Prof. Dr. Günther Kraus

Übungen zur Vorlesung Differential– und Integralrechnung II (NV)

- 17. Man untersuche die folgenden Punktfolgen im \mathbb{R}^2 auf Konvergenz und gebe gegebenenfalls ihren Grenzwert an. Welche der Folgen besitzen Häufungspunkte?
 - a) $(a_k)_{k\in\mathbb{N}}$ mit $a_k := \left(\frac{\sqrt{2k}}{\sqrt{k+1}}, \frac{2k}{k^2+1}\right)$ für $k \in \mathbb{N}$,
 - b) $(a_k)_{k\in\mathbb{N}}$ mit $a_k := \left(\cos\frac{k\pi}{2}, (-1)^k \frac{k}{k+1}\right)$ für $k \in \mathbb{N}$,
 - c) $(a_k)_{k\in\mathbb{N}}$ mit $a_k := \left(\cos\frac{1}{k}, k\sin\frac{1}{k}\right)$ für $k \in \mathbb{N}$,
 - d) $(a_k)_{k\in\mathbb{N}}$ mit $a_k := (k\cos\frac{1}{k}, \sin\frac{1}{k})$ für $k \in \mathbb{N}$.
- 18. a) Gegben seien die Kurven $g, h : [0, \infty[\to \mathbb{R}^2,$

$$q(t) := (t, e^t),$$

$$h(t) := (t^2, e^{t^2}).$$

Man skizziere g ung h, bestimme ihre Tangentialvektoren für $t=\frac{1}{2},1,2$ und suche nach singulären Punkten.

b) Es sei $f: [-\pi, \pi] \to \mathbb{R}^2$ definiert durch

$$f(t) := (\sin(2t)\cos(t), \sin(2t)\sin(t)).$$

Man skizziere die Kurve und zeige, dass $f|]0,\pi[$ injektiv und regulär ist.

- 19. (Staatsexamen Herbst 2003.) Seien p ein Punkt und M eine offene Teilmenge von \mathbb{R}^2 . Man beweise, dass auch $\{p+x|x\in M\}$ eine offene Teilmenge von \mathbb{R}^2 ist.
- 20. (Staatsexamen Herbst 1994.) Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge von Funktionen $f_n:[0,1]\to\mathbb{R}$, die gleichmäßig gegen eine stetige Funktion $f:[0,1]\to\mathbb{R}$ konvergiert. Man zeige: Hat f keine Nullstelle, so hat für ein geeignetes $n_0\in\mathbb{N}$ keine der Funktionen f_n mit $n\geq n_0$ eine Nullstelle.

Jede Aufgabe zählt 4 Punkte.

 $\bf Abgabe$ bis Mittwoch, den 23. Mai 2007, 11^{15} Uhr (Kästen vor der Bibliothek oder in der Vorlesung).