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 Randomized rumor spreading (RRS): 
 round-based process in a graph 𝐺 = 𝑉,𝐸  
 starts with one node informed (knows the rumor) 
 in each round, each informed node calls a random neighbor and 

informs it (if it wasn’t already) 
 

 Main result last lecture: With probability 1 − 𝑜(1), RRS informs all vertices 
of a complete graph on 𝑛 vertices in log2 𝑛 + ln𝑛 + 𝑜(log𝑛) rounds 
 

 Same result holds for 𝐺(𝑛,𝑝) random graphs when 𝑝 = 𝜔 (log𝑛) 𝑛⁄ , but 
not when 𝑝 = Θ log𝑛 𝑛⁄   
[FountoulakisHuberPanagiotou’10, PanagiotouPerezSauerwaldSun’15] 
 

 Same result holds for random regular graphs 𝐺(𝑛,𝑑) when 𝑑 = 𝜔(1), but 
not for constant 𝑑  
[PanagiotouPerezSauerwaldSun’15, FountoulakisPanagiotou’10] 
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Reminder Last Lecture 



 End of last lecture: 𝑟-termination tricky rumor spreading in complete 
networks with node labels 1, … ,𝑛: 
 In each round, each informed node calls another node. 

 In the first round of activity, node 𝑘 calls 𝑘 + 1 
 in all other rounds, it calls a random node 

 Termination: Nodes stop calling after having called 𝑟 informed nodes 
 

 Result: This informs all nodes in log2 𝑛 + 𝑂 log𝑛 𝑟⁄ + log𝑛 1 2⁄  rounds 
and 𝑂(𝑟𝑛) calls. 
 

 Kosta’s question: Can you get log2 𝑛 + 𝑜(log𝑛) rounds using 𝑂(𝑛) calls 
with a more clever protocol? 
 

 Johannes’ idea (that convinced the coffee round): Node 𝑘 calls first 𝑘 + 1, 
then a random node in [𝑘 + log𝑛 1 2⁄ ,𝑘 + 2 log𝑛 1 2⁄ ], then random nodes. 
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Kosta’s Question 



 Last lecture, we had a slightly informal start into rumor spreading. Before 
proceeding with lot’s of hand-waiving, let’s clarify a basic question first:  
 how to define rumor spreading time ? 

 
 

 Definition [rumor spreading times 𝑇𝑣]: Consider a round-based rumor 
spreading process in a graph 𝐺 = (𝑉,𝐸) that surely finishes in finite time. 
 For 𝑣 ∈ 𝑉, the 𝑇𝑣 denote the number of rounds after which a rumor 

starting in 𝑣 for the first time has reached all nodes of 𝐺 
 

 Notes: 
 𝑇𝑣 is a random variable taking values in ℕ ≔  0,1,2, …  
 You can extend all that follows to include the time ∞ denoting that a 

process does not finish, but you’ll not gain a lot from it 
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Part 1:  
Definition Rumor Spreading Time 



Towards Defining 𝑇𝐺  

 Definition: Let 𝑋 and 𝑌 be random variables. We say that 𝑌 stochastically 
dominates 𝑋, written 𝑋 ≼ 𝑌, if for all 𝜆 ∈ ℝ we have 

Pr 𝑌 ≤ 𝜆 ≤ Pr 𝑋 ≤ 𝜆 . 
 Note: a very strong sense of “𝑌 is bigger than 𝑋” 

 

 Lemma: There is a unique random variable 𝑇 such that  
1) for all 𝑣 ∈ 𝑉, 𝑇𝑣 ≼ 𝑇 
2) for any 𝑇𝑇 satisfying 1) we have 𝑇 ≼ 𝑇𝑇 

 

