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Abstract—Graphs resulting from human behavior (the
web graph, friendship graphs, etc.) have hitherto been
viewed as a monolithic class of graphs with similar
characteristics; for instance, their degree distributions are
markedly heavy-tailed. In this paper we take our under-
standing of behavioral graphs a step further by showing
that an intriguing empirical property of web graphs —
their compressibility — cannot be exhibited by well-known
graph models for the web and for social networks. We then
develop a more nuanced model for web graphs and show
that it does exhibit compressibility, in addition to previously
modeled web graph properties.

I. OVERVIEW

There are three main reasons for modeling and an-
alyzing graphs arising from the Web and from social
networks: (i) they model social and behavioral phenom-
ena whose graph-theoretic analysis has led to significant
societal impact (witness the role of link analysis in web
search); (ii) from an empirical standpoint, these networks
are several orders of magnitude larger than those studied
hitherto (search companies are now working on crawls
of 100 billion pages and beyond); (iii) from a theoretical
standpoint, stochastic processes built from independent
random events — the classical basis of the design and
analysis of computing artifacts — are no longer ap-
propriate. The characteristics of such behavioral graphs
(viz., graphs arising from human behavior) demand the
design and analysis of new stochastic processes in which
elementary events are highly dependent. This in turn
demands new analysis and insights that are likely to be
of utility in many other applications of probability and
statistics.

In such analysis, there has been a tendency to lump
together behavioral graphs arising from a variety of
contexts, to be studied using a common set of models and
tools. It has been observed [3], [9], [22] for instance that
the directed graphs arising from such diverse phenomena
as the web graph (pages are nodes and hyperlinks are
edges), citation graphs, friendship graphs, and email
traffic graphs all exhibit power laws in their degree
distributions: the fraction of nodes with in-degree k > 0
is proportional to 1/kα typically for some α > 1;
random graphs generated by classic Erdös–Rényi models

cannot exhibit such power laws. To explain the power
law degree distributions seen in behavioral graphs, sev-
eral models have been developed [2], [3], [7], [8], [11],
[17], [21], [25] for generating random graphs in which
dependent events combine to deliver the observed power
laws.

While the degree distribution is a fundamental but lo-
cal property of such graphs, an important global property
is their compressibility — the number of bits needed to
store each edge in the graph. Compressibility determines
the ability to efficiently store and manipulate these mas-
sive graphs [18], [31], [35]. An intriguing set of papers
by Boldi, Santini, and Vigna [4]–[6] shows that the web
graph is highly compressible: it can be stored such that
each edge requires only a small constant number —
between one and three — of bits on average; a more
recent experimental study confirms these findings [10].
These empirical results suggest the intriguing possibility
that the Web can be described with only O(1) bits per
edge on average. Two properties are at the heart of the
compression algorithm of Boldi and Vigna [5]. First,
once web pages are sorted lexicographically by URL,
the set of out-links of a page exhibits locality; this can
plausibly be attributed to the fact that nearby pages are
likely to come from the same website’s template. Second,
the distribution of the lengths of edges follows a power
law with exponent > 1 (the length of an edge is the
distance of its endpoints in the ordering); this turns out
to be crucial for high compressibility. This prompts the
natural question: can we model the compressibility of
the web graph, in particular mirroring the properties of
locality and edge length distribution, while maintaining
other well-known properties such as power law degree
distribution?

Main results. Our first set of results in this paper is to
show that the best known models for the web graph
cannot account for compressibility, in the sense that they
require Ω(log n) bits storage per edge on average. This
holds even when these graphs are represented just in
terms of their topology (i.e., with all labels stripped
away). Specifically, we show that the preferential at-
tachment (PA) model [3], [7], the ACL model [2],



the copying model [21], the Kronecker product model
[24], and Kleinberg’s model for navigability1 on social
networks [19], all have large entropy in the above sense.

We then show our main result: a new model for the
web graph that has constant entropy per edge, while
preserving crucial properties of previous models such as
the power law distribution of in-degrees, a large number
of communities (i.e., bipartite cliques), small diameter,
and a high clustering coefficient. In this model, nodes
lie on the line and when a new node arrives it selects
an existing node uniformly at random, placing itself on
the line to the immediate left of the chosen node. An
edge from the new to the chosen node is added, and
moreover all outgoing edges of the chosen node but one
are copied (these edges are chosen at random); thus,
the edges have some locality. We then show a crucial
property of our model: the power law distribution of
edge lengths. Intuitively, this long-get-longer effect is
caused since a long edge is likely to receive the new node
(which selects its position uniformly at random) under
its protective wing, and the longer it gets, the more likely
it is to attract new nodes. Using this, we show that the
graphs generated by our model are compressible to O(1)
bits per edge; we also provide a linear-time algorithm to
compress an unlabeled graph generated by our model.

Technical contributions and guided tour. In Section III
we prove that several well-known web graph models are
not compressible, i.e., they need Ω(log n) bits per edge.
In fact, we prove incompressibility even after the labels
of nodes and orientations of edges are removed.

Section IV presents our new model and Sections V and
VI present the basic properties of our model. Although
our new model might at first sight closely resemble a
prior copying model of [21], it differs in fundamental
respects. First, our new model successfully admits the
global property of compressibility which the copying
model provably does not. Second, while the analysis
of the distribution of the in-degrees is rather standard,
the crucial property that edge lengths are distributed
according to a power law requires an entirely novel
analysis; in particular, the proof requires a very del-
icate understanding of the structural properties of the
graphs generated by our model in order to establish
the concentration of measure. Section VII addresses the
compressibility of our model, where we also provide an
efficient algorithm to compress graphs generated by our
model.

It is difficult to distinguish experimentally between
graphs that require only O(1) bits per edge and those
requiring, say, ε lg n bits. The point however is that the

1Since navigability is a crucial property of real-life social networks
(cf. [16], [26], [33]), it is tempting to conjecture that social networks
are incompressible; see, for instance, [12].

compressibility of our model relies upon other important
structural properties of real web graphs that previous
models, in view of our lower bounds, provably cannot
have.

