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Abstract

In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying
the statement that these models are small worlds. The models studied here are such that edges are
attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models.
There is a substantial amount of literature proving that, quite generally, PA-graphs possess power-law
degree sequences with a power-law exponent τ > 2.

We prove that the diameter of the PA-model is bounded above by a constant times log t, where t
is the size of the graph. When the power-law exponent τ exceeds 3, then we prove that log t is the
right order for the diameter, by proving a lower bound of this order, both for the diameter as well as
for the average distance. This shows that, for τ > 3, distances are of the order log t. For τ ∈ (2, 3), we
improve the upper bound to a constant times log log t, and prove a lower bound of the same order for
the diameter. Unfortunately, this proof does not extend to average distances. These results do show
that the diameter is of order log log t.

These bounds partially prove predictions by physicists that the average distance in PA-graphs are
similar to the ones in other scale-free random graphs, such as the configuration model and various
inhomogeneous random graph models, where average distances have been shown to be of order log log t
when τ ∈ (2, 3), and of order log t when τ > 3.

1 Introduction

In the past decade, many examples have been found of real-world complex networks that are small worlds
and scale free. The small-world phenomenon states that distances in networks are small. The scale-free
phenomenon states that the degree sequences in these networks satisfy a power law. See [3, 24, 39] for
reviews on complex networks, and [5] for a more expository account. Thus, these complex networks
are not at all like classical random graphs (see [4, 9, 35] and the references therein), particularly since
the classical models do not have power-law degrees. As a result, these empirical findings have ignited
enormous research on random graph models that do obey power-law degree sequences. See [11] for the
most general inhomogeneous random graph models, as well as a review of the models under investigation.
Extensive discussions of various scale-free random graph models are given in [21, 25].

While these models have power-law degree sequences, they do not explain why many complex networks
are scale free. A possible explanation was given by Barabási and Albert [6] by a phenomenon called
preferential attachment (PA). Preferential attachment models the growth of the network in such a way
that new vertices are more likely to add their edges to already present vertices having a high degree. For
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example, in a social network, a newcomer is more likely to get to know a person who is socially active,
and, therefore, already has a high number of acquaintances (high degree). Interestingly, PA-models with
so-called affine PA rules have power-law degree sequences, and, therefore, preferential attachment offers
a convincing explanation why many real-world networks possess this property. There is a large amount
of literature studying such models. See e.g. [2, 10, 12, 13, 14, 15, 17, 22] and the references therein.
The literature primarily focusses on three main questions. The first key question for PA-models is to
prove that such random graphs are indeed scale free [2, 10, 12, 13, 17, 22], by proving that their degree
sequence indeed obeys a power law with a certain power-law exponent τ > 2. The second key question for
PA-models is their vulnerability, for example to deliberate attack [13] or to the spread of a disease [7]. The
third key question for PA-models is to show that the resulting models are small worlds by investigating
the distances in them. See in particular [15] for a result on the diameter for a PA-model with power-law
exponent τ = 3. In non-rigorous work, it is often suggested that many of the scale-free models, such
as the configuration model, the inhomogeneous random graph models in [11] and the PA-models, have
similar properties for their distances. Distances in the configuration model have been shown to depend on
the number of finite moments of the degree distribution. Similar results are true for the so-called rank-1
inhomogeneous random graph (see e.g. [18, 19, 26, 40]). The natural question is, therefore, whether the
same applies to preferential attachment models. This is the main goal of the present paper, in which we
investigate the diameter of scale-free PA-models.

The remainder of this section is organized as follows. We first introduce the models that we will
investigate in this paper. Then we give the main results and conclude with a discussion of universality in
power-law random graphs.

In this paper, we investigate the diameter in some PA-models. The models that we investigate
produce a graph sequence or graph process {Gm,δ(t)}, which, for fixed t ≥ 1 or t ≥ 2, yields a graph
with t vertices and mt edges for some given integer m ≥ 1. In the sequel, we shall denote the vertices of
Gm,δ(t) by 1(m), . . . , t(m). When m is clear from the context, we will leave out the superscript and write
[t] ≡ {1, 2, . . . , t}. We shall consider three slight variations of the PA-model, which we shall denote by
models (a), (b) and (c), respectively.

(a) The first model is an extension of the Barabási-Albert model formulated rigorously in [17]. We start
with G1,δ(1) consisting of a single vertex with a single self-loop. We denote the degree of vertex i(1)

at time t by Di(1)(t), where, a self-loop increases the degree by 2.
Then, for m = 1, and conditionally on G1,δ(t), the growth rule to obtain G1,δ(t + 1) is as follows.
We add a single vertex (t+ 1)(1) having a single edge. This edge is connected to a second end point,
which is equal to (t+ 1)(1) with probability proportional to 1 + δ, and to a vertex i(1) ∈ G1,δ(t) with
probability proportional to Di(1)(t) + δ, where δ ≥ −1 is a parameter of the model. Thus,

P
(
(t+ 1)(1) → i(1)

∣∣G1,δ(t)
)

=


1+δ

t(2+δ)+(1+δ) , for i = t+ 1,
D
i(1)

(t)+δ

t(2+δ)+(1+δ) , for i ∈ [t].
(1.1)

The model with integer m > 1, is defined in terms of the model for m = 1 as follows. We start with
G1,δ′(mt), with δ′ = δ/m ≥ −1. Then we identify the vertices 1(1), 2(1) . . . ,m(1) in G1,δ(mt) to be
vertex 1(m) in Gm,δ(t), and for 1 < j ≤ t, the vertices ((j − 1)m + 1)(1), . . . , (jm)(1) in G1,δ′(mt) to
be vertex j(m) in Gm,δ(t); in particular the degree Dj(m)(t) of vertex j(m) in Gm,δ(t) is equal to the
sum of the degrees of the vertices ((j− 1)m+ 1)(1), . . . , (jm)(1) in G1,δ′(mt). This defines the model
for integer m ≥ 1. Observe that the range of δ is [−m,∞).
The resulting graph Gm,δ(t) has precisely mt edges and t vertices at time t, but is not necessarily
connected. For δ = 0 we obtain the original model studied in [17], and further studied in [13, 14, 15].
The extension to δ 6= 0 is crucial in our setting, as we shall explain in more detail below.
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(b) The second model is identical to the one above, apart from the fact that no self-loops are allowed
for m = 1. We start again with the definition for m = 1. To prevent a self-loop in the first step,
we let G1,δ(1) undefined, and start from G1,δ(2), which is defined by the vertices 1(1) and 2(1) joined
together by 2 edges. Then, for t ≥ 2, we define, conditionally on G1,δ(t), the growth rule to obtain
G1,δ(t+ 1) as follows. For δ ≥ −1,

P
(
(t+ 1)(1) → i(1)

∣∣G1,δ(t)
)

=
Di(1)(t) + δ

t(2 + δ)
, for i ∈ [t]. (1.2)

The model with m > 1 is again defined in terms of the model for m = 1, in precisely the same way
as in model (a). This model is studied in detail in [25], and the model with m = 1 corresponds to
scale-free trees as studied in e.g. [16, 37, 38, 42].

(c) In the third model, and conditionally on Gm,δ(t), the end points of each of the m edges of vertex t+1,
are chosen independently, and are equal to a vertex i(m) ∈ Gm,δ(t), with probability proportionally
to Di(m)(t) + δ, where δ ≥ −m. We start again from Gm,δ(2), with the vertices 1(m) and 2(m) joined
together by 2m,m ≥ 1, edges. Since the end point of the edges are chosen independently we can
give the definition of {Gm,δ(t)}t≥2, for m ≥ 1, in one step. For 1 ≤ j ≤ m,

P
(
jth edge of (t+ 1)(m) is connected to i(m)

∣∣Gm,δ(t)) =
Di(m)(t) + δ

t(2m+ δ)
, for i ∈ [t]. (1.3)

In this model, as is the case in model (b), the graph Gm,δ(t) is a connected random graph with
precisely t vertices and mt edges. This model was studied in [23, 36].

Remark 1.1. In models (a) and (b) for m > 1, the choice of δ′ = δ/m is such that in the resulting graph
Gm,δ(t), where m vertices in G1(mt) are grouped together to a single vertex in Gm,δ(t), the end points of
the added edges are chosen according to the degree plus the constant δ.

Remark 1.2. For m = 1, the models (b) and (c) are the same. This fact will be used later on.

The growth rules in (1.1)–(1.3) are indeed such that vertices with high degree are more likely to
attract edges of new vertices. One would expect the models (a)–(c) to behave quite similarly, as is known
rigorously for the scale-free behaviour, where the asymptotic degree distribution is known to be equal in
models (a)–(c). As it turns out, the affine PA mechanism in (1.1)–(1.3) gives rise to power-law degree
sequences. Indeed, in [23], it was proved that for model (c), the degree sequence is close to a power law
with exponent τ = 3 + δ/m. For model (a) and δ = 0, this was proved in [17], while in [22], power-law
degree sequences for PA-models with affine PA mechanisms are proved in rather large generality. We see
that, by varying the parameters m ≥ 1, δ > −m, we can obtain any power-law exponent τ > 2, which is
the reason for introducing the parameter δ in (1.1)–(1.3). However, there is no intrinsic reason for the
affine PA mechanism. For results on PA-models in the non-affine case, see e.g., [41, 44]. In general, such
models do not produce power laws.

The goal in this paper is to study the diameter in the above models, as a first step towards the study
of distances in PA-models and the verification of the prediction that distances behave similarly in various
scale-free random models (see also Section 1.2 below). In the following section, we describe our precise
results.

1.1 Bounds on the diameter in preferential attachment models

In this section, we present the diameter results for the PA-models (a)–(c). The diameter of a graph G is
defined as

diam(G) = max
i,j∈G
{distG(i, j)|distG(i, j) <∞}, (1.4)
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where distG(i, j) denotes the graph distance between vertices i, j ∈ G. We prove that, for all δ > −m,
the diameter of Gm,δ(t) is bounded by a constant times log t. When δ = 0, we adapt the argument in
[15] to prove that the diameter is bounded from below by (1 − ε) log t

log log t . For δ > 0, this lower bound is
improved to a constant times log t, while, for δ < 0, we prove that the diameter is bounded above and
below by a constant times log log t. This establishes a phase transition for the diameter of PA-models
when δ changes sign. We now state the precise results, which shall each hold for each of the models
(a)–(c) simultaneously. In the results below, for a sequence of events {At}t≥1, we write that At occurs
with high probability (whp) when limt→∞ P(At) = 1.

Theorem 1.3 (A log t upper bound on the diameter). Fix m ≥ 1 and δ > −m. Then, there exists a
constant c1 = c1(m, δ) > 0 such that whp, the diameter of Gm,δ(t) is at most c1 log t.

