
Lecture 3: Epidemic Tasks and Processes
Beyond Rumor Spreading

Alea Meeting, Munich, February 2016

Outline:
Computing the minimum, average, and sum of node values
Epidemic discovery (triangulation) or making friends at LinkedIn

Benjamin Doerr, LIX, École Polytechnique, Paris-Saclay

 Randomized rumor spreading (RRS):
 round-based process in a graph 𝐺 = 𝑉,𝐸
 starts with one node informed (knows the rumor)
 in each round, each informed node calls a random neighbor and

informs it (if it wasn’t already)

 Main result first lecture: Works well as expected (now that we understand
it ;-)) – fast and highly robust
 With probability at least 1 − 𝑜(1), the rumor spreading time is

log2 𝑛 + ln𝑛 + 𝑜(log𝑛) in complete graphs, 𝐺(𝑛,𝑝) random graphs with
𝑝 = 𝜔 (log𝑛) 𝑛⁄ , random regular graphs 𝐺(𝑛,𝑑) with 𝑑 = 𝜔(1).

 If each call fails independently with probability 𝑝, then the rumor
spreading time is log2−𝑝 𝑛 + ln(𝑛)/(1 − 𝑝) + 𝑜(log𝑛); this is proven for
complete graphs, but should hold for all graphs above.

Alea'16, epidemic algorithms, lecture 3 2

Reminder Last Two Lectures

 Things also work well in many other graphs, but sometimes the analysis is
more tricky.
 Example: In hypercubes, with probability at least 1 − 𝑜(1), the rumor

spreading time is Θ(log𝑛), but so far no-one was able to make the
leading constant precise (despite several attempts).

 In real-world network models, rumor spreading is fast, sometimes
ultrafast, but often different rumor spreading mechanisms are needed
 The usual “push” rumor spreading needs time Ω(𝑛𝛼) in preferential

attachment (PA) graphs
 Push-pull does it in Θ(log𝑛) time
 Push-pull without calling someone it two successive rounds works in
Θ(log𝑛 log log𝑛⁄) time, which is the diameter

 Asynchronous push-pull works in 𝑂 log𝑛 time.
 Similar picture for Chung-Lu graphs

 Alea'16, epidemic algorithms, lecture 3 3

Reminder Last Two Lectures (2)

 We have need that a single piece of information can be spread quite well
in an epidemic (gossip-based) manner. How about other tasks in
networks?

 Part 1: Assume that each node has some private date. We want that all
nodes learn something about all data, e.g., the sum, average, minimum
value…

 Part 2: Gossip-based triangulation
 epidemic algorithm for resource location
 random process modelling how people get to know each other via

electronic social networks

Alea'16, epidemic algorithms, lecture 3 4

Plan For Today

 Examples:
1. All-to-all rumor spreading: each node has a rumor, all rumors shall be

disseminated to all nodes
2. Assume that each node has a local variable 𝑥𝑣. Let each node

compute some statistic about these values, e.g., minimum, sum,
average, quadratic mean, …

3. Let each node compute the number of nodes of the network

 Observations:
 Task 3 is a special case of Task 2 (summation with all 𝑥𝑣 = 1)
 Task 2 can be reduced to Task 1 (send all 𝑥𝑣 to everyone and then

have everyone compute locally what they want)
 but this might need more communication than necessary

Alea'16, epidemic algorithms, lecture 3 5

Part 1: Information Dissemination
Beyond Spreading a Single Rumor

All-to-all Rumor Spreading

 Simple solution: Run 𝑛 single-rumor spreading processes in parallel. Each
node calls a random neighbor and forwards all rumors it knows.

