure

gA(“vbv [’SO) = <11Z)7 90>QA - (M + 1)<“7[}7 Lgp>4f (325)
O
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3 Self-Adjoint Operators and the Spectral Theorem

For A, D(A) symmetric and bounded from below we call the domain of gz the form-
domain of A, and denote it by Q(A).

Example 3.12. Let ¢ be the form of Example 3.10 b). This form is neither closed nor
closable: We can find a sequence (f,,) € Co(R) with f,(0) = ¢(fn, fn) =1, fr — 0 in
L%(R). Then (f,)y is Cauchy in the norm ||-| 5, since

||fn - fm”f@ = Q(fn — fm> fn — fm) =+ ||fn - fm”iy’ . (3'26)

=0

Consequently the inclusion ¢ : Co(R) — L?(R) does not extend to an injective map
from the completion 2 to L?(R). The Proposition thus implies that this form is not
associated with an operator.

Theorem 3.13 (Riesz-Friedrichs). Let q be a densely defined, bounded from below, and
closed form with domain 2. Then there exists a unique self-adjoint operator A, D(A) C
2 on H such that ¢ = qa4.

Proof. Without loss of generality ¢ = (-,-) 9. Let

D:={(y,p) € 2xH:¥ne 2:q(¥,n) = (p,mn} (3.27)

and

D:={ype2:3pecH:(,p) eI} (3.28)

We start by showing that I" is the graph of an operator A with dense domain D := D(A).

Clearly I' is a linear subspace of 2 x . To see that it is a graph, we need to check
that for any ¢ € 2 there exists at most one ¢ € S such that (1, ¢) € I'. But if (¢, )
and (¢, ¢) are both in I', then also (0, — @), and (¢ — @, 1) » = 0 for all n € 2. Since
2 is dense, this implies ¢ = @.

We have thus shown that I' is the graph of an operator A with domain D. This
operator is onto, for if ¢ € J# is arbitrary, then n — (¢, 7)., is a continuous linear
functional on 2, and by Riesz’ Theorem there is ¢ € 2 s.th. (p,n)» = (¥,n) 9, ie.
(,p) €T

To show that D is dense, it is sufficient to prove that D is dense in 2. Take n € D(A)+
(w.r.t. 2). By surjectivity, there is ) € D s.th. Ay =n. Then

0= (¥, m) e =1l (3.29)

son =0 and D is dense.
Clearly, A is symmetric, as for ¢, n € D(A)

(AY,m)e = (Y, 2 = (n,10) 2 = (An, V) e = (¥, An) . (3.30)

We also know that A is injective, since (A, V) » = H?b”?g, and surjective —so 0 € p(A).
Since the resolvent set is open (see Theorem 1.14), there exists A € Rs.th. {£i\} C p(A4),
so A is self-adjoint by Theorem 3.1.
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By construction, ¢ is a closed extension of g4, and since D(A) is dense in (2, ||-|| ) it
is equal to the closure qa.

It remains to prove uniqueness, so let B, D(B) satisfy the required properties. By the
definition of I'; A extends B, but since both are self-adjoint this implies A = B. O

Remark 3.14. We see that self-adjoint and bounded from below operators are in one-to
one correspondence with closed and bounded-from-below forms.

However, a form may be symmetric but have no closed extensions. A symmetric
operator is automatically closable, but may have no self-adjoint extensions.

Corollary 3.15 (The Friedrichs Extension). Let A, D(A) be symmetric and bounded
from below and let Q(A) be its form-domain (that exists by Proposition 3.11). Then
there exists a unique self-adjoint extension Ap of A such that

D(A) C D(Ar) C Q(A). (3.31)
Moreover, ga, = qa.

Example 3.16 (The Dirichlet Laplacian). Let Q C R? be open, and define the quadratic
form

alf. )= [ IVf@)ds (3.32)

on 2 = H}(Q). For f € C§°(Q) we have

a(f.0) = = [ T@As(a)da. (3.33)

Hence ¢ is the closure of the quadratic form of (—A, C§°(Q2)).

This form is clearly symmetric and non-negative, so there is a unique self-adjoint
extension of (—A, C§°(Q2)) with D(—A) C H}(Q2). This extension is called the Dirichlet
Laplacian, or the Laplacian with Dirichlet boundary conditions.

If Q is compact, then this operator has compact resolvent: We have that R,(—A) —
H}(Q) € D(—A) is bounded, and the embedding ¢ : H}(Q) — L*(Q) is compact, by
Rellich’s Theorem. Thus R,(—A) = tR,(—A) is compact. By Exercise T09, we thus
have that o(—A) = 0,(—A) is a discrete subset of R. Since ¢ > 0, o,(—A) C Ry, and
since —A is not bounded, o,(—A) contains a sequence tending to infinity.

Formulated as a result in PDEs, this proves that if Q is compact, the equation

{(—A+)\)f:g in

f=0 on 0f) (3:34)

with g € L?(2) has a unique solution f = R_y(—A)g in H!(Q2), except for A in some
discrete set, the spectrum of —A.

If the boundary of  is sufficiently regular (say C?) then D(—A) = H}(Q) N H3(Q).
In this case the solution f above is an element of H?(S2).
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3 Self-Adjoint Operators and the Spectral Theorem

Example 3.17 (Elliptic operators with rough coefficients). We can go further and con-
sider the form

o(f.f) = [ al@)Vi)Pde (3.35)

with a € L>(Q), a(z) > v > 0, on C§°. This form is closable (since |||, is equivalent
to the norm of H'(Q)), so by the Riesz-Friedrichs Theorem it is associated to a non-
negative self-adjoint operator with domain contained in HE (). However, its domain
can be very complicated, as Y%, d.a(z)d% is not necessarily defined from H2(2) (or
C?(2)) to L2(R), if a is not differentiable.

Example 3.18 (Robin boundary conditions on R, ). Let # = L?(R.) and consider
the operator Ag := —A on

Dy :={f € H*(Ry) : cos(n0) f(0) — sin(70) (L £)(0) = 0} (3.36)

for some 6 € [0,1) (the boundary condition makes sense by Sobolev’s Lemma). Note
that 6 = 0 corresponds to the Dirichlet-condition f(0) = 0 and § = 1/2 to the Neumann
condition (% £)(0) = 0. Through integration by parts, we can express the quadratic

form as

= —IFOF or
qa,(f, f) :/0 |%f(x)|2dx_ tan(70) for 6 ¢ {0,1/2}

0 for § € {0,1/2}.

(3.37)

The operator A is thus symmetric and bounded from below. There is thus a self-adjoint
extension of Ay for all 6. Its domain is contained in the domain of g4,. This is

1
o%_{ﬂ(ﬂ\m for  # 0

1 (3.38)
Hy(Ry) for 6 = 0.

We observe that the difference between the operators Ay, which originally lies in the
boundary conditions, is reflected in different ways on the form-level. In particular for
the Neumann case § = 1/2 it is not evident how 6 enters at all!

Theorem 3.19 (The KLMN Theorem). Let A, D(A) be a self-adjoint operator and
bounded from below. Let q be a densely symmetric form on 2 D Q(A) and suppose there
exist b >0 and 0 < a < 1 such that for all p € D(A)

la(4h, )| < aqa(, ) +b )% - (3:39)
Then there exists a unique self-adjoint operator B, D(B) with Q(B) = Q(A) and
4B =4qA tq. (3.40)

Proof. We will show that g4 + ¢ has a closed extension to Q(A), the result then follows
from the Riesz-Friedrichs Theorem.
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Without loss of generality A is positive. Define the form 8 = ¢4 + ¢ with domain
Q(A). B is clearly symmetric. We have, using the bound in the hypothesis,

B, ) > (1 —a)ga(¥,v) — b5 > —bllv|?, (3.41)

so [ is bounded from below by —b. Furtheremore

B, ) + 0+ 1) []* < aga(y, ) + (20 +1) [0l5 < 26+ 1) |9, (342)

and, by (3.41),

1
160 = aa(,8) + 913 < —— (B@.) + G+ D IWI),  (3.43)

so the norms induced by g4 and (3 are equivalent. Hence Q(A) with the norm induced
by B is complete and § is closed. By the Riesz-Friedrichs Theorem there thus exists a
unique self-adjoint operator B, D(B) C Q(A) with 8 = ¢p. O

Example 3.20. Let # = L?(R) and define a quadratic form on H?(R) by

[1ds2an+ 17O (344

i.e. the sum of the form of —A and the form from example (3.10) b). This is well defined
because H2(R) — C(R) by Sobolev’s Lemma. It satisfies the hypothesis of the KLMN
theorem for the same reason (and interpolation, as in Example 3.7). Consequently, there
is an associated self-adjoint and bounded below operator, even though part of the from
is not associated with an operator.

3.1.2 Classification of Self-Adjoint Extensions

We now turn to the Classification of self-adjoint extensions of a symmetric operator A,
D(A). From Theorem 3.1 we already know that the spaces

ker(A* Fi) = ran(A i)+ (3.45)
play an important role.
Definition 3.21. Let A, D(A) be symmetric. We call
Ky = ker(A* F1i) (3.46)

the defect-spaces of A, and
N:t = dim K:t (347)

the defect indices.

We know that A is essentially self-adjoint iff Ny = N_ = 0. We will now show that
A has self-adjoint extensions iff K, and K_ are isomorphic, so essentially if N, = N_.
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3 Self-Adjoint Operators and the Spectral Theorem

Definition 3.22. Let A, D(A) be symmetric. We call
Cy :ran(A +1i) — ran(A — i)
Cp:=(A-i)(A+i)~*
the Cayley transform of A.
Note that C'4 is not necessarily densely defined.

Lemma 3.23. For any symmetric A, D(A), the Cayley transform is isometric and onto.
Proof. We have for all 1) € D(A)

1A +D9l” = [AY)* + [l]* = I(A = Dy |1* (3.48)

Thus, for ¢ = (A + 1)y € ran(A + 1), we have Cyp = (A — 1)1, so Cy is onto, and
[Capll = [[(A =Dl = [[(A+ Dl = llell, (3.49)
so (4 is isometric. ]

Proposition 3.24. A symmetric operator A, D(A) is self-adjoint if and only if Ca is
unitary.
Proof. If A is self-adjoint, then C4 is a surjective isometry from ran(A + i) = 2 to
ran(A — i) = 2 and thus unitary.

If Cy4 is unitary, then in particular ran(A +1) = %, and A is self-adjoint. O

Lemma 3.25. If A is a symmetric extension of A then C; is an isometric extension of
Ca. Conversely, for any isometric extension C of Ca there is a symmetric extension A

of A.
Proof. Let A C~/~l. Then ran(A 4 i) C ran(A +i). Moreover, for ¢ = (A + i),
Y € D(A) C D(A)

Cap=(A-D)(A+) o= (A-i)p = (A~ i)y = Cap, (3.50)
so C; extends C4.

For the converse, let C' : Ly — L_ be an isometry with ran(A +i) € Li. We claim
that

A=i(C+1)(C—-1)"! (3.51)
D(A) =ran(C — 1) (3.52)

is a symmetric extension of A. First, we show that this is well-defined by proving that
C — 1 is one-to-one. Assume that Cp = v, then for ¢ € D(A):

=21y, 0) = (Y, (A —1) = (A+1) p)
= (¢, (Ca—1)(A+1)p)
= (¥, (C —1)(A+1i)p)
= (Cy, C(A+1)p) — (¥, (A+1)p)
o
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This implies ) = 0 as D(A) is dense.
This calculation shows that for ¢ € D(A)

e =3(C—1)(A+i)e. (3.53)

Using this, we see that A extends A, since

(@}

Ap = LA(C—1)(A+i)p = —L(C+1)(A+1)p “E7 —L(Ca+1)(A+i)p = Ap. (3.54)

To check symmetry of A, consider ¢ = (C' — 1)) € D(A), and compute
(i, Ag) = i((C = 1), (C + 1)) "= i ((C, ¥) — (§, Cw) ) = 2Im((w, CY),  (3.55)

which is real, and by polarisation A4 is symmetric. O

Remark 3.26. Note that C4 = C, since if @, = (A + 1)1, is convergent, the so is ¥,
(see also Theorem 3.1) and thus (A+1i)Y, — (A+1i)1. Consequently C'y maps ran(A+1)
isometrically to ran(A + i), and since the isometric extension of C4 is unique it must
equal C5.

Theorem 3.27. Let A, D(A) be symmetric, then there is a one-to-one correspondence
between unitary maps from Ky to K_ and self-adjoint extensions of A.

Proof. Let U : K4 — K_ be unitary. Then we define
C: M =ran(A+1) @K, —ran(A —1) ® K_ (3.56)

by (¢,k) — (Cqzp,Uk) (where Cy is extended to the closure by continuity, where it
equals C; as remarked above). Since the sum is orthogonal this defines a unitary ex-
tension of Cy4, and by Lemma 3.25 a symmetric extension of A. This is self-adjoint by
Proposition 3.24.

For the converse, let B be a self-adjoint extension of A. Then Cp is a unitary extension
of C4 by Lemma 3.25 and Proposition 3.24. Thus Cp|k, is a surjective isometry to its
range. Since Cp is isometric and extends C4, ran Cp|x + C K_, and since Cp is onto
we must have equality. We thus have a surjective isometry Cp : K4 — K_, and this is
unitary by Exercise 01. 0

Corollary 3.28. A symmetric operator A, D(A) with finite deficiency indices has
self-adjoint extensions if and only if N. = N_. The self-adjoint extensions are then

parametrised by the elements of U(Ky, K_) 2 U(N). The extension Ay corresponding
toU € U(K4,K_) given by

D(Ay) = D(A) @span{Up; — @y oy € Ky} CD(A) o Ky & K-
(3.57)

Av(W +Upy —py) = AP +i(Ups + ¢4). (3.58)
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3 Self-Adjoint Operators and the Spectral Theorem

Proof. Clearly there exist unitary maps between the finite dimensional spaces K.y iff
their dimensions are equal. By Lemma 3.25 the domain of the extension associated with
U is

D(Ay) =ran(Cy — 1) =ran(Cy — 1) @ ran(U — 1). (3.59)
Now ran(U — 1) = {Ups — 4 : ¢4 € K.} and ran(C4 — 1) = D(A). The action of Ay
on ran(U — 1) is given by

Ay(Upy —¢1) =i(Cu + 1)(Cu = 1) (Ugpy — 1) =i(Up4 + 94). (3.60)
O
Examples 3.29.

a) Let Py = —i% with D(P;) = CY(Ry) € L3*(RT). Py is symmetric, and we have
D(P7) = H(Ry). To calculate Ky = ker(P; F1), consider the differential equations

—id f(2) = £if(z), x> 0. (3.61)

Their unique solutions are f(x) = f(0)e™®, which is an element of L?(R,) only for
one of the possible signs. To relate this to P}, use Sobolev’s Lemma to see that f(0) is
well-defined, and since also P} f = +if, f € K4 implies that f € H*(R;) C C'(R4).
We deduce that f € K is a classical solution to the differential equation, and thus
Ny =1, N_ = 0. There are no self-adjoint extensions of P.

b) Let s = L?((0,1)), D(Py) = C3((0,1)), Py = —i<L (see Example 1.24 c), 2.21). We
showed that D(Pg) = H'((0,1)), and we have the identity

(. Pyg) — (Bi f.9) =i (T(D)g(1) - 7(0)g(0)) (3.62)
We will now classify all self-adjoint extensions of Py in terms of boundary conditions,
first by elementary methods and then by applying Theorem 3.27.

Let Py C A C Fy be a self-adjoint extension of Fy. Symmetry implies that for all
f € D(A) we have |f(0)]? = |f(1)|?, so there exists a € St s.th. f(0) = af(1). Hence

D(A) c {f € H'(0,1) : f(0) = af(1)} =: D(P,). (3.63)

We will now prove that P, = Fj|p(p,) is self-adjoint for all a € S 1 and thus A = P,
(for some a).

Take g € D(P,) C D(F}), then for every f € D(P,)

(g, P2y = (Pgg, 1) + F(1) (9(1) — ag(0)) (3.64)

The right hand side defines a continuous linear functional of f € L2((0,1)) iff g(1) —

ag(0) = 0, so we must have we also have g(0) = @ 'g(1) = ag(1) and thus g € D(P,).