When m = 1, so that the graphs are in fact trees, there is a sharper result proved by Pittel [42],
which, in particular, implies Theorem 1.3 for model (b). In this case, Pittel shows that the height of the
tree, which is equal to the maximal graph distance between vertex 1 and any of the other vertices, grows
like 1+δ

γ(2+δ) log t(1 + o(1)), where γ solves the equation

γ + (1 + δ)(1 + log γ) = 0. (1.5)

This proves that the diameter is at least as large, and suggests that the diameter has size 2(1+δ)
γ(2+δ) log t(1 +

o(1)). Scale-free trees have received substantial attention in the literature, we refer to [16, 42] and the
references therein. It is not hard to see that a similar result as proved in [42] also follows for models (a)
and (c). This is proved when δ = 0 in [16], where it is shown that the diameter in model (a) has size
γ−1 log t, where γ is the solution of (1.5) when δ = 0. Thus, we see that the log t upper bound in Theorem
1.3 is sharp, at least for m = 1.

It is not hard to extend the upper bound to m ≥ 2. In particular, for model (b), the upper bound
for m ≥ 2 immediately follows from the upper bound for m = 1. For models (a) and (c), the extension
is not as trivial, but the proof is fairly straightforward, and will be omitted here. To see an implication
of [42] for model (a), we note that Ct, the number of connected components of G1,δ(t) in model (a), has
distribution Ct = 1 + I2 + · · · + It, where Ii is the indicator that the ith edge connects to itself, so that
{Ii}ti=2 are independent indicator variables with

P(Ii = 1) =
1 + δ

(2 + δ)(i− 1) + 1 + δ
. (1.6)

As a result, Ct/ log t converges in probability to (1 + δ)/(2 + δ) < 1, so that whp there exists a largest
connected component of size at least t/ log t. The law of any connected component of size st in model
(a) is equal in distribution to the law of the graph G1,δ(st + 1) in model (b), apart from the fact that the
vertices 1 and 2 in G1,δ(st + 1) are identified (thus creating a unique self-loop). This close connection
between the two models allows one to transfer results for model (b) to model (a) when m = 1.

Theorem 1.4 (A log t lower bound on the diameter for δ > 0). Fix m ≥ 1 and δ > 0. Then, there exists
c2 = c2(m, δ) > 0, such that whp, the diameter of Gm,δ(t) is at least c2 log t.

Theorems 1.3–1.4 imply that, for δ > 0 and whp, diam(Gm,δ(t)) = Θ(log t). Theorems 1.3–1.4
indicate that distances in PA-models are similar to the ones in other scale-free models for τ > 3. We shall
discuss this analogy in more detail below. As we shall see in Section 2.2, the proof of Theorem 1.4 also
reveals that, whp, the average distance in Gm,δ(t), which is the distance between two uniformly chosen
connected vertices in the graph, is also bounded from below by c2 log t.

We conjecture that, for δ > 0, a limit result holds for the constant in front of the log t. In its statement,
we write distG(v1, v2) for the graph distance in the graph G between two vertices v1, v2 ∈ [t]. Then, the
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average distance in a graph G is defined by distG(V1, V2) where V1, V2 ∈ [t] are two uniformly chosen
connected vertices.

Conjecture 1.5 (Convergence in probability for δ > 0). Fix m ≥ 1 and δ > 0. Then, the diameter
diam(Gm,δ(t))/ log t and the average distance distG(V1, V2)/ log t converge in probability to positive and
different constants.

We now turn to the case where δ ∈ (−m, 0) and hence τ = 3 + δ/m ∈ (2, 3):

Theorem 1.6 (A log log t upper bound on the diameter for δ < 0). Fix m ≥ 2 and assume that δ ∈
(−m, 0). Then, for every σ > 1/(3− τ) and with

CG =
4

| log (τ − 2)|
+

4σ
logm

, (1.7)

the diameter of Gm,δ(t) is, whp, bounded above by CG log log t, as t→∞.

In this result, we do not obtain a sharp result in terms of the constant. However, the proof suggests
that for most pairs of vertices the distance should be equal to 4

| log (τ−2)| log log t(1 + o(1)). When m = 1,
Theorem 1.6 does not hold (see the discussion below Theorem 1.3).

We next discuss the lower bound on the diameter for δ ∈ (−m, 0):

Theorem 1.7 (A log log t lower bound on the diameter). Fix m ≥ 2 and δ > −m. Then, the diameter
of Gm,δ(t) is, whp, bounded below by ε

logm log log t, for all ε ∈ (0, 1).

Unfortunately, the proof of Theorem 1.7 does not allow for an extension to average distances, and,
thus, we have no matching lower bound for this. We finally conjecture that, for δ ∈ (−m, 0), a limit
results holds for the constant in front of the log log t:

Conjecture 1.8 (Convergence in probability for δ < 0). Fix m ≥ 2 and δ ∈ (m, 0). Then, the diameter
diam(Gm,δ(t))/ log log t and the average distance distG(V1, V2)/ log log t converge in probability to positive
and different constants.

1.2 Discussion of universality of distances in power-law random graphs

Theorems 1.3–1.7 prove that the diameter in PA-models with a power-law degree sequence denoted by
τ undergoes a phase transition as τ changes from τ ∈ (2, 3) to τ > 3. The results identify the order of
growth of the diameter of three related models of affine PA models as the size of the graph t tends to
infinity. We do not obtain the right constants. For the average or typical distances, we obtain a similar
phase transition, and again the results identify the correct asymptotics for τ > 3, but, for τ ∈ (2, 3) we
miss a matching lower bound.

In non-rigorous work, it is often suggested that the distances are similarly behaved in the various
scale-free random graph models, such as the configuration model or various models with conditional
independence of edges as in [11]. For power-law random graphs, this informal statement can be made
precise by conjecturing that distances have the same leading order growth in graphs with the same power-
law degree exponent. This, however, is not correct for the diameter of such power-law random graphs,
since the diameter depends sensitively on the details of the graph, such as the proportion of vertices with
degrees 1 and 2. See [29] and [34] for results showing that for the configuration model with power-law
degree exponent τ ∈ (2, 3), the diameter can be of order log t or of order log log t depending on the
proportion of vertices with degrees 1 and 2, where t is the size of the graph. Similarly, in inhomogeneous
random graphs with power-law degree exponent τ ∈ (2, 3) the diameter is always of order log t (see e.g.
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[11]), while the average distances can be of order log log t (see e.g. [18, 19]). Thus, we shall interpret the
physicists’ prediction by conjecturing that the leading order growth of the average distances of various
power-law random graphs depends only on the power-law degree exponent τ ∈ (2, 3).

The results on distances are most complete for the configuration model (CM), see e.g. [27, 29, 32,
33, 43]. In the CM, there are various cases depending on the tails of the degree distribution. When the
degrees have infinite mean, then average distances are bounded [27], when the degrees have finite mean
but infinite variance, average distances grow proportionally to log log t [33, 43], where t is the size of the
graph, while, for finite variance degrees, the average distances grow proportionally to log t [32]. Similar
results for models with conditionally independent edges exist, see e.g. [11, 18, 26, 40], but particularly in
the regime τ ∈ (2, 3), the results are not that strong. Thus, for these classes of models, distances are quite
well understood. If the distances in PA-models are similar to the ones in e.g. the CM, then we should
have that the distances are of order log t when τ > 3, i.e., δ > 0, while they should be of order log log t
when τ ∈ (2, 3), i.e., for δ < 0. In PA-models with a linear growth of the number of edges, infinite mean
degrees cannot arise, which explains why τ > 2 for PA-models. An attempt in the direction of creating
PA-models with power-law exponent τ ∈ (1, 2) can be found in [23], where a preferential attachment
model is presented in which a random number of edges per new vertex is added. In this model, it is
shown that the degrees again obey a power law with exponent equal to τ = min{3 + δ

µ , τw}, where τw is
the power-law exponent for the number of edges added and µ ≤ ∞ the expected number of added edges
per vertex. Thus, when τw ∈ (1, 2), infinite mean degrees can arise. This model is further studied in [8],
where a wealth of results for various PA-models can be found.

There are few results on distances in PA-models. In [15], it was proved that in model (a) and for
δ = 0, for which τ = 3, the diameter of the graph of size t is equal to log t

log log t(1 + o(1)). Unfortunately,
the matching result for the CM has not been proved, so that this does not allow us to verify whether the
models have similar distances. The results stated above substantiate the physicists’ prediction, since, for
δ > 0 for which τ ∈ (3,∞), the average distances are of order log t, while, for δ < 0, for which τ ∈ (2, 3),
they are bounded above by log log t. A related result on PA-models in the spirit of [22] can be found in
[20], where a similar phase transition as in this paper is proved, in the case where the number of edges
grows at least (log t)1+ε times as fast as the number of vertices.

It would be of interest to improve the bounds presented in this paper up to the constant in front of
the log t and log log t, respectively. Due to the dynamical nature of PA-models, this is more involved for
PA-models than it is for static models such as the CM and inhomogeneous random graphs.

This paper is organized as follows. In Section 2, we prove the log t lower bound for the diameter stated
in Theorem 1.4. In Section 3 and Section 4, we prove the log log t upper bound and the log log t lower
bound, on the diameter for δ < 0, of Theorem 1.6 and Theorem 1.7, respectively.

2 A log lower bound on the diameter for δ > 0: Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by extending the argument in [15] from δ = 0 to δ > 0. We shall
also extend the lower bound for δ = 0 to models (b) and (c).

For model (c), denote by
{g(t, j) = s}, 1 ≤ j ≤ m, (2.1)

the event that at time t the jth edge of vertex t is attached to the earlier vertex s < t. For models (a)
and (b), this event means that in {G1,δ′(mt)} the edge from vertex m(t− 1) + j is attached to one of the
vertices m(s − 1) + 1, . . . ,ms. It is a direct consequence of the definition of PA-models that the event
(2.1) increases the preference for vertex s, and hence decreases (in a relative way) the preference for the
vertices u, 1 ≤ u ≤ t, u 6= s. It should be intuitively clear that another way of expressing this effect is to

6



say that, for different s1 6= s2, the events {g(t1, j1) = s1} and {g(t2, j2) = s2} are negatively correlated.
In order to state such a result, we introduce some notation. For integer ns ≥ 1 and i = 1, . . . , ns, we
denote by

Es =
ns⋂
i=1

{
g(ti, ji) = s

}
, (2.2)

the event that at time ti the jthi edge of vertex ti is attached to the earlier vertex s. We will start by
proving that for each k ≥ 1 and all possible choices of ti, ji, the events Es, for different s, are negatively
correlated:

Lemma 2.1 (Negative correlation of attachment events). For distinct s1, s2, . . . , sk,

P
( k⋂
i=1

Esi

)
≤

k∏
i=1

P(Esi). (2.3)

Proof. We will use induction on the largest edge number present in the events Es. Here, for an event
{g(t, j) = s}, we let the edge number be m(t − 1) + j, which is the order of the edge when we consider
the edges as being attached in sequence. The induction hypothesis is that (2.3) holds for all k and all
choices of ti, ji such that maxi,sm(ti − 1) + ji ≤ e, where induction is performed with respect to e. To
initialize the induction, we note that for e = 1, the induction hypothesis holds trivially, since

⋂k
i=1Esi can

be empty or consist of exactly one event, and in the latter case there is nothing to prove. This initializes
the induction.

