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 Randomized rumor spreading (RRS): 
 round-based process in a graph 𝐺 = 𝑉,𝐸  
 starts with one node informed (knows the rumor) 
 in each round, each informed node calls a random neighbor and 

informs it (if it wasn’t already) 
 

 Main result first lecture: Works well as expected (now that we understand 
it ;-) ) – fast and highly robust 
 With probability at least 1 − 𝑜(1), the rumor spreading time is 

log2 𝑛 + ln𝑛 + 𝑜(log𝑛) in complete graphs, 𝐺(𝑛,𝑝) random graphs with 
𝑝 = 𝜔 (log𝑛) 𝑛⁄ , random regular graphs 𝐺(𝑛,𝑑) with 𝑑 = 𝜔(1). 

 If each call fails independently with probability 𝑝, then the rumor 
spreading time is log2−𝑝 𝑛 + ln(𝑛)/(1 − 𝑝) + 𝑜(log𝑛); this is proven for 
complete graphs, but should hold for all graphs above. 
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Reminder Last Two Lectures 



 Things also work well in many other graphs, but sometimes the analysis is 
more tricky. 
 Example: In hypercubes, with probability at least 1 − 𝑜(1), the rumor 

spreading time is Θ(log𝑛), but so far no-one was able to make the 
leading constant precise (despite several attempts). 
 

 In real-world network models, rumor spreading is fast, sometimes 
ultrafast, but often different rumor spreading mechanisms are needed 
 The usual “push” rumor spreading needs time Ω(𝑛𝛼) in preferential 

attachment (PA) graphs 
 Push-pull does it in Θ(log𝑛) time 
 Push-pull without calling someone it two successive rounds works in 
Θ(log𝑛 log log𝑛⁄ ) time, which is the diameter 

 Asynchronous push-pull works in 𝑂 log𝑛  time. 
 Similar picture for Chung-Lu graphs 
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Reminder Last Two Lectures (2) 



 We have need that a single piece of information can be spread quite well 
in an epidemic (gossip-based) manner. How about other tasks in 
networks? 
 

 Part 1: Assume that each node has some private date. We want that all 
nodes learn something about all data, e.g., the sum, average, minimum 
value… 
 

 Part 2: Gossip-based triangulation 
 epidemic algorithm for resource location 
 random process modelling how people get to know each other via 

electronic social networks 
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Plan For Today 



 Examples: 
1. All-to-all rumor spreading: each node has a rumor, all rumors shall be 

disseminated to all nodes 
2. Assume that each node has a local variable 𝑥𝑣. Let each node 

compute some statistic about these values, e.g., minimum, sum, 
average, quadratic mean, … 

3. Let each node compute the number of nodes of the network 
 

 Observations:  
 Task 3 is a special case of Task 2 (summation with all 𝑥𝑣 = 1) 
 Task 2 can be reduced to Task 1 (send all 𝑥𝑣 to everyone and then 

have everyone compute locally what they want)  
 but this might need more communication than necessary 
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Part 1: Information Dissemination 
Beyond Spreading a Single Rumor 



All-to-all Rumor Spreading 

 Simple solution: Run 𝑛 single-rumor spreading processes in parallel. Each 
node calls a random neighbor and forwards all rumors it knows. 
 

 Analysis: 
 If you look at a single rumor, we have exactly the same process as in 

single-rumor spreading. 
 Consequence: If single-rumor spreading spreads the rumor from an 

arbitrary node to all others in time 𝑇 with probability at least 1 − 𝜀, then 
all-to-all rumor spreading succeeds in time 𝑘𝑘 with probability at least 
1 − 𝑛𝜀𝑘 (for all integers 𝑘). 
 union bound gives the 𝑛 in the failure probability 
 re-try argument introduces the 𝑘 
 E.g., 𝑂 log𝑛  rounds suffice in complete graphs whp 
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All-to-all Rumor Spreading (2) 

 Problem with 𝒏 parallel single-rumor processes: Much traffic in the network! 
 One call transmits up to 𝑛 rumors 
 If only one rumor can be sent per round, then the rumor spreading time 

typically increases by a factor of 𝑛, because at the end of the process, 
each node touches each rumor only every 𝑛-th round 

 

 Better solution via random linear network coding (Haeupler (STOC’11), 
details omitted here):  
 idea: don’t send rumors, but send random linear combinations of rumors. 