 Proof: Go from the probability mass functions to the cumulative 
distributions, take the minimum, and convert it to a mass function 
 𝐹 𝑡 ≔ min Pr 𝑇𝑣 ≤ 𝑡 𝑣 ∈ 𝑉  
 Define 𝑇 by Pr 𝑇 = 0 = 𝐹(0), Pr 𝑇 = 𝑡 = 𝐹 𝑡 − 𝐹(𝑡 − 1) for 𝑡 ≥ 1 
 This 𝑇 satisfies 1). If some 𝑇𝑇 satisfies 1), then 𝐹′ 𝑡 ≔ Pr [𝑇′ ≤ 𝑡] is at 

most Pr [𝑇𝑣 ≤ 𝑡] for all 𝑣 ∈ V by 1), hence 𝐹′ ≤ 𝐹, and thus 𝑇 ≼ 𝑇𝑇. 
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Rumor Spreading Time 𝑇𝐺 of 𝐺 

 Definition [D, Friedrich, Sauerwald ‘14]: The unique 𝑇 from the lemma is 
called the rumor spreading time of 𝐺 and denoted by 𝑇𝐺  
 

 Trivialities: 
 Pr 𝑇𝐺 ≤ 𝑡 ≥ 𝑝 is equivalent to saying that regardless of where the 

rumor starts, after 𝑡 rounds with probability at least 𝑝 all vertices are 
informed. 

 Pr 𝑇𝐺 ≥ 𝑡 ≥ 𝑝 is equivalent to saying that there is a vertex 𝑣 ∈ 𝑉 such 
that the rumor spreading process started in 𝑣 with probability at least 𝑝 
has not informed all vertices earlier than after 𝑡 rounds. 
 

 Note: 𝐸 𝑇𝐺 ≥ max 𝐸[𝑇𝑣] 𝑣 ∈ 𝑉 , but there is no argument for equality 
 

 Not very important open problem: Do we have equality above? 
 Equivalent question: are there “worst” starting points 𝑤 for the rumor  

(in the sense that 𝑇𝑣 ≼ 𝑇𝑤 for all 𝑣 ∈ 𝑉)? 
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Part 2: Path-Arguments 

 Main argument so far: 
 Analyze how many nodes become informed in a round starting with 𝑖 

informed nodes 
 Works well when the graph is highly symmetric (complete graphs, 

random graphs) 
 

 Now: Use the argument “how long does it take for the rumor to traverse a 
given path” 
 potential disadvantage: we have to fix a path first and thus ignore the 

fact that the rumor could also use a different path 
 advantage: since we look at many steps together, we may use 

concentration on the whole process (instead of only one round) 
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 Trivial remark: If the rumor starts in 𝑠 and 𝑣 is a node in distance 𝑑(𝑠, 𝑣) 
from 𝑠, then the rumor cannot reach 𝑣 earlier than in round 𝑑 𝑠, 𝑣 . 
 𝑑(𝑠, 𝑣): smallest length (=number of edges) of a path between 𝑠 and 𝑣 

 
 Consequence: The diameter 𝑑𝑖𝑑𝑑(𝐺) is a lower bound for the rumor 

spreading time (worst-case over starting vertex) in the graph 𝐺 = (𝑉,𝐸) 
 𝑑𝑖𝑑𝑑 𝐺 = max {𝑑(𝑢, 𝑣)|𝑢, 𝑣 ∈ 𝑉} 
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Path-Arguments:  
Trivial Lower Bound 



 Lemma: Let 𝑃: 𝑥 = 𝑥0, 𝑥1, … , 𝑥𝑘 = 𝑦 be any path from 𝑥 to 𝑦 in 𝐺. Assume 
that the rumor starts in 𝑥. Then the first time 𝑇𝑦 when 𝑦 is informed satisfies 
𝑬 𝑻𝒚 ≤ ∑ 𝐝𝐝𝐝𝒙𝒊𝒌−𝟏

𝒊=𝟎   
 proof: add the pessimistic waiting times for the events that the rumor 

moves from 𝑥𝑖 to 𝑥𝑖+1  
 more precisely: it takes an expected number of deg 𝑥𝑖  rounds for 𝑥𝑖 to 

call 𝑥𝑖+1 
 

 Hence the expected time for the rumor to traverse one path is easy, but to 
say something about the rumor spreading time, we need to pick a path 
from the source to each vertex 𝑦 and say something about 𝑇 = max𝑇𝑦  
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Path-Arguments:  
Upper Bounds 