To advance the induction, we assume that (2.3) holds for all k and all choices of ti, ji such that
maxi,sm(ti − 1) + ji ≤ e− 1. Clearly, for k and ti, ji such that maxi,sm(ti − 1) + ji ≤ e− 1, the bound
follows from the induction hypothesis, so we may restrict attention to the case that maxi,sm(ti−1)+ji = e.
We note that there is a unique choice of t, j such that m(t− 1) + j = e. In this case, there are again two
possibilities. Either there is exactly one choice of s and ti, ji such that ti = t, ji = j, or there are at least
two of such choices. In the latter case, we immediately have that

⋂k
s=1Es = ∅, since the eth edge can

only be connected to a unique vertex. Hence, there is nothing to prove. Thus, we are left to investigate
the case where there exists unique s and ti, ji such that ti = t, ji = j. Denote by

E′s =
ns⋂

i=1:(ti,ji) 6=(t,j)

{
g(ti, ji) = s

}
, (2.4)

the restriction of Es to the other edges. Then we can write

k⋂
i=1

Esi =
{
g(t, j) = s

}
∩ E′s ∩

k⋂
i=1:si 6=s

Esi . (2.5)

By construction, all the edge numbers of the events in E′s ∩
⋂k
i=1:si 6=sEsi are at most e − 1. Thus, we

obtain

P
( k⋂
i=1

Esi

)
≤ E

[
I[E′s ∩

k⋂
i=1:si 6=s

Esi ]Pe−1(g(t, j) = s)
]
, (2.6)

where Pe−1 denotes the conditional probability given the edge attachments up to the (e − 1)st edge
connection, and where, for an event A, I[A] denotes the indicator of A.

We now first treat model (c), for which we have that

Pe−1(g(t, j) = s) =
Ds(t− 1) + δ

(2m+ δ)(t− 1)
. (2.7)
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We wish to use the induction hypothesis. For this, we note that

Ds(t− 1) = m+
∑

(t′,j′):t′≤t−1

I[g(t′, j′) = s]. (2.8)

We note that each of the terms in (2.8) has edge number strictly smaller than e and occurs with a non-
negative multiplicative constant. As a result, we may use the induction hypothesis for each of these terms.
Thus, we obtain, using also m+ δ ≥ 0, that,

(2m+ δ)(t− 1)P
( k⋂
i=1

Esi

)
≤ (m+ δ)P(E′s)

k∏
i=1:si 6=s

P(Esi)

+
∑

(t′,j′):t′≤t−1

P(E′s ∩ {g(t′, j′) = s})
k∏

i=1:si 6=s
P(Esi). (2.9)

We can recombine to obtain

P
( k⋂
i=1

Esi

)
≤ E

[
I[E′s]

Ds(t− 1) + δ

(2m+ δ)(t− 1)

] k∏
i=1:si 6=s

P(Esi), (2.10)

and the advancement is completed when we note that

E
[
I[E′s]

Ds(t− 1) + δ

(2m+ δ)(t− 1)

]
= P(Es). (2.11)

The proofs for models (a) and (b) are somewhat simpler, since the events Esi can be reformulated in
terms of the graph process {G1,δ′(t)}t≥1.

We next give the probabilities of Es when ns ≤ 2; we omit the proof, since it is a simple adaptation
to that in [15].

Lemma 2.2 (Connections in PA-models). There exist absolute constants M1,M2, such that (i) for each
1 ≤ j ≤ m, and t > s,

P
(
g(t, j) = s

)
≤ M1

t1−asa
, (2.12)

and (ii) for t2 > t1 > s, and any 1 ≤ j1, j2 ≤ m,

P
(
g(t1, j1) = s, g(t2, j2) = s

)
≤ M2

(t1t2)1−as2a
, (2.13)

where a = m
2m+δ .

We combine the results of Lemmas 2.1 and 2.2 into the following corollary, yielding an upper bound for
the probability of the existence of a path. In its statement, we call a path Γ = (s0, s1, . . . , sl) self-avoiding
when si 6= sj for all 0 ≤ i < j ≤ l. We use the notation x ∧ y = min(x, y) and x ∨ y = max(x, y). Again,
we omit the proof (for details, see [15]).

Corollary 2.3 (Path probabilities in PA-models). Let Γ = (s0, s1, . . . , sl) be a self-avoiding path of length
l consisting of the l+ 1 unordered vertices s0, s1, . . . , sl, then there exists an absolute constant C > 0 such
that

P
(
Γ ∈ Gm,δ(t)

)
≤ (m2C)l

l−1∏
i=0

1
(si ∧ si+1)a(si ∨ si+1)1−a

. (2.14)
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2.1 Lower bound on the diameter for δ = 0

It follows from (2.14) that for δ = 0,

P
(
Γ ∈ Gm,δ(t)

)
≤ (m2C)l

l−1∏
i=0

1
√
sisi+1

. (2.15)

The further proof that (2.15) implies that for δ ≥ 0,

L =
log t

log(3Cm2 log t)
, (2.16)

is a lower bound for the diameter of Gm,δ(t), is identical to the proof of [15, Theorem 5, p. 14], with n
replaced by t. This extends the lower bound for δ = 0 for model (a) in [15] to models (b)–(c).

2.2 The lower bound on distances for δ > 0

We next improve the bound in the previous section in the case when δ > 0, in which case a = m/(2m+δ) <
1/2. From the above discussion, we conclude that

P
(
distGm,δ(t)(1, t) = k

)
≤ ck

∑
~s

k−1∏
j=0

1
(sj ∧ sj+1)a(sj ∨ sj+1)1−a

, (2.17)

where c = m2C, and where the sum is over ~s = (s0, . . . , sk) with sk = t, s0 = 1, sl ≥ 1 for all l = 1, . . . , k−1
and sl 6= sn for all l 6= n. Define

fk(i, t) =
∑
~s

k−1∏
j=0

1
(sj ∧ sj+1)a(sj ∨ sj+1)1−a

, (2.18)

where now the sum is over ~s = (s0, . . . , sk) with sk = t, s0 = i, sl ≥ 1 for all l = 1, . . . , k − 1 and sl 6= sn
for all l 6= n, so that

P
(
distGm,δ(t)(i, t) = k

)
≤ ckfk(i, t). (2.19)

We study the function fk(i, t) in the following lemma:

Lemma 2.4 (A bound on fk). Fix a < 1/2. Then, for every b > a such that a + b < 1, there exists a
Ca,b > 0 such that, for every 1 ≤ i < t and all k ≥ 1,

fk(i, t) ≤
Cka,b
ibt1−b

. (2.20)

Proof. We prove the lemma using induction on k ≥ 1. To initialize the induction hypothesis, we note
that, for 1 ≤ i < t and every b ≥ a,

f1(i, t) =
1

(i ∧ t)a(i ∨ t)1−a
=

1
iat1−a

=
1
t

( t
i

)a
≤ 1
t

( t
i

)b
=

1
ibt1−b

. (2.21)

This initializes the induction hypothesis as long as Ca,b ≥ 1.
To advance the induction hypothesis, note that we have the recursion relation

fk(i, t) =
i−1∑
s=1

1
sai1−a

fk−1(s, t) +
∞∑

s=i+1

1
ias1−a

fk−1(s, t). (2.22)
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We now bound each of these two contributions, making use of the induction hypothesis. For the first
sum, we bound

i−1∑
s=1

1
sai1−a

fk−1(s, t) ≤ Ck−1
a,b

i−1∑
s=1

1
sai1−a

1
sbt1−b

=
Ck−1
a,b

i1−at1−b

i−1∑
s=1

1
sa+b

≤ 1
1− a− b

Ck−1
a,b

ibt1−b
, (2.23)

since a+ b < 1. For the second sum, we bound

∞∑
s=i+1

1
ias1−a

fk−1(s, t) ≤ Ck−1
a,b

∞∑
s=i+1

1
ias1−a

1
sbt1−b

=
Ck−1
a,b

iat1−b

∞∑
s=i+1

1
s1+b−a ≤

1
b− a

Ck−1
a,b

ibt1−b
, (2.24)

since 1 + b− a > 1. We conclude that

fk(i, t) ≤
Ck−1
a,b

ibt1−b

( 1
b− a

+
1

1− a− b

)
≤

Cka,b
ibt1−b

, (2.25)

when
Ca,b =

1
b− a

+
1

1− a− b
≥ 1. (2.26)

This advances the induction hypothesis, and completes the proof.

Using Lemma 2.4 and (2.19), we obtain that

P
(
distGm,δ(t)(1, t) = k

)
≤ (cCa,b)k

t1−b
. (2.27)

As a result, we obtain that

P
(
diam(Gm,δ(t)) ≤ k

)
≤ P

(
distGm,δ(t)(1, t) ≤ k

)
≤ (cCa,b)k+1

t1−b(cCa,b − 1)
= o(1), (2.28)

whenever k ≤ 1−b
log (cCa,b)

log t. We conclude that there exists c2 = c2(m, δ) such that, with high probability

diam
(
Gm,δ(t)

)
≥ c2 log t.

We next extend the above discussion to average distances.

Lemma 2.5 (Average distances for δ > 0). Fix m ≥ 1 and δ > 0. Let Ht = distt(A1, A2) be the distance
between two uniformly chosen vertices. Then, for c2 = c2(m, δ) > 0 sufficiently small, whp, Ht ≥ c2 log t.

Proof. For c2 = c2(m, δ) > 0, define

Bt ≡ #
{
i, j ∈ [t] : i < j : distGm,δ(t)(i, j) ≤ c2 log t

}
, (2.29)

where #{A} denotes the cardinality of A.
By Lemma 2.4, with K = log (cCa,b ∨ 2) and a < b < 1− a, and for all 1 ≤ i < j ≤ t,

P
(
distGm,δ(t)(i, j) = k

)
≤ ckfk(i, j) ≤

eKk

i1−bjb
. (2.30)

As a result, we obtain that

P
(
distGm,δ(t)(i, j) ≤ c2 log t

)
≤ tKc2

i1−bjb
eK

eK − 1
, (2.31)
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and thus, using also
∑j−1
i=1 i

b−1 ≤ jb/b,

E[Bt] ≤ O(1)
∑

1≤i<j≤t

tKc2

i1−bjb
= O(tKc2+1). (2.32)

It now suffices to note that

P(Ht ≤ c2 log t) = E
[
I[distGm,δ(t)(A1, A2) ≤ c2 log t]

]
≤ 2E[Bt] + t

t2
= o(1), (2.33)

by (2.32), for every c2 > 0 such that Kc2 + 1 < 2.
Note that (2.16) is also a lower bound on average distances in case δ = 0, which can be proven as

above.

3 A log log upper bound on the diameter: Proof of Theorem 1.6

The proof of Theorem 1.6 is divided into two key steps. In the first, in Theorem 3.1, we bound the
diameter of the core which consists of the vertices with degree at least a certain power of log t. This
argument is close in spirit to the argument in [18] or [43] used to prove bounds on the average distance for
the inhomogeneous random graph and the configuration model, respectively, but substantial adaptations
are necessary to deal with preferential attachment. After this, in Theorem 3.6, we derive a bound on the
distance between vertices with a small degree and the core. We start by defining and investigating the
core of the PA-model. In the sequel, it will be convenient to prove Theorem 1.6 for 2t rather than for t.
Clearly, this does not make any difference for the results. We make use of some technical results, stated
in the appendix.