Related prior work. The observation of power law degree
distributions in behavioral (and other) graphs has a long
history [3], [22]; indeed, such distributions predate the
modern interest in social networks through observations
in linguistics [36] and sociology [30]; see the survey by
Mitzenmacher [28]. Simon [30], Mandelbrot [27], Zipf
[36] and others have provided a number of explanations
for these distributions, attributing them to the dependen-
cies between the interacting humans who collectively
generate these statistics. These explanations have found
new expression in the form of rich-get-richer and herd-
mentality theories [3], [34]. Early rigorous analyses of
such models include [2], [7], [13], [21]. Whereas Kumar
et al. [21] and Borgs et al. [8] focused on modeling the
web graph, the models of Aiello, Chung, and Lu (ACL)
[2], Kleinberg [19], Lattanzi and Sivakumar [23], and
Leskovec et al. [24] addressed social graphs in which
people are nodes and the edges between them denote
friendship. The ACL model is in fact known not to be
a good representation of the web graph [22], but is a
plausible model for human social networks. Kleinberg’s
model of social networks focuses on their navigability:
it is possible for a node to find a short route to a target
using only local, myopic choices at each step of the
route. The papers by Boldi, Santini, and Vigna [4]–[6]
suggests that the web graph is highly compressible (see
also [1], [10], [12], [31]).

II. PRELIMINARIES

The graph models we study will either have a fixed
number of nodes or will be evolving models in which
nodes arrive in a discrete-time stochastic process; for
many of them, the number of edges will be linear in the
number of nodes. We analyze the space needed to store
a graph randomly generated by the models under study;
this can be viewed in terms of the entropy of the graph
generation process. Note that a naive representation of a
graph would require Θ(log n) bits per edge; entropically,
one can hope for no better for an Erdös–Rényi graph. We
are particularly interested in the case when the amortized
storage per edge can be reduced to a constant. As in the
work of Boldi and Vigna [5], [6], we view the nodes as
being arranged in a linear order. To prove compressibility
we then study the distribution of edge lengths — the
distance in this linear order between the end-points of
an edge.

Background. Given a function f : A1 × · · · × An → R,
we say that f satisfies the c-Lipschitz property if, for any



sequence (a1, . . . , an) ∈ A1 × · · · × An, and for any i
and a′i ∈ Ai, we have

|f(a1, . . . , ai−1, ai, ai+1, . . . , an)
− f(a1, . . . , ai−1, a

′
i, ai+1, . . . , an)| ≤ c.

In order to establish that certain events occur w.h.p.,
we will make use of the following concentration result
known as the method of bounded differences (cf. [15]).

Theorem 1 (Method of bounded differences). Let
X1, . . . , Xn be independent r.v.’s. Let f be a function on
X1, . . . , Xn satisfying the c-Lipschitz property. Then,

Pr [|f(X1, . . . , Xn)− E [f(X1, . . . , Xn)]| > t]

≤ 2 exp
(
− t2

c2n

)
.

The Gamma function is defined as Γ(x) =∫∞
0
tx−1e−tdt. We use the following properties of the

Gamma function: (i) Γ(x+ 1) = xΓ(x), (ii) Γ(x)Γ(x+
1
2 ) = Γ(2x)21−2x

√
π, (iii) for constants a, b ∈ R,

limn→∞
Γ(n+a)
Γ(n+b)n

b−a = 1; the following lemma, whose
proof we omit for lack of space, will also be used in our
analysis.

Lemma 2. Let a, b ∈ R+ be such that b 6= a + 1. For
each t ∈ Z+, it holds that

tX
i=1

Γ(i + a)

Γ(i + b)
=

1

b− a− 1

„
Γ(a + 1)

Γ(b)
− Γ(t + a + 1)

Γ(t + b)

«
.

Throughout the paper, we will use lg x and lnx
for denoting, respectively, the binary and the natural
logarithm of x.

III. INCOMPRESSIBILITY OF THE EXISTING MODELS

In this section we prove the inherent incompressibility
of commonly-studied random graph models for social
networks and the web. We show that on average Ω(log n)
bits per edge are necessary to store graphs generated
by several well-known models for web/social networks,
including the PA and the copying models. In our lower
bounds, we show that the random graph produced by
the models we consider are incompressible, even after
removing the labels of their nodes and orientations
of their edges. Given a labeled/directed graph and its
unlabeled/undirected counterpart, the latter is more com-
pressible than the former; in fact, the gap can be arbi-
trarily large. Thus the task of proving incompressibility
of unlabeled/undirected versions of graphs generated by
various models is made more challenging. Note that it
is crucial to analyze the compressibility of unlabeled
graphs — the experiments on web graph [5], [6] show
how its edges alone can be compressed using ≈ 2 bits
per edge.

A. Proving incompressibility

Let Gn denote the set of all directed labeled graphs
on n nodes. Let P θn : Gn → [0, 1] denote the probability
distribution on Gn induced by the random graph model
θ. In this paper we consider the PA model (θ = pref), the
ACL model (θ = acl), the copying model (θ = copy),
the Kronecker multiplication model (θ = kron), and
Kleinberg’s model (θ = kl).

For a given θ, let H(P θn) denote the Shannon entropy
of the distribution P θn , that is, the average number of
bits needed to represent a directed labeled random graph
generated by θ. Our goal is to obtain lower bounds on
the representation. This is accomplished by the following
min-entropy argument.

Lemma 3 (Min-entropy argument). Let G∗n ⊆ Gn,
P+ ≤

∑
G∈G∗n

P θn(G), and P ∗ ≥ maxG∈G∗n P
θ
n(G).

Then, H(P θn) ≥ P+ · lg(1/P ∗).

