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Outline: 
Computing the minimum, average, and sum of node values 
Epidemic discovery (triangulation) or making friends at LinkedIn 
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 Randomized rumor spreading (RRS): 
 round-based process in a graph 𝐺 = 𝑉,𝐸  
 starts with one node informed (knows the rumor) 
 in each round, each informed node calls a random neighbor and 

informs it (if it wasn’t already) 
 

 Main result first lecture: Works well as expected (now that we understand 
it ;-) ) – fast and highly robust 
 With probability at least 1 − 𝑜(1), the rumor spreading time is 

log2 𝑛 + ln𝑛 + 𝑜(log𝑛) in complete graphs, 𝐺(𝑛,𝑝) random graphs with 
𝑝 = 𝜔 (log𝑛) 𝑛⁄ , random regular graphs 𝐺(𝑛,𝑑) with 𝑑 = 𝜔(1). 

 If each call fails independently with probability 𝑝, then the rumor 
spreading time is log2−𝑝 𝑛 + ln(𝑛)/(1 − 𝑝) + 𝑜(log𝑛); this is proven for 
complete graphs, but should hold for all graphs above. 

Alea'16, epidemic algorithms, lecture 3 2 

Reminder Last Two Lectures 



 Things also work well in many other graphs, but sometimes the analysis is 
more tricky. 
 Example: In hypercubes, with probability at least 1 − 𝑜(1), the rumor 

spreading time is Θ(log𝑛), but so far no-one was able to make the 
leading constant precise (despite several attempts). 
 

 In real-world network models, rumor spreading is fast, sometimes 
ultrafast, but often different rumor spreading mechanisms are needed 
 The usual “push” rumor spreading needs time Ω(𝑛𝛼) in preferential 

attachment (PA) graphs 
 Push-pull does it in Θ(log𝑛) time 
 Push-pull without calling someone it two successive rounds works in 
Θ(log𝑛 log log𝑛⁄ ) time, which is the diameter 

 Asynchronous push-pull works in 𝑂 log𝑛  time. 
 Similar picture for Chung-Lu graphs 
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Reminder Last Two Lectures (2) 



 We have need that a single piece of information can be spread quite well 
in an epidemic (gossip-based) manner. How about other tasks in 
networks? 
 

 Part 1: Assume that each node has some private date. We want that all 
nodes learn something about all data, e.g., the sum, average, minimum 
value… 
 

 Part 2: Gossip-based triangulation 
 epidemic algorithm for resource location 
 random process modelling how people get to know each other via 

electronic social networks 
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Plan For Today 



 Examples: 
1. All-to-all rumor spreading: each node has a rumor, all rumors shall be 

disseminated to all nodes 
2. Assume that each node has a local variable 𝑥𝑣. Let each node 

compute some statistic about these values, e.g., minimum, sum, 
average, quadratic mean, … 

3. Let each node compute the number of nodes of the network 
 

 Observations:  
 Task 3 is a special case of Task 2 (summation with all 𝑥𝑣 = 1) 
 Task 2 can be reduced to Task 1 (send all 𝑥𝑣 to everyone and then 

have everyone compute locally what they want)  
 but this might need more communication than necessary 
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Part 1: Information Dissemination 
Beyond Spreading a Single Rumor 



All-to-all Rumor Spreading 

 Simple solution: Run 𝑛 single-rumor spreading processes in parallel. Each 
node calls a random neighbor and forwards all rumors it knows. 
 

 Analysis: 
 If you look at a single rumor, we have exactly the same process as in 

single-rumor spreading. 
 Consequence: If single-rumor spreading spreads the rumor from an 

arbitrary node to all others in time 𝑇 with probability at least 1 − 𝜀, then 
all-to-all rumor spreading succeeds in time 𝑘𝑇 with probability at least 
1 − 𝑛𝜀𝑘 (for all integers 𝑘). 
 union bound gives the 𝑛 in the failure probability 
 re-try argument introduces the 𝑘 
 E.g., 𝑂 log𝑛  rounds suffice in complete graphs whp 
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All-to-all Rumor Spreading (2) 

 Problem with 𝒏 parallel single-rumor processes: Much traffic in the network! 
 One call transmits up to 𝑛 rumors 
 If only one rumor can be sent per round, then the rumor spreading time 

typically increases by a factor of 𝑛, because at the end of the process, 
each node touches each rumor only every 𝑛-th round 

 

 Better solution via random linear network coding (Haeupler (STOC’11), 
details omitted here):  
 idea: don’t send rumors, but send random linear combinations of rumors. 