3.1 The diameter of the core

We recall that τ = 3 + δ/m, so that −m < δ < 0 corresponds to τ ∈ (2, 3). We take σ > 1/(3 − τ) =
−m/δ > 1 and define the core Coret to be

Coret =
{
i ∈ [t] : Di(t) ≥ (log t)σ

}
, (3.1)

i.e., all the vertices which at time t have degree at least (log t)σ.
For A ⊆ [t], we write

diamt(A) = max
i,j∈A

distGm,δ(t)(i, j). (3.2)

Then, diam2t(Coret) is bounded in the following theorem:

Theorem 3.1 (The diameter of the core). Fix m ≥ 2 and δ ∈ (−m, 0). For every σ > 1/(3− τ), whp,

diam2t(Coret) ≤ (1 + o(1))
4 log log t
| log (τ − 2)|

. (3.3)

The proof of Theorem 3.1 is divided into several smaller steps. We start by proving that the diameter
diam2t(Innert), where

Innert =
{
i ∈ [t] : Di(t) ≥ u1

}
, and where u1 = t

1
2(τ−1) (log t)−

1
2 , (3.4)

is, whp, bounded. The choice of u1 is a technical one: u1 is the largest value l so that, whp, the total
degree of vertices with degree exceeding l can be bounded from below by tl2−τ , see Lemma A.1. In
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Proposition 3.2, we will show that the diameter of Innert is bounded. After this, we will show that the
distance from any vertex in the core Coret to the inner core Innert can be bounded by a fixed constant
times log log t. This also shows that diam2t(Coret) is bounded by a different constant times log log t. We
now give the details.

Proposition 3.2 (The diameter of the inner core). Fix m ≥ 2 and δ ∈ (−m, 0). Then whp,

diam2t(Innert) ≤
2(τ − 1)

3− τ
+ 6. (3.5)

Proof. We first introduce the important notion of a t-connector between a vertex i ∈ [t] and a set of
vertices A ⊆ [t]. This notion will play a crucial role throughout the proof. We say that the vertex
j ∈ [2t] \ [t] is a t-connector between i and A if one of the first two edges incident to j connects to i
and the other of the first two edges incident to j connects to a vertex in A. Thus, when there exists a
t-connector between i and A, the distance between i and A in Gm,δ(2t) is at most 2.

We continue the analysis by first considering model (c). We note that for a set of vertices A and a
vertex i with degree at time t equal to Di(t), we have that, conditionally on Gm,δ(t), the probability that
j ∈ [2t] \ [t] is a t-connector for i and A is at least

(DA(t) + δ|A|)(Di(t) + δ)
[2t(2m+ δ)]2

≥ ηDA(t)Di(t)
t2

, (3.6)

where in the inequality, we use that, almost surely, Di(t) ≥ m, and we let η = (m+δ)2/(2m(2m+δ))2 > 0,
while, for any A ⊆ [t], we write

DA(t) =
∑
i∈A

Di(t). (3.7)

Note that for fixed j ∈ [2t] \ [t] the lower bound (3.6) holds independently of the fact whether the other
vertices are t-connectors or not.

We now give a coupling proof which shows that a subset of size nt = b
√
tc of the set Innert has, whp,

a bounded diameter. The last line of the proof of Lemma A.1 in the appendix shows that, whp, Innert
contains at least

√
t vertices. Denote the first b

√
tc vertices of Innert by I. For each pair i1, i2 ∈ I and

each j ∈ [2t] \ [t], the probability that j is a t-connector for i1, i2 is, by (3.6), at least

ηu2
1

t2
=

ηt
1

τ−1

t2 log t
≥ t

1
τ−1
−2

log2 t
= qt, (3.8)

independently of the fact whether the other vertices are t-connectors or not. In the coupling we intend
to compare the set I and all pairs of vertices of the set I, which are t-connected by some j ∈ [2t] \ [t]
with a so-called multinomial random graph Hnt . The graph Hnt has nt vertices and we identify the
et = nt(nt−1)/2 ∼ t/2 pairs of vertices, which we number from 1 to et in an arbitrary order, with et cells
of a multinomial experiment with t trials and probabilities given by

pk = qt, 1 ≤ k ≤ et, p0 = 1− etqt. (3.9)

We can represent the t trials by independent random vectors N1, N2, . . . , Nt, where

Nj = (Nj,1, Nj,2, . . . , Nj,et), 1 ≤ j ≤ t, (3.10)

with distribution
P(Nj = 1i) = qt, P(Nj = 0) = 1− etqt, (3.11)
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where 1i is the ith unit vector of length et, and 0 the null vector. If cell k of the multinomial experiment
is not empty, i.e., if

∑t
j=1Nj,k > 0, then we draw the edge with number k in the graph Hnt , if the cell

is empty then this edge is left out. Note that cell 0 is just an overflow cell, which counts the number of
trials that not resulted in one of the cells 1, 2, . . . , et.

By the statement in (3.8) the distance in Gm,δ(2t) between any two vertices in I is at most two times
the distance between the corresponding vertices in Hnt . In Lemma A.2 of the appendix we will show that
the diameter of Hnt is at most the diameter of a uniform Erdős-Rényi graph G(nt,mt), with nt vertices
and mt edges, where

mt =
1
2
et
(
1− (1− qt)t

)
. (3.12)

From [35, Section 1.4] we conclude that the above mentioned uniform Erdős-Rényi graph G(nt,mt)
is asymptotically equivalent with the classical binomial Erdős-Rényi graph G(nt, λt), where the edge
probability λt is defined by

λt =
1
2

(
1− (1− qt)t

)
∼ t

1
τ−1
−1

2 log2 t
. (3.13)

Next, we show that diam(G(nt, λt)) is, whp, bounded by τ−1
3−τ + 1. For this we use the result in [9,

Corollary 10.12], which gives sharp bounds on the diameter of an Erdős-Rényi random graph. Indeed,
this result implies that if pdnd−1− 2 log n→∞, while pd−1nd−2− 2 log n→ −∞, then diam(G(n, p)) = d,
whp. In our case, n = nt = bt1/2c and p = λt, which implies that, whp, τ−1

3−τ < d ≤ τ−1
3−τ +1. We therefore

obtain that the diameter of I in Gm,δ(2t) is, whp, bounded by

diam2t(I) ≤ 2(τ − 1)
3− τ

+ 2. (3.14)

We finally show that for any i ∈ Innert \ I, the probability that there does not exist a t-connector
connecting i and I is small. Indeed, since DI(t) ≥

√
tu1 and Di(t) ≥ u1, the mentioned probability is

bounded above by

(
1− ηDI(t)Di(t)

t2

)t
≤ exp

{
−ηDI(t)Di(t)

t

}
≤ exp

{
−ηu

2
1√
t

}
≤ exp

−ηt
1

τ−1
− 1

2

log t

 = o(t−1), (3.15)

for τ < 3. Thus, whp, such a vertex i does not exist. This proves that whp the distance between any
vertex i ∈ Innert \ I and I is bounded by 2, and, together with the above bound on diam2t(I) we thus
obtain (3.5).

Proposition 3.3 (Distance from the core to the inner core). Fix m ≥ 2 and δ ∈ (−m, 0). With high
probability, the inner core Innert can be reached from any vertex in the core Coret using no more than
2 log log t
| log (τ−2)| edges in Gm,δ(2t). More precisely, whp,

max
i∈Coret

min
j∈Innert

distGm,δ(2t)(i, j) ≤
2 log log t
| log (τ − 2)|

. (3.16)

Proof. For k ≥ 1, we define
N (k) = {i ∈ [t] : Di(t) ≥ uk}, (3.17)

with u1 defined in (3.4), and where we define uk, for k ≥ 2, recursively, so that for any vertex i ∈ [t]
with degree at least uk, the probability that there is no t-connector for the vertex i and the set N (k−1),
conditionally on Gm,δ(t), is tiny. According to (3.6) and (A.1) in the appendix, this probability is at most(

1− ηdN (k−1)Di(t)
t2

)t
≤ exp

{
−
ηBt

(
uk−1

)2−τ
uk

t

}
= o(t−2), (3.18)
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for some B > 0, when we define
uk = D log t

(
uk−1

)τ−2
, (3.19)

with D exceeding 2(ηB)−1. The following lemma identifies uk:

Lemma 3.4 (Identification of uk). For each k ∈ N,

uk = Dak(log t)bktck , (3.20)

where

ak =
1− (τ − 2)k−1

3− τ
, bk =

1− (τ − 2)k−1

3− τ
− 1

2
(τ − 2)k−1, ck =

(τ − 2)k−1

2(τ − 1)
. (3.21)

Proof. We leave the straightforward induction proof to the reader.

Then, the key step in the proof of Proposition 3.3 is the following lemma:

Lemma 3.5 (Connectivity between N (k−1) and N (k)). Fix m ≥ 2 and δ ∈ (−m, 0). Then, uniformly in
k, the probability that there exists an i ∈ N (k) that is not at distance at most two from N (k−1) in Gm,δ(2t)
is o(t−1).

Proof. It follows from (3.19) that the probability in the statement is by Boole’s inequality bounded by

t exp
(
− ηBt[uk−1]2−τuk

t

)
= t · o(t−2) = o(t−1), (3.22)

where we have used Lemma A.1 to get a lower bound to the degree of N (k−1).

We now complete the proof of Proposition 3.3. Fix

k∗ =
⌊ log log t
| log (τ − 2)|

⌋
. (3.23)

As a result of Lemma 3.5, we have that the distance between N (k∗) and Innert = N (1) is at most 2k∗.
Therefore, Proposition 3.3 follows when we can show that

Coret = {i : Di(t) ≥ (log t)σ} ⊆ N (k∗) = {i : Di(t) ≥ uk∗}, (3.24)

so that it suffices to prove that (log t)σ ≥ uk∗ , for any σ > 1/(3 − τ). This follows trivially for t large
from the explicit representation of uk∗ given by Lemma 3.4.

Proof of Theorem 3.1. We note that whp

diam2t(Coret) ≤
2(τ − 1)

3− τ
+ 6 + 2k∗, (3.25)

where k∗ is given in (3.23), and where we have made use of Proposition 3.2. This proves Theorem 3.1.
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3.2 Connecting the periphery to the core

In this section, we extend the results of the previous section and, in particular, study the distance between
the vertices not in the core Coret and the core. The main result is the following theorem:

Theorem 3.6 (Connecting the periphery to the core). Fix m ≥ 2 and δ ∈ (−m, 0). For every σ >
1/(3 − τ), whp, the maximal distance between any vertex and Coret in Gm,δ(2t) is bounded from above
by 2σ log log t/ logm.

Together with Theorem 3.1, Theorem 3.6 proves the main result in Theorem 1.6.
The proof of Theorem 3.6 consists of two key steps. The first key step in Proposition 3.7 states that

the distance between any vertex in [t] and the core Coret is bounded by a constant times log log t. The
second key step in Proposition 3.10 shows that the distance between any vertex in [2t] \ [t] and [t] is
bounded by another constant times log log t.

Proposition 3.7 (Connecting half of the periphery to the core). Fix m ≥ 2 and δ ∈ (−m, 0). For every
σ > 1/(3 − τ), whp, the distance between any vertex in [t] and the core Coret in Gm,δ(2t) is bounded
from above by σ log log t/ logm.