Proof:

H(P θn) =
∑
G∈Gn

P θn(G) lg
1

P θn(G)

≥
∑
G∈G∗n

P θn(G) lg
1

P θn(G)

≥
∑
G∈G∗n

P θn(G) lg
1
P ∗
≥ P+ · lg 1

P ∗
.

Thus, to obtain lower bounds on H(P θn), we will up-
per bound maxG∈G∗n P

θ
n(G) by P ∗ and lower bound∑

G∈G∗n
P θn(G) by P+, for a suitably chosen G∗n ⊆ Gn.

For good lower bounds on H(P θn), G∗n has to be chosen
judiciously. For instance, choosing a large G∗n (say, Gn)
might only yield a P ∗ that is moderately small, while at
the same time, it is important to choose a G∗n such that
P+ is large.

Let Hn denote the set of all undirected unlabeled
graphs on n nodes. Let ϕ : Gn → Hn be the
many-to-one map that discards node and edge labels
and edge orientations. For a given model θ, let Qθn :
Hn → [0, 1] be the probability distribution such that
Qθn(H) =

∑
ϕ(G)=H P

θ
n(G). Clearly, H(Qθn) ≤ H(P θn)

and therefore, lower bounds on H(Qθn) are stronger and
harder to obtain.

B. Incompressibility of the PA model

Consider the PA model (pref[k]) defined in [7]. This
model is parametrized by an integer k ≥ 1. At time 1,
the (undirected) graph consists of a single node x1 with
1 self-loop. At time t > 1,

(i) a new node xt, labeled t, is added to the graph;



(ii) a random node y is chosen from the graph with
probability proportional to its current degree (in this
phase, the degree of xt is taken to be 1);

(iii) the edge xt → y, labeled t mod k, is added to
the graph;2 and

(iv) if t is a multiple of k, nodes t− k + 1, . . . , t are
merged together, preserving self-loops and multi-edges.

For k = 1, note that the graphs generated by the above
model are forests. Since there are 2O(n) unlabeled forests
on n nodes (e.g., [29]), we have H(Qpref[k]

n ) = O(n), i.e.,
the graph without labels and edge orientations is com-
pressible to O(1) bits per edge. The more interesting case
is when k ≥ 2 for which we show an incompressibility
bound.

We underscore the importance of a good choice of G∗n
in applying Lemma 3. Consider the graph G having the
first node of degree k(n+1) and the other n−1 nodes of
degree k. Clearly, P pref[k]

n (G) =
∏nk
i=k+1

k−1+i
2i−1 ≥ 2−nk.

Thus, choosing a set G∗n containing G, would force us
to have P ∗ ≥ 2−nk so that the entropy bound given by
Lemma 3 would only be H(P pref[k]

n ) ≥ nk = Θ(n). (A
similar issue would be encountered in the unlabeled case
as well.) A careful choice of G∗n, however, yields a better
lower bound.

Theorem 4. H(Qpref[k]
n ) = Ω(n log n), for k ≥ 2.

Proof: Let G be a graph generated by pref[k]. Let
degt(xi), for i ≤ t, be the degree of the i-th inserted
node at time t in G. By [14, Lemma 6], with probability
1−O(n−3), for each 1 ≤ t ≤ n, each node xi, 1 ≤ i ≤ t,
will have degree degt(xi) < (

√
t/i) ln3 n in G.

In particular, let t∗ = d 3
√
ne. Let ξ be the event: “∃t ≥

t∗,
∑t∗

i=1 degt(xi) ≥ n3/4.” At time n, the sum of the
degrees of nodes x1, . . . , xt∗ can be upper bounded by

t∗∑
i=1

degn(xi) ≤
t∗∑
i=1

√
n

i
ln3 n

=
√
n ln3 n

t∗∑
i=1

i−1/2 < O(n3/4),

w.h.p. Indeed, Pr [ξ] ≤ O(n−3).
Now define t+ = dεne, for some small enough ε > 0;

let n be large enough such that t∗ < t+. We call a
node added after time t+ good if it is not connected to
any of the first t∗ nodes. To bound the number of good
nodes from below, we condition on ξ, and we upper
bound the number of bad nodes. Using a union bound,
the probability that node xt for t ≥ t∗ is bad can be
upper bounded by kn3/4/(εn) ≤ O(n−1/4).

2In the original PA model, edges are both undirected and unlabeled:
we direct and label them for simplicity of exposition. The entropy
lower bound will hold for the undirected and unlabeled version of
these graphs.

Let ξ′ be the event: “at least (1 − 2ε)n nodes are
good”; by stochastic dominance, the event ξ′ happens
w.h.p. In our application of Lemma 3, we will choose
G∗n ⊆ Gn to be the set of graphs satisfying ξ ∩ ξ′. Thus,
P+ = Pr [ξ ∩ ξ′] = 1− o(1). Moreover,

max
G∈G∗n

P pref[k]
n (G) ≤


√

n
3√n ln3 n

kn

(1−2ε)kn

≤
(
O(n−2/3+ε)

)2(1−2ε)n

≤ n− 4
3n+ 14

3 εn = ρ.

Notice how, by applying Lemma 3 at this point, we
already have that H(P pref[k]

n ) ≥ Ω(n log n).
Now, we proceed to lower bound H(Qpref[k]

n ) through
an upper bound on |ϕ−1(H)| for H ∈ Hpref[k]

n , by a
careful counting argument. Given a H , it is possible
to determine for each of its edges, which of the two
endpoints of the edge was responsible for adding the
edge to the graph. This task is trivial for edges incident to
any node of degree k, as that node will have necessarily
added all k edges to the graph. So, we can remove all
degree k nodes from the graph and repeat this process
until the graph becomes empty.