Then you can decode all rumors once you’ve heard (any) 𝑛 linearly 
independent messages. 

 result: very roughly, 𝑂(𝑛 + 𝑇) rounds suffice to spread 𝑛 rumors, where 𝑇 
is the time you need to spread one rumor with (very) high prob.  
 

 Bottom line: All-to-all rumor spreading is costly 
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 Setting:  
 Each node 𝑣 has a piece of data, a number 𝑥𝑣. 
 We want each node to learn some aggregate data (minimum/maximum, 

sum, average, …) about all these values. 
 

 Plan: We want to be more clever than sending all data to all nodes, as this 
takes at least  Ω(𝑛2) rumor transmissions, which hopefully is not 
necessary. 
 

 Assumptions: 
 We assume that all nodes start the process at the same time (first 

round). This can, e.g., be initiated by a single-rumor spreading process. 
 We do not care about a termination criterion. 

 

 Let’s start with computing the minimum… 
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Computing Aggregate Data  
From Node Values 



Clever Minimum Computation 

 Epidemic/gossip-based compute-min algorithm: In each round,  
 each node 𝑣 calls a random neighbor and forwards to it his 𝑥𝑣,  
 then each node 𝑣 updates its 𝑥𝑣 to the minimum of its 𝑥𝑣 and all 

numbers it received.  
 

 Analysis: Track how the minimum value 𝑥min ≔ min 𝑥𝑣 𝑣 ∈ 𝑉  spreads! 
 Call a node 𝑣 “informed” if 𝑥𝑣 = 𝑥min.  
 Then informed nodes stay informed. 
 If an informed node calls an uninformed node, it becomes informed. 
  We precisely simulate the classic rumor spreading process  

 
 Result: Computing the minimum takes exactly the same time as spreading 

a single rumor 
 Communication effort: One call per node per round. 
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Observation: “Everything” can be reduced to epidemically computing sums. 
 

 Number of nodes: Compute the sum of the node values 𝑥𝑣 = 1. 
 

 Average: 
 Compute the sum 𝑋 of the node values 𝑥𝑣 in an epidemic manner 
 compute the number 𝑛 of nodes (as sum of 𝑦𝑣 = 1) epidemically 
 compute locally at each node the average 𝑋/𝑛 

 root mean square (quadratic mean) 𝑥rms = 1
𝑛
∑ 𝑥𝑣2𝑣∈V : 

 nodes compute locally 𝑥𝑣′ = 𝑥𝑣2  
 compute epidemically 𝑛 and 𝑋 = ∑ 𝑥𝑣′𝑣∈𝑉  as above 
 compute locally 𝑥rms = 𝑋 𝑛⁄  
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Clever Computation of Sums,  
Averages,… 



Epidemically Computing Sums 

 Difficulties:  
 we don’t want to send all 𝑥𝑣 to all nodes: quadratic communication effort 
 additional difficulty that nodes may not have unique identifiers: when 

you hear a number the second time, you do not know it is a copy of the 
rumor already heard or if two nodes have the same number 
 
 
 

 Can we do something reasonable under such condition? 
 

 YES   [when we allow approximate solutions] 
 iterated averaging (works for averages, not the rest) 
 reduction to minimum (super-cool trick, needs 𝑥𝑣 ≥ 1) 
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Harsh assumption, but useful to avoid 
algorithms that learn the network 
structure and then rely on it (not robust) 



Iterated Averaging: Rough Idea 

 Basic idea: Nodes call random neighbors and average their values 
 

 Example of an averaging operation between two nodes 𝑢 and 𝑣:  
 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other node 
 both 𝑢 and 𝑣 update their value to 𝑥𝑢+𝑥𝑣

2
. 