Proof. We start from a vertex i ∈ [t] and will show that the probability that the distance between i and
Coret is at least σ log log t/ logm is o(t−1). This proves the claim. For this, we explore the neighborhood
of i as follows. From i, we connect its m ≥ 2 edges. Then, successively, we connect the m edges from
each of the at most m vertices that i has connected to and have not yet been explored. We continue in
the same fashion. We call the arising process when we have explored up to distance k from the initial
vertex i the k-exploration tree of vertex i.

When we never connect two edges to the same vertex, then the number of vertices we can reach within
k steps is precisely equal to mk. We call an event where an edge connects to a vertex which already was
in the exploration tree a collision. When k increases, the probability of a collision increases. However,
the probability that there exists a vertex for which more than 2 collisions occur in its k-exploration tree
before it hits the core is small, as we prove now:

Lemma 3.8 (A bound on the probability of multiple collisions). Fix m ≥ 2 and δ ∈ (−m, 0). Fix
l ≥ 1, b ∈ (0, 1] and take k ≤ σ log log t/ logm. Then, for every vertex i ∈ [t], the probability that its
k-exploration tree has at least l collisions before it hits Coret ∪ [tb] is bounded above by

ml(log t)2σl
/
tbl. (3.26)

Proof. Take i ∈ [t] \ [tb] and consider its k-exploration tree T (k)

i . Since we add edges after time tb the
denominator in (1.1)-(1.3) is at least tb. Moreover, before hitting the core, any vertex in the k-exploration
tree has degree at most (log t)σ. Hence, for l = 1, the probability mentioned in the statement of the
lemma is at most ∑

v∈T (k)
i

Dv(t) + δ

tb
≤

∑
v∈T (k)

i

(log t)σ

tb
≤ mk+1(log t)σ

tb
, (3.27)

where the bound follows from δ < 0 and #{v ∈ T (k)

i } ≤ mk+1. For general l this upper bound becomes:(
mk+1(log t)σ

tb

)l
. (3.28)

When k = σ log log t/ logm, we have that mkl = (log t)σl. Therefore, the claim in Lemma 3.8 holds.
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We next prove that there exists a b > 0 such that, whp, [tb] is a subset of the core. Note that in this
lemma the conditions m ≥ 2 or δ ∈ (−m, 0) are not necessary.

Lemma 3.9 (Early vertices have large degrees whp). Fix m ≥ 1. There exists a b > 0 such that, whp,
minj≤tb Dj(t) ≥ (log t)σ, for every σ > 1/(3− τ). As a result, whp, [tb] ⊆ Coret.

We defer the proof of Lemma 3.9 to Section A.3 of the appendix. Now we are ready to complete the
proof of Proposition 3.7:

Proof of Proposition 3.7. By combining Lemmas 3.8 and 3.9, the probability that there exists an i ∈ [t] for
which the exploration tree T (k)

i has at least l collisions before hitting the core is o(1), whenever l > 1/b,
since, by Boole’s inequality, it is bounded by

ml
t∑
i=1

(log t)2σl
/
tbl = ml(log t)2σlt−bl+1 = o(1), (3.29)

when l > 1
b . When the k-exploration tree hits the core, then we are done. When the k-exploration tree

from a vertex i does not hit the core, but has less than l collisions, then there are at least mk−l vertices
in k-exploration tree. Indeed, when there are at most l collisions, the minimal size of the tree is obtained
by discarding at most l vertices and their complete offspring, and the size of the pruned tree has size at
least mk−l.

When k = σ log log t/ logm− 2, mk−l ≥ (log t)σ+o(1). The total weight of the core is, by (A.1) in the
appendix, at least ∑

i∈Coret

(Di(t) + δ) ≥ Bt(log t)−(τ−2)σ, (3.30)

for some B > 0. The probability that there does not exist a t-connector between the k-exploration tree
and the core is, by (3.6) and (A.1) in the appendix, bounded above by

exp

{
−ηBt(log t)−(τ−2)σ(log t)σ+o(1)

t

}
= o(t−1), (3.31)

since σ > 1/(3− τ). This completes the proof.

Proposition 3.10 (Connecting the remaining periphery). Fix m ≥ 2 and δ ∈ (−m, 0). For every
σ > 1/(3− τ), whp, the maximal distance between any vertex and [t] in Gm,δ(2t) is bounded from above
by σ log log t/ logm.

Proof. Take k = σ log log t/ logm − 1, and j ∈ [2t] \ [t] with distance larger than k to the set of vertices
[t]. We now apply Lemma 3.8 with t replaced by 2t and letting l = 2 and b such that (2t)b = t, to
conclude that with probability exceeding 1 − o(1), the k-exploration tree of j has at most 1 collision
before it hits Core2t ∪ [t]. We can hence conclude that with probability exceeding 1 − o(1), there are at
least mk = (m − 1)mk−1 vertices in [2t] \ [t] at distance precisely equal to k from our starting vertex j.
Denote these vertices by i1, . . . , imk . We consider case (c), the proof for (a) and (b) is similar. Note that,
uniformly in s ∈ [2t] \ [t], ∑t

i=1(Di(s) + δ)
(2m+ δ)s

≥ 1
2
. (3.32)

Hence,
P
(
@l ∈ [mk] such that distGm,δ(2t)(il,Core2t ∪ [t]) > 1

)
≤ 2−mk = o(t−1), (3.33)
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since mk = m−1
m2 (log t)σ, with σ > 1/(3 − τ) > 1. Therefore, any vertex j ∈ [2t] \ [t] is, whp, within

distance k + 1 from Core2t ∪ [t]. Proposition A.3 shows that, whp the set Core2t ⊆ [t], so that, whp,
Core2t ∪ [t] = [t] and the proposition follows.

Proof of Theorem 3.6. Proposition 3.10 states that whp every vertex in Gm,δ(2t) is within distance
σ log log t/ logm of [t] and Proposition 3.7 states that whp every vertex in [t] is at most distance
σ log log t/ logm from the core Coret. This shows that every vertex in Gm,δ(2t) is whp within distance
2σ log log t/ logm from the core.

Proof of Theorem 1.6. Theorem 3.6 states that every vertex in Gm,δ(2t) is within distance 2σ log log t
logm of

the core Coret. Theorem 3.1 states that the diameter of the core is at most 4 log log t
| log (τ−2)|(1 + o(1)), so that

the diameter of Gm,δ(2t) is at most CG log log t, where CG is given in (1.7), because we can choose any
σ > 1/(3− τ). This completes the proof of Theorem 1.6.

4 A log log t lower bound on the diameter: Proof of Theorem 1.7

We will again prove this theorem for time 2t rather than time t. To show that the diameter of the graph
is, whp, at least k, we will study, at time 2t, the k-exploration trees T (k)

i of vertices i ∈ [2t]\[t] as defined
above. We shall call the tree T (k)

i proper if the following conditions hold:

• The k-exploration tree has no collisions;

• All vertices of T (k)

i are in [2t]\[t];

• No other vertex connects to a vertex in T (k)

i .

When such a tree exists in Gm,δ(2t) for a certain vertex i then we know that the diameter is at least
k, since the distance between the root of the tree i and the vertices at depth k is exactly k; there cannot
be a shorter route.

To prove that a proper k-exploration tree exists in Gm,δ(2t), we will use the second moment method.
Let Tkm(2t) be the set of all possible k-exploration trees that can exist in Gm,δ(2t) and satisfy the first
two conditions. Note that the order in which the edges are added matters: if two edges are added in a
different order, then the arising exploration tree will be considered a different tree. Let Z(k)

m,δ(2t) be the
number of proper k-exploration trees in Gm,δ(2t), i.e.,

Z(k)

m,δ(2t) =
∑

T ∈Tkm(2t)

I[T ⊆ Gm,δ(2t) and T is proper]. (4.1)

Here the event that all edges of T have been formed in Gm,δ(2t) is denoted by T ⊆ Gm,δ(2t).
In Section 4.1 we will investigate the first moment of Z(k)

m,δ(2t) and prove the following:

Proposition 4.1 (Expected number of proper trees tends to infinity). Fix m ≥ 2 and δ > −m. Let
k = ε

logm log log t, with 0 < ε < 1. Then

lim
t→∞

E
[
Z(k)

m,δ(2t)
]

=∞. (4.2)

The variance of Z(k)

m,δ(2t) will be the subject of Section 4.2, where we will prove the following:
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Proposition 4.2 (Concentration of the number of proper trees). Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
logm .

Then there exists a constant cm,δ > 0, such that, for t sufficiently large,

Var
(
Z(k)

m,δ(2t)
)
≤ cm,δ

(log t)2

t
E
[
Z(k)

m,δ(2t)
]2

+ E
[
Z(k)

m,δ(2t)
]
. (4.3)

We use these two propositions to prove Theorem 1.7:

Proof of Theorem 1.7. We first use the Chebychev inequality to obtain that

P (diam(Gm,δ(2t)) < k) ≤ P
(
Z(k)

m,δ(2t) = 0
)
≤

Var
(
Z(k)

m,δ(2t)
)

E
[
Z(k)

m,δ(2t)
]2 . (4.4)

By Proposition 4.2, the right-hand side of (4.4) is, for some constant cm,δ > 0, at most

cm,δ
(log t)2

t
+

1

E
[
Z(k)

m,δ(2t)
] = o(1), (4.5)

by Proposition 4.1.

4.1 The first moment of the number of proper trees

Let BT denote the event that no vertex outside a tree T connects to a vertex in this tree. We can then
write that the expected number of proper k-exploration trees in Gm,δ(2t) equals

E
[
Z(k)

m,δ(2t)
]

=
∑

T ∈Tkm(2t)

P
(
T ⊆ Gm,δ(2t) and T is proper

)
=

∑
T ∈Tkm(2t)

P
(
T is proper|T ⊆ Gm,δ(2t)

)
P
(
T ⊆ Gm,δ(2t)

)
=

∑
T ∈Tkm(2t)

P
(
BT |T ⊆ Gm,δ(2t)

)
· P
(
T ⊆ Gm,δ(2t)

)
. (4.6)

We will first give a lower bound on the probability that a given k-exploration tree exists in the graph
at time 2t. For convenience we will write am,δ = m+δ

3(2m+δ) .

Lemma 4.3 (Lower bound on existence probability). Fix m ≥ 2, δ > −m and k ≥ 0. Given a proper
k-exploration tree T ∈ Tkm(2t), then, for t sufficiently large,

P
(
T ⊆ Gm,δ(2t)

)
≥
(
am,δ
t

)m(k)−1

, (4.7)

where m(k) = mk+1−1
m−1 .

Proof. Since every vertex is added before time 2t, the denominator in (1.1)–(1.3) is at most 3t(2m+ δ).
The degree of all vertices already in the graph is at least m, so the probability that a certain given edge
is formed is at least

m+ δ

3t(2m+ δ)
=
am,δ
t
. (4.8)

Since exactly m(k) − 1 edges have to be formed to form the given tree T , we have that

P
(
T ⊆ Gm,δ(2t)

)
≥
(
am,δ
t

)m(k)−1

. (4.9)
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We will now give a lower bound on the probability that no other vertex connects to a given tree. We
will write mδ = m+ 1 + δ > 1.