Path-Lemma, Degree-Diam. Bound 

 Path-Lemma:  
 Let 𝐺 be any graph. Assume that the rumor starts in a vertex 𝑥0.  
 Let 𝑃: 𝑥0, … , 𝑥𝑘 be any path of length 𝑘 in 𝐺.  
 Let Δ ≔ max {deg𝑥𝑖 |𝑖 ∈ [0. . 𝑘 − 1]} be the maximum degree of the 

vertices on 𝑃.  
 Let 𝑘′ ≥ 𝑘. [“safety margin over the expectation”] 
 Then after 𝑇 = 2𝑘𝑇Δ rounds, the whole path is informed with probability 

1 − exp −𝑘𝑇 4⁄ . 
 Proof: Chernoff bound (details next slide) 

 
 Corollary (degree-diameter bound): 𝑘′ = max {𝑑𝑖𝑑𝑑 𝐺 , 8 ln 𝑛 } gives that 

all vertices are informed after 𝑻 = 𝑶(𝚫 𝐦𝐦𝐦 𝒅𝒊𝒅𝒅 𝑮 , 𝐥𝐥𝐝𝒏 ) rounds with 
probability 1 − 𝑛−1 

 Proof: Take a shortest path from the rumor source to each vertex. This is 
traversed in 𝑇 rounds with prob. 1 − 𝑛−2. Union bound 
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Proof of the Path Lemma 
 Path lemma: Let 𝐺 be any graph. Let 𝑃: 𝑥0, … , 𝑥𝑘 be a path of length 𝑘 in 𝐺. Let 

Δ ≔ max {deg 𝑥𝑖 |𝑖 ∈ [0. .𝑘 − 1]} be the maximum degree on 𝑃. Assume the rumor starts in 𝑥0. 
Let 𝑘′ ≥ 𝑘. Then after 𝑇 = 2Δ𝑘𝑇 rounds, the whole path is informed with probability at least 
1 − exp −𝑘𝑇 4⁄ . 
 

 Proof: We analyze the following modified process: In each round, each informed node 
𝑥𝑖 , 𝑖 ∈ 0. . 𝑘 − 1 , calls node 𝑥𝑖+1 with probability exactly 1 Δ⁄ . 

 Observation: The modified process clearly is slower in informing 𝑥𝑘. 
 For each round 𝑡, define a binary random variable 𝑋𝑡 as follows. Let 𝑖(𝑡) be the maximal 

𝑗 ∈ [0. .𝑘] such that 𝑥0, … , 𝑥𝑗 are informed at the start of the round.  
 If 𝑖 𝑡 < 𝑘 and 𝑥𝑖 𝑡 +1 becomes informed in round 𝑡, then 𝑋𝑡 ≔ 1.  
 If 𝑖 𝑡 = 𝑘, then set 𝑋𝑡 ≔ 1 with probability 1 Δ⁄  independently from all other random 

decisions.  
 In all other cases, set 𝑋𝑡 = 0. 

 Then the 𝑋𝑡 are independent and satisfy Pr 𝑋𝑡 = 1 = 1 Δ⁄ . 
 Let 𝑋 ≔ ∑ 𝑋𝑡𝑇

𝑡=1 . Then 𝑥𝑘 is informed after 𝑇 rounds if and only if 𝑋 ≥ 𝑘 . 
 The multiplicative Chernoff bound shows that this fails with probability at most Pr 𝑋 < 𝑘 =

Pr 𝑋 < 0.5𝐸 𝑋 ≤ exp −𝐸 𝑋 8⁄ = exp(−𝑘𝑇 4⁄ ). 
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 Let 𝐺 be a 𝑘-regular rooted tree of height ℎ, that is, an undirected graph having 
𝑛 = 1 + 𝑘 + 𝑘2 + ⋯+ 𝑘ℎ vertices such that there is one “root” vertex which has 𝑘 
neighbors such that each of them is the root of a 𝑟-regular tree of height ℎ − 1 
(when we delete the original root and all edges incident with it). Assume that you 
run the randomized rumor spreading protocol in this graph, starting the rumor in the 
root.  
 