 

 Observations:  
 the sum of all node values never changes (“conservation of mass”) 
 intuitive, but non-trivial: the node values converge to the average 

 

 Difficulties:  
 For pair-wise averaging: How do you ensure that each node is part of 

one averaging operation only? 
 For other averaging: How do you deal with different node degrees? 
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 In each round… 
 each node flips a fair coin to decide whether it is active  or passive 
 initiate communication: each active node 𝑣 … 

 with probability deg 𝑣 2Δ⁄  contacts a random neighbor;  
 with probability 1 − deg 𝑣 2Δ⁄  is does nothing 

 a passive nodes that was contacted exactly once accept this contact 
request (all other request are lost) 

 for each pair (𝑢, 𝑣) established in this manner does a pair-wise 
averaging operation: 𝑢 and 𝑣 send their values 𝑥𝑢 and 𝑥𝑣 to the other 
node; then both update their values to 𝑥𝑢+𝑥𝑣

2
. 

 

 Properties: does not need any node identifiers etc.  
 needs that all nodes know the max-degree Δ (requires one maximum-

communication analogous to a minimum communication) 
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One Iterated Averaging Protocol 
That Works [Boyd et al. (2006)] 



 In random geometric graphs 𝐺(𝑛, 𝑟) with 𝑟 sufficiently above the 
connectivity threshold, the 𝑛−𝜀-averaging time (roughly: the time to get the 
imbalance down to 𝑛−𝜀 times the initial one) is of order Θ(𝑟−2 log𝑛) 
 Recall: The diameter is only Θ(𝑟−1) ! 

 
 Roughly the same result holds for grids. 

 
 Polylogarithmic averaging times for expander graphs (and the complete 

graph)  
 
 

 Summary: Iterated averaging can be slow! 
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Performance of Iterated Averaging 



Intuitive Example: Slow Averaging 

 Simplified averaging mechanism in graphs with constant max-degree Δ: 
Move a 1 2𝛥⁄  fraction of your value to each neighbor! 
 send your value to all neighbors 
 reset your value to 𝑥 𝑣 ≔ ∑ 𝑥 𝑢𝑢~𝑣 + 2Δ − deg 𝑣 𝑥 𝑣 2Δ⁄  

 

 Example situation: 
 𝑛 odd, 𝑒 ≔ 𝑛 − 1 2⁄ , 𝐺 is a path with vertices (in that order) 
𝑣−𝑒,𝑣−𝑒+1, … , 𝑣−1,𝑣0, 𝑣1, … , 𝑣𝑒 

 initial node values: 𝑥 𝑣𝑖 = 𝑖. 
 

 Analysis: By symmetry, 𝑥 𝑣0  is always zero 
 Induction over time: For positive 𝑖, 𝑥 𝑣𝑖  never exceeds its initial value. 
 Since always 𝑥 𝑣0 = 0 and 𝑥 𝑣1 ≤ 1, at most a half unit of mass is 

transported out of {𝑣1, … , 𝑣𝑒}. 
 It takes quadratic time to get all 𝑥 𝑣 ≤ 𝑛/8. 
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Reduction to Minimum: Idea (1) 

 Reminder: 𝑋 has exponential distribution  with rate 𝜆 if  
Pr 𝑋 > 𝑧 = exp −𝜆𝜆  for all 𝑧 ∈ ℝ≥0. 
 𝐸 𝑋 = 1 𝜆⁄  

 

 Lemma: Let 𝑋1, … ,𝑋𝑛 be independent exponential random variables with 
rates 𝜆1, … , 𝜆𝑛. Let 𝑋 = min {𝑋1, … ,𝑋𝑛}. Then 𝑋 has an exponential 
distribution with rate 𝜆 = ∑ 𝜆𝑖𝑛

𝑖=1 . 
 