Thus, H could have been produced from at most n! ·
(k!)n labeled graphs, since there are at most n! ways of
labeling the nodes, and k! ways of labeling each of the
“outgoing” edges of each node. That is,

∣∣ϕ−1(H)
∣∣ ≤

n! · (k!)n ≤ nnkkn. Then, choosing H∗n ⊆ Hn to be the
set of unlabeled graphs obtained by removing labels from
G∗n, H∗n = {ϕ(G) | G ∈ G∗n}, we obtain P+ = 1− o(1),
and

max
H∈H∗n

Qpref[k]
n (H) ≤ ρnnkkn = n−Ω(n)kkn = P ∗.

Finally, an application of Lemma 3 gives H(Qpref[k]
n ) ≥

P+ · lg 1
P∗ ≥ Ω(n log n), completing the proof.

C. Incompressibility of other graph models
We now state the incompressibility results for other

well-known graph models. Due to lack of space, the
definitions of the models along with the proofs of the
following results are omitted in this version.

Theorem 5. H(Q′acl[α]
n ) = Ω(n log n), for3 α > 1/2.

Theorem 6. H(Qcopy[α,k]
n ) = Ω(n log n), for k > 2/α.

Theorem 7. Let ` ≥ 2 and 1/` < α < 1. Then, w.h.p.,
H(Qkrm[M,s]

n ) = Ω(m log n), where n = `s, M = αJ`,
and m is the number of edges.

Theorem 8. H(Qkl
n) = Ω(n log n).

3Here we do not use the probability distribution Q on the graphs of
n nodes — in the acl[α] model the number of nodes is a r.v. . Q′acl[α]

n

denotes the probability distribution on the graphs that can be generated
by the acl[α] model in n steps.



IV. THE NEW WEB GRAPH MODEL

In this section we present our new web graph model.
Let k ≥ 2 be a fixed positive integer. Our new model
creates a directed simple graph (i.e., no self-loops or
multi-edges) by the following process.

The process starts at time t0 with a simple directed
seed graph Gt0 whose nodes are arranged on a (discrete)
line, or list. The graph Gt0 has t0 nodes, each of out-
degree k. Here, Gt0 could be, for instance, a complete
directed graph with t0 = k + 1 nodes.

At time t > t0, an existing node y is chosen uniformly
at random (u.a.r.) as a prototype:

(i) a new node x is placed to the immediate left of y
(so that y, and all the nodes on its right, are shifted one
position right in the ordering),

(ii) a directed edge x→ y is added to the graph, and
(iii) k − 1 edges are “copied” from y, i.e., k − 1

successors (i.e., out-neighbors) of y, say z1, . . . , zk−1,
are chosen u.a.r. without replacement and the directed
edges x→ z1, . . . , x→ zk−1 are added to the graph.

An intuitive explanation of this process is as follows.
Consider the list of webpages ordered lexicographically
by their URLs (for this ordering, a url a.b.com/d/e is to
be interpreted as com/b/a/d/e.) A website owner might
decide to add a new webpage to her site; to do this,
she could take one of the existing webpages from her
site as a prototype, modify it as needed, add an edge to
the prototype for reference, and publish the new page
on her site. Thus the new webpage and the prototype
will be close in the URL ordering. See Figure 1 for an
illustration of the model.

DA B C

41 2 3

B C

1

A

2 3

k = 2

Gt0 = G3 G4

(x = D, y = C)

Fig. 1. The new node x = D chooses y = C as its prototype.
The edge C → B is copied and the new edge D → C is added
for reference. Notice that all the edges incident to C in Gt0 = G3

increase their length by 1 in Gt0+1 = G4.

In our model, we can show the following:
(i) The fraction of nodes of in-degree i is asymptotic

to Θ(i−2− 1
k−1 ); this power law is often referred to as

“the rich get richer.”
(ii) The fraction of edges of length4 ` in the given

embedding is asymptotic to Θ(`−1− 1
k ); analogously, we

refer to this as “the long get longer.”

4The length of an edge x → y is the absolute difference between
the positions of node x and y in the given embedding.

Boldi and Vigna [5] study the distribution of gaps in
the web graph, defined as follows. Sort the webpages lex-
icographically by URLs and this gives an embedding of
nodes on the line. Now, if a webpage x = z0 has edges to
z1, . . . , zj in this order, the gaps are given by |zi−1−zi|,
1 ≤ i ≤ j. They observe how the gap distribution in real
web graph snapshots follows a power law with exponent
≈ 1.3. Our model can capture a similar distribution for
the edge lengths, by an appropriate choice of k. In fact,
both the average edge length and the average gap in our
model are small; intuitively, though not immediately, this
leads to the compressibility result of Section VII. It turns
out that a power law distribution of either the lengths
or the gaps (with exponent > 1) is sufficient to show
compressibility; for sake of simplicity, we focus on the
former in Section VI.

V. THE RICH GET RICHER

In this section we characterize the in-degree distribu-
tion of our graph model. We show that the expected in-
degree distribution follows a power law. We then show
the distribution is tightly concentrated.

Let

f(i) =
k · 21+ 2

k−1 Γ
(

3
2 + 1

k−1

)
(k − 1)

√
π

·
Γ
(
i+ 1 + 1

k−1

)
Γ
(
i+ 3 + 2

k−1

) .
It is easy to show that

limi→∞ f(i)
/(

k·21+ 2
k−1 Γ( 3

2 + 1
k−1 )

(k−1)
√
π

· i−2− 1
k−1

)
= 1,

i.e., f(i) = Θ(i−2− 1
k−1 ). Let Xt

i denote the number of
nodes of in-degree i at time t. We first show that E [Xt

i ]
can be bounded by f(i) · t± c, for some constant c.

Theorem 9. There is a constant c = c(Gt0) such that

f(i) · t− c ≤ E
[
Xt
i

]
≤ f(i) · t+ c, (1)

for all t ≥ t0 and i ∈ [t].