Then you can decode all rumors once you’ve heard (any) 𝑛 linearly 
independent messages. 

 result: very roughly, 𝑂(𝑛 + 𝑇) rounds suffice to spread 𝑛 rumors, where 𝑇 
is the time you need to spread one rumor with (very) high prob.  
 

 Bottom line: All-to-all rumor spreading is costly 
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 Setting:  
 Each node 𝑣 has a piece of data, a number 𝑥𝑣. 
 We want each node to learn some aggregate data (minimum/maximum, 

sum, average, …) about all these values. 
 

 Plan: We want to be more clever than sending all data to all nodes, as this 
takes at least  Ω(𝑛2) rumor transmissions, which hopefully is not 
necessary. 
 

 Assumptions: 
 We assume that all nodes start the process at the same time (first 

round). This can, e.g., be initiated by a single-rumor spreading process. 
 We do not care about a termination criterion. 

 

 Let’s start with computing the minimum… 
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Computing Aggregate Data  
From Node Values 



Clever Minimum Computation 

 Epidemic/gossip-based compute-min algorithm: In each round,  
 each node 𝑣 calls a random neighbor and forwards to it his 𝑥𝑣,  
 then each node 𝑣 updates its 𝑥𝑣 to the minimum of its 𝑥𝑣 and all 

numbers it received.  
 

 Analysis: Track how the minimum value 𝑥min ≔ min 𝑥𝑣 𝑣 ∈ 𝑉  spreads! 
 Call a node 𝑣 “informed” if 𝑥𝑣 = 𝑥min.  
 Then informed nodes stay informed. 
 If an informed node calls an uninformed node, it becomes informed. 
  We precisely simulate the classic rumor spreading process  

 
 Result: Computing the minimum takes exactly the same time as spreading 

a single rumor 
 Communication effort: One call per node per round. 
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Observation: “Everything” can be reduced to epidemically computing sums. 
 

 Number of nodes: Compute the sum of the node values 𝑥𝑣 = 1. 
 

 Average: 
 Compute the sum 𝑋 of the node values 𝑥𝑣 in an epidemic manner 
 compute the number 𝑛 of nodes (as sum of 𝑦𝑣 = 1) epidemically 
 compute locally at each node the average 𝑋/𝑛 

 root mean square (quadratic mean) 𝑥rms = 1
𝑛
∑ 𝑥𝑣2𝑣∈V : 

 nodes compute locally 𝑥𝑣′ = 𝑥𝑣2  
 compute epidemically 𝑛 and 𝑋 = ∑ 𝑥𝑣′𝑣∈𝑉  as above 
 compute locally 𝑥rms = 𝑋 𝑛⁄  
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Clever Computation of Sums,  
Averages,… 



Epidemically Computing Sums 

 Difficulties:  
 we don’t want to send all 𝑥𝑣 to all nodes: quadratic communication effort 
 additional difficulty that nodes may not have unique identifiers: when 

you hear a number the second time, you do not know it is a copy of the 
rumor already heard or if two nodes have the same number 
 
 
 

 Can we do something reasonable under such condition? 
 

 YES   [when we allow approximate solutions] 
 iterated averaging (works for averages, not the rest) 
 reduction to minimum (super-cool trick, needs 𝑥𝑣 ≥ 1) 
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Harsh assumption, but useful to avoid 
algorithms that learn the network 
structure and then rely on it (not robust) 



Iterated Averaging: Rough Idea 

 Basic idea: Nodes call random neighbors and average their values 
 

 Example of an averaging operation between two nodes 𝑢 and 𝑣:  
 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other node 
 both 𝑢 and 𝑣 update their value to 𝑥𝑢+𝑥𝑣

2
. 

 

 Observations:  
 the sum of all node values never changes (“conservation of mass”) 
 intuitive, but non-trivial: the node values converge to the average 

 

 Difficulties:  
 For pair-wise averaging: How do you ensure that each node is part of 

one averaging operation only? 
 For other averaging: How do you deal with different node degrees? 
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 In each round… 
 each node flips a fair coin to decide whether it is active  or passive 
 initiate communication: each active node 𝑣 … 

 with probability deg 𝑣 2Δ⁄  contacts a random neighbor;  
 with probability 1 − deg 𝑣 2Δ⁄  is does nothing 

 a passive nodes that was contacted exactly once accept this contact 
request (all other request are lost) 

 for each pair (𝑢, 𝑣) established in this manner does a pair-wise 
averaging operation: 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other 
node; then both update their values to 𝑥𝑢+𝑥𝑣

2
. 