 
 

 Degree diameter bound 
 diameter Θ(ℎ) 
 max-degree Θ 𝑘  
 rumor spreading time 𝑂 𝑘max ℎ, log𝑛 = 𝑂(ℎ𝑘 log𝑘) 
 matching lower bound: just look at how long it takes to inform all leaves 

(assuming that all the rest is informed) 

Alea'16, epidemic algorithms, lecture 2 12 

Application to Trees 



Application to Grids 

 Let 𝐺 = (𝑉,𝐸) be a 𝑑-dimensional grid, that is, 𝑉 = 1. . 𝑘 𝑑 and two vertices 
are neighbors if they differ in exactly one coordinate, and this difference is 
exactly one.  
 

 Theorem: A rumor starting in an arbitrary vertex reaches all vertices in time 
𝑂(𝑑2𝑘) with probability 1 − 𝑜 1  [asymptotics for 𝑛 ≔ 𝑘𝑑 tending to infinity] 
 

 Proof: Degree-diameter bound. Δ = Θ(𝑑) and diam 𝐺 = 𝑑(𝑘 − 1), the 
latter being Ω(log𝑛) for all values of 𝑑 and 𝑘 
 

 Comment:  
 For 𝑑 = Θ(1), this is tight (diameter is a lower bound). 
 For 𝑘 = 2,𝑑 = log2 𝑛, this is not tight: We now prove 𝑂(log𝑛) instead of 

the above 𝑂(log2 𝑛).  
 “so many paths that one will be much faster than its expectation.” 
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 Definition: The 𝑑-dimensional hypercube  is a graph 𝐻𝑑 having 
 𝑉 = 0,1 𝑑 as vertex set (hence 𝑛 ≔ 𝑉 = 2𝑑), and 
 two vertices are adjacent if they differ in exactly one position. 

 
 
 
 
 

 Note: Δ 𝐺 = 𝑑 = log𝑛  
 distances in 𝐻𝑑: 𝑑 𝑢, 𝑣 = “number of positions 𝑢 and 𝑣 differ in”. 
 diameter (max. distance between vertices): diam 𝐺 = 𝑑 = log𝑛, 

 

 Good communication network: Small diameter, relatively few edges, high 
connectivity (𝑑 disjoint paths between any two vertices) 
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Rumor Spreading in Hypercubes 
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 The degree-diameter bound gives a rumor spreading time of  
𝑂 Δmax diam 𝐻𝑑 , log 𝑛 = 𝑂(log2 𝑛) 

 
 Might be overly pessimistic, because there are many path between any 

pair of vertices:  
 d!  different shortest paths between (0, … , 0) and (1, … , 1) 
 so there might be one path where we are much more lucky than what 

the expectation tell us. 
 

 Theorem: With probability 1 − 1 𝑛⁄ , a rumor started in an arbitrary node of 
the hypercube has reached all nodes after 𝑂(log 𝑛) rounds.  
 beautiful proof (next couple of slides) 
 major open problem to determine the leading constant 



Proof: General Stuff 

 We assume that the rumor starts in 𝑠 = (0, … , 0).  [symmetry] 
 

 We show that for any 𝛽 > 0 there is a 𝐾 > 0 such that after 𝐾 log𝑛 rounds, 
the vertex 𝑡 = (1, … , 1) is informed with probability 1 − 𝑛−𝛽 
 similar arguments work for any target 𝑡 
 a union bound shows that all vertices are informed w.p. 1 − 𝑛−𝛽+1  

 
 Two technical assumptions that do not change how the rumor spreads, but 

help in the proof 
 all-work assumption: We assume that in each round every  node calls a 

random neighbor – if the caller is not informed, nothing happens 
 everything-predefined assumption: We assume that before the process 

starts, each node has already fixed whom to call in which round 
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Expansion Phase 

 Observation: The rumor quickly moves away from 𝑠 = (0, … , 0), but it is 
increasingly difficult to argue that the rumor truly approaches the target. 
 

 Plan: Show that you get at least close to the target! 
 for reasons that will become clear later, we show that we get close to 

any target we want. 
 

