
Lecture 3: Epidemic Tasks and Processes
Beyond Rumor Spreading

Alea Meeting, Munich, February 2016

Outline:
Computing the minimum, average, and sum of node values
Epidemic discovery (triangulation) or making friends at LinkedIn

Benjamin Doerr, LIX, École Polytechnique, Paris-Saclay

 Randomized rumor spreading (RRS):
 round-based process in a graph 𝐺 = 𝑉,𝐸
 starts with one node informed (knows the rumor)
 in each round, each informed node calls a random neighbor and

informs it (if it wasn’t already)

 Main result first lecture: Works well as expected (now that we understand
it ;-)) – fast and highly robust
 With probability at least 1 − 𝑜(1), the rumor spreading time is

log2 𝑛 + ln𝑛 + 𝑜(log𝑛) in complete graphs, 𝐺(𝑛,𝑝) random graphs with
𝑝 = 𝜔 (log𝑛) 𝑛⁄ , random regular graphs 𝐺(𝑛,𝑑) with 𝑑 = 𝜔(1).

 If each call fails independently with probability 𝑝, then the rumor
spreading time is log2−𝑝 𝑛 + ln(𝑛)/(1 − 𝑝) + 𝑜(log𝑛); this is proven for
complete graphs, but should hold for all graphs above.

Alea'16, epidemic algorithms, lecture 3 2

Reminder Last Two Lectures

 Things also work well in many other graphs, but sometimes the analysis is
more tricky.
 Example: In hypercubes, with probability at least 1 − 𝑜(1), the rumor

spreading time is Θ(log𝑛), but so far no-one was able to make the
leading constant precise (despite several attempts).

 In real-world network models, rumor spreading is fast, sometimes
ultrafast, but often different rumor spreading mechanisms are needed
 The usual “push” rumor spreading needs time Ω(𝑛𝛼) in preferential

attachment (PA) graphs
 Push-pull does it in Θ(log𝑛) time
 Push-pull without calling someone it two successive rounds works in
Θ(log𝑛 log log𝑛⁄) time, which is the diameter

 Asynchronous push-pull works in 𝑂 log𝑛 time.
 Similar picture for Chung-Lu graphs

 Alea'16, epidemic algorithms, lecture 3 3

Reminder Last Two Lectures (2)

 We have need that a single piece of information can be spread quite well
in an epidemic (gossip-based) manner. How about other tasks in
networks?

 Part 1: Assume that each node has some private date. We want that all
nodes learn something about all data, e.g., the sum, average, minimum
value…

 Part 2: Gossip-based triangulation
 epidemic algorithm for resource location
 random process modelling how people get to know each other via

electronic social networks

Alea'16, epidemic algorithms, lecture 3 4

Plan For Today

 Examples:
1. All-to-all rumor spreading: each node has a rumor, all rumors shall be

disseminated to all nodes
2. Assume that each node has a local variable 𝑥𝑣. Let each node

compute some statistic about these values, e.g., minimum, sum,
average, quadratic mean, …

3. Let each node compute the number of nodes of the network

 Observations:
 Task 3 is a special case of Task 2 (summation with all 𝑥𝑣 = 1)
 Task 2 can be reduced to Task 1 (send all 𝑥𝑣 to everyone and then

have everyone compute locally what they want)
 but this might need more communication than necessary

Alea'16, epidemic algorithms, lecture 3 5

Part 1: Information Dissemination
Beyond Spreading a Single Rumor

All-to-all Rumor Spreading

 Simple solution: Run 𝑛 single-rumor spreading processes in parallel. Each
node calls a random neighbor and forwards all rumors it knows.