Proof: For now, assume t > t0. Let x be the new
node, and let y be the node we will copy edges from;
recall that y is chosen u.a.r. First, we focus on the case
i = 0. We have

E
[
Xt

0 | Xt−1
0

]
= Xt−1

0 − Pr [y had in-degree 0] + 1,

as at each time step a new node (i.e., x) of in-degree 0 is
added, and the only node that could change its in-degree
to 1 is y. The probability of the latter event is exactly
Xt−1

0 /(t− 1). By the linearity of expectation, we get

E
[
Xt

0

]
=
(

1− 1
t− 1

)
E
[
Xt−1

0

]
+ 1. (2)

Next, consider i ≥ 1. According to our model, nodes
z1, . . . , zk−1, will be chosen without replacement from



Γ(y), the successors of y. The successors of the new
node x will then be Γ(x) = {y, z1, . . . , zk−1}. Since
z1, . . . , zk−1 are all distinct, the graph remains simple
and |Γ(x)| = k.

For each j = 1, . . . , k− 1, the node zj is chosen with
probability proportional to its in-degree; this follows
since node zj was the endpoint of an edge chosen u.a.r.
The probability that a particular node of in-degree i ≥ 1
gets chosen as a successor is 1

t−1 + i(k−1)
k(t−1) (recall that all

the k successors of x will be distinct). Thus, for i ≥ 1,

E
[
Xt
i

]
=
(

1− 1
t− 1

− i

t− 1
k − 1
k

)
E
[
Xt−1
i

]
+
(

1
t− 1

+
i− 1
t− 1

k − 1
k

)
E
[
Xt−1
i−1

]
. (3)

For the base cases, note that Xt
t = 0 for each t ≥ t0.

Also, the variables Xt0
i are completely determined by

Gt0 . For each fixed k, we have f(t) = Θ(t−2− 1
k−1 ).

Thus, there is a constant c0 such that for any c ≥ c0,
and for all t ≥ t0, E [Xt

t ] follows (1). The base cases
E
[
Xt0
i

]
, i = 1, 2, . . ., can also be covered with a

sufficiently large c (that has to be greater than some
function of the initial graph Gt0 ).

For the inductive case, we have f(0) = 1
2 (by applying

Γ(x)Γ(x + 1
2 ) = Γ(2x) 21−2x

√
π, and Γ(2x + 1) =

2xΓ(2x), with x = 1 + 1
k−1 ). Using this, (2), and

simple calculations, we can show that if Xt−1
0 satisfies

(1), then Xt
0 also satisfies (1). For i ≥ 1, we have

f(i − 1) = f(i) · (ik − i + 2k + 2)/(ik − i + 1). An
easy induction on (3) completes the proof.

Thus, in expectation, the in-degrees follow a power
law with exponent −2 − 1/(k − 1). We prove a O(1)-
Lipschitz property for the r.v.’s Xt

i , if k = O(1). The
concentration immediately follows from Theorem 1.

Lemma 10. Each r.v. Xt
i satisfies the (2k)-Lipschitz

property.

Proof: Our model can be interpreted as the follow-
ing stochastic process: at step t, two independent dice,
with t− 1 and k faces respectively, are thrown. Let Qt
and Rt be the respective outcomes of these two trials.
The new node x will position itself to the immediate left
of the node y that was added at time Qt. Suppose that
the (ordered) list of successors of y is (z1, . . . , zk). The
ordered list of successors of x will be composed of y
followed by the nodes z1, . . . , zk with the exception of
node zRt

. Thus, the number of nodes Xτ
i of in-degree

i at time τ can be interpreted as a function of the trials
(Q1, R1), . . . , (Qτ , Rτ ).

We want to show that changing the outcome of any
single trial (Qt′ , Rt′), changes the r.v. Xτ

i (for fixed i)
by an amount not greater than 2k. Suppose we change
(qt′ , rt′) to (q′t′ , r

′
t′), going from graph G to G′. Let x

be the node added at time t′ with the choice (qt′ , rt′),
and x′ be the node added with the choice (q′t′ , r

′
t′).

Let S, S′ be the successors of x in G and x′ in
G′, respectively. We complete complete the proof by
showing inductively that at any time step t, and for any
nodes y, y′ added at the same time respectively in G,G′,
the (ordered) list of successors of y and y′ are close,
i.e., in each of their positions, they either have the same
successor, or they have two different elements of S∪S′.

If t ≤ t′, then the proof is immediate. For t > t′, it is
easy to see that the only edges we need to consider are
the copied edges. By induction, we know that at time
t− 1, the lists of successors of the node we are copying
from, in G and G′, were close. Since the two lists are
sorted, either the i-th copied edges in G and G′ will
either be the same or will both point to nodes in S ∪S′.
Thus the lists of the time t node are close and the proof
is complete.

VI. THE LONG GET LONGER

In this section we analyze the edge length distribution
in our graph model. We show it follows a power law
with exponent larger than 1. Later, we will use this to
establish the compressibility of graphs generated by our
model. Let

g(`) =
Γ
(
`+ 1− 1

k

)
Γ
(
2− 1

k

)
Γ (`+ 2)

.

It holds that lim`→∞ g(`)
/(

`−1− 1
k

/
Γ
(
2− 1

k

))
= 1,

i.e., g(`) = Θ(`−1− 1
k ). Recall that the length of an edge

from a node in position i to a node in position j is equal
to |i− j|; we define its circular directed length, denoted
cd-length, to be j− i if j > i, and t− (i− j) otherwise.
Let Y t` be the number of edges of length ` at time t. We
aim to show that Y t` ≈ g(`) · t. It turns out to be useful
to consider a related r.v. Zt` , which denotes the number
of edges of cd-length ` at time t. We will first show that,
w.h.p., Zt` ≈ g(`) · t. We will then argue that Y t` is very
close to Zt` .

The following shows that E [Zt` ] is bounded by g(`) ·
t±O(1).

