Sommersemester 2019

Diskrete Mathematik

Ubungsblatt 5

Prof. Dr. K. Panagiotou/S. Reisser

Die Aufgaben werden in der Übung am 27.05. besprochen.

Aufgabe 1

Bestimmen Sie die Anzahl der Graphen mit Knotenmenge [n], die isomorph sind zu

- 1) P_n , 2) C_n , 3) K_n .

Aufgabe 2

Sei $d \in \mathbb{N}$. Der Hyperwürfel Q_d der Ordnung d ist ein Graph mit Knotenmenge $V_d = \{0,1\}^d$ und Kantenmenge

$$E_d = \left\{ (u_1, \dots, u_d)(v_1, \dots, v_d) \in \binom{V_d}{2} : u_i = v_i \text{ für alle außer genau ein } i \in [d] \right\}.$$

Zeichnen Sie Q_1, Q_2, Q_3, Q_4 . Wieviele Kanten hat Q_d ?

Aufgabe 3

Sei G ein Graph mit $\delta(G) \geq 2$. Zeigen Sie: G enthält einen P_{ℓ} und einen $C_{\ell+1}$ mit $\ell \geq \delta(G)$.

Aufgabe 4

Finden Sie eine Funktion $f: \mathbb{N} \to \mathbb{N}$, so dass

- jeder Graph G mit n Knoten und $\delta(G) \geq f(n)$ zusammenhängend ist und
- \bullet ein Graph G mit n Knoten und $\delta(G)=f(n)-1$ existiert, der nicht zusammenhängend ist.

Aufgabe 5

In der Vorlesung haben wir gesehen, dass jeder Baum T = (V, E), wobei $|V| \ge 2$, mindestens zwei Blätter hat. Zeigen Sie, dass die Anzahl der Blätter in jedem Baum T mit $|V| \geq 2$ gegeben ist durch

$$2 + \sum_{v \in V, d_T(v) > 3} (d(v) - 2).$$

Aufgabe 6

Bestimmen Sie die Anzahl der Bäume mit Knotenmenge [n], die die Kante {1,2} nicht enthalten.

Aufgabe 7

Beweisen oder widerlegen Sie: ein Graph G ist genau dann ein Baum, wenn G kreisfrei ist und e(G) = v(G) - 1.

Aufgabe 8

Ein gewurzelter Wald ist eine Menge gewurzelter Bäume. Bestimmen Sie die Zahl der gewurzelten Wälder mit n Knoten.