 Analysis:
 If you look at a single rumor, we have exactly the same process as in

single-rumor spreading.
 Consequence: If single-rumor spreading spreads the rumor from an

arbitrary node to all others in time 𝑇 with probability at least 1 − 𝜀, then
all-to-all rumor spreading succeeds in time 𝑘𝑘 with probability at least
1 − 𝑛𝜀𝑘 (for all integers 𝑘).
 union bound gives the 𝑛 in the failure probability
 re-try argument introduces the 𝑘
 E.g., 𝑂 log𝑛 rounds suffice in complete graphs whp

Alea'16, epidemic algorithms, lecture 3 6

All-to-all Rumor Spreading (2)

 Problem with 𝒏 parallel single-rumor processes: Much traffic in the network!
 One call transmits up to 𝑛 rumors
 If only one rumor can be sent per round, then the rumor spreading time

typically increases by a factor of 𝑛, because at the end of the process,
each node touches each rumor only every 𝑛-th round

 Better solution via random linear network coding (Haeupler (STOC’11),
details omitted here):
 idea: don’t send rumors, but send random linear combinations of rumors.

Then you can decode all rumors once you’ve heard (any) 𝑛 linearly
independent messages.

 result: very roughly, 𝑂(𝑛 + 𝑇) rounds suffice to spread 𝑛 rumors, where 𝑇
is the time you need to spread one rumor with (very) high prob.

 Bottom line: All-to-all rumor spreading is costly

Alea'16, epidemic algorithms, lecture 3 7

 Setting:
 Each node 𝑣 has a piece of data, a number 𝑥𝑣.
 We want each node to learn some aggregate data (minimum/maximum,

sum, average, …) about all these values.

 Plan: We want to be more clever than sending all data to all nodes, as this
takes at least Ω(𝑛2) rumor transmissions, which hopefully is not
necessary.

 Assumptions:
 We assume that all nodes start the process at the same time (first

round). This can, e.g., be initiated by a single-rumor spreading process.
 We do not care about a termination criterion.

 Let’s start with computing the minimum…

Alea'16, epidemic algorithms, lecture 3 8

Computing Aggregate Data
From Node Values

Clever Minimum Computation

 Epidemic/gossip-based compute-min algorithm: In each round,
 each node 𝑣 calls a random neighbor and forwards to it his 𝑥𝑣,
 then each node 𝑣 updates its 𝑥𝑣 to the minimum of its 𝑥𝑣 and all

numbers it received.

 Analysis: Track how the minimum value 𝑥min ≔ min 𝑥𝑣 𝑣 ∈ 𝑉 spreads!
 Call a node 𝑣 “informed” if 𝑥𝑣 = 𝑥min.
 Then informed nodes stay informed.
 If an informed node calls an uninformed node, it becomes informed.
  We precisely simulate the classic rumor spreading process 

 Result: Computing the minimum takes exactly the same time as spreading

a single rumor
 Communication effort: One call per node per round.

Alea'16, epidemic algorithms, lecture 3 9

Observation: “Everything” can be reduced to epidemically computing sums.

 Number of nodes: Compute the sum of the node values 𝑥𝑣 = 1.

 Average:
 Compute the sum 𝑋 of the node values 𝑥𝑣 in an epidemic manner
 compute the number 𝑛 of nodes (as sum of 𝑦𝑣 = 1) epidemically
 compute locally at each node the average 𝑋/𝑛

 root mean square (quadratic mean) 𝑥rms = 1
𝑛
∑ 𝑥𝑣2𝑣∈V :

 nodes compute locally 𝑥𝑣′ = 𝑥𝑣2
 compute epidemically 𝑛 and 𝑋 = ∑ 𝑥𝑣′𝑣∈𝑉 as above
 compute locally 𝑥rms = 𝑋 𝑛⁄

Alea'16, epidemic algorithms, lecture 3 10

Clever Computation of Sums,
Averages,…

Epidemically Computing Sums

 Difficulties:
 we don’t want to send all 𝑥𝑣 to all nodes: quadratic communication effort
 additional difficulty that nodes may not have unique identifiers: when

you hear a number the second time, you do not know it is a copy of the
rumor already heard or if two nodes have the same number

 Can we do something reasonable under such condition?