 

 Properties: does not need any node identifiers etc.  
 needs that all nodes know the max-degree Δ (requires one maximum-

communication analogous to a minimum communication) 
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One Iterated Averaging Protocol 
That Works [Boyd et al. (2006)] 



 In random geometric graphs 𝐺(𝑛, 𝑟) with 𝑟 sufficiently above the 
connectivity threshold, the 𝑛−𝜀-averaging time (roughly: the time to get the 
imbalance down to 𝑛−𝜀 times the initial one) is of order Θ(𝑟−2 log𝑛) 
 Recall: The diameter is only Θ(𝑟−1) ! 

 
 Roughly the same result holds for grids. 

 
 Polylogarithmic averaging times for expander graphs (and the complete 

graph)  
 
 

 Summary: Iterated averaging can be slow! 
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Performance of Iterated Averaging 



Intuitive Example: Slow Averaging 

 Simplified averaging mechanism in graphs with constant max-degree Δ: 
Move a 1 2𝛥⁄  fraction of your value to each neighbor! 
 send your value to all neighbors 
 reset your value to 𝑥 𝑣 ≔ ∑ 𝑥 𝑢𝑢~𝑣 + 2Δ − deg 𝑣 𝑥 𝑣 2Δ⁄  

 

 Example situation: 
 𝑛 odd, 𝑒 ≔ 𝑛 − 1 2⁄ , 𝐺 is a path with vertices (in that order) 
𝑣−𝑒,𝑣−𝑒+1, … , 𝑣−1,𝑣0, 𝑣1, … , 𝑣𝑒 

 initial node values: 𝑥 𝑣𝑖 = 𝑖. 
 

 Analysis: By symmetry, 𝑥 𝑣0  is always zero 
 Induction over time: For positive 𝑖, 𝑥 𝑣𝑖  never exceeds its initial value. 
 Since always 𝑥 𝑣0 = 0 and 𝑥 𝑣1 ≤ 1, at most a half unit of mass is 

transported out of {𝑣1, … , 𝑣𝑒}. 
 It takes quadratic time to get all 𝑥 𝑣 ≤ 𝑛/8. 
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Reduction to Minimum: Idea (1) 

 Reminder: 𝑋 has exponential distribution  with rate 𝜆 if  
Pr 𝑋 > 𝑧 = exp −𝜆𝑧  for all 𝑧 ∈ ℝ≥0. 
 𝐸 𝑋 = 1 𝜆⁄  

 

 Lemma: Let 𝑋1, … ,𝑋𝑛 be independent exponential random variables with 
rates 𝜆1, … , 𝜆𝑛. Let 𝑋 = min {𝑋1, … ,𝑋𝑛}. Then 𝑋 has an exponential 
distribution with rate 𝜆 = ∑ 𝜆𝑖𝑛

𝑖=1 . 
 

 Proof: For all 𝑧 ≥ 0, we have 
 Pr 𝑋 > 𝑧 = Pr ∀𝑖 ∈ 1. .𝑛 :𝑋𝑖 > 𝑧  
     =  ∏ Pr 𝑋𝑖 > 𝑧𝑛

𝑖=1                             [independence of the 𝑋𝑖] 
     =  ∏ exp −𝜆𝑖𝑧𝑛

𝑖=1  
     =  exp −𝜆𝑧 . 
 Hence 𝑋 has an exponential distribution with rate 𝜆. 
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Reduction to Minimum: Idea (2) 

 Plan: Exploiting exponential distributions  
 Nodes locally sample an exponential random variable 𝑋𝑣 with rate 𝑥𝑣 
 We use an epidemic minimum-spreading algorithm for the 𝑋𝑣  
 all nodes learn 𝑋 = min

𝑣∈𝑉
𝑋𝑣 

 this is an exponential random variable with rate 𝑥 ≔  ∑ 𝑥𝑣𝑣∈𝑉 . 
 Nodes hope that 𝑋 is close to 𝐸 𝑋 = 1 𝑥⁄  and take 1 𝑋⁄  as 

approximation for the desired 𝑥.  
 