The operators P, for a € S are thus all self-adjoint extensions of P,.
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3.2 The Spectral Theorem

Now we will use the formalism of Theorem 3.27. We must first determine K. If
f € H'(0,1) is a solution of —i%f = +if, then the weak derivative of f is continuous,
so f is C1. Since the unique solutions to the differential equation (with f(0) = 1) are
eT® and normalising in L? we set

- V2o,
fi(x) = \/ﬁe , fo(z) = ——=—=¢". (3.65)

We thus have K1 = span(fy) and Ny = N_ = 1. The unitary maps K, — K_ are
of course parametrised by U, f+ =~vf-, 7€ S 1 Let A, be the self-adjoint extension
associated to U,. By (3.52),

D(A,) =ran(Ca, — 1) = ran(Cx — 1) @ span (Uy f4 — f+)
= H;(0,1) @span (vf- — fy).
Consequently, f € D(A,) satisfies
fO) _y—e _

Q) e -1

Hence A, C P,, and by self-adjointness we have equality.

(e sh. (3.66)

Corollary 3.30 (Von Neumann’s Theorem). Let J be a conjugation on S, i.e. an
anti-linear isometry with J*> = 1. If A, D(A) is a densely defined symmetric operator
that commutes with J, then A has at least one self-adjoint extension.

Proof. Note that commutation requires that JD(A) C D(A) as well as AJ = JA. By
J = J~1 we then have JD(A) = D(A). Now let 1y € K. Then for all ¢ € D(A4),

0= <<A* . 1)1/}, S0> polarizsation <J”L/}, J(A T 1)g0> J anti:—linear <JZD7 (A — 1)J(,0> (367)
Since J : D(A) — D(A) is onto, this implies that J¢ € K_ = ran(A —i)*. Since J? =1
we obtain JK; = K_, and the map v — (Jt,+) is a linear, surjective isometry from
K, to K’ . Thus, K is isomorphic to K’ and then also K_, as Hilbert spaces. Hence,
there exist unitary operators K, — K_, and by Theorem 3.27 self-adjoint extensions of
A. O

3.2 The Spectral Theorem

We will start by discussing different ways of generalising the spectral theorem in finite
dimensions and prove the equivalence of these generalisations. We will then prove the
spectral theorem by proving one of the variants in Section 3.2.2.

The finite-dimensional spectral theorem can be formulated as:

Theorem. Let 7 be a finite-dimensional complex Hilbert space of dimension n and
A A — F be a self-adjoint linear map. There exists a unitary map U : 7 — C"
such that UAU™ is a diagonal matrix.
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3 Self-Adjoint Operators and the Spectral Theorem

This can be reformulated in a way that is more amenable to generalisation as follows:
We can think of an element of Ci™(#) as a function from the finite set f : {1,...,n} —
C. The scalar product is then given by the standard form (f,g) = 37 f(5)g(4)-
The sum is the integral with respect to the counting measure {, so we can identify
C" = L*({1,...,n},¢). A diagonal matrix D = diag(A1,...,\,) then corresponds to
the multiplication operator Df = (j +— \; f(4)).

We thus have the equivalent formulation

Theorem. Let 57 be a finite-dimensional complex Hilbert space of dimension n and
A I — I be a self-adjoint linear map. There exists a unitary map U : 5 —
L2({1,...,n},¢) and a function X : {1,...,n} — R such that UAU* equals the operator
of multiplication by A.

Here it is more clear where we can modify the statement to accommodate more general
cases by allowing for more general L2-spaces. Consider the example of the Laplacian
of # = L*(RY), H = —A, D(H) = H?(R). In this case, there exists a unitary map
U=.7,U:# — L*(RY) such that .Z "' H.Z is multiplication by the function p s p?.
Hence, a modification of the theorem holds also for the unbounded operator H that has
no eigenvalues.

Formulating the statement in this way, we immediately obtain the ability to define
arbitrary functions of A, by composition with the function A:

Corollary. Let 7 be a finite-dimensional complex Hilbert space of dimension n and
A A — A be a self-adjoint linear map. Let A be the algebra of functions from o(A)
to C. There exists a unique map

d: A— B(X) (3.68)
satisfying

i) ® is a homomorphism of algebras,

ii) ®(f) = o(f)",
iii) ®(1) =1, and ®(z — z) = A.

Existence of @ is clear, since ®(f) = U*(f o A\)U satisfies all the properties (note
that o(A) = ran(\), so the composition makes sense exactly for functions f defined
on o(A)). Uniqueness follows from the fact that the polynomial functions z — 2", r =
0,...,]0(A)|—1 form a basis of the space of all functions on o(A), and by multiplicativity
we must have ®(z") = A".

The map @ is called the functional calculus, and we write ®(f) =: f(A). Note that
for an arbitrary linear map on . we can only define f(A) if f is analytic near o(A), by
power series.

On the other hand, the existence of a functional calculus implies that A is equivalent
to multiplication operator, as we will now show.

34



3.2 The Spectral Theorem

Consider the linear map f — (v, ®(f)v). By duality, there is an element m, € C7(4)

such that (v, ®(f)v) = Yseq(a) mu(a)f(a). By i), m, is real, and since for any non-
negative f = g2, (v, ®(f)v)» = || ®(g)v|*> > 0, m, is non-negative. We can thus think
of m, as a measure.

Let v € 52 be any vector and define the cyclic subspace generated by v as

) = span{®(f)v: f:0(A) — C}. (3.69)

The vector v is called a cyclic vector (for A) if 74, = . Then the map f — ®(f)v
induces an isomorphism from L?(c(A), m,) to %, since it is onto by definition and

<(I)(g>'l), (p(f)v> = <’U,(I)(§)q)(f)’l}> = <U7 (D(gf)"l)> - Z m’u(a)g(a)f(a) = <g7 f)LQ(U(A),mv)a
aco(A)
(3.70)

so in particular it is isometric.
If we denote this unitary map by U,, then

(U AU, f) () = (U0( = 2)(f)o)(2) = (U38(x = af(2))0)(@) = ef(z),  (3.71)

so U; AU, acts as multiplication by = € o(A). Since JZ is finite dimensional, there are
finitely many w1, ..., v, such that

H =P A, (3.72)
j=1
the map
k
U =@U; : A — L* (0(A) x {1,...,k},my, @+ @ may,) (3.73)

j=1
is unitary, and U* AU acts as multiplication with z € 0(A). We see that A is equivalent
to a multiplication operator if and only if A has a functional calculus. Note also that
depending on the starting point we find different representations of A as a multiplication
operator on different spaces, so this is not unique.
There is a different way to formulate the spectral theorem:

Theorem. Let 7 be a finite-dimensional complex Hilbert space and A : 77 — S be
a self-adjoint linear map. Then there exists an orthonormal basis of # consisting of
eigenvectors of A.

Of course, an operator on an infinite dimensional space may not have eigenvectors at
all, so this will not generalise as such. More abstractly, we can forget about the eigen-
vectors and just consider the corresponding subspaces, or their orthogonal projections.
We have the following properties:

e For every Borel subset B C R, there exists an orthogonal projection P(B) on 7
(: ZQEBQJ(A) Pa)'
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3 Self-Adjoint Operators and the Spectral Theorem

e If By, By C R are disjoint, then P(B;) 4+ P(B2) = P(B1 U By),
e PR)=1

So we can think of the family (Pp)pecs(r) as a measure on R (o-additivity is easy to
check), taking values in the orthogonal projections on J# — a projection-valued-measure
(PVM). This PVM is called the spectral measure of A. For all v € 7, B — (v, P(B)v)
defines an actual measure . The operator A then has the representation

(v, Av) = Z (v,aPuv) = /a,uv(da). (3.74)

a€o(A)

The measure p, is called the spectral measure of v with respect to A. By polarisation,
the formula above together with knowledge of u, for all v € 2 completely determine A
and the family of projections (Pp)peg®). We thus write

A:/RCLP(da). (3.75)

Our reformulation of the spectral theorem in terms of PVM’s is then

Theorem. Let 7 be a finite-dimensional complex Hilbert space and A : 5 — 5 be
a self-adjoint linear map. There exists a unique projection-valued measure P : Z(R) —
B(4#) such that

A:/RaP(da). (3.76)

Moreover, for any real function f € C(R), the formula

Vo € A (v, D(f)v) = /R F(a)po(da) (3.77)

determines ®(f), and thus the functional calculus of A.

Now consider the example of the Laplacian on R? as above. For any Borel set B C R,
we define the corresponding projection P(B) as the projection to those functions whose
Fourier transform has support in {p € R?: p?> C B}, i.e.,

P(B) = 7 'xp(p")Z, (3.78)
where x is the operator of multiplication by the characteristic function. This clearly

satisfies the properties listed above (o-additivity is not clear, we will see in what sense
it holds later). Let f € D(H) = H?(R?), then

u(B) = (L PBI) = [ xsl?) @)y
= [Txa0?) [, 1Fer) Pt
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so py is absolutely continuous w.r.t. to the Lebesgue measure on R with density given
above. Thus by the same integral transformations

(oaif) = [ @R = [ ons(da) (3.79)

holds.

3.2.1 Variants of the Spectral Theorem and Their Equivalence

We will now formulate more precisely the variants of the spectral theorem discussed
above and prove their equivalence according to the following scheme

3 functional calculus = equivalence to multiplication operator

—> d spectral measure = 3 funct. calc.

Definition 3.31. Let A be a subalgebra of B* (the bounded Borel-measureable func-
tions from R to C without identification on null sets) that is invariant under complex
conjugation. A map ¢ : A — B(5) is a continuous *-morphism if

a) & is linear,

)
b) ® is multiplicative: Vf,g € A: ®(fg) = ©(f)®(9),
c¢) ® is involutive: Vf € A: ®(f) = (f)*,
d) if the constant function z — 1 is in A, then ®(1) =1,
&) @ is bounded: [D(f) 5.z, < |l

Note that if ® is bounded at all, then the constant must be one, for if there exists a
function f, with |f| <1 and ||®(f)v||,, > 1 for some normalised %, then |f|*> < 1, and

||, = sup (. @(F) @) = [@(f)v*. (3.80)

lInll=1

Hence if the bound on @ is larger than a > 1, then it is also larger than a? > a > 1, and
thus infinity.

Definition 3.32. Let A, D(A) be a closed operator and o(A) C R. A continuous
functional calculus for A is a continuous x-morphism @ : C(R) — B(5#) such that for
z€C\R, ®((z —2)7 1) = R.(A).

Theorem 3.33. Let A, D(A) be a closed operator on F with o(A) C R that admits
a continuous functional calculus. There exists a measure space (2,3, 1), a function
A:Q — R and and a unitary map U : L*(Q, u) — A such that

e U*D(A) = D(M,) ={f € L*(Q) : w = Aw)f(w) € L3(Q)}.

e U*AU = M)y, the operator of multiplication by A.
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3 Self-Adjoint Operators and the Spectral Theorem

In particular, A is self-adjoint. If 7€ is separable then u is o-finite.

Proof. Let 1) € S be a normalised vector, and define a linear functional on Co(R) by

Ly (f) = (W, F(A)D) e, (3.81)

where f(A) := ®(f) is defined by the functional calculus. This linear functional is
continuous and positive, since

Cs(1F17) = LF (A = 0. (3.82)

By the Riesz-Markov Theorem [RS1, Thm.IV.18] there exists a unique measure /i, on
R such that

to(f) = /R f(@)pp(d) (3.83)

The measure of an open set V' C R is given by

1o (V) = sup{by(f) : f € Coo(R) with flye =0 and fly <1}, (3.84)

so in particular i, (R) < ||¢||2 = 1. Now define the cyclic subspace generated by v as

Hy = {F(A): F € Cu(R]}. (3.85)

We claim that f +— f(A)vy induces a unitary

Uyp : L*(R, ) — 5 (3.86)

This is well defined, since if f(A)y = g(A)y, then

0= /() = gl = [ 17(2) = g(@)Pus(da), (387)

so f(z) = g(z) for py-a.e. x. The map is clearly isometric and onto, so it is unitary.
If /), = 5, then we are almost finished, since on the dense set spanned by the
elements ¢ = f(A),

U(x —2) U = Ul — 2) U f(A) = Uz — 2) 7' f(z) = R.(A) f(A)y = R.(A)p,
and thus o)
U{f € L*(R, ) : of(z) € L*(R, puy)} = Uran(x —i)~! = ran Ri(4) = D(A), (3.89)
and
(U*AU — i) (x — i) ' = U (A —)R,(A) =1 = (z — 1)  (U*AU —1). (3.90)
To finish the proof if # # ., first note that, by the reasoning above,

(A, C 2 (3.91)
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for all f € Cso(R). Then also f(A)L%’j;- C e%’jj, since for every ¢ € I, = (e%ff)L and
RS %’jﬁ

(0, F(A)n) = (F(A)p,n) = 0.

The domain D(A)ﬂc%’jpl =ran R,(A)| > is thus dense, and A| o admits a continuous

functional calculus, and we can iterate our argument. To complete the proof, we must
thus show that 7 is a direct sum of A-invariant cyclic subspaces J7j,. We will do this
using Zorn’s Lemma.

Let Z be the subset of the set of collections of closed linear subspaces of 7 such that
forall I € Z

e VWel = V1W,
o Vel = eV = is the A-cyclic subspace generated by 1.

The set 7 is partially ordered by inclusion. Now let J C Z be a totally ordered set, then

K=|JJ={Vcw#:3]eJ withV e J}. (3.92)
JeJ

The elements of K are clearly A-cyclic subspaces of 7. They are mutually orthogonal,
sinceif VW e K, VeJeJ WeleJ,then either I C J or J C I, since J is
totally ordered, and thus V' 1L W. Hence, K € T and J < K for all J € 7, i.e. every
totally ordered set has an upper bound in Z. Thus, by Zorn’s Lemma, there exists a
maximal element M € Z. Setting

S = PV, (3.93)
VeM

we must have %, = S, since otherwise there exists 0 # ¢ € 5 and M U{#,} D M.
Note that the direct sum is in the sense of Hilbert spaces, i.e. we take the completion
(or closure in .#) of the linear span. Then, by definition of Z (and choice), there exists

a subset C C 7 such that
H =P V= A (3.94)

VeM =te;
Then
U=PUy: P LR, py) > H (3.95)
pel pel
is unitary. We have
D LR py) = LB x C.p) (3.96)

pel

by the identification f(z)y := f(x,%), where the measure is given by

WE) = uy(mr(E N (R x {4}))), (3.97)

pel
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3 Self-Adjoint Operators and the Spectral Theorem

where 7R : R x S — R is the projection to the first factor (as o-algebra one can take the
product of the Borel sets on R and the o-algebra generated by finite subsets of C).

If 7 is separable, then the set C' can be at most countable, so u is o-finite because
the p,, are finite. O

Corollary 3.34 (Measurable functional Calculus). Let A, D(A) admit a continuous
functional calculus. There exists a continuous *-morphism ® : B®(R) — B(4) such
that Vz € C\ R: ®((z — 2)~) = R,(A). Moreover, for every bounded sequence (fn)nen
that converges point-wise to f, ®(f,) converges to ®(f) in the strong operator topology.

Proof. In view of Theorem 3.33, we define the measurable functional calculus by
f(A) :==UM;\U". (3.98)

Then ||(fn(A4) = F(ANY] 0 = I((fn = f) o MUl 12(q ) and for a bounded sequence
fna

lim (= )0 AU 0l Faqp = Jim [ 1£2(A@)) = FO@)Epo(de) =0, (3.99)

n—oo n—oo

by dominated convergence, since (i, is a finite measure. ]

Remark 3.35. The extension of the functional calculus from continuous functions to
measurable functions is unique (this follows from Lusin’s theorem).