 Proof: For all 𝑧 ≥ 0, we have 
 Pr 𝑋 > 𝑧 = Pr ∀𝑖 ∈ 1. .𝑛 :𝑋𝑖 > 𝑧  
     =  ∏ Pr 𝑋𝑖 > 𝑧𝑛

𝑖=1                             [independence of the 𝑋𝑖] 
     =  ∏ exp −𝜆𝑖𝑧𝑛

𝑖=1  
     =  exp −𝜆𝜆 . 
 Hence 𝑋 has an exponential distribution with rate 𝜆. 
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Reduction to Minimum: Idea (2) 

 Plan: Exploiting exponential distributions  
 Nodes locally sample an exponential random variable 𝑋𝑣 with rate 𝑥𝑣 
 We use an epidemic minimum-spreading algorithm for the 𝑋𝑣  
 all nodes learn 𝑋 = min

𝑣∈𝑉
𝑋𝑣 

 this is an exponential random variable with rate 𝑥 ≔  ∑ 𝑥𝑣𝑣∈𝑉 . 
 Nodes hope that 𝑋 is close to 𝐸 𝑋 = 1 𝑥⁄  and take 1 𝑋⁄  as 

approximation for the desired 𝑥.  
 

 Increase accuracy: Repeat this procedure 𝑟 times and average 𝑋 values 
learned before taking the reciprocal 
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 Each node 𝑣 locally samples 𝑟 independent exponential random variables 
with rate 𝑥𝑣, let 𝑦𝑣1, … ,𝑦𝑣𝑟 be the outcome. 

 Communication phase. Run the minimum-algorithm for each component 
𝑖 ∈ [1. . 𝑟] in parallel: In each round (of sufficiently many), 
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ; 
 each node 𝑣 then resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of 

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received 

 Each node 𝑣 locally computes 𝑦� = 𝑦𝑣1+⋯+𝑦𝑣𝑟

𝑟
 and takes 1 𝑦�⁄  as its 

approximation for the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉 .  
 

 Two possible problems:  
 rumor spreading could fail (too few rounds, unlucky random choices)  
 the approximation to 𝑥 could be bad (bad luck when sampling the 𝑦𝑣𝑖) 
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Algorithm of Mosk-Aoyama 
and  Shah (2008)  



Analysis: Communication Phase 

 Communication phase: In each round, 
 each node 𝑣 calls a random neighbor and sends to it 𝑦𝑣1, … ,𝑦𝑣𝑟 ; 
 each node 𝑣 resets (𝑦𝑣1, … ,𝑦𝑣𝑟) to the component-wise minimum of 

(𝑦𝑣1, … ,𝑦𝑣𝑟) and all vectors he received  
 

 Lemma: 
 Let 𝜀 > 0. Let 𝑇 be large enough so that classic rumor spreading 

spreads a rumor with probability 1 − 𝜀 in 𝑇 rounds  
 Then after 𝑇 rounds, all nodes know the true minima with prob. 1 − 𝑟𝑟. 

 
 Proof: For each 𝑖 ∈ [1. . 𝑟] in parallel we run a minimum-spreading process 

with the node values 𝑦𝑣𝑖 𝑣∈𝑉. 
 Each of these processes spreads its minimum in time 𝑇 w. prob. 1 − 𝜀 
 union bound 
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Analysis: Approximation Error 

 Assume that the communication phase was successful:  
 all nodes know the minima 𝑚𝑖 ≔ min 𝑦𝑣𝑖 𝑣 ∈ 𝑉 , 𝑖 ∈ [1. . 𝑟]. 
 Consequently, all compute the same 𝑥� = 𝑟 (𝑚1 + ⋯+ 𝑚𝑟)⁄  as 

approximation to 𝑥  
 

 Lemma: For all 𝛿 < 1, we have 1 − 𝛿 𝑥 ≤ 𝑥� ≤ 1 + 𝛿 𝑥 with probability 
1 − 2exp −𝛿2𝑟 12⁄ . 
 

