Übungen zur Vorlesung Differential- und Integralrechnung I (NV)

13. Man zeige, dass für eine natürliche Zahl $n \in \mathbb{N}$ gilt:

a)
$$\binom{n}{k} \frac{1}{n^k} \leq \frac{1}{k!} \qquad \text{für alle } k \geq 0,$$

b)
$$2 \le \left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!} \qquad \text{(mit Hilfe von a))}.$$

(5 Punkte)

14. Man berechne $\lim_{n\to\infty} a_n$ für

a)
$$a_n = \frac{23n^2 + 2n - 3}{11n^2 + 12} \qquad (n \in \mathbb{N}),$$

b)
$$a_n = \sum_{k=1}^n \frac{1}{k(k+1)} \qquad (n \in \mathbb{N}).$$

(4 Punkte)

15. Man gebe jeweils Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ reeller Zahlen an mit

$$\lim_{n\to\infty} a_n = \infty \text{ und } \lim_{n\to\infty} b_n = 0,$$

so dass jeder der folgenden Fälle eintritt:

- a) $\lim_{n\to\infty} (a_n b_n) = +\infty$,
- b) $\lim_{n\to\infty} (a_n b_n) = -\infty$,
- c) $\lim_{n\to\infty} (a_n b_n) = c$ für ein vorgegebenes $c \in \mathbb{R}$,
- d) die Folge $(a_n b_n)_{n \in \mathbb{N}}$ ist beschränkt aber nicht konvergent.

(8 Punkte)

16. Zeigen oder widerlegen Sie, dass für eine konvergente reelle Folge $(a_n)_{n\in\mathbb{N}}$, $a\in\mathbb{R}$ und die Folge $(a_n-a)_{n\in\mathbb{N}}$ gilt:

a)
$$\lim_{n\to\infty}a_n=a\iff\lim_{n\to\infty}(a_n-a)=0,$$
 b)
$$a_n>a\text{ für alle }n\in\mathbb{N}\iff\lim_{n\to\infty}a_n>a.$$
 (4 Punkte)

 $\bf Abgabe$ bis Mittwoch, den 15. November 2006, 11^{15} Uhr (Kästen vor der Bibliothek oder in der Vorlesung).

Übungen Alexander Böhm, Mittwoch 13⁰⁰ Uhr, B040, Volker Wittmann, Mittwoch 16¹⁵ Uhr, B004, Daniel Bembé, Freitag 9¹⁵ Uhr, B004, Sprechstunden jeweils nach den Übungen, Sprechstunde Prof. Kraus, Mittwoch und Freitag 13¹⁵ Uhr, 401.