Definition 3.36. A projection-valued-measure (PVM) is a map P : Z(R) — B(%)
satisfying

1. VB € #(R), P(B) is an orthogonal projection, i.e. P(B)? = P(B) = P(B)*;
2. P(R) =1, and P(@) = 0;

3. P is strongly o-additive: For every disjoint family of Borel sets (B, )ncn and every
e N

P (U Bn> = lim i P(B,)Y (3.100)
n=1

neN

Proposition 3.37. Let A, D(A) admit a measurable functional calculus. Then B
Ps(B) := xB(A) defines a PVM. Moreover,

D(A) = (v e - /)\Q/Lw(dA) < oo}, (3.101)

and

(1, Adp) = //\/w(dk)- (3.102)
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Proof. The map xp(A), where yp is the characteristic function of B, defines an or-
thogonal projection because xp is real and XQB = xp. Strong c-additivity follows from
Corollary 3.34, since for a disjoint family of sets, Zflvzl XB, converges point-wise to
Xu, B, and is bounded by one.

The Isomorphism Uy : L*(R, uuy,) — £ from the proof of Theorem 3.33 maps the
constant function f =1 to ¢, so ¢ € D(A) & [ AN uy(d\) < oo. The representation of
A then follows from the fact that U:LAUQﬁ = M. ]

Definition 3.38. Let P be a PVM and for any ¢, € JZ define the complex measure

tp(B) = (@, P(B)Y). (3.103)

For any f € B>*(R) the integral of f with respect to P, denoted [ f(x)P(dx) is defined
to be the unique bounded operator such that for every ¢, €

(. [ F@PED)) = [ f@)pp(do) (3.104)

Of course, the measures p, 4 can be obtained from the measures 1, = py 4 by polar-
isation:

How = 5 (o = Hp—p) = 5 (Hptie — Hy—ie)- (3.105)

Proposition 3.39. Let P be a PVM on €. Then ®(f) := [ f(AN)P(d\) defines a

continuous *-morphism from B> (R) to B(J) and there exists a unique self-adjoint
operator A, D(A) such that ®((x — 2z)7!) = R,(A).

Proof. Linearity follows directly from the properties of the integral. Boundedness follows
from the fact that ., (R) = [ by

12N = sup {0, @()9)]

e el |lpll=|lvll=1
< f lloo 7 (o (R) + g (R) + prppip(R) 4 pryp—ivp (R))
<4 fllo -

For multiplicativity, consider first characteristic functions yp. Clearly ®(xp) = P(B).
Since

P(BI)P(B2) = P(Bl N B2) = (I)(XB1OBQ) = q>(XBlXBz)a (3'106>

multiplicativity holds for (multiples of) characteristic functions. By linearity, it then
holds for simple functions, and then by continuity for all functions in B*°(s¢), since
these can be approximated uniformly by step functions. The same argument shows that

O(f)" = ®(f), since this also holds for xp. With multiplicativity and involutivity we
then obtain the improved bound

1R(F)l? = (1, R(f)*(F)eb) = (W, B(F1P)) < [ £1I% me(R) = [|£11Z 10]* - (3.107)

We have thus shown that the integral w.r.t. P defines a continuous *-morphism.
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3 Self-Adjoint Operators and the Spectral Theorem

It remains to show that the family of operators ®(f) is associated with a self-adjoint
operator A. This follows from the Lemma below if we can show that there is no nonzero
Y € A that is contained in all of the kernels of ®((z — 2)~!), z € C\ R. Assume to the
contrary that there exist such . Then for all A # 0

Sy — A
0= A, B((@ )19 = [ —puy(da). (3.108)
But by dominated convergence
lim [ — 2 (de) = i/ i )2 (3.109)
A—00 T — 1/\,ll¢ N Hy = ’ '
8o 9 = 0. The claim now follows from the Lemma below. O

Lemma 3.40. Let U C C be an open set and invariant under complex conjugation. Let
{R(z),z € U} be a family of bounded operators on F satisfying

1. Vz € U:R(z)* = R(Z),
2. Vz,w e U: R(z) — R(w) = (z —w)R(2)R(w)
3. N.ep ker R(z) = {0}.

Then there exists a unique self-adjoint operator A, D(A) on S such that U C p(A) and
R(z) = R,(A).

Proof. By 2), we have ker R(z) = ker R(w), so all of the R(z) are injective. We thus
tentatively define D(A) = ran R(zp) for some 2y € U. This is independent of zp, since
for all w e U

R(20)Y = R(w) + (20 — w)R(w)R(20)® € ran R(w), (3.110)

It is also dense, since if ¢ € D(A)L, then ¢ € ker R(z)* = ker R(z) = {0}.
Now set A(z) := R(z)~! + z, which is well-defined on D(A). To see that this is
independent of z, we use again 2) and the fact that A(z)R(z) =1+ zR(z) in

A(z)R(w) = A(2)R(z) + (w — 2) A(2)R(2) R(w)
=14 zR(z) + (w—2z)(1 + zR(2))R(w)
=1+42R(2) + (w—2)R(w) + z(R(w) — R(z))
=14+ wR(w) = A(w)R(w).
This shows that A(z)R(w)y = A(w)R(w)y for all ¢ € 7, so A(w) = A(z). This implies
that A is symmetric, since for ¢ = R(Z)@, ¢ € D(A)
(o, AY) = (R(2)@, (R(2) " +2)1) = (9,9) + (ZR(2)$, %) = ((R(Z) " +2)¢,¢), (3.111)

and R(Z)"' 4+ 2z = A. Since ran A — z = ran R(z)~! = J# for all z € U. Since U is
invariant by conjugation this proves that A is self-adjoint, by Theorem 3.1. Uniqueness
of A is clear since the inverse is unique. ]
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3.2 The Spectral Theorem

3.2.2 Proof of the Spectral Theorem

We will now prove the spectral theorem. To this end, we first prove existence of a
functional calculus for continuous functions. We then state the spectral theorem in
multiplication operator form, and in PVM form, as follows from the equivalence shown
in the previous section.

Definition 3.41. The one-point compactification of R is the set R := RU{oo} with the
topology such that U C R is open iff

e U C R is open, or
e there exists a compact set K C R such that U = R\ K(= {0} UR\ K).

Note that R is homeomorphic to the circle S' via stereographic projection. Let A
be the algebra of continuous functions such that their limits for x — 400 exist and are
equal. Then A is isomorphic to C'(R) by setting f(0c0) = limy,— 100 f(2).

Theorem 3.42 (Continuous Functional Calculus). Let A, D(A) be a self-adjoint op-
erator on a complex Hilbert space . There exists a unique continuous x-morphism
® : C(R) — B(H) such that for z € C\ R, ®((z — 2)~') = R.(A). In particular, A
admits a continuous functional calculus.

For the proof, recall (see [RS1, Thm.IV.10])

Theorem (Stone-Weierstrass). Let X be a compact Hausdorff space and A C C(X) a
subalgebra. Suppose that

e A separates points: Vx #y € X 3f € A: f(z) # f(y),
e A is invariant under conjugation: f € A = fc A
e lcA,

then A = C(X).

Proof of Theorem 3.42. Let A C C(R) be the algebra generated by the constant function
x + 1 and the functions x + (x — 2z)~! for z € C \ R. This algebra consists of finite
linear combinations of finite products of generating elements. By the requirements that
®(1) = 1,0 and ®((x—2)"1) = R,(A) (which exists by self-adjointness of A 3.3) together
with multiplicativity, we must have

P (ﬁ(m - zj)l) = ﬁ R, (A). (3.112)
j=1

J=1

This is well-defined because R,(A) and R, (A) commute, by the resolvent formula. By
linearity, this extends uniquely to a homomorphism ® : A — B(5¢). This homomor-

phism is involutive since R.(A)* = Rz(A), because A is self-adjoint.
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3 Self-Adjoint Operators and the Spectral Theorem

If this is continuous, then it extends to the closure of A in C(R). By the Stone-
Weierstrass Theorem, this equals C'(R). This gives existence, and since ® is uniquely
determined on the dense set A also uniqueness.

We thus only need to prove boundedness of ®. We deduce this from the fact that
if f € A is a non-negative function, then f = |g|? for some g € A, which is proved in
Lemma 3.43 below.

Consider now the non-negative function = — || f||% — |f(z)[?. By Lemma 3.43 there
exists g € A such that || f]|%, — |f(z)]> = |g(z)|2. We then have

O(If?) = () @(f) = 2(If 1% — l91) = f1% — 2(9)"(9), (3.113)
and thus for all ¢ € J#

IR(NDI* = (0, 1Lf1l2 %) — 1)l < I1FI1% 1l (3.114)

O
It remains to prove the existence of the “square root” of positive elements of A.

Lemma 3.43. Let A C C(R) be the algebra generated by the constant function x + 1
and the functions v — (x — 2)~% for z € C\R. If f € A is a non-negative function,
then there exists g € A with f = |g|?.

Proof. Let f € A be a generic element. By bringing all terms to a common denominator,
we can write

(3.115)

with complex polynomials P, @ such that degP < deg@® and @ has no real roots. We
can reduce this fraction so that P and () have no common roots and () is normalised.
Writing

K

J
:cH(a:—a] H x — wi)P (3.116)
j=1 k=1

where a;, j = 1,...,J are the real roots of P and wy, k =1,..., K the roots in C\ R,

and
L

Q(z) =[] (z — z0)™. (3.117)

(=1

Then f is a real function if and only if for all x € R P(z)Q(z) = P(z)Q(x), i.e.,

::M

L K L
|| (x—wg)? H-’E—Ze H:L‘—wk H:L‘—zg (3.118)

k=1 k=1

This implies that ¢, the coefficient of the highest-order term, is real. Furthermore, since
P and @ have no common roots, this also shows that for all k =1,..., K, w; is a root
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of P with the same multiplicity as wg, and the same for ). Hence, a real function f € A
has the form (after re-numbering the roots)

J K/2 2
my Lp 2y [ — we [P
flx)=c H(:c —aj)™ kL/12 . (3.119)
i=1 o |z — 2|29

This function is non-negative iff all the m; are even and ¢ > 0, and in that case f(z) =
l9(x)|? with

J K/2
oty (@ — wi)Pr

(z) = Ve [[(z — aj)ms/?13k=1 : (3.120)
I ]1;[1 ’ HeL:/?(x — zg)%

By partial fraction decomposition, g is an element of A and the proof is complete. [

In view of the equivalences of the previous section, we have now proved the following
two variants of the spectral theorem.

Theorem 3.44 (Spectral Theorem in Multiplication Operator Form). Let A, D(A) be
a self-adjoint operator on a complex Hilbert space 7€ . There exists a measurable space
(,%), a measure pn on (0(A)xQ, BR)®X) and a unitary map U : L*(o(A)xQ, p) —
such that

e U*D(A) = D(M)) ={f € L*(6(A) x Q) : (\,w) = Af(\,w) € L}(a(A) x Q)}.
o U*AU = M), the operator of multiplication by (\,w) — .
If S is separable then Q) is countable and p is o-finite.

Proof. This follows from the existence of the functional calculus by Theorem 3.33, since
Cx(R) C C(R). O

Theorem 3.45 (Spectral Theorem in PVM form). Let ¢ be a Hilbert space. The
densely defined self-adjoint operators on F€ are in one-to-one correspondence with the
PVMs on 7.

More precisely, for any self-adjoint operator A, D(A), the functional calculus defines
a PVM by B — P4(B) := xg(A). We have

D(A) = {p e - /A%(dx) < oo}, (3.121)

and

(1, Ap) = /)\Hd}(d)\)- (3.122)

Conversely, for any PVM P, choosing D(A) and A as above defines a self-adjoint oper-
ator A, D(A), and xp(A) = P(B).

Proof. This follows from the Spectral Theorem in Multiplication Operator Form and
Propositions 3.37, 3.39. O
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3 Self-Adjoint Operators and the Spectral Theorem

3.3 Applications of the spectral theorem

3.3.1 Unitary groups
Let A, D(A) be a self-adjoint operator and consider the abstract Schrodinger equation:

{ldxw(t) Ay(t)

#(0) = vo. (3.123)

We can define by the functional calculus the operator e 4. Formally t + t(t) =
e~ 44 is a solution to the abstract Schrodinger equation. Since the functional calculus

is multiplicative, we have
e—i(t"rs)A — e—itAe—iSA7 (3124)

and , ) )
(efltA)fl — eltA _ (efltA)*7 (3125)

so for every t this operator is unitary. This is called the unitary group generated by A
(and A is called the generator).

We will now explain in which sense exactly these groups solve the Schrodinger equa-
tion, and the question of uniqueness of this solution.

Lemma 3.46. Let A, D(A) be a self-adjoint and U(t) := e 4 be the unitary group
generated by A. We have

1. Vt,s e R: Ut)U(s) =U(t + s)
2. VteR: U(—t) =U(t)*

3. U®0) =1,
4. U is strongly continuous: Yo € F: limy_,o U(t)1) = 1.
5.Vt eR: U(t)D(A) C D(A)
6. U is strongly differentiable on D(A) and solves (3.123): ¥i) € D(A):
th( )= Jim Ut + h)zi —U0Y _ i auiye. (3.126)

Proof. Properties 1)-3) follow directly from the functional calculus. Since e~ * converges
to one point-wise as ¢ — 0 and is bounded, 4) follows from continuity of the calculus
w.r.t. such limits, see Corollary 3.34. Note that by the group property 1) this implies
continuity in all ¢ € R, not just ¢ = 0.
5) is clear since for a multiplication operator with a real function D(A) = D(Ae™i4).
For 6) it is again enough to prove this for t = 0. There we have, by the same argument
as in Corollary 3.34,

|(h ' wn)—1) +ia qu /|h e~ 1) 1 iAPuy (dN). (3.127)
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This tends to zero by dominated convergence if A2 € L!(R, ty), which by the Spectral
Theorem (in PVM form) is equivalent to i) € D(A). O

For general ¢ € ., e~ "4 is not differentiable but only continuous. It is still a
solution to the Schrodinger equation in the following weak sense: Let ¢ € D(A), then

(0, e M) = (e, ) (3.128)

is differentiable in ¢, and the derivative equals

—i(Ap, ). (3.129)

We interpret this as a linear functional on D(A), which is a Banach space with the graph
norm. Hence, e 44} is differentiable when interpreted as a function t — D(A)’, and its
derivative equals ¢ — —i(Ap, ). We call any function ¢ — 1 (t) with this property a
weak solution to the Schrédinger equation.

Proposition 3.47. Let I C R be an open interval containing zero and ¥ (t) € C(I,.7)N
CY(I,D(A)) be a weak solution to the Schridinger equation with 1(0) = vg. Then

P(t) = e Ay,

Proof. Let ¢y € D(A) and consider the quantity f(t) = (e %4¢g,4(t)). We have f €
C(I), and using the equations satisfied by ¢ (t) and e~ 4y,

4 f(t) = i{Ae g, v(t)) — i{Ae g, () = 0. (3.130)

Consequently f(t) = f(0) = (@0, v0), and
(o, (1) — 4ho) = 0 (3.131)
for all ¢ € D(A), whence e'1)(t) = 1y and ¥ (t) = e Aty O

Example 3.48. In quantum mechanics, the evolution of a system is described by the
Schrédinger equation with a self-adjoint operator of the form

H=-A+V, (3.132)

where V' is a multiplication operator (cf. Example 3.7).

We have now established that, under the hypothesis ensuring that H is self-adjoint
on some domain D(H) C L%(R?) this equation has a unique solution. The solution
operator U(t) maps the initial condition to the state at time ¢. The unitarity of this
map is important, since |¢)()|? is to be interpreted as a probability density (Born’s rule),
so unitarity ensures that total probability is conserved.

We will now prove that any linear “dynamical system” in . that is implemented by
unitary maps comes from a solution to an abstract Schrodinger equation.