 Analysis:
 If you look at a single rumor, we have exactly the same process as in

single-rumor spreading.
 Consequence: If single-rumor spreading spreads the rumor from an

arbitrary node to all others in time 𝑇 with probability at least 1 − 𝜀, then
all-to-all rumor spreading succeeds in time 𝑘𝑇 with probability at least
1 − 𝑛𝜀𝑘 (for all integers 𝑘).
 union bound gives the 𝑛 in the failure probability
 re-try argument introduces the 𝑘
 E.g., 𝑂 log𝑛 rounds suffice in complete graphs whp

Alea'16, epidemic algorithms, lecture 3 6

All-to-all Rumor Spreading (2)

 Problem with 𝒏 parallel single-rumor processes: Much traffic in the network!
 One call transmits up to 𝑛 rumors
 If only one rumor can be sent per round, then the rumor spreading time

typically increases by a factor of 𝑛, because at the end of the process,
each node touches each rumor only every 𝑛-th round

 Better solution via random linear network coding (Haeupler (STOC’11),
details omitted here):
 idea: don’t send rumors, but send random linear combinations of rumors.

Then you can decode all rumors once you’ve heard (any) 𝑛 linearly
independent messages.

 result: very roughly, 𝑂(𝑛 + 𝑇) rounds suffice to spread 𝑛 rumors, where 𝑇
is the time you need to spread one rumor with (very) high prob.

 Bottom line: All-to-all rumor spreading is costly

Alea'16, epidemic algorithms, lecture 3 7

 Setting:
 Each node 𝑣 has a piece of data, a number 𝑥𝑣.
 We want each node to learn some aggregate data (minimum/maximum,

sum, average, …) about all these values.

 Plan: We want to be more clever than sending all data to all nodes, as this
takes at least Ω(𝑛2) rumor transmissions, which hopefully is not
necessary.

 Assumptions:
 We assume that all nodes start the process at the same time (first

round). This can, e.g., be initiated by a single-rumor spreading process.
 We do not care about a termination criterion.

 Let’s start with computing the minimum…

Alea'16, epidemic algorithms, lecture 3 8

Computing Aggregate Data
From Node Values

Clever Minimum Computation

 Epidemic/gossip-based compute-min algorithm: In each round,
 each node 𝑣 calls a random neighbor and forwards to it his 𝑥𝑣,
 then each node 𝑣 updates its 𝑥𝑣 to the minimum of its 𝑥𝑣 and all

numbers it received.

 Analysis: Track how the minimum value 𝑥min ≔ min 𝑥𝑣 𝑣 ∈ 𝑉 spreads!
 Call a node 𝑣 “informed” if 𝑥𝑣 = 𝑥min.
 Then informed nodes stay informed.
 If an informed node calls an uninformed node, it becomes informed.
 We precisely simulate the classic rumor spreading process

 Result: Computing the minimum takes exactly the same time as spreading

a single rumor
 Communication effort: One call per node per round.

Alea'16, epidemic algorithms, lecture 3 9

Observation: “Everything” can be reduced to epidemically computing sums.

 Number of nodes: Compute the sum of the node values 𝑥𝑣 = 1.

 Average:
 Compute the sum 𝑋 of the node values 𝑥𝑣 in an epidemic manner
 compute the number 𝑛 of nodes (as sum of 𝑦𝑣 = 1) epidemically
 compute locally at each node the average 𝑋/𝑛

 root mean square (quadratic mean) 𝑥rms = 1
𝑛
∑ 𝑥𝑣2𝑣∈V :

 nodes compute locally 𝑥𝑣′ = 𝑥𝑣2
 compute epidemically 𝑛 and 𝑋 = ∑ 𝑥𝑣′𝑣∈𝑉 as above
 compute locally 𝑥rms = 𝑋 𝑛⁄

Alea'16, epidemic algorithms, lecture 3 10

Clever Computation of Sums,
Averages,…

Epidemically Computing Sums

 Difficulties:
 we don’t want to send all 𝑥𝑣 to all nodes: quadratic communication effort
 additional difficulty that nodes may not have unique identifiers: when

you hear a number the second time, you do not know it is a copy of the
rumor already heard or if two nodes have the same number

 Can we do something reasonable under such condition?