 Proof: 𝑀 = 𝑚1 + ⋯+ 𝑚𝑟 is the sum of 𝑟 independent exponential random 
variables with rate 𝑥. 
 Pr 𝑀 − 𝐸 𝑀 ≥ 𝛿𝛿 𝑀 ≤ 2exp (−𝛿2𝑟 3⁄ ). [Cramér’s theorem, 𝛿 < 1 2⁄ ] 
 Since 𝑥� = 𝑟 𝑀⁄  and 𝑥 = 𝑟 𝐸[𝑀]⁄ , we obtain 

Pr 𝑥� − 𝑥 ≥ 𝛿𝛿 ≤ 2exp (−𝛿2𝑟 12⁄ ) for all 𝛿 < 1. 
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Summary MAS Algorithm 

 Let 𝐺 = (𝑉,𝐸) be any network. Assume that each node has a node value 
𝑥𝑣 ≥ 1. 
 

 Let 𝑇 be such that Pr 𝑇𝐺 > 𝑇 ≤ 𝜀. 
 Run the MAS-algorithm with parameter 𝑟 for 𝑇 rounds. 

 recall that in each round each node sends out 𝑟 numbers! 
 

 Then with probability at least 1 − 2 exp −𝛿2𝑟 12⁄ − 𝑟𝑟 all nodes learn an 
approximation 𝑥� of the sum 𝑥 = ∑ 𝑥𝑣𝑣∈𝑉  of node values such that  

𝑥� − 𝑥 ≤ 𝛿𝛿. 
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Part 2: Gossip-based Discovery 

 Bib.-note: All of the following is from Haeupler, Pandurangan, Peleg, 
Rajaraman, Sun (SPAA’12, CPC to appear) 
 

 Discovery process (gossip-based triangulation): 
 Start: a connected network 𝐺0 = (𝑉,𝐸0) 
 Round 𝑡:  

 Each node 𝑢 picks two neighbors 𝑥𝑢 and 𝑦𝑢 in 𝐺𝑡−1 
 𝐸𝑡 ≔ 𝐸 ∪ {𝑥𝑢,𝑦𝑢} 𝑢 ∈ 𝑉 , 𝐺𝑡 ≔ (𝑉,𝐸𝑡)  

 until 𝐺𝑡 = 𝐾𝑉 (the complete graph on 𝑉) 
 

 Main structural difference to what we did so far: Dynamic network 
 the network structure changes (massively) over time 

 

 Question: How long does this process need to terminate? 
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Applications 

 Algorithm: Resource discovery in peer-to-peer (P2P) networks 
 nodes can only communicate with nodes of which they know the IP 

address 
 resource discovery problem: let nodes learn the IP addresses of all 

other nodes in the network 
 

 Process: Making “friends” in social networks like LinkedIn, … 
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Preliminary Observations 

 General lower bound: any process where each node can add at most one 
edge per round needs Ω(𝑛) rounds to obtain a complete graph if the 
starting graph is missing at least a constant fraction of all edges 
 

 Easy to find starting graphs where gossip-based triangulation needs 
Ω(𝑛 log𝑛) rounds 
 complete graph plus one out-going edge: each Θ(𝑛) rounds the degree 

of the outside vertex roughly doubles 
 complete graph minus Θ(𝑛𝛼) disjoint edges, 0 < 𝛼 < 1: each missing 

edge in each round has a Θ(1 𝑛⁄ ) probability of being added. 
 roughly resembles a coupon collector process 
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More Observations 

 Non-monotone process: More edges can increase the termination time! 
 

 Example: A path on 4 vertices vs. a triangle with one additional outgoing 
edge. 
 