Theorem 3.49 (Stone’s Theorem). Let t — U(t) € B() be a strongly continuous
unitary group, that is
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3 Self-Adjoint Operators and the Spectral Theorem

1. Vt,s e R: U(t)U(s) =U(t+ s)

3. U is strongly continuous: Y € 7€ : limy_,o U(t) = .
Then there exists a self-adjoint operator A, D(A) on H such that U(t) = e 4,

Proof. The idea is to define A =i dtU|t 0, the main challenge being to find a suitable
dense domain.
Set
D= {¢ €A :3lim YU (h) — 1)y} (3.133)

We start by proving that D is dense. For this, let @ € ¢ be arbitrary and consider for
€ > 0 the vector 1. defined by

Vo € A ¢ (poihn) = % /0 (o, U)p)dt. (3.134)

We will show that . — ¥ as ¢ — 0 and ¢, € D. For the first point, note that by
dominated convergence

1/€<¢,U(t)w>dt = /l(w,U(et)wdt — (@, ), (3.135)
0

€.Jo

S0 1. — 1) weakly in 7. Since also

o ]? = / [ )dsdt = / / (46, U (e(t — s)))dsdt — ]|, (3.136)

we have ¥, — 1 in norm (compare Exercise T00.3).
Now to see that ¥. € D for fixed € > 0 and h < €, consider

_ 1 re
(e U0 = ) = 1= [ U+ 1) Ui
1 h+e 1 €
= | e uow - [ e U@

€Jo
1

= [Moutr - o [[teuwa

By the argument that shows . — 1, the vector defined by the first term converges

to e 1U(e)1, and the second to —e 14 as h — 0, so in particular the limit exists and

P € D.
We will now prove that A := i%Uh:o is essentially self-adjoint on D. To check that
A is symmetric, let ¢, 9 € D, then

(o, Aw) = lim (0, ih™1(U(R) = 1)) = lim (™1 (1 = U(=h)p, 6) = (Ap,9). (3.137)

h—0
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To prove essential self-adjointness, suppose that ¢ € ker(A + i) (the argument for —i is
the same). Then for ¢» € D(A):

L, Uty) = (o, —1AU (t)0) = (10, U (t))). (3.138)

The unique solution to the differential equation above then is (i, U(t)¥) = e'(p,v). But
since U is an isometry this gives for all t € R

o, v) < llell vl (3.139)

whence (p, 1) = 0 for all v» € D(A), and thus ¢ = 0. Hence, A is essentially self-adjoint
on D and A is self-adjoint (actually A is already closed, but we will not show this). Then
e_ith and U(t)y are both solutions to the abstract Schrodinger equation for ¢ € D.
By the uniqueness of this solution, Proposition 3.47, we thus have U(t) = e_iZt, first on
D and then by continuity on 77. O

Remark 3.50. Stone’s theorem can be read as a classification of all unitary represen-
tations of the group (R, +) subject to the condition of strong continuity.

Without the continuity condition there are additional representations. For example,
let ## = C and F : R — R be Q-linear (i.e., we view R as a vector space over Q). Then
U(t) = e is a unitary representation of R, which continuous only if F is a multiple
of the identity.

Examples 3.51.

e The translation group on R. Define on L?(R), (U(t)f)(x) := f(x —t). This is
clearly a strongly continuous unitary group. For f € .#(R) we can calculate the
generator

ii\ fa—t) =iy (3.140)
dt lt=0 dx
Hence the generator is a self-adjoint extension of the operator Py, of Example 2.18
a). But this operator is essentially self-adjoint, with unique self-adjoint extension
P given by (—i%, H(R)). We thus have

flo— 1) = (7 ) (x) = (e ds f) (x). (3.141)

e Translations on [0,1]. If we want to define a unitary translation on the interval
[0,1] we have to make sure that no mass is lost at the boundaries. This can be
achieved by identifying the boundary points and setting for 0 <t¢ <1

R AT I A
More generally, we can set for 6 € [0, 27)
(Us(t) f)(2) = { » fla=t)  1ze—t>0 (3.143)
e Vflx—t+1) 0>z —t>—1.
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The generator is always given by the local expression —i%, but the domain depends
on 6. Note that the set of functions with f(1) = ¢~ f(0) is invariant under Uy.
Uy is thus the group generated by P, from Example 3.29 b) with o = ei?.

Geometrically, all of these groups correspond to translations on a vector bundle
over the circle, with different identifications of the fibres at = 0 and = = 1. The

operators P, are different connections on the vector bundle S! x R.
e Right Translation on R, . Define an isometry 7'(t) : L?(R,) — L?(R.) by

0 <t

(T(t)f) () == { A (3.144)

x—t) x > t.

By differentiating one can see that this solves the equation

d d

—f=——"T1(t 3.145

Sr=—2T0f, (3.145)
but the derivative can exist in x = 0 only if f(x) = 0, so the generator is

(—i%,H& (Ry)). We saw in Example 3.29 a) that this is not self-adjoint. This
is reflected in the fact that T(¢) is not unitary as ran(7T(t)) C L?(t,c0).

We also have a perturbation theory for unitary groups:

Theorem 3.52. Suppose A, D(A), B, D(B) are self-adjoint and A + B self-adjoint on
D(A+ B)=D(A)ND(B). Then for allt € R

. b, Lt \ P
e IATB — g _ 1im (e_lnAe_lnB> (3.146)
n—oo
Proof. Since the difference of the two expressions is uniformly bounded (by two), it is
sufficient to prove strong convergence on the dense set D((A+ B)?). Now set 7 = £ and

note that

|
—

n

(e—irAe—iTB>n_e—i(A+B)t _ b (e—irAe—iTB>n_1_j (e—iTAe—iTB _ e—i<A+B)T) (e—i(A+B)T)j ‘
Consequently D

[ (emmemim2) " — APy | < o ma i (s) (3.148)
with Fo(s) = H% (e_iTAe_iTB _ e—i(A+B)T) e—i(A+B)s¢" ‘ (3.149)
For ¢ € D(A + B), lim 1 (e,iTAe,iTB B efi(AJrB)-r) o =0, (3.150)

so we have convergence of F;(s) — 0, for every s. To improve this to uniform convergence
in s, note that in particular we have a bound

T

1 <e—iTAe—iTB _ e—i(A+B)T) LPH <C,. (3.151)
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3.3 Applications of the spectral theorem

Now D(A + B) with the graph norm is a Banach space, so by the uniform boundedness
principle, there exists a constant such that

T

1 (efiTAefiTB _ e*i(A+B)'r> ‘PH <Clellpass - (3.152)
Consequently,

|[Fr(s) — Fr(r)| <

% (e—iTAe—iTB . e—i(A—f—B)T) (e—i(A+B)s . e—i(A+B)r> M‘

<Of(1-e e y| <Ol
as 1 € D((A + B)?). Now assume that
hIPjgp max F.(s) > 0. (3.153)
Then there exists a sequence 7, — 0 and s(7;,) such that
limsup F~, (sp) > 0. (3.154)

n—oo

But the sequence s,, has a convergent subsequence s, — s, and since lim,,_, F;, (s) =0
and |Fy, (sp) — Fr,(s)] < Clsn — s| we must have convergence to zero. This shows that

lim max F;(s) = 0. (3.155)

T—=0 s<t

d

3.3.2 Spectrum and Dynamics

If v is an eigenfunction of a self-adjoint operator A, D(A), then the action of the unitary

group e 4 is very simple — the orbit e *4 is periodic. We will now discuss a more

sophisticated way of relating the spectrum of A to the dynamics.
Definition 3.53. Let p be a finite measure on (R, Z(R)). We define:

e 1 is supported on a set M if u(M€) = 0;

the support of u is

supp(p) ={x e R|Ve > 0: p((z — e, +¢) >0} = ﬂ{C C R closed : pu(C°) = 0}.
(3.156)

e 1 is pure-point if p is supported on a finite or countable set;

e 1 is continuous (w.r.t. the Lebesgue measure) if © and has no atoms, i.e. for all
z € R: pu({a}) = 0;

w is absolutely continuous (w.r.t. the Lebesgue measure) if every Lebesgue null set
is a p null set,
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3 Self-Adjoint Operators and the Spectral Theorem
e 1 is singular (w.r.t. the Lebesgue measure) if p is supported on a set of Lebesgue
measure zero;

e 1 is singular-continuous (w.r.t. the Lebesgue measure) if p is singular and has no
atoms. Then p is supported on an uncountable set of Lebesgue measure zero (such
as the Cantor set).

Remark 3.54. In terms of the function F(t) = p((0,¢]) this means:
e ;. continuous < F' continuous;

e 1 absolutely continuous < F absolutely continuous, i.e. f = F’ exists a.e. and
fg f(s)ds = F(t) (cf. the Radon-Nikodym Theorem);

We have the Lebesgue decomposition decompose any measure p as p = fpp + flac + fses
with measures having the respective properties. We can also decompose R = M, U
My U Mg, such that e is supported on M,. However, this decomposition is not unique.

Now let ¢ € 2 and let ji,, denote the spectral measure of 1) w.r.t A.

Definition 3.55. Let A, D(A) be a self-adjoint operator on 7. We define the following
subspaces of J7:

o = {1 € J : puy is pure-point}

o . = {1 € A : py is continuous}

o A= {1 € H : py is absolutely continuous}
o e = {y € S : py is singular continuous}

Proposition 3.56. The following hold true:

a) Ay, =span{y € A 1) is an eigenvector of A},
b) e = A,
c) Hie ={y € . : 3 Leb. null set M : Pa(M )y =} and this subspace is closed,
d) Hoe = Ko\ Kk

In particular, 7 = A, © Hoe © e and this sum is orthogonal.

Proof. a): “O” If 1 is in the closure of the span of eigenvectors, there exist normalised
mutually orthogonal eigenvectors (1, )y and coefficients (a,,)y so that 1 = 320 a,v,,.
Let M be the corresponding countable set of eigenvalues. Then the spectral measure of
1y, is supported on a single point in M and

pp (M) = (0, Pa(M)Y) = 3 |an|*Wn, PA(M)n) = > lanl* = |¢]* = py(R).
i i (3.157)
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3.3 Applications of the spectral theorem

Thus supp(fy) C M is countable and ¢ € J,.
“C” Let C' = supp(uy) be the countable set of atoms. Then

o = D mp({AY) = D2, Pal{Aw) = D IPa({ANYI”. (3.158)

reC el el

The spectral measure of P4({\})v is clearly supported on the point A, so AP4({\})\y
is an eigenvector of A with eigenvalue \. For A # X these are orthogonal, so 1 =
Y aec PaA({A})y is a sum of eigenvectors.

b): If py is continuous, then |PA({I )| = pyp({A}) = 0 for all A € R. Since by
the proof of a) ¢ € ), can be written as a sum of P4({\})¢ and the P4({\}) are
orthogonal projections, we have (¢, ) = 0 and thus 7, C %’ﬁ. If on the other hand
(NS %’;é, then Pa({A})y for all A € R and thus py,({A}) = 0 and ¢ € JZ.

c): If o € I the o € I by b). The support of p, is then a Lebesgue null set
with Py(supp(py))y = . If ¢ € S and M has Lebesgue measure zero and satisfies
Py(M)y =1, then supp(py) C M, and gy, is singular continuous.

To see that J# is closed, let (¢, )N be sequence in J#. converging to 1 € # and let
(M,,)n be a corresponding sequence of null sets. Then M = U2, M,, has measure zero,
and

Pa(M)$ = lim Pa(M)i = lim = o, (3.159)
so Y € F..
d): Exercise! O

Corollary 3.57. Let P, be the orthogonal projector to s for e € {pp,c,ac,sc}. Then
AP, = P,AP, and A = P,AP, + P-AP}

Proof. If p1, is supported by M, then so is p14y. Hence AP, C J7,. The statement then
follows from the fact that P, is an orthogonal projection. O

In view of this corollary we define
Definition 3.58. Let A, D(A) be self-adjoint. We call

o 0,p(A) == 0(PypAP,,) the pure-point spectrum of A,

o 04.(A) := 0(PacAP,.) the absolutely continuous spectrum of A,

o 0..(A):

0(PscAPs.) the singular continuous spectrum of A.
Proposition 3.59. Let A, D(A) be self-adjoint. Then
a) 0(A) = opp(A) Uoee(A)Uos(A) ,

b) oy(A) = {A € R s ker(A— N) £ {0},
¢) 0ac(A) is either empty or has positive Lebesque measure,

d) osc(A) is either empty or uncountable.
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3 Self-Adjoint Operators and the Spectral Theorem

Proof. By Corollary 3.57 we have
A= X=Ppp(A = N)Ppp + Puc(A — X)Pac + Poc(A — N)Ps (3.160)

a) In the decomposition S = 74, & ;. & . this is a block-diagonal matrix, which
is invertible iff each block is invertible. Hence p(A) = p(PppAPpp) N p(PacAPyuc) N
p(PscAP;.), and the spectrum is the union of the spectra.

b) If A € R can be approximated by eigenvalues, there exists a sequence of normalised
eigenvectors v, € ), such that [[(A — X)b,|| < [Ay—A] = 0,50 A € 0(A] ) by Weyl’s
criterion (Exercise 11).

If on the other hand A € o,,,(A). Then there exists a Weyl sequence for A in .77, and in
particular a normalised element 5 € 7, with ||(A — A)s|| <, for any 6 > 0. Assume
now that |\ — p| > ¢ for every eigenvalue of A and some 6 > 0. Write 15 = 2oy antn
with orthonormal eigenvectors 1), and a sequence 322 ; |a,|? = 1. Then

1(A = Ns]|* = Z Janl? 1(A = Npull* = D |anl*lpn — AP > 6, (3.161)

n=1

a contradiction.
c) Assume o,.(A) = N is a set of zero Lebesgue measure. Then, by Exercise 23
1p, = XN(PacAP,:), and thus for every ¢ € 74,

9] = gy (R) = /XN(PacAPac),uw(dx) = py(N) =0, (3.162)

so Hge = {0} and 04.(A) = @ (since B({0}) = {1}).
d) Same as c). O

Examples 3.60.

a) Let 2 = L*(R) ® C and A(f,v) = (22f(),7), then 5. = L*(R) @ {0}, 04c = R,
Hpp = {0} ® C, opp = {1}.

b) Let o : N — QN [0,1] be a bijection and (¢,,)y a complete orthonormal set in .77.
Then

@~ Ap = Z 1) (tn, @) (3.163)

n=1

defines a bounded self-adjoint operator. We clearly have .7, = 5 and thus o(A) =
opp(A) =Q N[0, 1] = [0, 1].

c) For e € {pp,c,ac,sc} one can obtain an operator such that c(A) = ce(A) and
e = € by taking a measure u from the respective class and letting A be the
multiplication operator by = + x on L?(R,u). The spectrum is then exactly the
support of the measure.
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3.3 Applications of the spectral theorem

The decomposition of the spectrum by properties of the spectral measure can be
related to the dynamical behaviour under U(t) := e74%. Let ¢, € 4 be normalised
vectors. Then

(o, Ut)y) = /R e M g (AN) = iy (3.164)

is just the Fourier transform of the associated spectral measure (as an element of .#”).
This implies, for example, that if ., is absolutely continuous (i.e. if ¢, € J4.), then
limy— o0 (, U(t))) = 0, by the Riemann-Lebesgue Lemma. More generally, we have

Theorem 3.61 (Wiener’s Theorem). Let p be a finite complex Borel measure and fi its
Fourier transform. Then the Césaro mean of |fi(t)|? is convergent and

im 1 [Ca@Pa= Y P (3.165)

AeR:u({A})>0

Proof. By Fubini we have

8 [bran [ [
- / / ( / t=m) l”dt> p(dn)p*(dN),

The function in parenthesis converges pointwise to x{oy(n — A) and is bounded by one,
so by dominated convergence the whole expression tends to

/R/RX{O}(n—A)u(dn)u*(dA)z/Ru({A})u*(dA): ST u{AnP. (3.166)

Ap({A})>0
O
Corollary 3.62. Let A, D(A) be self-adjoint and ¢ € .. Then
1T
e hdt (3.167)
T Jo
converges weakly to zero as T — oo. If ¢ € ;. this holds without the mean.
Proof. As noted above, we have
LT 2 e 2_ 17 2
J— -1 = |— { < — (i
(oo [ e wan)] = |2 [ ppwmar] <7 [ laaPoa (3168)
Now since 9 = P, pyy = pip.p has no atoms, this converges to zero as T' — co. The
statement for 1) € 7. follows from the Riemann Lebesgue Lemma. O

This means that if 1y € H., 1(t) = e 4? eventually becomes (essentially) orthogonal
to any . It is also of interest to follow what happens e.g. to the support of ¥ () for
large times. For this we will the following notion.