 YES [when we allow approximate solutions]
 iterated averaging (works for averages, not the rest)
 reduction to minimum (super-cool trick, needs 𝑥𝑣 ≥ 1)

Alea'16, epidemic algorithms, lecture 3 11

Harsh assumption, but useful to avoid
algorithms that learn the network
structure and then rely on it (not robust)

Iterated Averaging: Rough Idea

 Basic idea: Nodes call random neighbors and average their values

 Example of an averaging operation between two nodes 𝑢 and 𝑣:
 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other node
 both 𝑢 and 𝑣 update their value to 𝑥𝑢+𝑥𝑣

2
.

 Observations:
 the sum of all node values never changes (“conservation of mass”)
 intuitive, but non-trivial: the node values converge to the average

 Difficulties:
 For pair-wise averaging: How do you ensure that each node is part of

one averaging operation only?
 For other averaging: How do you deal with different node degrees?

Alea'16, epidemic algorithms, lecture 3 12

 In each round…
 each node flips a fair coin to decide whether it is active or passive
 initiate communication: each active node 𝑣 …

 with probability deg 𝑣 2Δ⁄ contacts a random neighbor;
 with probability 1 − deg 𝑣 2Δ⁄ is does nothing

 a passive nodes that was contacted exactly once accept this contact
request (all other request are lost)

 for each pair (𝑢, 𝑣) established in this manner does a pair-wise
averaging operation: 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other
node; then both update their values to 𝑥𝑢+𝑥𝑣

2
.

 Properties: does not need any node identifiers etc.
 needs that all nodes know the max-degree Δ (requires one maximum-

communication analogous to a minimum communication)

Alea'16, epidemic algorithms, lecture 3 13

One Iterated Averaging Protocol
That Works [Boyd et al. (2006)]

 In random geometric graphs 𝐺(𝑛, 𝑟) with 𝑟 sufficiently above the
connectivity threshold, the 𝑛−𝜀-averaging time (roughly: the time to get the
imbalance down to 𝑛−𝜀 times the initial one) is of order Θ(𝑟−2 log𝑛)
 Recall: The diameter is only Θ(𝑟−1) !

 Roughly the same result holds for grids.

 Polylogarithmic averaging times for expander graphs (and the complete

graph)

 Summary: Iterated averaging can be slow!

Alea'16, epidemic algorithms, lecture 3 14

Performance of Iterated Averaging

Intuitive Example: Slow Averaging

 Simplified averaging mechanism in graphs with constant max-degree Δ:
Move a 1 2𝛥⁄ fraction of your value to each neighbor!
 send your value to all neighbors
 reset your value to 𝑥 𝑣 ≔ ∑ 𝑥 𝑢𝑢~𝑣 + 2Δ − deg 𝑣 𝑥 𝑣 2Δ⁄

 Example situation:
 𝑛 odd, 𝑒 ≔ 𝑛 − 1 2⁄ , 𝐺 is a path with vertices (in that order)
𝑣−𝑒,𝑣−𝑒+1, … , 𝑣−1,𝑣0, 𝑣1, … , 𝑣𝑒

 initial node values: 𝑥 𝑣𝑖 = 𝑖.

 Analysis: By symmetry, 𝑥 𝑣0 is always zero
 Induction over time: For positive 𝑖, 𝑥 𝑣𝑖 never exceeds its initial value.
 Since always 𝑥 𝑣0 = 0 and 𝑥 𝑣1 ≤ 1, at most a half unit of mass is

transported out of {𝑣1, … , 𝑣𝑒}.
 It takes quadratic time to get all 𝑥 𝑣 ≤ 𝑛/8.

Alea'16, epidemic algorithms, lecture 3 15

Reduction to Minimum: Idea (1)

 Reminder: 𝑋 has exponential distribution with rate 𝜆 if
Pr 𝑋 > 𝑧 = exp −𝜆𝑧 for all 𝑧 ∈ ℝ≥0.
 𝐸 𝑋 = 1 𝜆⁄

 Lemma: Let 𝑋1, … ,𝑋𝑛 be independent exponential random variables with
rates 𝜆1, … , 𝜆𝑛. Let 𝑋 = min {𝑋1, … ,𝑋𝑛}. Then 𝑋 has an exponential
distribution with rate 𝜆 = ∑ 𝜆𝑖𝑛

𝑖=1 .