 Expansion Lemma: Let 𝛼 > 0. Let 𝑣 ∈ 𝑉. Let 𝐶 ≥ 2. After 𝐶𝑑 𝛼⁄  rounds, 
with probability at least 1 − exp −  𝐶𝑑 8⁄  there is an informed vertex 𝑤 
such that 𝑑 𝑣,𝑤 ≤ 𝛼𝑑. 
 “in Θ(𝑑) rounds the rumor reaches 𝑣 apart from at most the last 𝛼𝑑 

steps (and apart from an 𝑂(𝑛−Ω 1 ) failure probability” 
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Proof: Expansion Lemma 

 Similar to the analysis how rumors traverse a path. 
 Let 𝑑𝑡 denote the distance of 𝑣 to the closest informed vertex after round 𝑡. 
 Define binary random variables 𝑋𝑡 (counting true/artificial progress) as follows 

 if 𝑑𝑡−1 > 𝛼𝑑, then 𝑋𝑡 = 1 if and only if 𝑑𝑡−1 > 𝑑𝑡 
 if 𝑑𝑡−1 ≤ 𝛼𝑑, then 𝑋𝑡 = 1 with probability 𝛼 (independent of everything) 

 Pr 𝑋𝑡 = 1 ≥ 𝛼 for all 𝑡 
 Note: 𝑋𝑇 ≔ ∑ 𝑋𝑡𝑇

𝑡=1 ≥ 𝑑 𝑠, 𝑣 − 𝛼𝑑 if and only if 𝑑𝑇 ≤ 𝛼𝑑 (our aim) 
 The 𝑋𝑡 are not independent, but we have Pr 𝑋𝑡 = 1 𝑋1 = 𝑥1, … ,𝑋𝑡−1 = 𝑥𝑡−1 ≥ 𝛼 for 

all 𝑥1, … , 𝑥𝑡−1 ∈ 0,1 . Hence 𝑋𝑇 dominates a sum 𝑌𝑇 of 𝑇 independent random 
variables that are 1 with probability exactly 𝛼 (Lemma 1.18 in book chapter).  

 For 𝑇 = 𝐶𝑑 𝛼⁄  we have 

Pr 𝑋𝑇 ≤ 𝑑 ≤ Pr 𝑌𝑇 ≤ 𝑑 ≤ Pr 𝑌𝑇 ≤
1
2𝐸 𝑌𝑇 ≤ exp −

𝐸 𝑌𝑇

8 ≤ exp −
𝐶𝑑
8  

by the multiplicative Chernoff bound. 
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Backward Phase 

 Plan: Do something “dual”: starting in 𝑡 and going backward in time, 
spread “uninformedness” 

 
 Recall that we assumed that all nodes call in each round.  

 
 Assume that our target node 𝑡 is uninformed after some round 𝑇. 

 if some node 𝑥 calls 𝑡 in round 𝑇, then 𝑥 must be uninformed after 
round 𝑇 − 1 

 iterate this argument to construct a path ending in 𝑡 such that if the 
start of the path was informed at some time 𝑇 − 𝑖 then 𝑡 would be 
informed at time 𝑇  
 

 Here we use the all-work and all-predetermined assumptions! 
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Backward Phase – Some Details  

 Lemma: Let 𝑇 be large. Let 𝛼 > 0. Let 𝑣 ∈ 𝑉. Then with probability at least 
1 − exp −𝐶𝑑 8⁄  there is a 𝑤 ∈ 𝑉 such that 𝑑 𝑤, 𝑣 ≤ 𝛼𝑑 and if 𝑤 is in-
formed after round 𝑇 − 𝐶𝑑 (1 − exp −𝛼 )⁄ , then 𝑡 is informed after round 𝑇. 
 

