Lösungen:

42. Koordinatentransformationen

München liegt auf ca. $48^{\circ} =: \varphi$ nördlicher Breite und ca. $12^{\circ} := \psi$ östlicher Länge. Sei $\mathcal{M} := \{m_1, m_2, m_3\}$ die lokale Basis für München des \mathbb{R}^3 wie folgt:

- m_1 weise nach Norden.
- m_2 weise nach Westen.
- m_3 weise senkrecht nach oben.

Man denke sich den Erdmittelpunkt als den Ursprung des \mathbb{R}^3 , also die Basisvektoren m_1, m_2, m_3 im Erdmittelpunkt beginnend.

Sei $\mathcal{E} := \{e_1, e_2, e_3\}$ folgende Standardbasis des \mathbb{R}^3 :

- e_1 weise vom Erdmittelpunkt auf den Schnittpunkt des Äquators mit dem Längen-Halbkreis von München (12°).
- e_2 weise in der Äquatorebene auf den Längenhalbkreis 102° (also sei w_2 orthogonal zu w_1).
- e₃ weise vom Äquator zum Nordpol.
- (a) Man stelle die Basisvektoren m_1, m_2, m_3 als Spalten bzgl. der Basis \mathcal{E} dar. Die Basisvektoren m_1, m_2, m_3 gehen aus e_1, e_2, e_3 durch folgende nacheinander ausgeführte Abbildungen hervor:
 - Drehung um die e_2 -Achse um den Winkel φ , dabei bleibt e_2 fest, e_1 geht über in m_3 , e_3 geht über in m_1 .

Man hat also zuerst eine Drehung um die e_2 -Achse mit der Matrix

$$\left(\begin{array}{ccc} \cos\varphi & 0 & \sin\varphi \\ 0 & 1 & 0 \\ -\sin\varphi & 0 & \cos\varphi \end{array}\right).$$

Die Bildvektoren von e_1, e_2, e_3 bei dieser Drehung seien $e'_1, e'_2 = e_2$ und e'_3 .

Die lokalen Basisvektoren sind dann nach der getroffenen Festlegung:

$$m_1 = e_3', m_2 = -e_2, m_3 = e_1'.$$

Die Bildvektoren m_1, m_2, m_3 von e_1, e_2, e_3 sind also $e'_3, -e_2, e'_1$ und damit die Spalten der folgenden Abbildungsmatrix:

$$B := \left(\begin{array}{ccc} -\sin\varphi & 0 & \cos\varphi \\ 0 & -1 & 0 \\ \cos\varphi & 0 & \sin\varphi \end{array} \right).$$

(b) Man zeige: Die Transformationsmatrix $T_{\mathcal{M}}^{\mathcal{E}}$ ist $T := \begin{pmatrix} -\sin \varphi & 0 & \cos \varphi \\ 0 & 1 & 0 \\ \cos \varphi & 0 & \sin \varphi \end{pmatrix}$.

Nach Vorlesung ist $T = B^{-1}$. Man sieht leicht: $B^{-1} = B$, also T = B.

(5 Punkte)

43. Koordinatentransformationen

Angaben wie in der vorherigen Aufgabe.

Die Erddrehung wird dargestellt, indem man statt der "absoluten" Basis $\mathcal E$ aus der vorherigen Aufgabe eine von der Zeit t abhängige Basis $\mathcal{E}(t) = \{e_1(t), e_2(t), e_3(t)\}$ einführt, die aus \mathcal{E} durch Anwendung der Drehung mit der Drehmatrix

$$D_E(t) := \begin{pmatrix} \cos \omega t & -\sin \omega t & 0 \\ \sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 hervorgeht; dabei sei $\omega := 2\pi/86164$ (da die Erde in 86164 Sekunden einmal um ihre Achse rotiert). Es gilt $\mathcal{E}(0) = \mathcal{E}$.

in 86164 Sekunden einmal um ihre Achse rotiert). Es gilt $\mathcal{E}(0) = \mathcal{E}$.

Entsprechend sei die lokale Matrix $\mathcal{M}(t)$ definiert.