 Proof: For all 𝑧 ≥ 0, we have
 Pr 𝑋 > 𝑧 = Pr ∀𝑖 ∈ 1. .𝑛 :𝑋𝑖 > 𝑧
 = ∏ Pr 𝑋𝑖 > 𝑧𝑛

𝑖=1 [independence of the 𝑋𝑖]
 = ∏ exp −𝜆𝑖𝑧𝑛

𝑖=1
 = exp −𝜆𝑧 .
 Hence 𝑋 has an exponential distribution with rate 𝜆.

Alea'16, epidemic algorithms, lecture 3 16

Reduction to Minimum: Idea (2)

 Plan: Exploiting exponential distributions
 Nodes locally sample an exponential random variable 𝑋𝑣 with rate 𝑥𝑣
 We use an epidemic minimum-spreading algorithm for the 𝑋𝑣
 all nodes learn 𝑋 = min

𝑣∈𝑉
𝑋𝑣

 this is an exponential random variable with rate 𝑥 ≔ ∑ 𝑥𝑣𝑣∈𝑉 .
 Nodes hope that 𝑋 is close to 𝐸 𝑋 = 1 𝑥⁄ and take 1 𝑋⁄ as

approximation for the desired 𝑥.

 Increase accuracy: Repeat this procedure 𝑟 times and average 𝑋 values
learned before taking the reciprocal

Alea'16, epidemic algorithms, lecture 3 17

 Each node 𝑣 locally samples 𝑟 independent exponential random variables
with rate 𝑥𝑣, let 𝑦𝑣1, … ,𝑦𝑣𝑟 be the outcome.

 Communication phase. Run the minimum-algorithm for each component
𝑖 ∈ [1. . 𝑟] in parallel: In each round (of sufficiently many),
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ;
 each node 𝑣 then resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received

 Each node 𝑣 locally computes 𝑦� = 𝑦𝑣1+⋯+𝑦𝑣𝑟

𝑟
 and takes 1 𝑦�⁄ as its

approximation for the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉 .

 Two possible problems:
 rumor spreading could fail (too few rounds, unlucky random choices)
 the approximation to 𝑥 could be bad (bad luck when sampling the 𝑦𝑣𝑖)

Alea'16, epidemic algorithms, lecture 3 18

Algorithm of Mosk-Aoyama
and Shah (2008)

Analysis: Communication Phase

 Communication phase: In each round,
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ;
 each node 𝑣 resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received

 Lemma:
 Let 𝜀 > 0. Let 𝑇 be large enough so that classic rumor spreading

spreads a rumor with probability 1 − 𝜀 in 𝑇 rounds
 Then after 𝑇 rounds, all nodes know the true minima with prob. 1 − 𝑟𝜀.

 Proof: For each 𝑖 ∈ [1. . 𝑟] in parallel we run a minimum-spreading process

with the node values 𝑦𝑣𝑖 𝑣∈𝑉.
 Each of these processes spreads its minimum in time 𝑇 w. prob. 1 − 𝜀
 union bound

Alea'16, epidemic algorithms, lecture 3 19

Analysis: Approximation Error

 Assume that the communication phase was successful:
 all nodes know the minima 𝑚𝑖 ≔ min 𝑦𝑣𝑖 𝑣 ∈ 𝑉 , 𝑖 ∈ [1. . 𝑟].
 Consequently, all compute the same 𝑥� = 𝑟 (𝑚1 + ⋯+ 𝑚𝑟)⁄ as

approximation to 𝑥

 Lemma: For all 𝛿 < 1, we have 1 − 𝛿 𝑥 ≤ 𝑥� ≤ 1 + 𝛿 𝑥 with probability
1 − 2exp −𝛿2𝑟 12⁄ .

 Proof: 𝑀 = 𝑚1 + ⋯+ 𝑚𝑟 is the sum of 𝑟 independent exponential random
variables with rate 𝑥.
 Pr 𝑀 − 𝐸 𝑀 ≥ 𝛿𝐸 𝑀 ≤ 2exp (−𝛿2𝑟 3⁄). [Cramér’s theorem, 𝛿 < 1 2⁄]
 Since 𝑥� = 𝑟 𝑀⁄ and 𝑥 = 𝑟 𝐸[𝑀]⁄ , we obtain

Pr 𝑥� − 𝑥 ≥ 𝛿𝑥 ≤ 2exp (−𝛿2𝑟 12⁄) for all 𝛿 < 1.