 See the original paper at http://arxiv.org/abs/1202.2092 for a graphic 
representation which I can’t give in a web version 
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Result  

 Theorem:  
 when started with any connected graph, the gossip-based triangulation 

process ends after 𝑂 𝑛 log𝑛 2  rounds whp. 
 when started with any connected graph having 𝑘 edges less than the 

complete graph, the gossip-based triangulation process needs 
Ω(𝑛 log𝑘) rounds whp. 
 

 Gap between upper and lower bound: Θ(log𝑛) 
 

 Key challenges in the analysis: 
 non-monotonicity 
 dynamic networks 
 any “new” edge can change the situation 
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An Example: Star Graphs 

 Star graph on 𝑛 vertices: One central node connected to 𝑛 − 1 nodes of 
degree one. 
 

 Gossip-based triangulation on a star graph with 𝑛 vertices: 
 First 𝑇 = 𝑜(𝑛0.5) rounds: 𝑇 disjoint edges between leaves are added 
 At time 𝑇 = Θ(𝑛0.5): The first intersection of new edges and 𝑂 1  

rounds later, this path of length 2 is completed to a triangle 
 Up to time 𝑇 = 0.5 − 𝜀 𝑛: The new edges (viewed alone) form small 

components of size at most 𝑂 log𝑛 . These are almost immediately 
completed to a clique. 

 Phase transition: In the (short) time up to  𝑇 = (0.5 + 𝜀)𝑛,  a giant 
component in the graph of new edges appears. 
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Star Graphs (2) 

 Observation: The components formed by the new edges alone are the 
same in the true process and in the process where only the central vertex 
is active. 
 

 For a component 𝐶 of size 𝑠 ≤ 1 − 𝜀 𝑛, 
 the probability that the central vertex adds an edge from 𝐶 to the 

outside, is Θ(𝑠 𝑛⁄ ), hence the expected waiting time for this is Θ(𝑛 𝑠⁄ ) 
 in time 𝑂 𝑠 log 𝑠 2 , the component completes itself to a clique if 

nothing else happens to it (Haeupler et al. result) 
 

 Components with less than 𝑂�(𝑛0.5) vertices are cliques whp, because the 
clique formation is much faster than the addition of edges to the outside 

 Larger components: the work of the central vertex becomes faster and 
new vertices are added quicker than the self-triangulation. 
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Summary Star Graphs 

 Already when starting with a simple star graph, the gossip-based 
triangulation process is highly non-trivial 
 

 It combines two subprocesses 
 action of the central node (independent of all the rest): throw in one 

random edge between other vertices per round 
 “evolution of random graphs” 

 “self-triangulation” process of the components formed by new edges 
 small components very quickly become cliques 
 larger components: self-triangulation slower than the addition of 

new edges 
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Proof Ideas: Upper Bound 

 Key lemma: If you start the process with a graph having minimum  
degree 𝛿, then after 𝑇 = 𝑂(𝑛 log𝑛) rounds, the minimum degree is 
min 9 8⁄ 𝛿,𝑛 − 1  whp.  
 a logarithmic number of such phases brings the min-deg. to 𝑛 − 1 

 
 

 How does the degree of a node 𝑢 grow?  
 A neighbor 𝑤 ∈ 𝑁(𝑢) adds an edge between 𝑢 and a node 𝑣 ∈ 𝑁 𝑤 ∩

𝑁2 𝑢  
 𝑁𝑖 𝑢 : vertices in distance exactly 𝑖 from 𝑢 
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Proof Ideas: Upper Bound (2) 

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢  such that  
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄ ) an edge 
between 𝑢 and 𝑁2(𝑢) is added by 𝑤. 
 

 Proof: The probability is 
 

2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑤
⋅

1
deg 𝑤

≥ 2 ⋅
𝑁 𝑤 ∩ 𝑁2 𝑢

deg 𝑢 + 𝑁 𝑤 ∩ 𝑁2 𝑢
⋅

1
𝑛

= Θ
1
𝑛
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Proof Ideas: Upper Bound (3) 

 Lemma 1: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , 𝑤 ∈ 𝑁 𝑢  such that  
|𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿 , then in one round with probability Ω(1 𝑛⁄ ) an edge 
between 𝑢 and 𝑁2(𝑢) is added by 𝑤. 
 