 Increase accuracy: Repeat this procedure 𝑟 times and average 𝑋 values 
learned before taking the reciprocal 
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 Each node 𝑣 locally samples 𝑟 independent exponential random variables 
with rate 𝑥𝑣, let 𝑦𝑣1, … ,𝑦𝑣𝑟 be the outcome. 

 Communication phase. Run the minimum-algorithm for each component 
𝑖 ∈ [1. . 𝑟] in parallel: In each round (of sufficiently many), 
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ; 
 each node 𝑣 then resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of 

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received 

 Each node 𝑣 locally computes 𝑦� = 𝑦𝑣1+⋯+𝑦𝑣𝑟

𝑟
 and takes 1 𝑦�⁄  as its 

approximation for the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉 .  
 

 Two possible problems:  
 rumor spreading could fail (too few rounds, unlucky random choices)  
 the approximation to 𝑥 could be bad (bad luck when sampling the 𝑦𝑣𝑖) 
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Algorithm of Mosk-Aoyama 
and  Shah (2008)  



Analysis: Communication Phase 

 Communication phase: In each round, 
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ; 
 each node 𝑣 resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of 

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received  
 

 Lemma: 
 Let 𝜀 > 0. Let 𝑇 be large enough so that classic rumor spreading 

spreads a rumor with probability 1 − 𝜀 in 𝑇 rounds  
 Then after 𝑇 rounds, all nodes know the true minima with prob. 1 − 𝑟𝜀. 

 
 Proof: For each 𝑖 ∈ [1. . 𝑟] in parallel we run a minimum-spreading process 

with the node values 𝑦𝑣𝑖 𝑣∈𝑉. 
 Each of these processes spreads its minimum in time 𝑇 w. prob. 1 − 𝜀 
 union bound 
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Analysis: Approximation Error 

 Assume that the communication phase was successful:  
 all nodes know the minima 𝑚𝑖 ≔ min 𝑦𝑣𝑖 𝑣 ∈ 𝑉 , 𝑖 ∈ [1. . 𝑟]. 
 Consequently, all compute the same 𝑥� = 𝑟 (𝑚1 + ⋯+ 𝑚𝑟)⁄  as 

approximation to 𝑥  
 

 Lemma: For all 𝛿 < 1, we have 1 − 𝛿 𝑥 ≤ 𝑥� ≤ 1 + 𝛿 𝑥 with probability 
1 − 2exp −𝛿2𝑟 12⁄ . 
 

 Proof: 𝑀 = 𝑚1 + ⋯+ 𝑚𝑟 is the sum of 𝑟 independent exponential random 
variables with rate 𝑥. 
 Pr 𝑀 − 𝐸 𝑀 ≥ 𝛿𝐸 𝑀 ≤ 2exp (−𝛿2𝑟 3⁄ ). [Cramér’s theorem, 𝛿 < 1 2⁄ ] 
 Since 𝑥� = 𝑟 𝑀⁄  and 𝑥 = 𝑟 𝐸[𝑀]⁄ , we obtain 

Pr 𝑥� − 𝑥 ≥ 𝛿𝑥 ≤ 2exp (−𝛿2𝑟 12⁄ ) for all 𝛿 < 1. 
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Summary MAS Algorithm 

 Let 𝐺 = (𝑉,𝐸) be any network. Assume that each node has a node value 
𝑥𝑣 ≥ 1. 
 

 Let 𝑇 be such that Pr 𝑇𝐺 > 𝑇 ≤ 𝜀. 
 Run the MAS-algorithm with parameter 𝑟 for 𝑇 rounds. 

 recall that in each round each node sends out 𝑟 numbers! 
 

 Then with probability at least 1 − 2 exp −𝛿2𝑟 12⁄ − 𝑟𝜀 all nodes learn an 
approximation 𝑥� of the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉  of node values such that  

𝑥� − 𝑥 ≤ 𝛿𝑥. 
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Part 2: Gossip-based Discovery 

 Bib.-note: All of the following is from Haeupler, Pandurangan, Peleg, 
Rajaraman, Sun (SPAA’12, CPC to appear) 
 

 Discovery process (gossip-based triangulation): 
 Start: a connected network 𝐺0 = (𝑉,𝐸0) 
 Round 𝑡:  