Alea'16, epidemic algorithms, lecture 3 20

Summary MAS Algorithm

 Let 𝐺 = (𝑉,𝐸) be any network. Assume that each node has a node value
𝑥𝑣 ≥ 1.

 Let 𝑇 be such that Pr 𝑇𝐺 > 𝑇 ≤ 𝜀.
 Run the MAS-algorithm with parameter 𝑟 for 𝑇 rounds.

 recall that in each round each node sends out 𝑟 numbers!

 Then with probability at least 1 − 2 exp −𝛿2𝑟 12⁄ − 𝑟𝜀 all nodes learn an
approximation 𝑥� of the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉 of node values such that

𝑥� − 𝑥 ≤ 𝛿𝑥.

Alea'16, epidemic algorithms, lecture 3 21

Part 2: Gossip-based Discovery

 Bib.-note: All of the following is from Haeupler, Pandurangan, Peleg,
Rajaraman, Sun (SPAA’12, CPC to appear)

 Discovery process (gossip-based triangulation):
 Start: a connected network 𝐺0 = (𝑉,𝐸0)
 Round 𝑡:

 Each node 𝑢 picks two neighbors 𝑥𝑢 and 𝑦𝑢 in 𝐺𝑡−1
 𝐸𝑡 ≔ 𝐸 ∪ {𝑥𝑢,𝑦𝑢} 𝑢 ∈ 𝑉 , 𝐺𝑡 ≔ (𝑉,𝐸𝑡)

 until 𝐺𝑡 = 𝐾𝑉 (the complete graph on 𝑉)

 Main structural difference to what we did so far: Dynamic network
 the network structure changes (massively) over time

 Question: How long does this process need to terminate?

Alea'16, epidemic algorithms, lecture 3 22

Applications

 Algorithm: Resource discovery in peer-to-peer (P2P) networks
 nodes can only communicate with nodes of which they know the IP

address
 resource discovery problem: let nodes learn the IP addresses of all

other nodes in the network

 Process: Making “friends” in social networks like LinkedIn, …

Alea'16, epidemic algorithms, lecture 3 23

Preliminary Observations

 General lower bound: any process where each node can add at most one
edge per round needs Ω(𝑛) rounds to obtain a complete graph if the
starting graph is missing at least a constant fraction of all edges

 Easy to find starting graphs where gossip-based triangulation needs
Ω(𝑛 log𝑛) rounds
 complete graph plus one out-going edge: each Θ(𝑛) rounds the degree

of the outside vertex roughly doubles
 complete graph minus Θ(𝑛𝛼) disjoint edges, 0 < 𝛼 < 1: each missing

edge in each round has a Θ(1 𝑛⁄) probability of being added.
 roughly resembles a coupon collector process

Alea'16, epidemic algorithms, lecture 3 24

More Observations

 Non-monotone process: More edges can increase the termination time!

 Example: A path on 4 vertices vs. a triangle with one additional outgoing
edge.

 See the original paper at http://arxiv.org/abs/1202.2092 for a graphic
representation which I can’t give in a web version

Alea'16, epidemic algorithms, lecture 3 25

http://arxiv.org/abs/1202.2092

Result

 Theorem:
 when started with any connected graph, the gossip-based triangulation

process ends after 𝑂 𝑛 log𝑛 2 rounds whp.
 when started with any connected graph having 𝑘 edges less than the

complete graph, the gossip-based triangulation process needs
Ω(𝑛 log𝑘) rounds whp.

 Gap between upper and lower bound: Θ(log𝑛)

 Key challenges in the analysis:
 non-monotonicity
 dynamic networks
 any “new” edge can change the situation

Alea'16, epidemic algorithms, lecture 3 26

An Example: Star Graphs

 Star graph on 𝑛 vertices: One central node connected to 𝑛 − 1 nodes of
degree one.