 YES  [when we allow approximate solutions]
 iterated averaging (works for averages, not the rest)
 reduction to minimum (super-cool trick, needs 𝑥𝑣 ≥ 1)

Alea'16, epidemic algorithms, lecture 3 11

Harsh assumption, but useful to avoid
algorithms that learn the network
structure and then rely on it (not robust)

Iterated Averaging: Rough Idea

 Basic idea: Nodes call random neighbors and average their values

 Example of an averaging operation between two nodes 𝑢 and 𝑣:
 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other node
 both 𝑢 and 𝑣 update their value to 𝑥𝑢+𝑥𝑣

2
.

 Observations:
 the sum of all node values never changes (“conservation of mass”)
 intuitive, but non-trivial: the node values converge to the average

 Difficulties:
 For pair-wise averaging: How do you ensure that each node is part of

one averaging operation only?
 For other averaging: How do you deal with different node degrees?

Alea'16, epidemic algorithms, lecture 3 12

 In each round…
 each node flips a fair coin to decide whether it is active or passive
 initiate communication: each active node 𝑣 …

 with probability deg 𝑣 2Δ⁄ contacts a random neighbor;
 with probability 1 − deg 𝑣 2Δ⁄ is does nothing

 a passive nodes that was contacted exactly once accept this contact
request (all other request are lost)

 for each pair (𝑢, 𝑣) established in this manner does a pair-wise
averaging operation: 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other
node; then both update their values to 𝑥𝑢+𝑥𝑣

2
.

 Properties: does not need any node identifiers etc.
 needs that all nodes know the max-degree Δ (requires one maximum-

communication analogous to a minimum communication)

Alea'16, epidemic algorithms, lecture 3 13

One Iterated Averaging Protocol
That Works [Boyd et al. (2006)]

 In random geometric graphs 𝐺(𝑛, 𝑟) with 𝑟 sufficiently above the
connectivity threshold, the 𝑛−𝜀-averaging time (roughly: the time to get the
imbalance down to 𝑛−𝜀 times the initial one) is of order Θ(𝑟−2 log𝑛)
 Recall: The diameter is only Θ(𝑟−1) !

 Roughly the same result holds for grids.

 Polylogarithmic averaging times for expander graphs (and the complete

graph)

 Summary: Iterated averaging can be slow!

Alea'16, epidemic algorithms, lecture 3 14

Performance of Iterated Averaging

Intuitive Example: Slow Averaging

 Simplified averaging mechanism in graphs with constant max-degree Δ:
Move a 1 2𝛥⁄ fraction of your value to each neighbor!
 send your value to all neighbors
 reset your value to 𝑥 𝑣 ≔ ∑ 𝑥 𝑢𝑢~𝑣 + 2Δ − deg 𝑣 𝑥 𝑣 2Δ⁄

 Example situation:
 𝑛 odd, 𝑒 ≔ 𝑛 − 1 2⁄ , 𝐺 is a path with vertices (in that order)
𝑣−𝑒,𝑣−𝑒+1, … , 𝑣−1,𝑣0, 𝑣1, … , 𝑣𝑒

 initial node values: 𝑥 𝑣𝑖 = 𝑖.

 Analysis: By symmetry, 𝑥 𝑣0 is always zero
 Induction over time: For positive 𝑖, 𝑥 𝑣𝑖 never exceeds its initial value.
 Since always 𝑥 𝑣0 = 0 and 𝑥 𝑣1 ≤ 1, at most a half unit of mass is

transported out of {𝑣1, … , 𝑣𝑒}.
 It takes quadratic time to get all 𝑥 𝑣 ≤ 𝑛/8.

Alea'16, epidemic algorithms, lecture 3 15

Reduction to Minimum: Idea (1)

 Reminder: 𝑋 has exponential distribution with rate 𝜆 if
Pr 𝑋 > 𝑧 = exp −𝜆𝜆 for all 𝑧 ∈ ℝ≥0.
 𝐸 𝑋 = 1 𝜆⁄

 Lemma: Let 𝑋1, … ,𝑋𝑛 be independent exponential random variables with
rates 𝜆1, … , 𝜆𝑛. Let 𝑋 = min {𝑋1, … ,𝑋𝑛}. Then 𝑋 has an exponential
distribution with rate 𝜆 = ∑ 𝜆𝑖𝑛

𝑖=1 .