 Each node 𝑢 picks two neighbors 𝑥𝑢 and 𝑦𝑢 in 𝐺𝑡−1 
 𝐸𝑡 ≔ 𝐸 ∪ {𝑥𝑢,𝑦𝑢} 𝑢 ∈ 𝑉 , 𝐺𝑡 ≔ (𝑉,𝐸𝑡)  

 until 𝐺𝑡 = 𝐾𝑉 (the complete graph on 𝑉) 
 

 Main structural difference to what we did so far: Dynamic network 
 the network structure changes (massively) over time 

 

 Question: How long does this process need to terminate? 
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Applications 

 Algorithm: Resource discovery in peer-to-peer (P2P) networks 
 nodes can only communicate with nodes of which they know the IP 

address 
 resource discovery problem: let nodes learn the IP addresses of all 

other nodes in the network 
 

 Process: Making “friends” in social networks like LinkedIn, … 
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Preliminary Observations 

 General lower bound: any process where each node can add at most one 
edge per round needs Ω(𝑛) rounds to obtain a complete graph if the 
starting graph is missing at least a constant fraction of all edges 
 

 Easy to find starting graphs where gossip-based triangulation needs 
Ω(𝑛 log𝑛) rounds 
 complete graph plus one out-going edge: each Θ(𝑛) rounds the degree 

of the outside vertex roughly doubles 
 complete graph minus Θ(𝑛𝛼) disjoint edges, 0 < 𝛼 < 1: each missing 

edge in each round has a Θ(1 𝑛⁄ ) probability of being added. 
 roughly resembles a coupon collector process 
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More Observations 

 Non-monotone process: More edges can increase the termination time! 
 

 Example: A path on 4 vertices vs. a triangle with one additional outgoing 
edge. 
 

 See the original paper at http://arxiv.org/abs/1202.2092 for a graphic 
representation which I can’t give in a web version 
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http://arxiv.org/abs/1202.2092


Result  

 Theorem:  
 when started with any connected graph, the gossip-based triangulation 

process ends after 𝑂 𝑛 log𝑛 2  rounds whp. 
 when started with any connected graph having 𝑘 edges less than the 

complete graph, the gossip-based triangulation process needs 
Ω(𝑛 log𝑘) rounds whp. 
 

 Gap between upper and lower bound: Θ(log𝑛) 
 

 Key challenges in the analysis: 
 non-monotonicity 
 dynamic networks 
 any “new” edge can change the situation 
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An Example: Star Graphs 

 Star graph on 𝑛 vertices: One central node connected to 𝑛 − 1 nodes of 
degree one. 
 

 Gossip-based triangulation on a star graph with 𝑛 vertices: 
 First 𝑇 = 𝑜(𝑛0.5) rounds: 𝑇 disjoint edges between leaves are added 
 At time 𝑇 = Θ(𝑛0.5): The first intersection of new edges and 𝑂 1  

rounds later, this path of length 2 is completed to a triangle 
 Up to time 𝑇 = 0.5 − 𝜀 𝑛: The new edges (viewed alone) form small 

components of size at most 𝑂 log𝑛 . These are almost immediately 
completed to a clique. 

 Phase transition: In the (short) time up to  𝑇 = (0.5 + 𝜀)𝑛,  a giant 
component in the graph of new edges appears. 
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Star Graphs (2) 

 Observation: The components formed by the new edges alone are the 
same in the true process and in the process where only the central vertex 
is active. 
 

 For a component 𝐶 of size 𝑠 ≤ 1 − 𝜀 𝑛, 
 the probability that the central vertex adds an edge from 𝐶 to the 

outside, is Θ(𝑠 𝑛⁄ ), hence the expected waiting time for this is Θ(𝑛 𝑠⁄ ) 
 in time 𝑂 𝑠 log 𝑠 2 , the component completes itself to a clique if 

nothing else happens to it (Haeupler et al. result) 
 

 Components with less than 𝑂�(𝑛0.5) vertices are cliques whp, because the 
clique formation is much faster than the addition of edges to the outside 

 Larger components: the work of the central vertex becomes faster and 
new vertices are added quicker than the self-triangulation. 
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Summary Star Graphs 

 Already when starting with a simple star graph, the gossip-based 
triangulation process is highly non-trivial 
 

 It combines two subprocesses 
 action of the central node (independent of all the rest): throw in one 

random edge between other vertices per round 
 “evolution of random graphs” 

 “self-triangulation” process of the components formed by new edges 
 small components very quickly become cliques 
 larger components: self-triangulation slower than the addition of 

new edges 
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Proof Ideas: Upper Bound 