 Gossip-based triangulation on a star graph with 𝑛 vertices:
 First 𝑇 = 𝑜(𝑛0.5) rounds: 𝑇 disjoint edges between leaves are added
 At time 𝑇 = Θ(𝑛0.5): The first intersection of new edges and 𝑂 1

rounds later, this path of length 2 is completed to a triangle
 Up to time 𝑇 = 0.5 − 𝜀 𝑛: The new edges (viewed alone) form small

components of size at most 𝑂 log𝑛 . These are almost immediately
completed to a clique.

 Phase transition: In the (short) time up to 𝑇 = (0.5 + 𝜀)𝑛, a giant
component in the graph of new edges appears.

Alea'16, epidemic algorithms, lecture 3 27

Star Graphs (2)

 Observation: The components formed by the new edges alone are the
same in the true process and in the process where only the central vertex
is active.

 For a component 𝐶 of size 𝑠 ≤ 1 − 𝜀 𝑛,
 the probability that the central vertex adds an edge from 𝐶 to the

outside, is Θ(𝑠 𝑛⁄), hence the expected waiting time for this is Θ(𝑛 𝑠⁄)
 in time 𝑂 𝑠 log 𝑠 2 , the component completes itself to a clique if

nothing else happens to it (Haeupler et al. result)

 Components with less than 𝑂�(𝑛0.5) vertices are cliques whp, because the
clique formation is much faster than the addition of edges to the outside

 Larger components: the work of the central vertex becomes faster and
new vertices are added quicker than the self-triangulation.

Alea'16, epidemic algorithms, lecture 3 28

Summary Star Graphs

 Already when starting with a simple star graph, the gossip-based
triangulation process is highly non-trivial

 It combines two subprocesses
 action of the central node (independent of all the rest): throw in one

random edge between other vertices per round
 “evolution of random graphs”

 “self-triangulation” process of the components formed by new edges
 small components very quickly become cliques
 larger components: self-triangulation slower than the addition of

new edges

Alea'16, epidemic algorithms, lecture 3 29

Proof Ideas: Upper Bound

 Key lemma: If you start the process with a graph having minimum
degree 𝛿, then after 𝑇 = 𝑂(𝑛 log𝑛) rounds, the minimum degree is
min 9 8⁄ 𝛿,𝑛 − 1 whp.
 a logarithmic number of such phases brings the min-deg. to 𝑛 − 1

 How does the degree of a node 𝑢 grow?
 A neighbor 𝑤 ∈ 𝑁(𝑢) adds an edge between 𝑢 and a node 𝑣 ∈ 𝑁 𝑤 ∩

𝑁2 𝑢
 𝑁𝑖 𝑢 : vertices in distance exactly 𝑖 from 𝑢

Alea'16, epidemic algorithms, lecture 3 30

Proof Ideas: Upper Bound (2)

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢 such that
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄) an edge
between 𝑢 and 𝑁2(𝑢) is added by 𝑤.

 Proof: The probability is

2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑤
⋅

1
deg 𝑤

≥ 2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑢 + 𝑁 𝑤 ∩ 𝑁2 𝑢
⋅

1
𝑛

= Θ
1
𝑛

Alea'16, epidemic algorithms, lecture 3 31

Proof Ideas: Upper Bound (3)

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢 such that
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄) an edge
between 𝑢 and 𝑁2(𝑢) is added by 𝑤.

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢
such that |𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛)
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2.

 Proof: The only way how a good node becomes bad is that Θ(𝛿) nodes in
𝑁 𝑤 ∩ 𝑁2(𝑢) move to 𝑁(𝑢). If this happens, we are done
 Can assume that assumptions of lemma hold for 𝑇 rounds (else done)

 Now Θ(𝛿) good nodes in parallel try to use Lemma 1 after 𝑂(𝑇 𝛿⁄)
rounds, wp. 1 − 𝑛−3, one is lucky and adds a neighbor to 𝑢

 Repeat this 𝛿 times and 𝑢 got Θ(𝛿) new neighbors

Alea'16, epidemic algorithms, lecture 3 32

Proof Ideas: Upper Bound (4)

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢
such that 𝑁 𝑤 ∩ 𝑁2 𝑢 = Ω 𝛿 [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛)
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2.