 Proof: For all 𝑧 ≥ 0, we have
 Pr 𝑋 > 𝑧 = Pr ∀𝑖 ∈ 1. .𝑛 :𝑋𝑖 > 𝑧
 = ∏ Pr 𝑋𝑖 > 𝑧𝑛

𝑖=1 [independence of the 𝑋𝑖]
 = ∏ exp −𝜆𝑖𝑧𝑛

𝑖=1
 = exp −𝜆𝜆 .
 Hence 𝑋 has an exponential distribution with rate 𝜆.

Alea'16, epidemic algorithms, lecture 3 16

Reduction to Minimum: Idea (2)

 Plan: Exploiting exponential distributions
 Nodes locally sample an exponential random variable 𝑋𝑣 with rate 𝑥𝑣
 We use an epidemic minimum-spreading algorithm for the 𝑋𝑣
 all nodes learn 𝑋 = min

𝑣∈𝑉
𝑋𝑣

 this is an exponential random variable with rate 𝑥 ≔ ∑ 𝑥𝑣𝑣∈𝑉 .
 Nodes hope that 𝑋 is close to 𝐸 𝑋 = 1 𝑥⁄ and take 1 𝑋⁄ as

approximation for the desired 𝑥.

 Increase accuracy: Repeat this procedure 𝑟 times and average 𝑋 values
learned before taking the reciprocal

Alea'16, epidemic algorithms, lecture 3 17

 Each node 𝑣 locally samples 𝑟 independent exponential random variables
with rate 𝑥𝑣, let 𝑦𝑣1, … ,𝑦𝑣𝑟 be the outcome.

 Communication phase. Run the minimum-algorithm for each component
𝑖 ∈ [1. . 𝑟] in parallel: In each round (of sufficiently many),
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ;
 each node 𝑣 then resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received

 Each node 𝑣 locally computes 𝑦� = 𝑦𝑣1+⋯+𝑦𝑣𝑟

𝑟
 and takes 1 𝑦�⁄ as its

approximation for the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉 .

 Two possible problems:
 rumor spreading could fail (too few rounds, unlucky random choices)
 the approximation to 𝑥 could be bad (bad luck when sampling the 𝑦𝑣𝑖)

Alea'16, epidemic algorithms, lecture 3 18

Algorithm of Mosk-Aoyama
and Shah (2008)

Analysis: Communication Phase

 Communication phase: In each round,
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ;
 each node 𝑣 resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received

 Lemma:
 Let 𝜀 > 0. Let 𝑇 be large enough so that classic rumor spreading

spreads a rumor with probability 1 − 𝜀 in 𝑇 rounds
 Then after 𝑇 rounds, all nodes know the true minima with prob. 1 − 𝑟𝑟.

 Proof: For each 𝑖 ∈ [1. . 𝑟] in parallel we run a minimum-spreading process

with the node values 𝑦𝑣𝑖 𝑣∈𝑉.
 Each of these processes spreads its minimum in time 𝑇 w. prob. 1 − 𝜀
 union bound

Alea'16, epidemic algorithms, lecture 3 19

Analysis: Approximation Error

 Assume that the communication phase was successful:
 all nodes know the minima 𝑚𝑖 ≔ min 𝑦𝑣𝑖 𝑣 ∈ 𝑉 , 𝑖 ∈ [1. . 𝑟].
 Consequently, all compute the same 𝑥� = 𝑟 (𝑚1 + ⋯+ 𝑚𝑟)⁄ as

approximation to 𝑥

 Lemma: For all 𝛿 < 1, we have 1 − 𝛿 𝑥 ≤ 𝑥� ≤ 1 + 𝛿 𝑥 with probability
1 − 2exp −𝛿2𝑟 12⁄ .

 Proof: 𝑀 = 𝑚1 + ⋯+ 𝑚𝑟 is the sum of 𝑟 independent exponential random
variables with rate 𝑥.
 Pr 𝑀 − 𝐸 𝑀 ≥ 𝛿𝛿 𝑀 ≤ 2exp (−𝛿2𝑟 3⁄). [Cramér’s theorem, 𝛿 < 1 2⁄]
 Since 𝑥� = 𝑟 𝑀⁄ and 𝑥 = 𝑟 𝐸[𝑀]⁄ , we obtain

Pr 𝑥� − 𝑥 ≥ 𝛿𝛿 ≤ 2exp (−𝛿2𝑟 12⁄) for all 𝛿 < 1.