Theorem 11. There exists some constant c = c(Gt0)
such that

g(`) · t− c ≤ E
[
Zt`
]
≤ g(`) · t+ c,

for all t ≥ t0 and ` ∈ [t].

Proof: As in the proof of Theorem 9, we start by
obtaining a recurrence on the r.v.’s Zti . Let x be the
node added at time t, and let y, y′ be the nodes to the
immediate right and left of x respectively (where y′

equals the last node in the ordering if x is placed before
the first node y).



Consider Zt1. For t > t0,

E
[
Zt1 | Zt−1

1

]
= Zt−1

1

−Pr [x enlarges an edge of cd-length 1] + 1,

as an edge x → y of length 1 is necessarily added to
the graph, and adding x can enlarge at most one edge
of cd-length 1 (that is, the edge y′ → y if it exists). The
probability of the latter event is equal to Zt−1

1 /(t− 1).
By the linearity of expectation,

E
[
Zt1
]

=
(

1− 1
t− 1

)
E
[
Zt−1

1

]
+ 1.

Now consider Zt` , for ` ≥ 2 and t > t0. We have,

E
[
Zt` | Zt−1

` , Zt−1
`−1

]
= Zt−1

` −N1 +N2 +N3,

where N1 = E[ # edges of cd-length ` that x enlarged
| Zt−1

` , Zt−1
`−1 ], N2 = E[ # edges of cd-length (`−1) that

x enlarged | Zt−1
` , Zt−1

`−1 ], and N3 = E[ # edges of cd-
length (`−1) that x copied from y | Zt−1

` , Zt−1
`−1 ]. Recall

that x is placed to the left of a node y chosen u.a.r. Thus,
given a fixed edge of length `, the probability this edge
is enlarged by x is `/(t− 1). Thus,

N1 =
`

t− 1
Zt−1
` ,

N2 =
`− 1
t− 1

Zt−1
`−1 ,

N3 =
k−1∑
j=1

Pr[jth copied edge had cd-length (`− 1)

| Zt−1
` , Zt−1

`−1 ].

Note that, for each j = 1, . . . , k−1, the jth copied edge
is chosen uniformly at random over all the edges (even
if the k − 1 copied edges are not independent). Thus,

N3 =
(k − 1)Zt−1

`−1

k(t− 1)
.

By the linearity of expectation, we get for ` ≥ 2,

E
[
Zt`
]

=
(

1− `

t− 1

)
E
[
Zt−1
`

]
+
(
`− 1
t− 1

+
1

t− 1
k − 1
k

)
E
[
Zt−1
`−1

]
.

The base cases can be handled as in Theorem 9. The
inductive step for ` = 1 can be easily shown. For ` ≥ 2,
it suffices to note that g(`− 1) = k `+1

`k−1g(`).
Thus, the expectation of the edge lengths follows a

power law with exponent −1− 1/k.
To establish the concentration result, we need to

analyze quite closely the combinatorial structure of the
graphs generated by our model. Recall that the nodes
in our graphs are placed contiguously on a discrete line

(or list). At a generic time step, we use xi to refer to
the ith node in the ordering from left to right. Given
an ordering π = (x1, x2, . . . , xt) of the nodes, and an
integer 0 ≤ k < t, a k-rotation, ρk(xi) maps the generic
node xi, 1 ≤ i ≤ t, to position 1 + ((i+ k) mod t).

We say that two nodes x, x′ are consecutive if there
exists a k such that |ρk(x)− ρk(x′)| = 1, i.e., they are
consecutive if in the ordering either they are adjacent or
one is the first and the other the last. Further, we say that
an edge x′′ → x′′′ passes over an node x if there exists k
such that ρk(x′′) < ρk(x) < ρk(x′′′). Finally, two edges
x→ x′ and x′′ → x′′′ are said to cross if there exists a
k such that after a k-rotation exactly one of x and x′ is
within the positions ρk(x′′) and ρk(x′′′). We prove the
following characterization that will be used later in the
analysis.

Lemma 12. At any time, given any two consecutive
nodes x, x′, and any positive integer `, the number of
edges of cd-length ` that pass over x or x′ (or both) is
at most C = (k + 2)t0 + 1.

Proof: Let us define G−t as the graph Gt minus the
edges incident to the nodes that were originally in Gt0 .
Note that, for each cd-length `, the number of the edges
of cd-length ` that we remove is upper-bounded by 2t0
as each node can be incident to at most two edges of cd-
length `, one going in, and one going out of the node.
Unless otherwise noted, we will consider G−t for the rest
of the proof.

Fix the time t, and take any rotation ρ; let x1, . . . , xt
be the nodes in the list in the left-right order given by
the rotation (i.e., node xi is in position i according to ρ).
For a set of edges of the same cd-length to pass over at
least one of two consecutive nodes x, x′ it is necessary
for every pair of them to cross. We will bound, for a
generic edge e, the number of edges that cross e and
have the same length as e. Let t(xa) be the time when
xa was added to the graph. First, by definition we have
that if xa → xb, then t(xa) > t(xb).

Second, we claim that if there exists a rotation ρ′ such
that xa, xb, xc are three nodes with ρ′(xa) < ρ′(xb) <
ρ′(xc) and t(xc) > t(xb), then the edge xa → xc cannot
exist. To see this, for xa → xc to exist it must be that
t(xa) > t(xc). We want to show inductively that all the
nodes that will point to xc will be both to the left of xc
and to the right of xb, in the ordering implied by ρ′. Note
that xc was not in Gt0 since its insertion time is larger
than that of xb. Thus, each node placed to the immediate
left of xc will point to it, and will trivially satisfy the
induction hypothesis. Furthermore, each node that copies
an edge to xc must be placed to the immediate left of a
node pointing to xc. Thus, the second claim is proved.