 Key lemma: If you start the process with a graph having minimum  
degree 𝛿, then after 𝑇 = 𝑂(𝑛 log𝑛) rounds, the minimum degree is 
min 9 8⁄ 𝛿,𝑛 − 1  whp.  
 a logarithmic number of such phases brings the min-deg. to 𝑛 − 1 

 
 

 How does the degree of a node 𝑢 grow?  
 A neighbor 𝑤 ∈ 𝑁(𝑢) adds an edge between 𝑢 and a node 𝑣 ∈ 𝑁 𝑤 ∩

𝑁2 𝑢  
 𝑁𝑖 𝑢 : vertices in distance exactly 𝑖 from 𝑢 
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Proof Ideas: Upper Bound (2) 

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢  such that  
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄ ) an edge 
between 𝑢 and 𝑁2(𝑢) is added by 𝑤. 
 

 Proof: The probability is 
 

2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑤
⋅

1
deg 𝑤

≥ 2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑢 + 𝑁 𝑤 ∩ 𝑁2 𝑢
⋅

1
𝑛

= Θ
1
𝑛
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Proof Ideas: Upper Bound (3) 

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢  such that  
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄ ) an edge 
between 𝑢 and 𝑁2(𝑢) is added by 𝑤. 
 

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢  
such that |𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿   [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛) 
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2. 
 

 Proof: The only way how a good node becomes bad is that Θ(𝛿) nodes in 
𝑁 𝑤 ∩ 𝑁2(𝑢) move to 𝑁(𝑢). If this happens, we are done  
 Can assume that assumptions of lemma hold for 𝑇 rounds (else done) 

 Now Θ(𝛿) good nodes in parallel try to use Lemma 1    after 𝑂(𝑇 𝛿⁄ ) 
rounds, wp. 1 − 𝑛−3, one is lucky and adds a neighbor to 𝑢 

 Repeat this 𝛿 times and 𝑢 got Θ(𝛿) new neighbors 
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Proof Ideas: Upper Bound (4) 

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢  
such that 𝑁 𝑤 ∩ 𝑁2 𝑢 = Ω 𝛿   [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛) 
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2. 
 

 Lemma 2 was the easiest among three cases. The other two: 
 at least one good 𝑤, but less than the Ω(𝛿) of Lemma 2 
 no good 𝑤 at all 

 We have to omit both cases here  
 

 Summary: Relatively efficient gossip-based resource discovery  
 proofs much harder due to the dynamic behavior of the network and the 

non-monotonicity 
 Open problem: logarithmic gap between upper and lower bound 
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 Many tasks other than spreading a single rumor can be done by gossip-
based algorithms 
 minimum is easy (essentially same difficulty as rumor spreading) 
 averages: iterated averaging 

 relatively slow on several graphs with large diameter 
 MAS algorithm (for sums, averages, …)  computes a 1 ± 𝛿  factor 

approximation in time roughly the rumor spreading time (parallel 
spreading of 𝑟 rumors) 

 gossip-based triangulation 
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Course Summary 

Epidemic/gossip-based algorithms&processes 
 

 Models for processes in the real world 
 epidemics (including computer viruses and malware) 
 rumors 
 making acquaintances 
 [viral marketing, influence processes, adoption of new technologies] 

 
 Lightweight and robust distributed algorithms 

 information dissemination 
 computing averages etc. 
 resource location 
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Course Summary: Algorithms 

 Epidemic/gossip-based algorithmics 
 simple generic algorithm design paradigm 
 performance often close to the best that can be achieved 
 works well in networks without central organization, stable structure, or 

reliable communication 
 

 Analysis techniques: Similar to other randomized/distributed algorithms 
 Expectations, birthday paradox, coupon collector 
 Markov chain arguments (adding waiting times) 
 Strong concentration: Chernoff bounds, method of bounded differences 
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Many Open Problems 

 This is a young area of research, so many things are not well understood 
 many particular research problems (some mentioned in this course) 
 designing “more clever” gossip-based algorithms (add the right 

dependencies to the random choice)  
 epidemic processes in real-world networks 
 gossip-based algorithms in dynamic networks 

 
 Lots of work on STOC, FOCS, SODA, PODC, … in the last 5 years that is 

not yet fully digested   
  good topic for an internship, a Master thesis, a PhD thesis, … 

 
 This is the end of this short course. I hope you enjoyed it. Don’t be shy to 

contact me if you have questions or comments. 
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