- (a) Man weise nach: Für alle t gilt: $\mathcal{T}_{\mathcal{M}(t)}^{\mathcal{E}(t)} = \mathcal{T}_{\mathcal{M}}^{\mathcal{E}}$. Die Basisvektoren $m_1(t), m_2(t), m_3(t)$ gehen aus $e_1(t), e_2(t), e_3(t)$ durch die entsprechenden nacheinander ausgeführte Abbildungen hervor wie im Fall t=0:
 - Drehung um die $e_2(t)$ -Achse um den Winkel φ , dabei bleibt $e_2(t)$ fest, $e_1(t)$ geht über in $m_3(t)$, e_3 geht über in $m_1(t)$. Die Drehmatrix ist die gleiche Matrix wie oben.

Die Bildvektoren von $e_1(t)$, $e_2(t)$, $e_3(t)$ bei dieser Drehung seien $e'_1(t)$, $e'_2(t) = e_2(t)$ und $e_3'(t)$.

Die lokalen Basisvektoren sind dann nach der getroffenen Festlegung:

$$m_1(t) = e'_3(t), m_2(t) = -e_2(t), m_3(t) = e'_1(t).$$

Wie in der vorherigen Aufgabe findet man die Abbildungsmatrix B, und es ist $\mathcal{T}_{\mathcal{M}(t)}^{\mathcal{E}(t)} = B^{-1} = \mathcal{T}_{\mathcal{M}}^{\mathcal{E}}(=B).$

(b) Man bestimme die Transformationsmatrix $\mathcal{T}_{\mathcal{E}(t)}^{\mathcal{E}(0)}$

Es ist $\mathcal{T}_{\mathcal{E}(t)}^{\mathcal{E}(0)} = \mathcal{M}_{\mathcal{E}(t)}^{\mathcal{E}(0)}(\mathrm{id}_{\mathbb{R}^3})$. Die Spalten enthalten also die Koeffizienten bei Darstellung der Basisvektoren e_1, e_2, e_3 in Bezug auf die neue Basis $e_1(t), e_2(t), e_3(t)$:

$$e_1 = \cos \omega t e_1(t) - \sin \omega t e_2(t),$$

$$e_2 = \sin \omega t e_1(t) + \cos \omega t e_2(t),$$

$$e_3=e_3(t).$$

Die Matrix ist also wiederum eine Drehmatrix, und zwar zum Winkel $-\omega t$:

$$D^{-} = \mathcal{T}_{\mathcal{E}(t)}^{\mathcal{E}(0)} = \begin{pmatrix} \cos \omega t & \sin \omega t & 0 \\ -\sin \omega t & \cos \omega t & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(c) Man bestimme die Transformationsmatrix $\mathcal{T}_{\mathcal{M}(t)}^{\mathcal{M}(0)}$. (Hinweis: Man benutze Satz 4.2.12.4 der Vorlesung.)

$$\mathcal{T}^{\mathcal{M}(0)}_{\mathcal{M}(t)} = \mathcal{M}^{\mathcal{M}(0)}_{\mathcal{M}(t)}(\mathrm{id}_{\mathrm{IR}^3}) =$$

(Achtung! Das Symbol M kommt hier in zwei verschiedenen Bedeutungen vor!)

$$\mathcal{T}_{\mathcal{M}(t)}^{\mathcal{E}(t)} \mathcal{M}_{\mathcal{E}(t)}^{\mathcal{E}(0)} (\mathrm{id}_{\mathrm{IR}^3}) \mathcal{T}_{\mathcal{M}(t)}^{\mathcal{M}(0)} =$$

$$\mathcal{T}_{\mathcal{M}(t)}^{\mathcal{E}(t)} \mathcal{T}_{\mathcal{E}(t)}^{\mathcal{E}(0)} \mathcal{T}_{\mathcal{M}(t)}^{\mathcal{M}(0)} =$$

$$TD^-T^{-1} =$$

$$TD^-T =$$

$$\begin{pmatrix} -\sin\varphi & 0 & \cos\varphi \\ 0 & -1 & 0 \\ \cos\varphi & 0 & \sin\varphi \end{pmatrix} \begin{pmatrix} \cos\omega t & \sin\omega t & 0 \\ -\sin\omega t & \cos\omega t & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\sin\varphi & 0 & \cos\varphi \\ 0 & -1 & 0 \\ \cos\varphi & 0 & \sin\varphi \end{pmatrix} =$$