95



3 Self-Adjoint Operators and the Spectral Theorem

Definition 3.63. Let A, D(A) be self-adjoint. An operator K, D(K) with D(A) C
D(K) is called relatively compact with respect to A (or A-compact) if K R;(A) is compact.

Example 3.64. Let x € Coo(RY). Then multiplication by x is not a compact operator
on # = L?(R%) (except for x = 0). However, y is —A-compact by Exercise 09.

Proposition 3.65. Let A, D(A) be self-adjoint and K relatively compact. Then for
every 1 € D(A)

R 2
Tliﬂof/o HKe i PC¢H dt =0 (3.169)
and
lim HKe*”APanH = 0. (3.170)

If K is bounded then the statement holds for all ¢ € 2.
Proof. Let ¢ € J,, resp. H,.. If K is a rank-one operator, i.e. K1) = ¢1(p2,1), then

. 2 .
e ]| = lloall” 12, e ) = lpall? 1 s (1) (3.171)

and the statement follows from Wiener’s Theorem, resp. the Riemann-Lebesgue Lemma.
The statement thus holds for any finite-rank operator, and by approximation for any
compact K.

For relatively compact K, take ¢ € ¢ N D(A). Then ¢ = Rt for some ¢y € 4
since these spaces are A-invariant. The statement thus follows from the argument above
since R;j(A) commutes with e 14,

If K is bounded and ¢ € 44, we can find ¢, € D(A) N with || — ¢y,|| < 1/n, and
then

| ety < || ke 4y, | + (K| /n. (3.172)

Choosing first n and then T', resp. t, sufficiently large concludes the proof. O

Example 3.66. Let H = —A and x € Cy(RY). Then # = . and thus for all
¥ € HA(RY) = D(H)
lim Hx(x)e_itHwH =0, (3.173)

t—o0
i.e. the support of e 4 “moves to infinity”. The solution disperses (as can also be
seen from the explicit solution).

We have the following characterisation of spectral types by the long-time behaviour
of the dynamics due to Ruelle, Amrein, Georgescu and Enf.

Theorem 3.67 (RAGE). Let A, D(A) be self-adjoint and (K, )N a sequence of bounded
relatively compact operators converging strongly to the identity. Then

S = {w € #: lim lim ;/OTHKne“Adet:O},

n—00 T— 00

Hopp = {w € J : lim sup H(l — Kn)e_itAwH = O}.
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Proof. We start with the first equation. By the previous theorem and Cauchy-Schwarz
we have for ¢ € A7,

lim 1/THK e Ayl dt < lim 1/THK e*”AwHth " 0 (3.174)
T—oo T Jo " T T—=oo \T Jo " ' '
For the converse it is sufficient to show that if P, # 0, then HKne_itAPppwH > ¢ fort
sufficiently large. We will achieve this by showing that

lim sup H(l — Kn)e M P = 0. (3.175)

n—00 >q

To see this, write Ppp1p = 3272, ajap; with orthonormal eigenvectors 1; of A (cf. Propo-
sition 3.56). The sequence of operators K, is bounded, and it converges in norm on
any finite dimensional subspace, e.g. the span of ¥1,...,%¥y. Thus denoting by Py the
projection to this span, with is invarriant under e 14,

@ = FeT ],
—itA —itA
<= Kn) Py llgor [ Popts | + 11 = Knllgor [0 = Pi)e A Bype]|  (3.176)
converges to zero uniformly by choosing first N and then n sufficiently large. This
completes the proof of the first equality, and the inclusion of the left hand side in the
right for the second equality.

To complete the proof, we have to show that lim, . sup;>g H(l - Kn)e_itAwu # 0 if
P.p # 0. But if this is zero, then we have

1 7 .
0= lim lim 7/0 H(l—Kn)e_ltAch/)Hdt

n—00 T'—00

> ||P) - lim lim ~ T"Kne_itAPc¢“dt:”Pc¢“7

n—o00 T—oo 1" Jo

a contradiction. O

Proposition 3.68. Let A, D(A) be self-adjoint and K relatively compact. Then for
every ¢ € D(A)

1T .
Jim /0 eltAKe_‘tAwdt:/\EZ:(A) PA({A\)KPA({\}). (3.177)

If K is bounded then the statement holds for all ¢ € .

Proof. By replacing K with K R;(A) as in the proof of Proposition 3.65, it is sufficient
to prove the statement for bounded K. By compactness of K, it is then sufficient to
show weak convergence, i.e. that we have (3.177) after taking the scalar product with
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3 Self-Adjoint Operators and the Spectral Theorem

any ¢ € €. Writing 1 = Py, + P,, Proposition 3.65 implies that the contributions of
P, and P.p vanish. It thus remains to calculate

. 1T itA —itA ; 1 it(n—A)
Jim - [ B, Ke Pppwdt—wez(A)Tlg;OT | I PAGAD K Palin
) Op

(3.178)
which yields the claim by the argument from the proof of Wiener’s Theorem. O

We can also directly obtain the projections onto % from the dynamics.

Corollary 3.69. Let A, D(A) be self-adjoint and (K,,)n a sequence of bounded relatively
compact operators converging strongly to the identity. Then

o LT ia
Jim Th_r)réo—/o " Kye " pdt = Pyt (3.179)
and
lim lim — TeitA(1 — Kp)e ydt = Pap (3.180)
n—0o0 T'—00 0 " e ’
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4 Spectral Theory of Self-Adjoint Operators

We will discuss the (approximate) stability of the spectrum of a self-adjoint operator A,
D(A) under “small” perturbations. We will first introduce the new notions of discrete
and essential spectrum that are well adapted to this. We will then see in examples
that the spectral types ac, pp, sc introduced in the previous section are not stable in the
same way. Then, we will consider the stability of o,. in more detail, in the context of
scattering theory.

Definition 4.1. Let A, D(A) be self-adjoint. The discrete spectrum of A is
odisc(A) :={X € 0(A)|Fe > 0 : dimran(Pa(A — e, 4+ ¢)) < o0}. (4.1)
The essential spectrum of A is gess(A) = 0(A) \ odisc(A).

The set oqisc is the set of isolated eigenvalues of finite multiplicity (Exercise).

4.1 The Essential Spectrum
Examples 4.2.

a) If A is compact then oegs(A) C {0}. If the resolvent of A is compact, then o(A) =
Udisc(A)-

b) If V € L*°(R,R) is an operator of multiplication on L?(R) then (compare Exercise
02)
(V) = 0ess(V') = essran(V). (4.2)

Note that the spectrum as a set, or any of its components, cannot be exactly stable
under addition of bounded operators, since adding a multiple of the identity to A applies
a shift to the spectrum. We thus have to either reduce the class of perturbations, or
consider the weaker notion of approximate stability.

Proposition 4.3 (Weyl’s Criterion for the Essential Spectrum). A point A € R is
an element of oess(A) if and only if it has a singular Weyl sequence, that is there exist
normalised (Yy,)n such that w—1limy,_,oc ¥n = 0 and ||(A — XN, || = 0. If such a sequence
exists, the vectors v, can be chosen to be orthonormal.

Proof. If there exists a Weyl sequence at A, then A € o(A) by Exercise 11. Now assume
there exists a singular Weyl sequence for A € ogisc. Let € be such that dimran(Pq(\ —
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4 Spectral Theory of Self-Adjoint Operators

g,A\+¢)) < oo and denote this spectral projection by P.. Then U = Poaby, is a sequence
in a finite dimensional space that converges weakly, and thus also in norm, to zero. But

[ = G| = 10 = Pyl

= Hap, ()
R\(A—¢g,\+¢)

<o (t = Xy, (dt)
R\(A—¢g,A\+¢)
=2 [[(A = N "= 0,

and thus HI;”H — 1, a contradiction.

Conversely, if A € gess(A), then for every € > 0
dimran P4((A —e,A 4+ ¢)) = 0. (4.3)

Let P, be this projection with ¢ = 1/n. We then obtain an orthonormal singular Weyl
sequence by taking 1, € ran P, to orthogonal to {t¢1,...,%¥,—1} (in P;.## — note that
the projection P, is orthogonal to the projection onto P, 1 \ P, ). O

Proposition 4.4. Let A, D(A) be self-adjoint. The essential spectrum of A is invariant
under addition of self-adjoint compact operators, and it exactly characterised by this
property, that is

Tess(A) = N o(A+ K). (4.4)

K=K* compact

Proof. Since K is bounded, it is also A-bounded with relative bound zero, so A + K is
self-adjoint on D(A) by Kato-Rellich. Now let A € 0ess(A) and let (¢,)n be a singular
Weyl-sequence for A. Then, since v, converges weakly to zero, K1, converges to zero
in norm and thus

(A + K = N < [[(A = A)ibnl| + [[K¢n]| — 0. (4.5)

Hence (¢,,)y is also a singular Weyl sequence for A+ K and A € oess(A + K). Reversing
the roles of A and A + K shows that gess(A) = dess(A + K) for every compact K.
It remains to prove that

ﬂ Udisc(A + K) =J. (4'6)

K=K* compact

For this, let A\ € oqisc(A) (i.e. for K = 0).Then P4({A}) has finite and nonzero rank,
and we denote this projection by P. Then

A=PAP+ (1—-P)A(1-P)=AP+(1-P)A(1 - P). (4.7)

Hence A + P is a compact perturbation of A, and
Aep(A+1)P)np((1—P)A(1—P))=p(A+ P). (4.8)
O
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Theorem 4.5 (Weyl). Let A, D(A) and B, D(B) be self-adjoint. If R,(A) — R,(B) is
compact for some z € p(A) N p(B), then

Uess(A) = Uess(B)- (49)
Proof. Let \ € 0ess(A) and let (1,)y be a singular Weyl-sequence for A. Then

_ R.(4)

(Ro() = (A =2) )t = TZ(A = N, (4.10)

s0 || (R:(A) — (A — 2)7Y) ¢, || — 0. Since the difference of the resolvents is compact and
¥y, tends weakly to zero, then also ||(R.(B) — (A —2)7') ¢,/ — 0. Consequently for
on = R.(B)Yn

1B = Neull = |2 = A || (B(B) = (A = 2)7 ) ]| = 0, (4.11)

and
lnll = [ Ro(B)hnl| "= |X = 2|1 #0. (4.12)

Hence by normalising the sequence (p, )y we obtain a singular Weyl sequence for B and
A € 0ess(B). Reversing the roles of A and B yields the claim. O

Example 4.6. Let V € L?*(R3) + L*°(R3) with im0 V() = 0 then V is —A-
compact (this was shown in Exercise 09 for continuous V' and follows for general V' by
approximation), so by the second resolvent formula

Ri(—A) — Rj(—A + V) = Ri(—A + V)VRi(—A) (4.13)
is compact. Hence for all such V', we have
Oess(—A + V) = [0, 00). (4.14)

The spectrum of such an operator thus always looks similar, with the same essential spec-
trum and possibly some negative eigenvalues of finite multiplicity, as for the Hydrogen
atom.

Corollary 4.7. Let A, D(A) be symmetric with equal finite deficiency indices. Then all
self-adjoint extensions of A have the same essential spectrum.

Proof. Let Ay, A2 be two self-adjoint extensions. Then for ¢ = (A +1i)¢ € ran(A4 + i),
Ri(A1)Y = R;j(A2)Y = ¢, since both extend A. Thus, the difference of resolvents
is nonzero only on ran(A + i)* = ker(A* — i), which has finite dimension, and thus
the difference of resolvents has finite rank. The statement now follows from Weyl’s
Theorem. O
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4 Spectral Theory of Self-Adjoint Operators

4.2 The Discrete Spectrum

We already know that the discrete spectrum consists of eigenvalues of finite multiplicity.
We will now prove a variational characterisation of these eigenvalues in the case of
operators that are bounded from below. After, we will prove approximate stability of
such eigenvalues under perturbations.

Theorem 4.8 (Courant-Fischer). Let A, D(A) be self-adjoint and bounded from below.
Denote
Y(A) := min oegs(A).

Define a sequence iy, n > 1 of real numbers by the min-mazx values

fin(A) = Vclgf( 4 (v, AY) = vé?gf( o A qa(, ). (4.15)
dim(V)=n [[¢] =1 dim(V)=n [[¢] =1

Then for every n > 1 we have u,(A) < 3(A), and if pun(A) < X(A) then A has hat least
n eigenvalues (counted with multiplicity) below X(A) and pn(A) is the n-nth smallest
etgenvalue of A.

The min-maz values are equal to the maz-min values

n(d) = sup inf (1), A). 4.16
) wcD(A) | YEW (W, Ay) (4.16)
dim(WL)=n—1 I¥l¢=1

Proof. The two expressions on the right of (4.15) are equal since D(A) is dense in Q(A).

To see that p,(A) < X(A), we argue by contradiction: Assume that for some n > 1,
tn(A) —X(A) = > 0. Then, by definition of the essential spectrum, Pa((X(A), X(A) +
d/2) has infinite rank, and so pi(A)—X(A) < §/2 for all k > 1, by taking a k-dimensional
subspace of the range of Pj.

Denote by A, n =1,..., Npmax the eigenvalues of A below 3(A), ordered and counted
with multiplicity, and ,, a corresponding sequence of orthonormal eigenvectors (where
Npax = o0 is allowed). Set V,, = span{¢, : k < n}. Then for ¢ € V,

(W, Ap) = 3" Nl (W, v |2 < M [|9])7, (4.17)

k=1

and thus p,(A) < \,.

For the reverse inequality, and existence of the eigenvalues, we argue recursively. Start-
ing with n = 1, we have u;(A) € o(A) by Exercise 12. Assuming that pi(A) < X(A)
we then have that pq(A) € ogisc(A), and thus pu(A) = A1 is an isolated eigenvalue.
Now assume we have pg(A) = A, for all k < n and ju,11(A) < X(A). Denote by P
the projection to the orthogonal complement of V;, (defined above). Then for any sub-
space V C D(A) of dimension at least n + 1, PV # {0}. Let 1y be a maximiser of
(1h, AY)/ ||9||* in V. Then, since pp41 > A\p we may assume that Py # 0 and we have

ma (1, Ap) = mex (1h, Ay). (4.18)
ol =1 9]l =1
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4.3 Approximate Stability of Isolated Spectrum

with V =V, @ span(¢y). Now Py = by — Puiby € V, so

max (4, AY) > o(PLAPY). (4.19)
YeV
¥l =1
Consequently
fini1(A) > mino(PrAPE) > Ay, (4.20)

SO fin+1 = Ans1 and i, 41 is an eigenvalue of P.- AP by the same argument as for n = 1.
The proof of the max-min formulation is an exercise. O

Corollary 4.9. Let A, D(A) and B, D(B) be self adjoint and bounded from below with
Q(B) C Q(A) and

for ally € Q(B). Then X(A) < X(B) and for all n > 1 we have puy(A) < pun(B).

Example 4.10. Let Q C R be open, bounded with C'-boundary. Then the quadratic
form of the Dirichlet Laplacian —Ap is defined on H () and the form of the Neumann-
Laplacian —Ay on H(Q2) D H}(Q), and both are given by the expression

/Q Ve () [2da. (4.22)

Both operators have compact resolvent (this is where the regularity condition on the
boundary plays a role). By the Corollary, we have \,(—An) < A\, (—Ap).

4.3 Approximate Stability of Isolated Spectrum

While the spectrum as a set is not stable under perturbations, in applications one often
wants to know how a certain part of the spectrum, for example an isolated eigenvalue,
changes precisely. In this section we will establish that isolated parts of the spectrum
stay isolated if the perturbation is sufficiently small. In particular, isolated eigenvalues
stay isolated eigenvalues and their dependence on a small perturbation can be calculated.
An important tool for this is an integral formula for the spectral projection that
generalises Chauchy’s integral formula. Let E C o(A) be a connected component and
compact. Then there exists some contour v in the complex plane such that v C p(A)
and o(A) Nint(y) = E. We will show that
i

PA(E) = 5 A R.(A)dz. (4.23)

Of course, we need to define the operator-valued integral first. Since z — R.(A) is
a continuous function on v we could define it as a Riemann integral. However, for
simplicity we will stick to the weak integral and define it by the identity

(055 | Btttz = 5~ [ (o Re(A)a (1.21)
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4 Spectral Theory of Self-Adjoint Operators

for any @,y € .
The following proposition shows that the integral formula defines a projection also if
A is just closed, in which case the spectral projection is not defined.