 Proof:  
 For 𝑖 = 0,1,2 … let 𝑑𝑖 be the smallest 𝑑(𝑣, 𝑥) of a node 𝑥  having the 

property that if 𝑥 is informed at the end of round 𝑇 − 𝑖, then 𝑡 is 
informed after round 𝑇. 
 𝑑0 = 𝑑 𝑣, 𝑡 ≤ 𝑑 
 if 𝑑𝑖 > 𝛼𝑑, then Pr 𝑑𝑖+1 = 𝑑𝑖 − 1 ≥ 1 − 1 − 1 𝑑⁄ 𝛼𝑑 ≥ 1 − exp −𝛼  

 Use an analogous “artificial progress counting” argument as before 
 𝑋𝑖 = 1 if 𝑑𝑖 < 𝑑𝑖−1 and 𝑑𝑖−1 > 𝛼𝑑, otherwise independent random 

bit that is 1 with prob. 1 − exp −𝛼  
 … 
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Coupling Phase 

 So far: For any 𝑣 ∈ 𝑉, with probability 1 − exp (Ω 𝑑 ) [as large as we want] 
 there is an 𝐴𝑣 ∈ 𝑉 such that 𝑑 𝑣,𝐴𝑣 ≤ 𝛼𝑑 and 𝑠 informs 𝐴𝑣 within 𝑂(𝑑) 

rounds 
 there is a 𝐵𝑣 ∈ 𝑉 such that 𝑑 𝑣,𝐵𝑣 ≤ 𝛼𝑑 and “the rumor would go from 
𝐵𝑣 to 𝑡 in 𝑂(𝑑) rounds” 
 

 Remains to do: Get the rumor from 𝐴𝑣 to 𝐵𝑣! 
 Problem: Very hard to get the rumor exactly somewhere (we need 

already 𝑑 rounds to call a particular neighbor) 
 Solution: Take many 𝑣 as above, sufficiently far apart, and play this 

game many times in parallel – once we will be lucky   
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From 𝐴𝑣 to 𝐵𝑣 With Small Probability 

 Let 𝐵 ≔ 𝐵 𝑣,2𝛼𝑑 ≔ 𝑢 ∈ 𝑉| 𝑑 𝑢, 𝑣 ≤ 2𝛼𝑑    “2𝛼𝑑 ball around 𝑣” 
 Target: Get the rumor from 𝐴𝑣 to 𝐵𝑣, but only using nodes in 𝐵 

 needed later to ensure that processes for different 𝑣 don’t interact 
 

 Lemma: The probability that the rumor moves inside 𝐵 from 𝐴𝑣 to 𝐵𝑣 in 
time at most 2𝛼𝑑, is at least 2𝛼 𝑒⁄ 2𝛼𝑑. 
 

 Proof: Send the rumor along a direct path with speed one! (𝑑′ ≔ 𝑑(𝐴𝑣,𝐵𝑣)) 
 Probability that the rumor moves closer to 𝐵𝑣 in every round: 

�
𝑖
𝑑

𝑑′

𝑖=1

≥�
𝑖
𝑑

2𝛼𝑑

𝑖=1

=
2𝛼𝑑 !
𝑑2𝛼𝑑

≥
2𝛼𝑑 𝑒⁄ 2𝛼𝑑

𝑑2𝛼𝑑
=

2𝛼
𝑒

2𝑎𝑑

 

 Small exercise: Any such path remains in 𝐵 
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Many 𝑣’s that are far apart 

 Target: Find a large set of 𝑣’s such that the distance of any two is more 
than 4𝛼𝑑 – so the 2𝛼𝑑-balls do not intersect. 
 

 Lemma: There is a set 𝑆 ⊆ 𝑉 such that 𝑆 = exp 𝑑 32⁄ =:𝑑 and for all 
𝑥,𝑦 ∈ 𝑆 with 𝑥 ≠ 𝑦 we have 𝑑 𝑥,𝑦 ≥ 𝑑 4⁄ . 
 

 Proof: Take a random set!  
 Let 𝑥1, … , 𝑥𝑚 be random vertices. 
 For 𝑖 ≠ 𝑗, we have 𝐸 𝑑 𝑥𝑖 , 𝑥𝑗 = 𝑑 2⁄  
 𝑑 𝑥𝑖 , 𝑥𝑗  is a sum of 𝑑 independent {0,1} random variables 
 Chernoff bound: 𝑝 ≔ Pr 𝑑 𝑥𝑖 , 𝑥𝑗 ≤ 𝑑 4⁄ ≤ exp −𝑑 16⁄  
 Union bound: Pr 𝑆  bad ≤ ∑ Pr 𝑑 𝑥𝑖 , 𝑥𝑗 ≤ 𝑑 4⁄𝑖,𝑗 < 𝑑2𝑝 ≤ 1 