Third, we claim that if xa, xb, xc, xd are four nodes
such that the edges xa → xc and xb → xd exist, and



cross each other, then there exists an edge xc → xd. To
see this, first note that none of these four nodes could
have been part of Gt0 , for otherwise at least one of the
two edges could not have been part of G−t . Fix a rotation
ρ′′ s.t. ρ′′(xa) < ρ′′(xb) < ρ′′(xc); by the second claim,
it must be that t(xb) > t(xc). Thus, the edge xb →
xd has necessarily been copied from some node, say
xb1 . Note that ρ′′(xb1) ≤ ρ(xc). Indeed by assumption
ρ′′(xc) > ρ′′(xb) and it is impossible that ρ′′(xc) <
ρ′′(xb1), for otherwise xb could not have copied from
xb1 as t(xb) > t(xc). Now, we know that the edge xb1 →
xd exists (as before, xb1 is not part of Gt0 ). If xb1 =
xc, then we are done. Otherwise, there must exist an
xb2 pointing to xd from which xb1 has copied the edge.
Note that ρ′′(xb1) < ρ′′(xb2) ≤ ρ′′(xc). By iterating this
reasoning, the claim follows.

Take any set S of edges having the same length, and
such that any pair of them cross. Given an arbitrary ρ′′′,
let x be the node with the smallest ρ′′′(x) such that, for
some x′, the edge x → x′ is in S (the nodes x and x′

are unique). For any other edge y → y′ in S, by the
third claim, there must exist the edge x′ → y′. As x′

has out-degree k, it follows that |S| ≤ k + 1.
Finally, since the seed graph Gt0 had kt0 edges and

we removed at most 2t0 edges of cd-length ` (for an
arbitrary ` ≥ 1) in the cut [Gt0 , Gt \ Gt0 ], we have
refrained from counting at most kt0+2t0 edges of length
` passing over one of the nodes x, x′. The proof follows.

Now we prove the O(1)-Lipschitz property of the r.v.’s
Zt` , if t0, k = O(1). The concentration of the Zt` will
follow immediately from Theorem 1.

Lemma 13. Each r.v. Zt` satisfies the ((k+2)t0+k+1)-
Lipschitz property.

Proof: We use the stochastic interpretation as in
the proof of Lemma 10. For each τ , let Zτ` be the r.v.
representing the number of edges of cd-length ` at time
τ . We consider Y τ` as a function of the trials (Q1, R1),
. . ., (Qτ , Rτ ). We show that changing the outcome of
any single trial (Qt′ , Rt′), changes the r.v. Zτ` , for fixed
`, by an amount not greater than C+k = (k+2)t0+k+1.

Suppose we change (qt′ , rt′) to (q′t′ , r
′
t′), going from

graph G to G′. Let x be the node added at time t′ with
the choice (qt′ , rt′), and x′ be its equivalent with the
choice (q′t′ , r

′
t′). We show that choosing two different

positions for x and x′ can change the number of edges
of cd-length ` by at most C + k at any time step. Note
that before time step t′, the cd-lengths are all equal.

By Lemma 12, at time t > t′, for all `, the number
of edges of cd-length ` that pass over x (resp., x′) is
upper bounded by C. For an edge e, let Se be the set of
edges that have been copied from e, directly or indirectly,
including e itself, i.e., e ∈ Se and if an edge e′ is copied

from some edge in Se, then e′ ∈ Se. It is easy to note
that no two edges in Se have the same cd-length, since
they all start from different nodes, but end up at the same
node.

For any node z, if e1, . . . , ek are the successors of z,
we define Sz = Se1 ∪ · · · ∪ Sek

. The last observation
implies that, for any fixed `, no more than k edges of
cd-length ` are in Sv (or Sv′ ) at any single time step.
Now, consider the following edge bijection from G to
G′: the ith edge of the jth inserted node in G is mapped
to the ith edge of the jth inserted node in G′. It is easy
to see that if an edge e in G (resp., G′) does not pass
over x (resp., x′) and is not in Sx (resp., Sx′), then e gets
mapped to an edge of the same cd-length in G′ (resp.,
G). Thus, the difference in the number of edges of the
cd-length ` in G and G′ is at most C + k.

We now show that the number Dt of edges whose
length and cd-length are different (at time t) is very
small. Since the maximum absolute difference between
Y t` and Zt` is bounded by Dt, this will show that these
r.v.’s are close to each other. First note that if an edge
xi → xj has different length and cd-length, then j < i;
call such an edge left-directed and let Rt be the set of
left-directed edges. Since Dt ≤ Rt, it suffices to bound
the latter.

Lemma 14. With probability 1 − O
(

1
t

)
, Rt ≤

O
(
t1−

1
k +ε
)

, for each constant ε > 0.

Proof: Observe that each edge xi → xj counted by
Rt is such that j < i. Thus, Rt0 is equal to the number
of left-directed edges in Gt0 with its given embedding.

Further, Rt’s increase over Rt−1 equals the number of
left-directed edges copied at step t (the proximity edge
is always not left-directed).

Thus, E[Rt|Rt−1] =
(

1 + (k − 1) · 1
k(t−1)

)
· Rt−1

and E[Rt] =
(

1 + (k − 1) · 1
k(t−1)

)
·E[Rt−1], for each

t > t0. Therefore,

E[Rt] = Rt0 ·
t∏

i=t0+1

(
1 +

k − 1
k
· 1
i

)

= Rt0 ·
t∏

i=t0+1

i+ k−1
k

i

= Rt0 ·
Γ
(
t+ k−1

k + 1
)
· Γ (t0 + 1)

Γ
(
t0 + k−1

k + 1
)
· Γ (t+ 1)

.

Thus, E[Rt] = Θ
(
t1−

1
k

)
. We note how a O(1)-

Lipschitz condition holds (at most k−1 new left-directed
edges can be added at each step). Thus, Theorem 1
can be applied with an error term of O

(√
t log t

)
≤

O
(
t

1
2 +ε
)
≤ O

(
t1−

1
k +ε
)

. The result follows.