Proposition 4.11. Let A, D(A) be a closed operator and assume that there exist A € R,
r >0 such that v :=={z € C: |z — A =r} C p(A). Then the operator defined by (4.24)
s a projection. If A is self-adjoint, then this projection is orthogonal.

Proof. Denote the operator in question by P,. We first note that P, is bounded, since

{0, Py) | < llell 4] Sup IR-(A)], (4.25)

and the supremum is in fact a maximum because z — R,(A) is continuous on p(A) and
7 is compact.

Let + be defined like v but with a larger radius ' < r. Since p(A) is open we can
choose 17 so that 7 C p(A). Then (p, R,(A)v) is a holomorphic function on the annulus
between v and v/, so Py = P, by the Cauchy integral theorem. We can thus prove that
P, is a projection by showing that PP, = P,. Inserting the definition and using the
resolvent formula, we have

i

| teB(A)Pgas

(%) ] ] Rt

(%) ] [ 7t () = Ruapaza.

Z—w

Now w + (z —w)~! is a holomorphic function on the disc bounded by 7, since |z — \| =
r' >, and thus [ zd—iww = 0. This gives with Cauchy’s formula

<¢,P7,Py¢>=(2iﬂ)2 A /7 / ! (¢, Ry(A)Y)dzdw

w—z
= (o Bu(Apihdw = (o, Py).

If A is self-adjoint, one easily checks that (1, Py) is real, since the map z +— Z reverses
the orientation of ~. O

Theorem 4.12. Let A, D(A) be self-adjoint and assume that there exist A € R, r > 0
such that vy ={p e R: A —pu| =1} C p(A). Then

Pa((A =1 A +1)) = i L R.(A)dz. (4.26)
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4.3 Approximate Stability of Isolated Spectrum

Proof. Let 7, P, be the same objects as in the previous proposition. Fix an arbitrary
W € A . Since R,(A) leaves the space 7 (the A-cyclic space generated by ) invariant,
we have (p, Pyy) = 0 for ¢ € %’ﬁ-. It is thus sufficient to consider ¢ = f(A)y with
f € C(R), since the set of these vectors is dense in 7%, and P, is continuous. For such
a ¢, we have

o) = o [ ) = o [ [ I8 anas
Since )
i 1 1 x € Br(A

271/71:—2(12: {0 z ¢ Bo(\) (4.28)

this equals
“depy(de) = [ X0 @ T@heu(de) = o, PN = r A+ 1)),

J 7@ [ o=
(4.29)

by Fubini’s theorem. O

Theorem 4.13 (Analytic Perturbation Theory). Let A, D(A) be self-adjoint, B, D(B)
symmetric and A-bounded. If there exist A € R, r > 0 such that y = {p € R: |A — p| =
r} C p(A), there is g9 > 0 such that for e < g

{peR: |\ N=pul=r} Cp(A+eB). (4.30)

The spectral projection

P.:i= Pareg((A=r A +7)) (4.31)
is an analytic B(A)-valued function of € < 9. In particular, the rank of P- is constant.

Proof. For € small enough, A+¢B is self-adjoint by the Kato-Rellich Theorem. Moreover,
the resolvent can be written as

R.(A+¢eB) = R,(A)(1 + eBR.(A))~ i —eBR.( (4.32)
k=0

for ¢ < ||BR.(A)|. We deduce that { € R : |A\ — u| = r} C p(A+ eB) for € small
enough, and that R,(A + £B) is an analytic function of ¢ in a neighbourhood of ~
(with the notation as above). Analyticity of the spectral projection now follows from
Theorem 4.12. If the rank of P. is finite for some ¢ < gg, then rk(P.) = tr(F;) is a
continuous function taking integer values, and thus constant. O

Corollary 4.14. Let A, B satisfy the hypothesis of Theorem 4.13 and assume that A
has an isolated simple eigenvalue \g. Then for € < €y, A+ €B has an isolated simple
eigenvalue A, and e is an analytic function of € < gg.
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4 Spectral Theory of Self-Adjoint Operators

Proof. Let 1 be a normalised element of ker(A— \p). By Theorem 4.13, P. is a rank-one
projection for € < g9. By continuity of P., P.ig # 0 for e sufficiently small, and thus
the range of P is spanned by P.1g. Since P: is a spectral projection of A + B,

(A + 5B)P€¢0 = Ae P, (4.33)
and P A+eB)P,
€:< 617[}0’( +62) E¢0> (4.34)
Hpal/JOH
Since BP. is bounded and P.iy # 0, \: is analytic. O

4.4 Stability and Instability of 0,,, 0. 04

We will know discuss the instability of o}, and o, in the simple example of rank-one
perturbations. We will then show that o4, is stable under such perturbations and discuss
the ac-spectrum in more detail in the context of scattering theory.

4.4.1 Rank-one Perturbations

We start by discussing in some detail rank-one perturbations, which provide a family of
models that can be solved more or less exactly.
Let A, D(A) be a self-adjoint operator on ¢ and ¢ € . If P denotes the orthogonal
projection to span{t}, then
T,:=A+aP (4.35)

with domain D(7T,) = D(A) defines a one-parameter familiy of self adjoint operators.
These have have following properties (cf. Exercise 29)

Proposition 4.15. With the notation above we have

a) The A-cyclic subspace € is To-invariant for all « € R and Ta|%$ = A]%i.

b) The resolvent of To can be expressed as

(B — )W, R.(Tp)p)

R:(Ta)p = Ra(Tp)p + Ra(Tp)y = o F)y(2) (4.36)
for z€ C\ R and B # «, where
B
B5(2) = (o1 Ba(Ty)) = [ LD (4.37)

is the Borel transform of the spectral measure p° = uﬁ of 1 with respect to Tg.

By point a) it is not really a restriction to assume that ¢ is A-cyclic, since on the
orthogonal complement of /7, nothing interesting happens. By b), the spectrum of Ty,
is completely encoded by the functions ®g(z) for any § # a. We will now study these
in some more detail.
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4.4 Stability and Instability of oy, Osc, Oac

Remark 4.16. The function @, is a Herglotz (or Nevanlinna) function, meaning that
it is holomorphic on the upper (lower) complex half-plane and maps this to itself. It
clearly satisfies |®,(2)| < C|Im(z)|~ .

Theorem 4.17. Let F' be a Herglotz function on the upper complex half plane satisfying

C
FG)I < s

(4.38)

for some C > 0. Then there exists a unique finite Borel measure u so that F' is the Borel
transform of p.

Proof (sketch). Fix z = x + iy with y > ¢ > 0. By Cauchy’s formula we can write

HQZQ;A(Cl o) Flod (4.39)

—z_C—E—2i€

where v is the contour
v=(z+ic+[-R,R])U{zx +ic + Re'¥ : ¢ € [0, 7]} (4.40)

(note that Z — 2ie lies outside the contour). Due to the bound on F', the integrand over
the semi-circle decays like R~2, so letting R — oo we have

1 Yy—¢€

Flz)=— | ———F(t+i dt. 4.41

=1 [ty Tpriesn an
Let V(z) := ImF(z), which is positive, then
1 Yy—¢€

Viz)=— | ———=5V(t+i dt. 4.42

() W/RtQ_i_(y_S)QV(—HE—Fx) (4.42)

We have for all € > 0 by Fatou
1
C > liminf yV(z +1iy) = —/ V(t +ie + z)dt. (4.43)
Yy—00 T JR

Consequently, the measures p. := 7~ 'V (t +ie +z)dt for € > 0 form a bounded set in the
dual of Cx(R). They thus have an accumulation point p (by Banach-Alaoglu) which
(by Riesz-Markov) is a Borel measure. Then

. —€ 1
V(o) = tin [ttt = [ tutan <1 ([ =utan).
(4.44)
Hence F(z) and the Borel transform of p have the same imaginary parts, and as holo-
morphic functions they must be equal up to a real constant. Since both tend to zero as
Imz — oo this constant must be zero.
Uniqueness of u follows from the formula

1 1 [
5 (((A1; A2)) + p([Aa; Al)) = lim = [ T F'(¢ + ie)dt, (4.45)
2 e=0 7 Sy,

see [Te, Thm 3.21] and Exercise 25. O
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4 Spectral Theory of Self-Adjoint Operators

Since we are interested in the (in-)stability of the singular and absolutely continuous
spectrum we want to recover these from the Borel transform.

Lemma 4.18. Let i be a finite Borel measure and ® its Borel transform. Denote by
I.(x) the interval (x—e, z+¢€) and define the lower and upper Radon-Nikodym derivatives

of 1 as
(L2)

Du(z) = ligglf

2e
— I
Dy(x) :=limsup 2 8).
e—0 3
Then
N | . . 1 ) —
Dyu(z) < liminf —Im®(z +ie) < limsup —Im®(z + i) < Du(z). (4.46)
=0 T e T

In particular, if Dp(z) = Dp(z) then lim._,o 1Im®(z +ie) exists and equals the Radon-
Nikodym derivative of .

Proof. See [Te, Thm 3.22]. O

Theorem 4.19. Let i be a finite Borel measure and ® its Borel transform. Then

1
lim —Im®(z + ic) (4.47)

e—0 T

exists Lebesgue a.e.. Moreover, the sets

My :={zeR: liII(l) Im®(z + ie) exists and is finite} (4.48)
e—
and
Mg :={zx € R:lim ié’lf Im®(z + ie) = oo} (4.49)
E—

are supports for pqe and us, respectively.

Proof (sketch). Consider the Lebesgue decomposition p = piqc + s, where the singular
part ps is supported on some set of Lebesgue measure zero. Since p,. is absolutely
continuous, its Radon-Nikodym derivative exists a.e. in Mg, (w.r.t. to the Lebesgue
measure and fi,.). By Lemma 4.18 we thus have convergence of Im®(z + i) a.e., and
the set where this holds is a support for p... To prove the statement on the singular
part, one proves that the restriction of u to the set

{r € R: Du(x) < oo} (4.50)
is absolutely continuous (see [Te, Thm A.38]), so us is supported on the complement. [

Corollary 4.20. Let p be a finite Borel measure and ® its Borel transform. For
Lebesgue-almost every x € R, ®(z +ie) has a limit as € — 0.
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4.4 Stability and Instability of oy, Osc, Oac

Proof. For the imaginary part this was already shown in Theorem 4.19. We will reduce
the convergence of the real part to this result. For this, note that /@ is a Herglotz
function with positive real part, so iv/® is also a Herglotz function. By Theorems 4.17*
and 4.19 the limit of

\/@(z +1ie) = Imy/P(x + ic) + Im (i\/tID(m + ie)) (4.51)

exists a.e., and then so does the limit of its square. O

In Exercise 32 we have seen that a real number A\ can be an eigenvalue of T, for at
most one a € R. This shows that the pure-point parts ,ugp, My, are mutually sigular for
a # . We will now show this for the entire singular parts, and discuss some examples
(following [Don)).

Proposition 4.21 (Instability of the singular spectrum). Let T, a € R be the family
of self-adjoint operators defined above and suppose that v is an A-cyclic vector. Then
for a # B the measures pu& and p? are mutually singular.

Proof. Using the formula (compare Exercise 29)

_ Ds(2)
Pal2) = 1 RG] (4.52)

we take the imaginary part, writing ®,(z) = U,(2) +1V4(z) and obtain
m (@5(2) (1+ (0= )Py (2)))

(14 (o = B)Us(2))? + (a — B)?V(2)?
Vs(2)

Va(z) =

= . 4.53
T+ (@ B + (- BV (4:39)
If z € MY (defined as above with ® = @), then this implies that
;gr(l] Va(z +ie) =0, (4.54)
so x ¢ M&. Hence u% and uf have disjoint supports and are mutually singular O

Example 4.22 (Disappearing singular spectrum). Let p € L'(R) be a continuous and
strictly positive function and let v be a finite measure singular with respect to Lebesgue
measure (for example v = dp). We set p to be the normalised sum of the two measures,

pdx + v

= ol + v () (4.55)

! Actually, we cannot apply this theorem as such, since it requires the growth estimate |F(z)| <
MTm(z)™'. There is a more general representation theorem without this assumption, see [Te2,
Thm.3.20] (second edition)
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4 Spectral Theory of Self-Adjoint Operators

and let A = Tj be multiplciation by = on L*(R, 1). Then

US(TO) = supp(l/)
O'ac(T(]) = R

Now let ¢ = 1 be the natural cyclic vector for A and consider the corresponding family
T,. Since ® has positive imaginary part, we see from Exercise 33 that for all A € R

lim iélf Im®y(A +ie) > p(A) > 0. (4.56)
E—
In view of (4.53) this implies that for all a # 0
1
lim sup Im®, (X + ie) < , 4.57
nsup ( ) () (4.57)

and thus M = @. The operators T, have only absolutely continuous spectrum.
If we do not assume that p is positive everywhere, then the reasoning still holds
wherever p > 0, but T}, can have sigular sepctrum where p vanishes.

Example 4.23 (Dense point spectrum and singular continuous spectrum). We start
by constructing a pure-point measure on [0,1]. Let (a,)n € #2 be a square-summable
sequence of positive numbers that is not summable. Set

A = (zk: aj) mod 1. (4.58)

j=1

Then the sequence (A,)n is dense in the unit interval, since the sequence a,, tends to
zero but is not summable. Define a measure p on the unit interval as

o0
1= aix,, (4.59)
k=1
and on R by translation and normalising pj,—1 . = n~=2. Now clearly A = M, on
L?*(R, ) has a dense set of eigenvalues in R given by {\x +n : n,k € N}. Let ¢ =
1 € L*(R, 1) and consider the corresponding family of operators T,,. From Exercise 32
we know that the eigenvalues above are not eigenvalues of T, for o # 0 and by the
proposition the spectral measure fu) is supported on the compement of this set. Now
any A € [0,1] in this complement satisfies

)\knfl <A< )\kn (460)

for an infinite sequence of integers (k,)n. Then

[e.9]

/nw—lw“?"(d” Z(Ak— ixak” Zl— (4.61)

Hence, in view of Exercise 32, T, has no eigenvalues in [0, 1], and by the same argument
anywhere. The spectrum of T, for a # 0 is purely singular continuous, by the next
Proposition.
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Proposition 4.24 (Stability of the absolutely continuous spectrum). Let T,, o € R be
the family of self-adjoint operators of Proposition 4.15 and suppose that ¢ is an A-cyclic
vector. Then for a # [ the measures us. and ,ugc are mutually absolutely continuous,
and Pyo(To)Ty is unitarily equivalent to Py (13)1p.

Proof. By Theorem 4.19 and Corollary 4.20, the set

So i ={reR: lir% ®(x + ie) exists and has non-zero imaginary part} (4.62)
E—

is a support for ug.. On Sg, we have

v .
lim V,, (x + ie) = lim pla +ie)
e—0

=0 (1+ (o — B)Us(z +12))% + (o — B)2Vs(x + ie)2’ (4.63)

which is non-zero, and by the corresponding formula for the real parts, S, = Sz. By
Lemma 4.18, the a density of u%, w.r.t. the Lebesgue measure is given (a.e.) by setting

pa(z) = 2 11_1:% Vol(z + i), (4.64)
&

for z € S,. We then find the density of u2, with respect to u2, as

dus 1
9@ =1 4.65
dﬂgc 51—I>%|1—|—(a—ﬁ)(1)5(1'+i€)|2’ ( )

and the unitary equivalence is given, e.g., by

U: L*(R, ug.) — L*(R, uf.)

. f)
U Iy P N

4.4.2 Instability of spectral types under Hilbert Schmidt perturbations

We have shown that the singular spectrum is unstable under rank one perturbations,
while the absolutely continuous part is stable. When taking sums of rank-one perturba-
tions, the situation depends on the norm in which the sum converges.