 Lemma 2 was the easiest among three cases. The other two:
 at least one good 𝑤, but less than the Ω(𝛿) of Lemma 2
 no good 𝑤 at all

 We have to omit both cases here

 Summary: Relatively efficient gossip-based resource discovery
 proofs much harder due to the dynamic behavior of the network and the

non-monotonicity
 Open problem: logarithmic gap between upper and lower bound

Alea'16, epidemic algorithms, lecture 3 33

 Many tasks other than spreading a single rumor can be done by gossip-
based algorithms
 minimum is easy (essentially same difficulty as rumor spreading)
 averages: iterated averaging

 relatively slow on several graphs with large diameter
 MAS algorithm (for sums, averages, …) computes a 1 ± 𝛿 factor

approximation in time roughly the rumor spreading time (parallel
spreading of 𝑟 rumors)

 gossip-based triangulation

Alea'16, epidemic algorithms, lecture 3 34

Summary: Epidemics
Beyond Rumor Spreading

Course Summary

Epidemic/gossip-based algorithms&processes

 Models for processes in the real world
 epidemics (including computer viruses and malware)
 rumors
 making acquaintances
 [viral marketing, influence processes, adoption of new technologies]

 Lightweight and robust distributed algorithms

 information dissemination
 computing averages etc.
 resource location

Alea'16, epidemic algorithms, lecture 3 35

Course Summary: Algorithms

 Epidemic/gossip-based algorithmics
 simple generic algorithm design paradigm
 performance often close to the best that can be achieved
 works well in networks without central organization, stable structure, or

reliable communication

 Analysis techniques: Similar to other randomized/distributed algorithms
 Expectations, birthday paradox, coupon collector
 Markov chain arguments (adding waiting times)
 Strong concentration: Chernoff bounds, method of bounded differences

Alea'16, epidemic algorithms, lecture 3 36

Many Open Problems

 This is a young area of research, so many things are not well understood
 many particular research problems (some mentioned in this course)
 designing “more clever” gossip-based algorithms (add the right

dependencies to the random choice)
 epidemic processes in real-world networks
 gossip-based algorithms in dynamic networks

 Lots of work on STOC, FOCS, SODA, PODC, … in the last 5 years that is

not yet fully digested
 good topic for an internship, a Master thesis, a PhD thesis, …

 This is the end of this short course. I hope you enjoyed it. Don’t be shy to

contact me if you have questions or comments.

Alea'16, epidemic algorithms, lecture 3 37

	Slide Number 1
	Reminder Last Two Lectures
	Reminder Last Two Lectures (2)
	Plan For Today
	Part 1: Information Dissemination Beyond Spreading a Single Rumor
	All-to-all Rumor Spreading
	All-to-all Rumor Spreading (2)
	Computing Aggregate Data �From Node Values
	Clever Minimum Computation
	Clever Computation of Sums, �Averages,…
	Epidemically Computing Sums
	Iterated Averaging: Rough Idea
	One Iterated Averaging Protocol That Works [Boyd et al. (2006)]
	Performance of Iterated Averaging
	Intuitive Example: Slow Averaging
	Reduction to Minimum: Idea (1)
	Reduction to Minimum: Idea (2)
	Algorithm of Mosk-Aoyama�and Shah (2008)
	Analysis: Communication Phase
	Analysis: Approximation Error
	Summary MAS Algorithm
	Part 2: Gossip-based Discovery
	Applications
	Preliminary Observations
	More Observations
	Result
	An Example: Star Graphs
	Star Graphs (2)
	Summary Star Graphs
	Proof Ideas: Upper Bound
	Proof Ideas: Upper Bound (2)
	Proof Ideas: Upper Bound (3)
	Proof Ideas: Upper Bound (4)
	Summary: Epidemics �Beyond Rumor Spreading
	Course Summary
	Course Summary: Algorithms
	Many Open Problems