Lemma 4.4 (No other vertex connects to T ). Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
logm . Given a proper

k-exploration tree T ∈ Tkm(2t), then, for t sufficiently large,

P
(
BT |T ⊆ Gm,δ(2t)

)
≥
(

1− mδm
k+1

t

)mt
. (4.10)

Proof. First note that for k ≤ log log t
logm and t sufficiently large, mδm

k+1 ≤ mδm log t ≤ t. So 0 ≤ 1 −
mδm

k+1

t ≤ 1. Further note that vertices in [t] cannot connect to a vertex in T , since T ⊆ [2t]\[t]. In the
remainder of the proof we will refer to outside edges as those edges that do not belong to T , of which
there are exactly mt− (m(k) − 1) added after time t. For A a set of vertices, let En(A) denote the event
that the n-th outside edge added after time t connects to a vertex in A and let En(A) be the negation
of En(A). We use induction on the number of outside edges that did not connect to the tree T , i.e., we
show that:

P
(

n⋂
i=1

E i(T )
∣∣∣T ⊆ Gm,δ(2t)

)
≥
(

1− mδm
k+1

t

)n
, (4.11)

by induction on n = 0, . . . ,mt− (m(k) − 1). For n = 0 the above holds, because both sides equal 1. Now
assume that the above holds for 0 ≤ n < mt− (m(k) − 1), then

P
(
n+1⋂
i=1

E i(T )
∣∣∣T ⊆ Gm,δ(2t)

)

= P
(
En+1(T )

∣∣∣ n⋂
i=1

E i(T ) ∩ {T ⊆ Gm,δ(2t)}
)

P
(

n⋂
i=1

E i(T )
∣∣∣T ⊆ Gm,δ(2t)

)

≥
(

1− P
(
En+1(T )

∣∣∣ n⋂
i=1

E i(T ) ∩ {T ⊆ Gm,δ(2t)}
))
·
(

1− mδm
k+1

t

)n
. (4.12)

Since it is known that at the time that the (n+ 1)-st outside edge after time t is added, no other outside
edge has connected to a vertex in the tree, we know that the degree of all vertices in the tree at that
moment is at most m+ 1. Further, since this edge is added after time t, the denominator of (1.1)–(1.3)
will be at least t. Thus, the right-hand side of (4.12) is at least(

1−
∑
i∈T

m+ 1 + δ

t

)
·
(

1− mδm
k+1

t

)n
≥
(

1− mδm
k+1

t

)
·
(

1− mδm
k+1

t

)n

=

(
1− mδm

k+1

t

)n+1

, (4.13)

where the inequality holds because there are less than mk+1 vertices in the tree. Applying the above to
n = mt− (m(k) − 1), we obtain that

P
(
BT |T ⊆ Gm,δ(2t)

)
≥
(

1− mδm
k+1

t

)mt−(m(k)−1)

≥
(

1− mδm
k+1

t

)mt
. (4.14)
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We finally give a lower bound on the number of possible proper k-exploration trees that can be formed.
It should be noted that when a vertex i connects to a vertex j, we will always have that i > j. So when
exploring a vertex i in the exploration tree, all m vertices this vertex connects to have a smaller label
than i.

Lemma 4.5 (Number of proper trees). Fix m ≥ 2 and 0 ≤ k ≤ log log t
logm . Then, for t sufficiently large,

the number of possible proper k-exploration trees at time 2t is at least
(
t/mk+1

)m(k)

, where we recall that

m(k) = mk+1−1
m−1 .

Proof. For t sufficiently large and k ≤ log log t
logm , mk+1 ≤ m log t ≤ t. Since the k-exploration tree of a vertex

i has to be proper, there are no collisions, so the number of vertices in the tree equals

#{v ∈ T (k)

i } = m(k). (4.15)

For any subset X ⊆ [2t]\[t] with #{v ∈ X} = m(k) there exists at least one possible proper k-exploration
tree. To see this, first order the vertex labels in descending order. Let the first vertex, i.e. the vertex
with the largest label, be the root of the tree. Then let the next m vertices be the vertices at distance
1 from the root, the next m2 vertices be the vertices at distance 2 from the root, etcetera, until the last
mk vertices which will be at distance k from the root. This way, all vertices will connect to m vertices
with a smaller label, i.e., vertices that were already in the graph when the vertex was added, so this is a
possible proper k-exploration tree with all vertices in X.

The number of subsets of [2t]\[t] of size m(k) is
( t
m(k)

)
which is at least

(
t

m(k)

)m(k)

≥
(

t

mk+1

)m(k)

, (4.16)

where we used that for 1 ≤ b ≤ a we have that (a− i)b ≥ (b− i)a for all 0 ≤ i < b, so that(
a

b

)
=

b−1∏
i=0

a− i
b− i

≥
(
a

b

)b
. (4.17)

We can now combine the three bounds above to get a lower bound on the expected number of proper
k-exploration trees.

Corollary 4.6 (Lower bound on expected number of proper trees). Fix m ≥ 2, δ > −m and 0 ≤ k ≤
log log t
logm . Then, for t sufficiently large,

E
[
Z(k)

m,δ(2t)
]
≥ t

am,δ

(
am,δ
mk+1

)mk+1 (
1− mδm

k+1

t

)mt
. (4.18)
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Proof. Using the bounds from Lemmas 4.3, 4.4 and 4.5 we get that

E
[
Z(k)

m,δ(2t)
]

=
∑

T ∈Tkm(2t)

P
(
BT |T ⊆ Gm,δ(2t)

)
· P
(
T ⊆ Gm,δ(2t)

)

≥ #{T ∈ Tkm(2t)}
(

1− mδm
k+1

t

)mt (
am,δ
t

)m(k)−1

≥
(

t

mk+1

)m(k) (
1− mδm

k+1

t

)mt (
am,δ
t

)m(k)−1

≥ t

am,δ

(
am,δ
mk+1

)mk+1 (
1− mδm

k+1

t

)mt
. (4.19)

The factor t in the corollary above turns out to be crucial for the remainder of the proof. This factor
arises from the fact that there is exactly one edge less in a proper k-exploration tree than there are
vertices.

We can now show that the expected number of k-exploration trees tends to infinity, for k = ε
logm log log t,

with 0 < ε < 1.

Proof of Proposition 4.1. First note that for k = ε
logm log log t, with 0 < ε < 1, mk = (log t)ε. We can

then use Corollary 4.6 to get that

lim
t→∞

E
[
Z(k)

m,δ(2t)
]
≥ lim

t→∞

t

am,δ

(
am,δ
mk+1

)mk+1 (
1− mmδm

k+1

mt

)mt
=∞, (4.20)

since (
am,δ
mk+1

)mk+1

=
(

am,δ
m(log t)ε

)m(log t)ε

, and

(
1− mmδm

k+1

mt

)mt
∼ e−m2mδ(log t)ε . (4.21)

It is easy to see that the same argument can be applied to k = log log t
logm − log log log t

logm − 1.

4.2 The second moment of the number of proper trees

In this section we will investigate the variance of Z(k)

m,δ(2t). To shorten the notation, for a k-exploration
tree T ∈ Tkm(2t), let FT denote the event that T ⊆ Gm,δ(2t) and T is proper. Then, the variance of the
number of proper k-exploration trees in Gm,δ(2t) is given by

Var
(
Z(k)

m,δ(2t)
)

= Var

 ∑
T ∈Tkm(2t)

I[T ⊆ Gm,δ(2t) and T is proper]


= Var

 ∑
T ∈Tkm(2t)

I[FT ]

 =
∑

T ,T ′∈Tkm(2t)

Cov (I[FT ], I[FT ′ ])

=
∑

T ,T ′∈Tkm(2t)
T 6=T ′

(P (FT ∩ FT ′)− P (FT ) P (FT ′)) +
∑

T ∈Tkm(2t)

P (FT ) (1− P (FT )) . (4.22)

We start by studying the terms of the first sum in the following lemma.
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Lemma 4.7 (Weak dependence of tree occurrences). Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t
logm . Let

T , T ′ ∈ Tkm(2t) with T 6= T ′. Then, for t sufficiently large,

P (FT ∩ FT ′)− P (FT ) P (FT ′) ≤
((

1 +
2mδm log t

t

)2m log t

− 1

)
P (FT )]P (FT ′) . (4.23)

Proof. When T ∩ T ′ 6= ∅, at least one edge of one of the trees will connect to a vertex in the other tree,
so the trees T and T ′ cannot both be proper. Thus, for T ∩ T ′ 6= ∅, trivially (4.23) holds.

For T ∩ T ′ = ∅, we have to take a closer look at the probabilities involved. All three probabilities in
the lemma are a product over all edges of the probability that either the edge does not connect to any
of the vertices in the tree(s) or the probability that the edge makes a prescribed connection in (one of)
the tree(s). Let Ej,s(A) denote the event that the j-th edge of vertex s connects to a vertex in A, with
Ej,s(i) = Ej,s({i}). Let Ej,s(A) be the complement of Ej,s(A). We have that

P(Ej,s(A)) =
∑
i∈A

P(Ej,s(i)), (4.24)

because the events on the right-hand side are disjunct. These probabilities are given by the growth rules
(1.1)–(1.3).

Suppose that the j-th edge, 1 ≤ j ≤ m, of a vertex t0 should not connect to a vertex in T ∪ T ′. Then
in P (FT ∩ FT ′), there will be a factor

P
(
Ej,t0(T ∪ T ′)

)
= 1− P

(
Ej,t0(T ∪ T ′)

)
= 1−

∑
i∈T ∪T ′

P (Ej,t0(i)) . (4.25)

In P (FT ) P (FT ′), there will be a factor(
1−

∑
i∈T

P (Ej,t0(i))

)1−
∑
i∈T ′

P (Ej,t0(i))

 . (4.26)

It is easy to see that 1− x− y ≤ (1− x)(1− y) for x, y ≥ 0, so (4.26) is at least as big as (4.25).
When the j-th edge, 1 ≤ j ≤ m, of a vertex t0, t + 1 ≤ t0 ≤ 2t, should connect to a vertex h ∈ T ,

then in P (FT ∩ FT ′) there will only be a factor

P (Ej,t0(h)) , (4.27)

since it will then automatically not connect to a vertex in T ′. In P (FT ) P (FT ′), however, there will be a
factor

P (Ej,t0(h))

1−
∑
i∈T ′

P (Ej,t0(i))

 . (4.28)

When we multiply (4.28) by (1−
∑
i∈T ′ P (Ej,t0(i)))−1 we obtain precisely (4.27). By symmetry, the same

holds when an edge should connect to a vertex in T ′. Since the degree of the vertices in the trees is at
most m+ 1, the edges of interest are added after time t and there are less than mk+1 vertices in the tree,
we have that 1−

∑
i∈T ′

P (Ej,t0(i))

−1

≤
(

1− mδm
k+1

t

)−1

. (4.29)
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Since there are less than mk+1 edges in both T and T ′, for T ∩ T ′ = ∅,

P (FT ∩ FT ′)
P (FT ) P (FT ′)

≤
∏
h∈T

1−
∑
h∈T ′

P (Ej,t0(h))

−1 ∏
k∈T ′

1−
∑
k∈T ′

P (Ej,t0(k))

−1

≤
(

1− mδm
k+1

t

)−2mk+1

=

(
1 +

mδm
k+1

t−mδmk+1

)2mk+1

≤
(

1 +
mδm log t

t−mδm log t

)2m log t

≤
(

1 +
2mδm log t

t

)2m log t

. (4.30)

We can now use lemma above to give an upper bound on the variance of Z(k)

m,δ(2t) in terms of the
expectation of Z(k)

m,δ(2t).