Definition 4.25. Let .# be a separable Hilbert space, K € B() compact operator
and kK = (kp)n be the sequence of its singular values (c.f. [FA1, Thm.5.37]; these are the
eigenvalues in case K is symmetric). The operator K is an element of the p-th Schatten
class &, () if k € 7. We call &1(H) the trace class and So(H) the Hilbert-Schmidt
class.

Proposition 4.26. The space S,(), 1 < p < o0 is a Banach space with the norm

" 1/p
|Klls, = tr (K*K)P2) " =[xl
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4 Spectral Theory of Self-Adjoint Operators

where the trace is defined by
tr(K) =) (i, Kvy), (4.66)
j=1

for any complete orthonormal set (¢n)n and K > 0. The Hilbert Schmidt operators,
p =2, form a Hilbert space, and the Holder-type inequality

|1 Kalls, < 1K, | Kalls, (4.67)

holds for K1 € &y, K2 € G, p~t+ ¢t =1.

Proof. The case p = 2 follows by checking that tr(A*B) defines a scalar product on
finite-rank operators. The case p = 1 is an exercise. For the general case see [Te,
Lem.6.12]. O

We will now prove the following result on instability of the spectral type under pertur-
bations of Hilbert-Schmidt class. Later we will also prove that the absolutely continuous
part is stable under perturbations of trace-class.

Theorem 4.27 (Weyl-von Neumann). Let A, D(A) be self-adjoint on the separable
Hilbert space 7. For every e > 0 there exists a self-adjoint Hilbert-Schmidt operator K
with norm ||K||g, < € so that A+ K has pure point spectrum.

Remark 4.28. The theorem means in particular that if A has absolutely continuous
spectrum J#,.(A) = A, there exists a small operator K as above such that J7,.(A +
K) = {0}. The same holds for singular continuous spectrum. Of course, the absolutely
continuous spectrum is part of the essential spectrum, so as a set this remains stable
under the compact perturbation K.

On the other hand, we have already shown that there are operators A with pure
point spectrum such that A+ aP has no eigenvalues, for a rank-one projection P and «
arbitrarily small 4.23. This shows that the spectral types are generally unstable.

For the proof of Theorem 4.27 we need:

Lemma 4.29. Let A, D(A) be self-adjoint on H, and p € . For any 6 > 0
there exists a projection P of finite rank and a self-adjoint K € &o(I) such that
(1= P)l| <0, [|[Klg, <& and the range of P is invariant under A+ P.

Proof. Given § > 0 we may choose L large enough so that

H(l - X[(fL/Q,L/Q}(A))wH <. (4.68)

Let n € N to be chosen later, and set for k=1,...,n

Py = Pa((=L/2+(k=1)L/n, —L/2+kL/n]) = X(~L/24(k—1)1/n—L /2451, /n) (A)- (4.69)
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Set ¢ = 0 if Py = 0 and otherwise ¢y := Pxtp/ || Pxt||. Then the set {¢x, k=1,...n}
is orthonormal by the basic properties of the PVM. Let P be the orthogonal projection
onto the span of this set. Then P has rank at most n, and

(1, Prib)

Py =" oplpr ) = > Py X[(=L/2,0/2) (A), (4.70)
k=1

2 =
ke{l,...,n:pr#0} HPka

so [[(1 = P)yl <.
Now set K = —PA(1— P)— (1 — P)AP. This operator is well-defined since ran(P) C
D(A) (even ||AP| < L/2), symmetric, and has rank r < n. We have

A+ K = PAP+(1—P)A(1 - P), (4.71)

and this leaves the range of P invariant.

It remains to prove the bound on the Hilbert-Schmidt norm of K, by choosing n. First,
we clearly have Apy € ran Py, and thus also PApy € ran P, and (1 — P)py € ran Py.
Consequently,

n

I(1 = P)AP|* = sup > (0, 05){on @) (1 = P)Ag;, (1 — P)Apy)

lell=1 j k=1
- 2
= sup Y (o 0) [ [|(1 — P)Agy|
llell=1 =1
< 1— P)Agy|?
—ke?f‘.‘.}fn}”( ) Al

We estimate this, using that (1 — P)P = 0 and setting A\, = —L/2 + kL/n, by

(1 = P)Apg|| = [|(1 = P)(A — Ae)erll < (A= Ap)prll < L/n. (4.72)
Let n;, 7 =1,...,7 <n be an orthonormal basis of ran K (= ran K*), then
K NE, = D (i, K Kny) < r | K| < n(2L/n)?. (4.73)
j=1
The claim now follows by choosing n large enough. O

Proof of Theorem 4.27. Let (¢,)n be a dense subset of 7. we will prove the Theorem
by applying Lemma 4.29 recursively. Start with ) = 41, § = /2, and denote by P,
K the resulting projection and Hilbert Schmidt operator. In the second step, apply the
Lemma to (1 — P)(A+ K1)(1 — Py) with 1 = (1 — P;)12 and § = £/2%, and extend the
resulting P», Ko to the whole space 5 by zero. Then A 4+ K + K> leaves the ranges of
both P; and P, invariant, since

(A+ K1+ Ko)PL = (A+ K1)PL = Pi(A+ Ky) Py,
(A + Ky + KQ)P2 = ((1 — Pl)(A + Kl)((l — Pl) + KQ)PQ = PQ(A + K; + KQ)PQ.
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4 Spectral Theory of Self-Adjoint Operators

Continuing this procedure, we obtain a sequence of finite-dimensional projections P,
j=1,... with P;P, = 0 and self-adjoint operators K; with |Kj||s, < &27/. The sum
>7—1 K converges in &3 to an operator K with [|K||s, < &. For the projection, note
that

||(1_P1_"'_Pn)¢n||:H(l_Pl_"'_Pnfl)d’n_Pn(l_Pl_"‘—Pnfl)wnH<52_na

and thus for N > n,

N N
> Pipn|=| >, Pi(1=Pr—- = Pipy| <27
j=n+1 j=n+1

This implies that Z;‘;l P; = 1 (with convergence in the strong operator topology),
because the set (¢, )n is dense (note that after removal of ¥ —1,...,1,_1 the set is still
dense, so we may choose n large).

To prove the Theorem we show now that A + K has pure point spectrum. Since the
ranges of the projections P, are finite dimensional and span .77 it is sufficient to prove
that each of these is invariant under A+ K, since P, (A + K)P, has finite rank and thus
pure point spectrum. By construction, P, is a subspace of (1 — P, — -+ — P,_1)
and Kj, 7 > n vanishes on ran P,, so

(A+K)Py=(A+ K1+ -+ K)P,+ > K;P,

j=n+1
———
=0

P (A+ K+ + K,)P,
=P, (A+K)P,.

This completes the proof. O

We remark that the above proof works similarly with K € &,, p > 1. For p =1 it is
not possible to choose n in (4.73) large to make the norm of K small. We will see below
that the ac-spectrum is actually stable under trace-class perturbations.

4.4.3 Perturbation of absolutely continuous spectrum: Scattering theory

We will now investigate in greater generality the stability of the a.c. spectrum that
we found in the example of rank-one perturbations. We will take a different point
of view that emphasizes the dynamics. This is best illustrated in the example of the
Schrodinger operator H = —A 4+ V with a bounded and decaying potential V' (e.g. of
compact support). Consider the behaviour of e~ %) for ¢ € .. We know from the
RAGE theorem (or more precisely Proposition 3.65) that e~*) tends to zero locally,
in particular on the support of V', and

lim Ve ity =o. (4.74)

t—
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4.4 Stability and Instability of oy, Osc, Oac

Hence after a long time the influence of V' becomes negligible and we expect that e Htq)
behaves like a solution to the equation with V' = 0 for large ¢, i.e. that there exists
Y4 € J so that

lim He—”ﬂw - eiAt¢+H = 0. (4.75)

t—o00

Using the unitarity of the groups, this is equivalent to

Y = lim etelBly (4.76)

t—o00

The same argument would hold for ¢ - —oco and some _.

Definition 4.30. Let A, D(A) and B, D(B) be self-adjoint operators on .7#°. We define
the wave-operators by

e T itA —itB
Q:(A,B)=s tl}glooe e

on the domains
D(Q£(A, B)) = { € Hoe(B) : 3 lim_ee Py}, (4.77)

The elements of D(Q24 (A, B)) correspond to the asymptotic outgoing/incoming states
1+, and the range of Q04 correspond to the elements ¢ € 7 for which such states exist.

Proposition 4.31. The sets D(Q1(A, B)) and ran Q4 are closed in J, and
Q1 (A,B): D(Q+(A,B)) - ran Q. (A, B) (4.78)
s unitary.

Proof. If the strong limit {2+ of a uniformly bounded sequence exists on some set, it also
exists on the closure, so D(€y) are closed. We have

Jcwll = Tim e Ae= By = |y, (4.79)

so 24 are isometric, and thus unitary to their range by Exercise 01.
Since ran Q4 are isometric to D(£24), they are complete and thus closed in Z. other
O

Theorem 4.32. The subspaces D(2+(A, B)) are B-invariant and ran Q. (A, B) are A-
invariant. Moreover

ran Q4 (A, B) C 7.(A), (4.80)
Q4 (A,B) (D(B)ND(24)) C D(A) and we have the intertwining property

(4 (A, B)B = AQ.(A, B) (4.81)

on D(B)ND(Qy).
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4 Spectral Theory of Self-Adjoint Operators

Proof. First observe that for s € R

Q:I:(A7 B)efisBQp — lim eitAefi(t+s)Bq/) — lim efisAeiTAefiTBlb _ efisAQ:t(A’ B)d}u
t—+oo T—+o00
(4.82)
so ¢ € D(Qy) iff e By € D(Q) and D(Q4) is B-invariant. The equation also shows
that if ¢ = Qs € ranQu, then e ¥4y = Qe By € ranQy, and ranQy is A-
invariant.

Equation (4.82) can be differentiated w.r.t. s iff ¢ € D(B), which is thereby equiv-
alent to Q41 € D(A) (see Theorem 3.49). The derivative then yields the intertwining
property.

This property together with the unitarity of {2+ means that the restriction of B to
D(€4) is unitarily equivalent to the restriction of A to ran{y. Since D(21) C 5.(B)
by definition this yields that ran Q4 C J%,.(A). O

Of course, we have not yet shown that D(£24(A, B)) really is non-trivial.
Definition 4.33. Let A, D(A) and B, D(B) be as above. We say that
e the wave operators exist if D(Q1 (A, B)) = H#,.(B),
e the wave operators are complete if ran Q4 (A, B) = ,.(A),

e the wave operators are asymptotically complete if they exist, are complete and

%C(B) = {0} = %C(A)

Existence means that any ¢+ € J#,.(B) is an asymptotic incomming/outgoing state.
Completeness means that the dynamics for any ¢ € J#,.(A) can be described in terms
of asymptotic states. If the wave operators exist and are complete, then the ac-parts
of A and B are unitarily equivalent. Asymptotic completeness then means that the
dynamics e~ 4" decompose into periodic parts, acting on Hp(A) and a part with an
asymptotic description in terms of B, acting on .#,.(B). If the wave operators exist
and are complete, then the scattering operator

S:=Q,(A,B)"'Q_(A,B) (4.83)
is unitary on J%.(B).

Lemma 4.34 (Cook’s Criterion). Suppose D(A) C D(B). If for 1» € D(B) N 9.(B)
and some T € R we have

/T |~ AT P ar < oc, (4.84)

then v € D(Q4(A, B)), respectively. In particular, if this condition is fulfilled for all
Y € D(B) N H,0(B) then the wave operators exist.
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4.4 Stability and Instability of oy, Osc, Oac
Proof. For 1) € D(B) we have
. . . . t .
eltAefltB,(/] — elTAeflTBw + 1/ elsA(A . B)eflstdS (485)
T

by the fundamental theorem of calculus. The integrability condition then implies that
the left hand side is Cauchy, so its limit as ¢t — 400 exists. The final statement follows
from the fact that D(€y) are closed. O

This criterion allows for a simple proof of existence of the wave operators for —A +V
if V' decays sufficiently (here in d = 3).

Proposition 4.35. Let V € L?(R3 R) and set H = —A+V, Hy = —A with D(H) =
D(Hy) = H*(RY)  L?(RY). Then the wave operators Q4 (H, Hy) ewist.

Proof. We use the explicit form of the unitary group for Hy:

; 1 jlz=yl?

(e tA¢) (z) = (‘lmW/R e at Y(y)dy. (4.86)

For ¢ € L'(R3) this implies

oitA Al
. < Gt (4.87)
so we have
/ [ve* (”4 |)’3L/22 / 1t 73/2dt < oo. (4.88)
s

Thus, by Cook’s Criterion, we have D(Hg) N L'(R3) € D(Q+). Since this set is dense
in % this shows that the wave operators exist, D(Q1) = # = #,.(Hp). O

Lemma 4.36. Let A, D(A) be self-adjoint, ¢ € H be A-cyclic, P the projection to
span{y}, and T, = A+ oP be the family of rank-one perturbations of Section 4.4.1.
Assume additionally that (jp)ee = p(x)de with p € L (R), where py, is the spectral
measure of ¢ w.r.t. A. Then for all « € R the wave operators Qi (Tn, A) exist.

Proof. Let ¢ € #,.(A), and assume additionally that ¢ = f(A)y with f € .#(R) (the
set of such ¢ is dense). We have

1tTa (T A) —1tA eitTa ¢ <¢’ e_itA(p> ) (4.89)

Now

eTogp| = [ly[l, and
(07 ) = (Pocl Ao ) = [ p(0)f () (4.90)

Since p, f € ., the Fourier transform ,z;f (t) € .. In particular, it is integrable in ¢, so
the wave operators exist. ]
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4 Spectral Theory of Self-Adjoint Operators

In the following, we will sometimes need the subspace .#(A) C #,.(A) given by

M(A) = {p € Hae(A) : pp(da) = py(x)da, py € L7(R)}. (4.91)
This is a Banach space with the norm
1/2
lelleay = log 2 (4.92)

and a dense subspace of J%,.(A) (Exercise; the only property we will need is density).
The main use of this concept is the following:

Lemma 4.37. Let A, D(A) be self-adjoint. For all ¢ € S and ¢ € .#(A) we have

1w e ot < 2m 1 el 2 (4.93)

Proof. Let U, : # — L*(R, j1,) be the partial isometry given by composition of the
projection to 47, and the unitary to L?(R, tiy) used in the spectral theorem. Then

(e ) = [ (U0 @) (da), (.94

so by Plancherel’s Theorem

[, )Pt < 2m [ @U@ < 27 ol 10,0125, < 2 el 17

(4.95)
O

Lemma 4.38. Assume the hypothesis of Lemma 4.36 and let ¢ € #(A), then
1(Q+(Ta, A) — Dgll < \JArlalllell gz 121l (4.96)
Proof. Using the formula (4.85) for ¢t = co and T' = 0, we find
122 — Del* = 2|¢l” — 2Re(Qxp, ) = 2Re ((Qap, (o — 1)p))
= —2alm [~ (@, T,y dr
0

< 2lal ([ [(0up 6Ty Pt) v ([ e 0 ) Y

By Lemma 4.37 we have

00 . 1/2
([" e tupar) ™ < vam [0l el (4.99)

For the term with 24 we additionally use the intertwining property to obtain

oo ) 1/2 oo .
([ Kesp.cmupar) = ([ o0 P Tai) at
0 0
< V2r |loll g |91 Pac(Ta)¥|| < V2r el 191l
Together these yield the claim. O

1/2
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4.4 Stability and Instability of oy, Osc, Oac

Theorem 4.39. Let T, = A+aP be the family of rank-one perturbations of Section 4.4.1
and ¢ A-cyclic. For all o, B the wave operators Q4 (T, Tp) exist and are complete.