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢  
such that |𝑁 𝑤 ∩ 𝑁2 𝑢 | = Ω 𝛿   [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛) 
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2. 
 

 Proof: The only way how a good node becomes bad is that Θ(𝛿) nodes in 
𝑁 𝑤 ∩ 𝑁2(𝑢) move to 𝑁(𝑢). If this happens, we are done  
 Can assume that assumptions of lemma hold for 𝑇 rounds (else done) 

 Now Θ(𝛿) good nodes in parallel try to use Lemma 1    after 𝑂(𝑇 𝛿⁄ ) 
rounds, wp. 1 − 𝑛−3, one is lucky and adds a neighbor to 𝑢 

 Repeat this 𝛿 times and 𝑢 got Θ(𝛿) new neighbors 
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Proof Ideas: Upper Bound (4) 

 Lemma 2: Let 𝛿 ≔ 𝛿(𝐺), deg 𝑢 = Θ 𝛿 , and there are Ω(𝛿) nodes 𝑤 ∈ 𝑁 𝑢  
such that 𝑁 𝑤 ∩ 𝑁2 𝑢 = Ω 𝛿   [“good nodes”]. Then after 𝑇 = Θ(𝑛 log𝑛) 
rounds, the degree of 𝑢 has increased by Θ(𝛿) with prob. 1 − 𝑛−2. 
 

 Lemma 2 was the easiest among three cases. The other two: 
 at least one good 𝑤, but less than the Ω(𝛿) of Lemma 2 
 no good 𝑤 at all 

 We have to omit both cases here  
 

 Summary: Relatively efficient gossip-based resource discovery  
 proofs much harder due to the dynamic behavior of the network and the 

non-monotonicity 
 Open problem: logarithmic gap between upper and lower bound 
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 Many tasks other than spreading a single rumor can be done by gossip-
based algorithms 
 minimum is easy (essentially same difficulty as rumor spreading) 
 averages: iterated averaging 

 relatively slow on several graphs with large diameter 
 MAS algorithm (for sums, averages, …)  computes a 1 ± 𝛿  factor 

approximation in time roughly the rumor spreading time (parallel 
spreading of 𝑟 rumors) 

 gossip-based triangulation 
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Course Summary 

Epidemic/gossip-based algorithms&processes 
 

 Models for processes in the real world 
 epidemics (including computer viruses and malware) 
 rumors 
 making acquaintances 
 [viral marketing, influence processes, adoption of new technologies] 

 
 Lightweight and robust distributed algorithms 

 information dissemination 
 computing averages etc. 
 resource location 
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Course Summary: Algorithms 

 Epidemic/gossip-based algorithmics 
 simple generic algorithm design paradigm 
 performance often close to the best that can be achieved 
 works well in networks without central organization, stable structure, or 

reliable communication 
 

 Analysis techniques: Similar to other randomized/distributed algorithms 
 Expectations, birthday paradox, coupon collector 
 Markov chain arguments (adding waiting times) 
 Strong concentration: Chernoff bounds, method of bounded differences 
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Many Open Problems 

 This is a young area of research, so many things are not well understood 
 many particular research problems (some mentioned in this course) 
 designing “more clever” gossip-based algorithms (add the right 

dependencies to the random choice)  
 epidemic processes in real-world networks 
 gossip-based algorithms in dynamic networks 

 
 Lots of work on STOC, FOCS, SODA, PODC, … in the last 5 years that is 

not yet fully digested   
  good topic for an internship, a Master thesis, a PhD thesis, … 

 
 This is the end of this short course. I hope you enjoyed it. Don’t be shy to 

contact me if you have questions or comments. 
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