Alea'16, epidemic algorithms, lecture 3 20

Summary MAS Algorithm

 Let 𝐺 = (𝑉,𝐸) be any network. Assume that each node has a node value
𝑥𝑣 ≥ 1.

 Let 𝑇 be such that Pr 𝑇𝐺 > 𝑇 ≤ 𝜀.
 Run the MAS-algorithm with parameter 𝑟 for 𝑇 rounds.

 recall that in each round each node sends out 𝑟 numbers!

 Then with probability at least 1 − 2 exp −𝛿2𝑟 12⁄ − 𝑟𝑟 all nodes learn an
approximation 𝑥� of the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉 of node values such that

𝑥� − 𝑥 ≤ 𝛿𝛿.

Alea'16, epidemic algorithms, lecture 3 21

Part 2: Gossip-based Discovery

 Bib.-note: All of the following is from Haeupler, Pandurangan, Peleg,
Rajaraman, Sun (SPAA’12, CPC to appear)

 Discovery process (gossip-based triangulation):
 Start: a connected network 𝐺0 = (𝑉,𝐸0)
 Round 𝑡:

 Each node 𝑢 picks two neighbors 𝑥𝑢 and 𝑦𝑢 in 𝐺𝑡−1
 𝐸𝑡 ≔ 𝐸 ∪ {𝑥𝑢,𝑦𝑢} 𝑢 ∈ 𝑉 , 𝐺𝑡 ≔ (𝑉,𝐸𝑡)

 until 𝐺𝑡 = 𝐾𝑉 (the complete graph on 𝑉)

 Main structural difference to what we did so far: Dynamic network
 the network structure changes (massively) over time

 Question: How long does this process need to terminate?

Alea'16, epidemic algorithms, lecture 3 22

Applications

 Algorithm: Resource discovery in peer-to-peer (P2P) networks
 nodes can only communicate with nodes of which they know the IP

address
 resource discovery problem: let nodes learn the IP addresses of all

other nodes in the network

 Process: Making “friends” in social networks like LinkedIn, …

Alea'16, epidemic algorithms, lecture 3 23

Preliminary Observations

 General lower bound: any process where each node can add at most one
edge per round needs Ω(𝑛) rounds to obtain a complete graph if the
starting graph is missing at least a constant fraction of all edges

 Easy to find starting graphs where gossip-based triangulation needs
Ω(𝑛 log𝑛) rounds
 complete graph plus one out-going edge: each Θ(𝑛) rounds the degree

of the outside vertex roughly doubles
 complete graph minus Θ(𝑛𝛼) disjoint edges, 0 < 𝛼 < 1: each missing

edge in each round has a Θ(1 𝑛⁄) probability of being added.
 roughly resembles a coupon collector process

Alea'16, epidemic algorithms, lecture 3 24

More Observations

 Non-monotone process: More edges can increase the termination time!

 Example: A path on 4 vertices vs. a triangle with one additional outgoing
edge.

 See the original paper at http://arxiv.org/abs/1202.2092 for a graphic
representation which I can’t give in a web version

Alea'16, epidemic algorithms, lecture 3 25

http://arxiv.org/abs/1202.2092

Result

 Theorem:
 when started with any connected graph, the gossip-based triangulation

process ends after 𝑂 𝑛 log𝑛 2 rounds whp.
 when started with any connected graph having 𝑘 edges less than the

complete graph, the gossip-based triangulation process needs
Ω(𝑛 log𝑘) rounds whp.

 Gap between upper and lower bound: Θ(log𝑛)

 Key challenges in the analysis:
 non-monotonicity
 dynamic networks
 any “new” edge can change the situation

Alea'16, epidemic algorithms, lecture 3 26

An Example: Star Graphs

 Star graph on 𝑛 vertices: One central node connected to 𝑛 − 1 nodes of
degree one.