Proof. Completeness of Q4 (T, Tp) follows from existence of Q4 (73,T,,) (Exercise), so
it is sufficient to prove the latter for arbitrary «, 8. We follow a similar reasoning as for
Cook’s Criterion. Set

W (t) := eltToe=1tT5, (4.99)

Assume first that ¢ satisfies the conditions of Lemma 4.36 for A = T and that ¢ €
A (Tg). Then the wave operators €2+ (Ty,Tj) exist and by the reasoning of (4.97) satisfy

00 . 1/4
(62 = W)l < V2l = BIVer el 01 ([ 1o Po)Pat) . (4100

Using this twice together with the triangle inequality gives

1/4

(W (&) = Ws)l < 2y/2la - BIVER ol 1] ( L ke e-i%>|2dt>

min{s,t
(4.101)
Note that this inequality is again independent of 2+ with both sides depending con-
tinuously on ¢ € # (for fixed s,t). The set of 1 € #;.(Ts) with p, € .7 is dense?
in J%,.(T3), so the inequality above holds for arbitrary ¢ € J¢ by approximation. By
Lemma 4.37 the right hand side converges to zero as min{s,t} — oo, so the sequence
W (t)e is Cauchy and ¢ € D(2+). Since .# (T}3) is dense this shows that Q4 exists. [

Corollary 4.40. Let A, D(A) be self-adjoint and K = K* an operator of finite rank.
Then the wave operators Qi (A + K, A) exist and are complete.

Proof. The operator K can be written as a finite sum of rank-one operators
N
K=Y ajP;. (4.102)
j=1

Denote for n < N, A, = A+3°7 4 o;Pj. Then Ay1 = Ap +a;Pj and by Theorem 4.39
the wave operators Q4 (A1, Ay) exist and are complete. By the chain rule for the wave
operators (Exercise 39), we then have existence of the wave operators

Qi(A—}—K,A) :Qﬁ:(ANaANfl) . ...Qi(Al,Ao). (4.103)
Completeness follows from considering A = A + K, K = —K and Exercise (7). O

We can also compare the wave operators Qi with the unitary U : LR, u2.) —
L?(R, u2.) found in Proposition 4.24. By the following proposition we have U* =
US4 (T, Ty)

2, is isomorphic to L*(R, pydx) and in the latter space the set of functions g = fp;1 with f € .¥

is dense. The spectral measure of g(T)v has density |f|* € 7. Density in #,.(Ts) of such vectors
follows by decomposing into cyclic subspaces.
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4 Spectral Theory of Self-Adjoint Operators

Proposition 4.41. Let Ty, ¢ be as in Theorem 4.39, assuming additionally that p° =
pl.(dx) = p(z)dz with p € CO", r > 0. Denote by Ug the unitary Uy + Hae(To) —
L*(R, u,). Then

1

(V59T T} ) () =l 3o (4.104)

Proof. Let f € L*(R, ud.), ¢ = (U$)* f, then we can calculate

+oo . .
(FUB (T, Ty) = D) = e = B) [ (e Tos) (e Pt
+oco . -
=ia—=p) [ [ T@et e Tt eyt
Using Exercise T26 this equals

(o O~ 1) =ty [ [ TG0 0T ()t (4.105)

e—0

The dt-integral yields

[T it(Te—a 1 (y)dy
it(Tg—xFie) _ o Py
1/0 (4, e~ H(Tp—aF ¢>dt_<w,Tﬁ_x¢i€¢>_/y_x:Fi€. (4.106)
Thus
(e, (9 — 1) = (@ B) i [ F(a) / me (da). (4.107)

In the limit, we have
We thus find

(U0 = lim [ F@)(1+ (83— a)@a(o & i6))pse(do)

= lm {f, (14 (6 — ) ®5(- £16))) 2 g )

Using Holder continuity of p we can pass the limit under the integral (compare Exercise
30) and obtain

(U9029) (@) = lim (1 + (8 — @)@y (w + i)

1
=1 .
22011 (a0 — B)Bu(z £ ic)

O]

Remark 4.42. Supposing additionally that p = f2 for f € C%", r > 1/2 (say for
B = 0) we can show that J%.(T,) = {0} for o # 3, so assuming that .7;.(4) = {0}
we have asymptotic completeness. With what we have proved, we can at least see
that every element of M is an eigenvalue: If A € M$ then necessarily p(A) = 0 and
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4.4 Stability and Instability of oy, Osc, Oac

lim._,0 Po(\ £ i) = —a~ !, since otherwise Im®, has a finite limit. Then, using that
r>1/2,
f2
———=dx < 0. 4.108
L et (4.108)
This implies that A is an eigenvalue of T, by Exercise 32. Showing that A cannot also
be part of the singular continuous spectrum requires additional tools.
In general, one does not have asymptotic completeness, since a dense set of eigenvalues
of A may turn into sc-spectrum of T, as we have seen in Example 4.23.

We will now generalise our results on existence and completeness of wave operators to
perturbations of trace-class and relative trace-class. For this, we will use a more general
notion of wave operator. Let J#1, % be Hilbert spaces, A, D(A) self-adjoint on J#4, B,
D(B) self-adjoint on %, and J : %] — % a bounded operator. Then the generalised
wave operator is defined by

IR itA 7 —itB
QL (A, B, J)=s tl}lrinooe Je 7,

D(Qx(A, B, J)) = {¢ € Puc(B) i : 3 lim eltd Je By, (4.109)

We will use these as a technical tool, but such operators are also relevant in many-
body scattering. For example, a system with three particles may have asymptotic states
that consist of two freely moving particles, one of which is a bound system of two of the
original particles, like an atom or molecule.

Theorem 4.43 (Pearson). Let 74 = % and J € B(J). If there exists C € &1(H)
such that for all ¢ € D(A), ¢ € D(B)

(Ap, JY) — (J ¢, BY) = (p, CY), (4.110)
then D(Q4(A, B, J)) = P,.(B)A.

Proof. The condition means that AJ — JB = C in the sense of quadratic forms. For
simplicity we assume additionally that J maps D(B) to D(A), so we may treat this as
an equality of operators. Let

Wy(t) = et je 1B, (4.111)

then it suffices to prove that
(W5 (8) = Wi())nll> = (0, Wi (W(t) = Wr(s))n) — (n, Wi (s)(W(t) — WJ((S))TD)
4.112

tends to zero as s,t — +oo for all 7 in some dense set D C 7#,.(B). Let us consider the
case s,t — +o0o. We can express the difference as

t .
W) — Wi(s) = i / ¢ (AT — JB)e " Pdr. (4.113)
s T
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4 Spectral Theory of Self-Adjoint Operators

This operator is compact since C is compact and the integrand is uniformly bounded
(take a bounded sequence (¢, )N converging weakly to zero and use dominated conver-
gence to see that (W;(t) — Wy(s))w, converges to zero in norm). By Proposition 3.65
we thus have for all n € J#,.(B)

lim (W (t) — Wy(s))e By =0. (4.114)

p—r00

This implies that

(0, W3 () (W () = Wy (s))m)
= lim (1, W5 (0)((W () = Wi (s)m) = (0. e PPWS(O(W(t) = W (s))ePn).

Now assuming that n € D(B)
(1, W3 ()W (£)) — (n, e PPW (s)W(t)e™FPn)
P .
= i [ e, W ()W (1)) ).
0
We have, since JB = —C + AJ,

{B, Wj(S)WJ(t)] _ eisBBJ*ei(t—s)AJe—itB _ eisBJ*ei(t—s)AJBe—itB
_ _eisBC*ei(t—s)AJe—itB + eiSBJ*ei(t_S)ACe_itB.
Inserting this into the equation before, we obtain

p . . . .
i/o <e—1(7+s)B77, (C*el(t—S)AJ _ J*el(t—S)AC) e_l(T+t)B77>dT. (4.115)

An upper bound of, e.g., the second term is given by expanding C = 3" ¢, (¥, ) with
(¢n)N, (¥n)n orthonormal and using the Cauchy-Schwarz inequality

1(7'+s n, J*e i(t—s) ><wm i(t+t)B 17>d7'

- 1/2 /oo oo . 1/2
< (Z / el J*el<t-s>%n>\2df> (Z / |cnu<¢n,e-”3n>|2df>
n=1"9% n=1

(4.116)
Assume that n € .#(B). Then by Lemma 4.37
> —irB, |2 2 2
| e ™) 2ar < 2m sl Il (@.117)
and -
/0 (™ P, T g, Pdr < 27 |l 1717 Inl% (4.118)
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Collecting all the terms (there are four, which all satisfy a similar estimate), we obtain
the upper bound

(0, Wi (&) (W () = W (s))n)]

) 1/2
< ay/2m e, Wl 11 (35 [ bl ifar) L g

and the right hand side tends to zero as s,t — oo. This shows that n € D(Q4(A4, B, J))

and, since .#(B) N D(B) is dense in J%,.(B), that D(Q4(A, B,J)) = H5.(B). O

Corollary 4.44. Assume the hypothesis of Theorem 4.43 and let p € M4 (B). Then
1(Q=(4, B,J) = 1) oIl < 167 |Clls, 171 1011 5 (4.120)

Proof. Set s =0 in (4.119) and let t — co. O

Corollary 4.45 (Kato-Rosenblum). Let A, D(A) and B, D(B) = D(A) be self-adjoint
on A and suppose that A — B € &1(H#). Then Qi (A, B) exist and are complete.

Proof. In the previous theorem take J = 1. This condition is now symmetric, so
Q4 (B, A) also exist, and this gives completeness by Exercise 40. O

Theorem 4.46 (Kuroda-Birman). Let A, D(A) and B, D(B) be self-adjoint on 7 and
suppose that
Ri(A) — Ri(B) € 6,(2). (4.121)

Then Q4. (A, B) exist and are complete.
Proof. Take J = Ri(A)Ri(B), then

(Ap, o) = (J7p, B) = (A +i)p, Jib) — (J7p, (B —1)¢) = (¢, (Ri(A) — Ri(B)) ¢).

(4.122)
By Theorem 4.43, the limit
itA —itB
tlgcnooe Ri(A)R;(B)e "7 (4.123)
exists for all ¢ € J.(B). Since R;(A) — R;i(B) is compact,
lim e (Ri(A) — Ri(B)) Ri(B)e By =0, (4.124)
for all ¢ € 7.(B) and the limit
lim e R;(B)%e By (4.125)

t—+o0

exists. In particular, we may choose 1) = (B —i)%¢ with some ¢ € D(B?), and conclude
that

. itA —itB
tl}rinooe e "y (4.126)
exists. By density of D(B?) in 2, we find that Q4 (A, B) exists, and by symmetry of
the conditions that Q4 (B, A) exists and is complete. O
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4 Spectral Theory of Self-Adjoint Operators

The trace-class condition for the difference of resolvents is much more useful than the
simple trace condition, since it can be applied to —A + V.

Corollary 4.47. Letd <3 and V € L'(R*, R)NL3(R?) and set H = —A+V, Hy = —A
with D(H) = D(Hy) = H*(RY) c L?>(R%). Then the wave operators Qi (H, Hy) exist
and are complete.

Proof. We have to show that R;(H) — Ri(Ho) € &1(L?(R%)). We have

Ri(H) — Ri(Ho) = —Ri(H)V Ri(Ho) = Ri(H)(Ho — i) Ri(Ho)VRi(Ho).  (4.127)

€B(#)

By the boundedness of the pre-factor (which follows from Kato-Rellich, since V' € L?) it
is sufficient to show that R;(Ho)V Ri(Hp) is trace-class. This can be achieved by proving
that Rij(Hy)V R;(Hy) = T*S with S,T € &3. We choose

T = [V['*R_i(H,)
S = sgn(V)|V|"2Ri(Ho),
which clearly yields the right result for 7%S. Both T and S have the form f.% 1¢.Z,
where |f| = |[V|'/?2 € L? if V € L' and g(k) = (k* F i), which is an element of L?(R?)
for d < 3. It thus follows from Exercise 42 that S,T € Go. ]
For d = 3 we can apply both this Corollary and the earlier Proposition. The Corollary

needs the additional assumption that V € L', but it also gives completeness of the wave
operators!

Theorem 4.48. Let A, D(A) and B, D(B) be self-adjoint on S and suppose that for
some integer m > 1 and all z € C\ R

R.(A)™ — R,(B)™ € &,(). (4.128)
Then Q4 (A, B) exist and are complete.

Proof. We use the same strategy as for the Kuroda-Birman Theorem. Let
J=> Ri(A)™R(B)™". (4.129)
Then

(A—i)J —J(B—1i) = R(A)™! mz_:l (R1<A)£Ri(3)m_ﬁ _ Ri(A)K-l-lRi(B)m—é—l)
=0

= “Ri(A)" (R(A)" ~ Ri(B)™) € 6.
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4.4 Stability and Instability of oy, Osc, Oac

This gives existence of Q4 (A, B, J). Now

3

J — mR;(B)*™ Ri(A)™R;(B)"~* — Ri(B)*™

3
ol
o~ O

(Ri(A)™* = Ri(B)™**) Ry(B)™".
0

~
Il

The summand for ¢ = 0 is compact, and this also holds for £ > 0, since

~Dfe—1) dt
R,(A)™+ = (——R A)™ 4.130
so Ri(A)™** — Ry(B)™** can be approximated in norm by compact operators by writing
out the difference quotients. We conclude that for ¢ = (B —i)*™¢, ¢ € D(B?™), the
limits
. A (p\2m —itB ) _ s itA —itB

tlgimooe Ri(B) e "7 tl}rinooe e "y (4.131)
exist. By density of D(B?*™) this gives existence of Q4 (A, B), and by symmetry of the
conditions completeness. O

Theorem 4.49. Let V € L'(R? R)N H?>™(RY) with m = min{n € N:n > d/2—1} and
set H=—A+V, Hy = —A with D(H) = D(Hy) = H*(R%) c L?*(R%). Then the wave
operators Q4 (H, Hy) exist and are complete.

Proof (sketch). We want to apply the previous theorem for the given m. We have

—1
Z R.(H)' (R.(H) — R.(Hy)) R,(Hy)™ !
=0

~

-1
_ RZ(H)ZJerRZ(HO)mfZ’
£=0

R.(H)™ — R,(Hy)™ =

so it is sufficient to prove that R,(H)* 'V R, (Ho)™ ¢ € &1(L?*(R%)) for every £ < m —1.
Using that V € H?*™(R%) one can show that HYR,(H)* is bounded for all k < m,
so we may replace R,(H) by R,(Hp) for this purpose. We now use the inequality
IKL|g, < HK||6P ||L||6q, with p~t + ¢! = 1, splitting the operator as

K = R,(Ho)*tsgn(V)|V|¥/P
L =|V|Y9R,(Hy)™ "
To prove the &,-bounds with the appropriate p, ¢, we use the Kato-Seiler-Simon inequal-
ity
M7 MgF||s < CpllfllLe lgllr (4.132)

(we have proved this for p = oo, in Exercise 09, and for p = 2, Exercise 42; the inequality
for general p follows from an interpolation argument). Under the condition that m+1 >
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4 Spectral Theory of Self-Adjoint Operators

d/2, we can choose p > 2(%1) and g > W.LD’ p~ ! + ¢! = 1, which give the necessary
LP-bounds.
The claim now follows from Theorem 4.48. ]
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Symbol Explanation Page
X Usually a complex Banach space
B(X,Y) Banach space of bounded linear operators from X to Y
B(X) Banach space of bounded linear operators from X to X
X’ Space of continuous linear functionals on X (=B(X,C))
I Complex Hilbert space
A,D(A) Densely defined linear operator
Y(A) Graph of A 3
A Closure of (A, D(A)) 3
[l[pcay  Graph norm on D(A) 3
A* (Hilbert-) adjoint of (A, D(A)) 5
ker(A) Kernel of A
ran(A)  Range of A
p(A) Resolvent set of A 4
R.(A) Resolvent of A in z € p(A) 4
o(A) Spectrum of A 4
P Banach space of p-summable sequences N — C
co Banach space of sequences converging to zero
€00 Space of sequences that are eventually zero
Cck(Q) Space of k-times differentiable functions Q@ — C
ckQ) Space of k-times differentiable functions {2 — C with compact support,

supp f € Q2
H*(Q Sobolev space of functions in L?(Q2) with k weak derivatives in L? 13
HE(Q) Closure of CF(Q) in H*(Q) 15
S, p-th Schatten class 71
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