$$\left(\begin{array}{ccc} -\sin\varphi & 0 & \cos\varphi \\ 0 & -1 & 0 \\ \cos\varphi & 0 & \sin\varphi \end{array} \right) \left(\begin{array}{ccc} -\cos\omega t\sin\varphi & -\sin\omega t & \cos\omega t\cos\varphi \\ \sin\omega t\sin\varphi & -\cos\omega t & \sin\omega t\cos\varphi \\ \cos\varphi & 0 & \sin\varphi \end{array} \right) =$$

$$\begin{pmatrix} \sin^2\varphi\cos\omega t + \cos^2\varphi & \sin\omega t\sin\varphi & -\sin\varphi\cos\omega t\cos\varphi + \sin\varphi\cos\varphi \\ -\sin\omega t\sin\varphi & \cos\omega t & \sin\omega t\cos\varphi \\ -\sin\varphi\cos\omega t\cos\varphi + \sin\varphi\cos\varphi & -\sin\omega t\cos\varphi & \cos\omega t\cos^2\varphi + \sin^2\varphi \end{pmatrix}$$

(d) Man stelle den Vektor m_1 bzgl. der Basis $\mathcal{M}(t)$ dar.

Die Spaltenvektoren der Matrix $\mathcal{T}_{\mathcal{M}(t)}^{\mathcal{M}(0)} = \mathcal{M}_{\mathcal{M}(t)}^{\mathcal{M}(0)}(\mathrm{id}_{\mathbb{R}^3})$ enthalten die Koeffizienten bei Darstellung der Basisvektoren m_1, m_2, m_3 bzgl. der Basis $\mathcal{M}(t)$. Zum Vektor m_1 gehört somit der erste Spaltenvektor dieser Matrix, das ist

$$\begin{pmatrix} \sin^2 \varphi \cos \omega t + \cos^2 \varphi \\ -\sin \omega t \sin \varphi \\ -\sin \varphi \cos \omega t \cos \varphi + \sin \varphi \cos \varphi \end{pmatrix}$$

Zur Zeit t=0 ist diese Spalte $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, wie es sein soll.

Nach einer Stunde (t = 3600) ist diese Spalte ca.
$$\begin{pmatrix} 0.9995180444 \\ -0.03104014536 \\ 0.0004339548 \end{pmatrix}$$

Der Winkel zwischen dieser Spalte und m_1 ist ca. 1.778928896°.

Aufgabe: Vergleiche dieses Ergebnis mit dem experimentellen Ergebnis am großen Foucault-Pendel im Turm des Deutschen Museums.

(Die Rechnungen erfolgten mit Maple.)

(5 Punkte)

44. Permutationen

- (a) Man stelle folgende Permutationen als Produkt von Transpositionen dar:
 - i. (2 3) hat schon die gewünschte Form (Produkt mit einem Faktor).

ii.
$$(1\ 2\ 3) = (1\ 3)(1\ 2)$$

iii.
$$(1 5 4 7) = (1 7)(1 4)(1 5)$$

iv.
$$(1\ 2\ 5\ 3\ 8\ 4\ 11) = (1\ 11)(1\ 4)(1\ 8)(1\ 3)(1\ 5)(1\ 2)$$

(b) Man zeige: Ein Zyklus der Länge k ($k \ge 2$) kann als Produkt von k-1 Transpositionen geschrieben werden.

Der Beweis orientiert sich an den obigen Beispielen. Man zeigt durch Induktion:

$$(n_1 \ n_2 \ \dots \ n_k) = (n_1 \ n_k)(n_1 \ n_{k-1})\dots(n_1 \ n_2)$$

Das ist klar für n=2 (Induktionsanfang). Der Induktionsschluß folgt aus

$$(n_1 \ n_2 \ \dots \ n_{k+1}) = (n_1 \ n_{k+1})(n_1 \ n_2 \ \dots \ n_k)$$
 für $k \ge 2$.

(4 Punkte)

45. Permutationen

Man zeige: In jeder Permutationsgruppe ist die Zahl der geraden und der ungeraden Permutationen gleich.

(4 Punkte)

Beweis. Für $n\geq 2$ sei A_n die Menge der geraden Permutationen, U_n die Menge der ungeraden Permutationen. Dann gilt $S_n=A_n\cup U_n$.

Die Abbildung $f: (\hat{12}): S_n \to S_n$, $\sigma \mapsto (12)\sigma$ ist bijektiv (wegen $f \circ f$ gilt $f^{-1} = f$) und bildet A_n auf U_n ab, U_n auf A_n . Damit haben A_n und U_n jeweils n!/2 Elemente.