 Gossip-based triangulation on a star graph with 𝑛 vertices:
 First 𝑇 = 𝑜(𝑛0.5) rounds: 𝑇 disjoint edges between leaves are added
 At time 𝑇 = Θ(𝑛0.5): The first intersection of new edges and 𝑂 1

rounds later, this path of length 2 is completed to a triangle
 Up to time 𝑇 = 0.5 − 𝜀 𝑛: The new edges (viewed alone) form small

components of size at most 𝑂 log𝑛 . These are almost immediately
completed to a clique.

 Phase transition: In the (short) time up to 𝑇 = (0.5 + 𝜀)𝑛, a giant
component in the graph of new edges appears.

Alea'16, epidemic algorithms, lecture 3 27

Star Graphs (2)

 Observation: The components formed by the new edges alone are the
same in the true process and in the process where only the central vertex
is active.

 For a component 𝐶 of size 𝑠 ≤ 1 − 𝜀 𝑛,
 the probability that the central vertex adds an edge from 𝐶 to the

outside, is Θ(𝑠 𝑛⁄), hence the expected waiting time for this is Θ(𝑛 𝑠⁄)
 in time 𝑂 𝑠 log 𝑠 2 , the component completes itself to a clique if

nothing else happens to it (Haeupler et al. result)

 Components with less than 𝑂�(𝑛0.5) vertices are cliques whp, because the
clique formation is much faster than the addition of edges to the outside

 Larger components: the work of the central vertex becomes faster and
new vertices are added quicker than the self-triangulation.

Alea'16, epidemic algorithms, lecture 3 28

Summary Star Graphs

 Already when starting with a simple star graph, the gossip-based
triangulation process is highly non-trivial

 It combines two subprocesses
 action of the central node (independent of all the rest): throw in one

random edge between other vertices per round
 “evolution of random graphs”

 “self-triangulation” process of the components formed by new edges
 small components very quickly become cliques
 larger components: self-triangulation slower than the addition of

new edges

Alea'16, epidemic algorithms, lecture 3 29

Proof Ideas: Upper Bound

 Key lemma: If you start the process with a graph having minimum
degree 𝛿, then after 𝑇 = 𝑂(𝑛 log𝑛) rounds, the minimum degree is
min 9 8⁄ 𝛿,𝑛 − 1 whp.
 a logarithmic number of such phases brings the min-deg. to 𝑛 − 1

 How does the degree of a node 𝑢 grow?
 A neighbor 𝑤 ∈ 𝑁(𝑢) adds an edge between 𝑢 and a node 𝑣 ∈ 𝑁 𝑤 ∩

𝑁2 𝑢
 𝑁𝑖 𝑢 : vertices in distance exactly 𝑖 from 𝑢

Alea'16, epidemic algorithms, lecture 3 30

Proof Ideas: Upper Bound (2)

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢 such that
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄) an edge
between 𝑢 and 𝑁2(𝑢) is added by 𝑤.

 Proof: The probability is

2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑤
⋅

1
deg 𝑤

≥ 2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑢 + 𝑁 𝑤 ∩ 𝑁2 𝑢
⋅

1
𝑛

= Θ
1
𝑛

Alea'16, epidemic algorithms, lecture 3 31

Proof Ideas: Upper Bound (3)

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢 such that
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄) an edge
between 𝑢 and 𝑁2(𝑢) is added by 𝑤.

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢
such that |𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛)
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2.

 Proof: The only way how a good node becomes bad is that Θ(𝛿) nodes in
𝑁 𝑤 ∩ 𝑁2(𝑢) move to 𝑁(𝑢). If this happens, we are done 
 Can assume that assumptions of lemma hold for 𝑇 rounds (else done)

 Now Θ(𝛿) good nodes in parallel try to use Lemma 1  after 𝑂(𝑇 𝛿⁄)
rounds, wp. 1 − 𝑛−3, one is lucky and adds a neighbor to 𝑢

 Repeat this 𝛿 times and 𝑢 got Θ(𝛿) new neighbors

Alea'16, epidemic algorithms, lecture 3 32

Proof Ideas: Upper Bound (4)

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢
such that 𝑁 𝑤 ∩ 𝑁2 𝑢 = Ω 𝛿 [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛)
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2.