Proof of Proposition 4.2. Let cm,δ = 8mδm
2. Then, using Lemma 4.7, we have that

Var
(
Z(k)

m,δ(2t)
)

=
∑

T ,T ′∈Tkm(2t)
T 6=T ′

(P (FT ∩ FT ′)− P (FT ) P (FT ′)) +
∑

T ∈Tkm(2t)

P (FT ) (1− P (FT ))

≤
∑

T ,T ′∈Tkm(2t)
T 6=T ′

((
1 +

2mδm log t
t

)2m log t

− 1

)
P (FT ) P (FT ′) +

∑
T ∈Tkm(2t)

P (FT ) . (4.31)

Since (
1 +

2mδm log t
t

)2m log t

− 1 ≤ e
cm,δ

2
(log t)2

t − 1 ≤ cm,δ
(log t)2

t
, (4.32)

we have that (4.31) is at most

cm,δ
(log t)2

t

∑
T ,T ′∈Tkm(2t)
T 6=T ′

P (FT ) P (FT ′) + E
[
Z(k)

m,δ(2t)
]

≤ cm,δ
(log t)2

t

∑
T ,T ′∈Tkm(2t)

P (FT ) P (FT ′) + E
[
Z(k)

m,δ(2t)
]

= cm,δ
(log t)2

t
E
[
Z(k)

m,δ(2t)
]2

+ E
[
Z(k)

m,δ(2t)
]
. (4.33)

A Appendix

A.1 The tails of the degree of sequence

Lemma A.1 (The total degree of high degree vertices). Fix m ≥ 1 and δ > −m. Assume that lt →∞, as

t→∞ and that lt ≤ u1 = t
1

2(τ−1) (log t)−
1
2 . Then there exists a constant B > 0 such that with probability

exceeding 1− o(t−1), ∑
i:Di(t)≥lt

Di(t) ≥ Btl2−τt . (A.1)
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Proof. We note that ∑
i:Di(t)≥lt

Di(t) ≥ ltN≥lt(t), (A.2)

where N≥lt(t) = #{i ≤ t : Di(t) ≥ lt} is the number of vertices with degree at least lt.
In [23], detailed asymptotics for N≥lt(t) were proved for model (c) that we will survey now. These

asymptotics play a key role throughout the proof.
Firstly, it is shown that there exists a B1 such that uniformly for all lt,

P
(
|N≥lt(t)− E[N≥lt(t)]| ≥ B1

√
t log t

)
= o(t−1). (A.3)

This proves a concentration bound on the number of vertices with at least a given degree. The proof of
this result follows the argument in [17], and holds for any of the models (a)–(c).

Secondly, with
Nlt(t) = #{i ≤ t : Di(t) = lt}, (A.4)

the total number of vertices of degree equal to lt, and with plt defined by

plt =
θΓ(lt + δ)Γ(m+ δ + θ)

Γ(m+ δ)Γ(lt + 1 + δ + θ)
, lt ≥ m, (A.5)

so that pk ∼ k−τ with τ = 3 + δ/m, there exists a constant B2 such that

sup
l≥1
|E[Nlt(t)]− tplt | ≤ B2. (A.6)

For model (c), this is shown in [23], for model (a) this is shown in [31, Chapter 8]. This latter proof can
easily be adapted to deal with model (b) as well. In rather generality, results of this kind (with the sharp
bound in (A.6)) are proved in [30].

Therefore, we obtain that, with probability exceeding 1− o(t−1),

N≥lt(t) ≥ E[N≥lt(t)]−B1

√
t log t ≥ E[N≥lt(t)]− E[N≥2lt

(t)]−B1

√
t log t

≥
2lt−1∑
l=lt

[tplt −B2]−B1

√
t log t ≥ B3tl

1−τ
t −B2lt −B1

√
t log t, (A.7)

for some B3 > 0. We now wish to pick lt such that tl1−τt is the dominating term in the right-hand side of
(A.7), i.e., lt/t1/τ → 0 and

√
t log t/tl1−τt → 0, as t→∞. Note that 1

τ ≥
1

2(τ−1) for all τ > 2, so we need
to take u1 as in the statement of the lemma and lt ≤ u1. For this choice we find that (A.1) holds with
probability exceeding 1− o(t−1) and that, whp, N≥lt(t)/

√
t→∞, as t→∞.

A.2 The diameter of the multinomial graph

Lemma A.2 (Diameter multinomial graph). Let Hnt be the multinomial graph with parameters defined in
(3.9). Then, whp, the diameter of Hnt is bounded from above by the diameter of the uniform Erdős-Rényi
graph G(nt,mt), where the number mt of edges is equal to

mt =
1
2
et
(
1− (1− qt)t

)
. (A.8)
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Proof. Observe that by definition of the multinomial graph, and with et = nt(nt − 1)/2,

Mnt =
et∑
i=1

I[{
t∑

j=1

Nj,i > 0}]. (A.9)

We only have to show that, whp, the random number of edges Mnt dominates the deterministic number
mt. This can be deduced from Chebychev’s inequality as follows.

From an easy calculation,
E[Mnt ] = et(1− (1− qt)t) = 2mt, (A.10)

and

Var(Mtn) = e2t

(
(1− 2qt)t − (1− qt)2t

)
− et

(
(1− qt)t − (1− qt)2t

)
. (A.11)

From (3.8), (3.9) and a binomial expansion we conclude

Var(Mnt) ∼ tqtet ∼ E[Mnt ] = 2mt. (A.12)

so that the variance is of the same order as the first moment. Applying the Chebychev inequality yields

P(Mnt < mt) ≤ P(|Mnt − E[Mnt ]| > mt) ≤
Var(Mnt)

m2
t

∼ 4Var(Mnt)
E[Mnt ]2

→ 0. (A.13)

A.3 Proof of Lemma 3.9

We investigate the problem for model (a) first, the adaptation of the proof for model (b) is rather
straightforward and will be omitted. The proof for model (c) is slightly more involved and is treated
immediately after the proof for model (a).

We first note that, for models (a) and (b), the model for general m ≥ 1 is obtained from the model
for m = 1 by taking δ′ = δ/m and identifying groups of m vertices. For m = 1 and δ > −1, we shall show
by induction on j, that for model (a)

P(Di(t) = j) ≤ Cj
Γ(t)Γ(i+ ∆)
Γ(t+ ∆)Γ(i)

, (A.14)

for all t ≥ i and j ≥ m, with ∆ = (1 + δ)/(2 + δ) ∈ (0, 1) and where Cj will be determined in the course
of the proof. Clearly, for every t ≥ i, for model (a),

P(Di(t) = 1) =
t∏

s=i+1

(
1− 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
=

Γ(t)Γ(i+ ∆)
Γ(t+ ∆)Γ(i)

, (A.15)

which initializes the induction hypothesis with C1 = 1.
To advance the induction, we let s ≤ t be the last time at which a vertex is added to i. Then we have

that

P(Di(t) = j) =
t∑

s=i+j−1

P
(
Di(s− 1) = j − 1

) j − 1 + δ

(2 + δ)(s− 1) + 1 + δ
P
(
Di(t) = j|Di(s) = j

)
. (A.16)

By the induction hypothesis, we have that

P
(
Di(s− 1) = j − 1

)
≤ Cj−1

Γ(s− 1)Γ(i+ ∆)
Γ(s− 1 + ∆)Γ(i)

. (A.17)
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Moreover, analogously to (A.15), we have that

P(Di(t) = j|Di(s) = j) =
t∏

q=s+1

(
1− j + δ

(2 + δ)(q − 1) + (1 + δ)

)
(A.18)

=
Γ(t− j−1

2+δ )Γ(s+ ∆)

Γ(t+ ∆)Γ(s− j−1
2+δ )

.

Combining (A.16), (A.17) and (A.18), we arrive at

P(Di(t) = j) ≤ Cj−1

t∑
s=i+j−1

Γ(s− 1)Γ(i+ ∆)
Γ(s− 1 + ∆)Γ(i)

j − 1 + δ

(2 + δ)(s− 1) + (1 + δ)
Γ(t− j−1

2+δ )Γ(s+ ∆)

Γ(t+ ∆)Γ(s− j−1
2+δ )

= Cj−1
j − 1 + δ

2 + δ

Γ(i+ ∆)
Γ(i)

Γ(t− j−1
2+δ )

Γ(t+ ∆)

t∑
s=i+j−1

Γ(s− 1)
Γ(s− j−1

2+δ )
. (A.19)

We note that, whenever l + b, l + 1 + a > 0 and a− b+ 1 > 0,

t∑
s=l

Γ(s+ a)
Γ(s+ b)

=
1

a− b+ 1

[Γ(t+ 1 + a)
Γ(t+ b)

− Γ(l + a)
Γ(l − 1 + b)

]
≤ 1
a− b+ 1

Γ(t+ 1 + a)
Γ(t+ b)

. (A.20)

Application of (A.20) for a = −1, b = − j−1
2+δ , l = i+ j − 1, so that a− b+ 1 = j−1

2+δ > 0 when j > 1, leads
to

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

j − 1
Γ(i+ ∆)

Γ(i)
Γ(t)

Γ(t+ ∆)
. (A.21)

Equation (A.21) advances the induction when we define

Cj =
j − 1 + δ

j − 1
Cj−1. (A.22)

For m > 1, inequality (A.14) for model (a) generalizes to

P(Di(t) = j) ≤ Cj
Γ(t)Γ(i+ 1+δ′

2+δ′ )

Γ(t+ 1+δ′

2+δ′ )Γ(i)
= Cj

Γ(t)Γ(i+ m+δ
2m+δ )

Γ(t+ m+δ
2m+δ )Γ(i)

. (A.23)

This completes the investigation of P(Di(t) = j) for model (a). In an identical fashion, for model (b), we
obtain for m = 1

P(Di(t) = j) ≤ Cj
Γ(t−∆)Γ(i)
Γ(t)Γ(i−∆)

, (A.24)

where again C1 = 1 and Cj satisfies (A.22). This generalizes to

P(Di(t) = j) ≤ Cj
Γ(t− m+δ

2m+δ )Γ(i)

Γ(t)Γ(i− m+δ
2m+δ )

. (A.25)

We omit further details for model (b).
For models (a) and (b) we can generalize the inequality for m = 1 to m > 1. Unfortunately this fails

for model (c), and we first adapt the argument. Recall that Di(t) is the degree of vertex i at time t. We
shall define Ei(t) such that Ei(t) ≤ Di(t) and Ei(t) grows by at most one at each time step. The definition
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of Ei(t) is recursive. We let Ei(i) = Di(i) = m, and, assuming we have shown that Di(t) = Ei(t) +Ri(t),
where Ri(t) ≥ 0, we proceed at time t + 1 as follows. We can increase Ei(t) only when the first edge of
vertex t + 1 attaches to vertex i, and we do this with probability Ei(t)+δ