Applying Theorem 1, Theorem 11, Lemma 13, and
Lemma 14, we obtain the following.

Corollary 15. With probability ≥ 1−O
(

1
t2

)
,

i. |Zt` − E[Zt` ]| ≤ O
(√
t log t

)
and

ii. |Y t` − E[Zt` ]| ≤ O
(
t1−1/k+ε

)
.

Note that the concentration error term, O(
√
t log t), is

upper bounded by Rt, for each k ≥ 2. Also, the corollary
is vacuous if ` > t1/(k+2).

VII. COMPRESSIBILITY OF OUR MODEL

We now analyze the number of bits needed to com-
press the graphs generated by our model. Recall that
the web graph has a natural embedding on the line
via the URL ordering that experimentally gives very
good compression [5], [6]. Our model generates a web-
like random graphs and an embedding “à-la-URL” on
the line. We work with the following BV-like compres-
sion scheme: a node at position p on the line stores
its list of successors at positions p1, . . . , pk as a list
(p1 − p, . . . , pk − p) of compressed integers. An integer
i 6= 0 will be compressed using O (log (|i|+ 1)) bits,
using Elias γ-code, for instance [35]. We show that our
graphs can be compressed using O(1) bits per edge using
above scheme.

Theorem 16. The above BV-like scheme compresses the
graphs generated by our model using O(n) bits, with
probability at least 1−O

(
1
n

)
.

Proof: Let ε > 0 be a small constant. At time
n, consider the number of edges of length at most
L = dnεe. Note that by Corollary 15, for each 1 ≤
` ≤ L, it holds that |Y n` − E[Zn` ]| ≤ O

(
n1−1/k+ε

)
,

with probability 1−O
(
n−1

)
. For the rest of the proof,

we implicitly condition on these events.
Lower bounding E[Zn` ] as in Theorem 11, we obtain

the following lower bound on the number of edges of
length ≤ L, using standard algebraic manipulation and
Lemma5 2

S ≥
LX
`=1

 
Γ
`
` + 1− 1

k

´
Γ
`
2− 1

k

´
Γ(` + 2)

· n− c−O
“
n1−1/k+ε

”!

≥ nk

 
1−

Γ
`
L + 2− 1

k

´
Γ(L + 2)Γ

`
2− 1

k

´!−O
“
Ln1−1/k+ε

”
≥ nk −O

“
nkL−1/k

”
−O

“
Ln1−1/k+ε

”
≥ nk −O

`
n1−ε1

´
,

where ε1 is a small constant.

5Which we apply to the sum, to conclude that
1

Γ(2− 1
k )

PL
`=1

Γ(`+1− 1
k )

Γ(`+2)
= k ·

„
1− Γ(L+2− 1

k )
Γ(L+2)Γ(2− 1

k )

«
.

At time n, the total number of edges of the graph is
nk. Thus the number of edges of length more than L
is at most O

(
n1−ε1

)
. (Notice how, for this argument

to work, it is crucial to have a very strong bound on
the behavior of the Y n` random variables; this is why
we used the Gamma function in their expressions.) The
maximum edge length is O(n) and so each edge can be
compressed in O(log n) bits. The overall contribution,
in terms of bits, of the edges longer than L will then be
o(n).

Now, we calculate the bit contribution B of the edges
of length at most L.

B ≤
LX
`=1

(O (log (` + 1)) (
Γ
`
` + 1− 1

k

´
Γ
`
2 + 1

k

´
Γ(` + 2)

n + c

+ O
“
n1−1/k+ε

”
))

≤ n ·O

 
LX
`=1

`−1−1/k log (` + 1)

!
+ O

“
Ln1−1/k+ε log L

”
≤ O(n),

where the penultimate inequality follows since the
fraction involving the Gamma function can be upper
bounded by O(`−1−1/k), and the last inequality from
O
(
`−1−2ε · log `

)
≤ O

(
`−1−ε) and from the conver-

gence of the Riemann series. The proof is complete.
Thus, given an ordering of nodes, we can compress

the graph to use O(1) bits per edge using a very simple
linear-time algorithm. A natural question is if it is still
possible to compress this graph without knowing the
ordering. We show that this is still possible.

Theorem 17. The graphs generated by our model can
be compressed using O(n) bits in linear time, even if
ordering of the nodes is not available.

Proof: Given a node v in G, just by looking at two-
neighborhood, we can either (i) find an out-neighbor w
of v having exactly k−1 out-neighbors in common with
v, or (ii) we can conclude that v was part of the “seed”
graph Gt0 (having constant order). This step takes time
O(k2) = O(1).

Indeed, if v was not part of Gt0 , during its insertion,
v added a proximity edge to its “real prototype” w, and
copied k − 1 of w’s out-links. If more than one out-
neighbor of v has k − 1 out-neighbors in common with
v, we choose one arbitrarily and we call it the “possible
prototype” of v.

For compressing, we create an unlabeled rooted forest
out of the nodes in G. A node v will look for a possible
prototype w. If such a w is found, then v will choose w
as its parent. Otherwise v will be a root in the forest.



To describe G, it will suffice to (i) describe the un-
labeled rooted forest, (ii) describe the subgraph induced
by the roots of the trees in the forest, and (iii) for each
non-root node v in the forest, use dlg ke bits to describe
which of its parent’s out-neighbors was not copied by
v in G. The forest can be described with O(n) bits,
for instance, by writing down the down / up steps made
when visiting each tree in the forest. This requires O(n)
bits. The graph induced by the roots of the trees (i.e., a
subgraph of Gt0 ) can be stored in a non-compressed way
using O(t20) = O(1) bits. The third part of the encoding
will require at most O(n log k) = O(n) bits. Note that
it is trivial to compute each of the three encodings in
linear time.
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