 Lemma 2 was the easiest among three cases. The other two:
 at least one good 𝑤, but less than the Ω(𝛿) of Lemma 2
 no good 𝑤 at all

 We have to omit both cases here 

 Summary: Relatively efficient gossip-based resource discovery
 proofs much harder due to the dynamic behavior of the network and the

non-monotonicity
 Open problem: logarithmic gap between upper and lower bound

Alea'16, epidemic algorithms, lecture 3 33

 Many tasks other than spreading a single rumor can be done by gossip-
based algorithms
 minimum is easy (essentially same difficulty as rumor spreading)
 averages: iterated averaging

 relatively slow on several graphs with large diameter
 MAS algorithm (for sums, averages, …) computes a 1 ± 𝛿 factor

approximation in time roughly the rumor spreading time (parallel
spreading of 𝑟 rumors)

 gossip-based triangulation

Alea'16, epidemic algorithms, lecture 3 34

Summary: Epidemics
Beyond Rumor Spreading

Course Summary

Epidemic/gossip-based algorithms&processes

 Models for processes in the real world
 epidemics (including computer viruses and malware)
 rumors
 making acquaintances
 [viral marketing, influence processes, adoption of new technologies]

 Lightweight and robust distributed algorithms

 information dissemination
 computing averages etc.
 resource location

Alea'16, epidemic algorithms, lecture 3 35

Course Summary: Algorithms

 Epidemic/gossip-based algorithmics
 simple generic algorithm design paradigm
 performance often close to the best that can be achieved
 works well in networks without central organization, stable structure, or

reliable communication

 Analysis techniques: Similar to other randomized/distributed algorithms
 Expectations, birthday paradox, coupon collector
 Markov chain arguments (adding waiting times)
 Strong concentration: Chernoff bounds, method of bounded differences

Alea'16, epidemic algorithms, lecture 3 36

Many Open Problems

 This is a young area of research, so many things are not well understood
 many particular research problems (some mentioned in this course)
 designing “more clever” gossip-based algorithms (add the right

dependencies to the random choice)
 epidemic processes in real-world networks
 gossip-based algorithms in dynamic networks

 Lots of work on STOC, FOCS, SODA, PODC, … in the last 5 years that is

not yet fully digested
  good topic for an internship, a Master thesis, a PhD thesis, …

 This is the end of this short course. I hope you enjoyed it. Don’t be shy to

contact me if you have questions or comments.

Alea'16, epidemic algorithms, lecture 3 37

	Slide Number 1
	Reminder Last Two Lectures
	Reminder Last Two Lectures (2)
	Plan For Today
	Part 1: Information Dissemination Beyond Spreading a Single Rumor
	All-to-all Rumor Spreading
	All-to-all Rumor Spreading (2)
	Computing Aggregate Data �From Node Values
	Clever Minimum Computation
	Clever Computation of Sums, �Averages,…
	Epidemically Computing Sums
	Iterated Averaging: Rough Idea
	One Iterated Averaging Protocol That Works [Boyd et al. (2006)]
	Performance of Iterated Averaging
	Intuitive Example: Slow Averaging
	Reduction to Minimum: Idea (1)
	Reduction to Minimum: Idea (2)
	Algorithm of Mosk-Aoyama�and Shah (2008)
	Analysis: Communication Phase
	Analysis: Approximation Error
	Summary MAS Algorithm
	Part 2: Gossip-based Discovery
	Applications
	Preliminary Observations
	More Observations
	Result
	An Example: Star Graphs
	Star Graphs (2)
	Summary Star Graphs
	Proof Ideas: Upper Bound
	Proof Ideas: Upper Bound (2)
	Proof Ideas: Upper Bound (3)
	Proof Ideas: Upper Bound (4)
	Summary: Epidemics �Beyond Rumor Spreading
	Course Summary
	Course Summary: Algorithms
	Many Open Problems