(2m+δ)t . With probability Ri(t)
(2m+δ)t , we

keep Ei(t + 1) = Ei(t) and we increase Ri(t) by one. For the other m − 1 edges, we increase Ri(t) by
one with probability Di(t)+δ

(2m+δ)t . Then we clearly have that Ei(t+ 1) ≤ Di(t+ 1) if Ei(t) ≤ Di(t), since the
difference between Di(t) and Ei(t) equals Ri(t), which is monotonically increasing. Moreover, we have
that Ei(t+ 1) equals Ei(t) or Ei(t) + 1, and the latter occurs with conditional probability

P(Ei(t+ 1) = j|Ei(t) = j − 1) =
j − 1 + δ

(2m+ δ)t
. (A.26)

We now adapt the above argument for model (a) to the random variable Ei(t). Indeed, we now use as an
induction hypothesis that

P(Ei(t) = j) ≤ Cj
Γ(t− m+δ

2m+δ )Γ(i)

Γ(t)Γ(i− m+δ
2m+δ )

, (A.27)

where Cm = 1 and, for j > m,

Cj =
j − 1 + δ

j −m
Cj−1. (A.28)

The verification of (A.27) is a straightforward adaptation of the one of (A.14).
We summarize the bounds in models (a)–(c): for all m ≥ 1, and i ∈ [t], j ≥ m,

P(Di(t) = j) ≤ Cj
Γ(t− a1)Γ(i+ a2)
Γ(t+ a2)Γ(i− a1)

, (A.29)

where a1 = 0 for model (a), while a1 = m+δ
2m+δ for models (b)–(c), while a2 = m+δ

2m+δ for model (a), while
a2 = 0 for models (b)–(c), and, for all models, Cj ≤ jp−1 for some p ≥ 1.

Consequently, we obtain

P(Di(t) ≤ j) ≤ jp
Γ(t− a1)Γ(i+ a2)
Γ(t+ a2)Γ(i− a1)

. (A.30)

We finally use (A.30) to complete the proof of Lemma 3.9. Take 0 < b < a1+a2
a1+a2+1 = m+δ

3m+2δ , then, by
Boole’s inequality,

P(∃i ≤ tb : Di(t) ≤ (log t)σ) ≤
tb∑
i=1

P(Di(t) ≤ (log t)σ) ≤ (log t)σp
Γ(t− a1)
Γ(t+ a2)

tb∑
i=1

Γ(i+ a2)
Γ(i− a1)

≤ (log t)σp(a1 + a2 + 1)−1 Γ(t− a1)
Γ(t+ a2)

Γ(tb + a2 + 1)
Γ(tb − a1)

= o(1). (A.31)

This completes the proof of Lemma 3.9.

A.4 Late vertices have small degree

Recall the definition of the core Coret in (3.1), where we take σ > 1. In the following theorem we will
prove that, for models (a)–(c), all vertices with large degree will be early vertices. We need this result to
prove Theorem 1.7.

Proposition A.3 (Late vertices have small degree). Fix m ≥ 2, δ > −m and σ > 1. Then, Core2t ⊆ [t]
whp.
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Proof. Note that

P
(
Core2t ⊆ [t]

)
≥ 1−

2t∑
i=t+1

P
(
Di(2t) ≥ (log 2t)σ

)
≥ 1−

2t∑
i=t+1

P
(
Dt(2t) ≥ (log 2t)σ

)
= 1− tP

(
Dt(2t) ≥ (log 2t)σ

)
, (A.32)

because vertex t is more likely to have a large degree than vertices added after time t. In Lemma A.4 we
will show that P

(
Dt(2t) ≥ (log 2t)σ

)
= o

(
1
t

)
, so that P

(
Core2t ⊆ [t]

)
≥ 1− o(1).

Lemma A.4 (Tails of degree distribution). Fix m ≥ 2, δ > −m and σ > 1. Then,

P
(
Dt(2t) ≥ (log 2t)σ

)
= o (1/t) . (A.33)

Proof. As noted in Section 1, Gm,δ(2t) can be constructed from G1,δ′(2mt), with δ′ = δ/m. We will include
the superscripts to avoid confusion. Thus identify, for i ∈ [2t], vertices ((i − 1)m + 1)(1), . . . , (im)(1) in
G1,δ′(2mt) with vertex i(m) in Gm,δ(2t). So (A.33) is equivalent to

P
(
D((t−1)m+1)(1)(2mt) + . . .+D(tm)(1)(2mt) ≥ (log 2t)σ

)
= o (1/t) . (A.34)

We will now color the vertices and edges in the following way. Color the vertices 1(1), . . . , ((t− 1)m)(1)

and all edges between these vertices blue and color the vertices ((t − 1)m + 1)(1), . . . , (tm)(1) and the m
edges that are attached to them at time mt red. When a vertex, that was added after time mt, connects
to a blue (red) vertex, also color that vertex and its edge blue (red). Color vertices with a self-loop and
its edge blue. Then, at time 2mt the total degree of vertices ((t− 1)m+ 1)(1), . . . , (tm)(1) is at most equal
to the number of red edges plus m, because no blue edges are connected to these red vertices, and all red
edges are connected with at most one endpoint to these vertices. The only exception are the first m red
edges, which might connect with both endpoints to these vertices, hence we have to add m to the number
of red edges. Thus,

P
(
D((t−1)m+1)(1)(2mt) + . . .+D(tm)(1)(2mt) ≥ (log 2t)σ

)
≤ P

(
#{red edges} +m ≥ (log 2t)σ

)
. (A.35)

Since we will bound the right-hand side of the formula above, it is allowed to increase the probability of
attaching to a red vertex, or, equivalently, to decrease the probability of attaching to a blue vertex. It
is also allowed to increase the total degree of the red vertices, or to decrease the total degree of the blue
vertices. All this will only increase the probability of the number of red edges being large.

Therefore, we are allowed to assume that the first m red edges are all self-loops. Further, we will not
allow for self-loops after time t, which will increase the probability of attaching to a red vertex in models
(a) and (b), in model (c) nothing changes. When we consider model (c), we see that the degrees should
only be updated after each m-th vertex has been added. For j ≥ mt, no more than m edges and vertices
can be added before updating the degrees, so

P
(
(j + 1)(1) connects to a red vertex

∣∣G(c)
1,δ′(j)

)
=
∑
v(1) red (Dv(1)(mbj/mc) + δ′)

mbj/mc(2 + δ′)

≤
∑
v(1) red (Dv(1)(j) + δ′)
j(2 + δ′)−m(2 + δ′)

. (A.36)

Thus, we are allowed to update the degrees after adding each vertex, but then we have to lower the total
weight that blue vertices and edges contribute to the connecting probabilities by m(2 + δ′). The above
bound on the connecting probabilities also holds for models (a) and (b).
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Since we are only interested in the number of red and blue vertices and edges, the problem reduces
to the following Pólya urn scheme. Let there be an urn with, at time s, S1(s) red balls, corresponding
to the total weight that red vertices and edges contribute to the connecting probabilities, and S2(s) blue
balls, corresponding to the lowered total weight that blue vertices and edges contribute to the connecting
probabilities. At time s = 0 we will start with S1(0) = m(2 + δ′) and S2(0) = m(t−1)(2 + δ′)−m(2 + δ′).
We then successively take one ball proportional to the number of balls of a certain color, and replace it
together with another 2 + δ′ balls of the same color. This corresponds to attaching a new vertex to a
vertex of that color.

So S1(mt)
2+δ′ has the same distribution as the number of red edges at time 2mt. Consequently,

P
(
Dt(m)(2t) ≥ (log 2t)σ

)
≤ P

(
S1(mt)
2 + δ′

+m ≥ (log 2t)σ
)
. (A.37)

To analyse the probability on the right-hand side, we make use of De Finetti’s Theorem [28]. This theorem
states that for an infinite sequence of exchangeable random variables {Xi}∞i=1, Xi ∈ {0, 1}, there exists a
random variable U with P(U ∈ [0, 1]) = 1, such that for all 1 ≤ k ≤ n,

P
(
X1 = . . . = Xk = 1, Xk+1 = 0, . . . , Xn = 0

)
= E

[
Uk(1− U)n−k

]
. (A.38)

The random variable U can be computed explicitly. Note that this implies that

P
(

n∑
i=1

Xi = k

)
= E

[
P
(
BIN(n,U) = k

∣∣∣U)]. (A.39)

Let Xi denote the indicator that the i-th ball drawn in the Pólya urn scheme described above is red.
As shown in [31, Section 11.1], {Xi}∞i=1 is an infinite exchangeable sequence. Note that

S1(s) = (2 + δ′)m+ (2 + δ′)
s∑
i=1

Xi. (A.40)

Hence,

P
(
S1(mt)
2 + δ′

+m ≥ (log 2t)σ
)

= E
[
ψ(U)

]
, (A.41)

where 0 ≤ ψ(u) = P
(
BIN(mt, u) ≥ (log 2t)σ − 2m

)
≤ 1.

Now observe from [35] that
ψ(u) ≤ e−(log 2t)σ+2m, (A.42)

whenever u is such that 7mtu ≤ (log 2t)σ − 2m. We define g(t) = ((log 2t)σ − 2m)/(7(mt)). Since,

E
[
ψ(U)

]
= E

[
ψ(U)

∣∣∣U ≤ g(t)
]
P
(
U ≤ g(t)

)
+ E

[
ψ(U)

∣∣∣U > g(t)
]
P
(
U > g(t)

)
≤ ψ(g(t)) + P

(
U > g(t)

)
, (A.43)

we obtain, according to (A.42),

P
(
S1(mt)
2 + δ′

+m ≥ (log 2t)σ
)
≤ e−(log 2t)σ+2m + P

(
U > g(t)

)
= o

(
1
t

)
+ P

(
U > g(t)

)
. (A.44)

It remains to show that also P(U > g(t)) = o
(

1
t

)
. It turns out that U has a Beta-distribution with

parameters α = m and β = m(t−2) ([31]), so α, β > 1. Thus we have that the probability density function
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of U is unimodular, with its turning point at t = α−1
α+β−2 ([45]). It is easy to verify that g(t) ≥ α−1

α+β−2 , for
t sufficiently large, so that

P(U > g(t)) ≤ (1− g(t))
Γ(α+ β)
Γ(α)Γ(β)

(g(t))α−1 (1− g(t))β−1 ≤ Γ(α+ β)
Γ(α)Γ(β)

(1− g(t))β . (A.45)

Using Stirling’s formula (see e.g., [1]), one can show that there exists a constant C > 0, such that (A.45)
is at most

C
βα

Γ(α)
(1− g(t))β ≤ C(mt)m

(
1− (log 2t)σ

8m(t− 2)

)m(t−2)

≤ C(mt)me−(log 2t)σ/8 = o (1/t) , (A.46)

because σ > 1.
Note that we in fact proved that P(Dt(m)(2t) ≥ (log 2t)σ) = o (t−γ), for any constant γ.
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