 Consequently, there is such a set 𝑆 
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Proof: Putting Everything Together 

 Choose 𝛼 small enough so that 2𝛼 𝑒⁄ 2𝛼 > exp − 1 32⁄  and 𝛼𝑑 < 𝑑 4⁄  
 note that 2𝛼 𝑒⁄ 2𝛼 tends to one for 𝛼 → 0 

 Choose the set 𝑆 as on the previous slide. 
 Apply expansion lemma with 𝐶 large enough and union bound to show that 

with probability 1 − 𝑛−𝛽 for all 𝑣 ∈ 𝑆 there is an 𝐴𝑣 ∈ 𝐵(𝑣,𝛼𝑑) that is 
informed after 𝑇1 = 𝑂(𝑑) rounds 

 Apply backward lemma with 𝐶 large enough and union bound to show that 
with probability 1 − 𝑛−𝛽 for all 𝑣 ∈ 𝑆 there is a 𝐵𝑣 ∈ 𝐵(𝑣,𝛼𝑑) such that if 𝐵𝑣 
is informed after 𝑇2 ≔  𝑇1 + 2𝛼𝑑 rounds, then 𝑡 is informed after 𝑇2 + 𝑂(𝑑) 
rounds 

 Coupling phase: The probability that for no 𝑣 ∈ 𝑆 the rumor goes (inside 
𝐵(𝑣,2𝛼𝑑) from 𝐴𝑣 to 𝐵𝑣 is at most 

1 − 2𝛼 𝑒⁄ 2𝛼𝑑 exp 𝑑 32⁄
≤ exp − 2𝛼 𝑒⁄ 2𝛼 exp 1 32⁄ 𝑑 = exp −𝑛Θ(1)   

 Hence apart from a failure prob. of 2𝑛−𝛽 + exp(−𝑛Θ 1 ), 𝑡 is informed…. 
 
 

 
 

Alea'16, epidemic algorithms, lecture 2 24 



Alea'16, epidemic algorithms, lecture 2 

 “Real-world graph”: 
– airports connected by direct flights 
– scientific authors connected by a joint 

publication 
– Facebook users being “friends” 

 
 Big insight of the last 20 year: Real-world  

graphs have very special properties!  
– small diameter 
– non-uniform degree distribution: 

 few nodes of high degree: “hubs” 
 many nodes of small (constant) degree 
 power law: number of nodes of degree 𝑑 is proportional to 𝑑𝛽 

[𝛽 a constant, often between 2 and 3] 
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Preferential Attachment (PA) Graphs 

 Barabási, Albert (Science 1999):  
– try to explain why social networks could look like this 
– suggest a model for real-world graphs: preferential attachment (PA) 

 

 Preferential attachment paradigm: 
– networks evolve over time 
– when a new node enters a network, it chooses at random a constant 

number 𝑑 of neighbors 
– random choice is not uniform, but gives preference to “popular” nodes 

 probability to attach to node 𝑥 is proportional to the degree of 𝑥  
 

 Once made truly precise (by Bollobás and Riordan (2004)), the PA 
paradigm defines a cool random graph model (“PA graphs”) 
– Today: One of the most used models for real-world networks 

26 
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Precise Definition of PA Graphs 

 Preferential attachment graph 𝐺𝑚𝑛  
– 𝑛: number of vertices, vertex set [1. .𝑛] 
– 𝑑: density parameter 

 

 The PA graph G𝑛 ≔ 𝐺𝑚𝑛  is recursively defined: 
– 𝐺1: 1 is the single vertex that has 𝑑 self-loops 
– 𝐺𝑛: Obtained from adding the new vertex 𝑛 to 𝐺𝑛−1  

 one after the other, the new vertex 𝑛 chooses 𝑑 neighbors 
 the probability that some vertex 𝑥 is chosen, is 

– proportional to the current degree of 𝑥, if 𝑥 ≠  𝑛  
– proportional to “1 + the current degree of 𝑥”, if 𝑥 =  𝑛 (self-loop 

probability takes into account the current edge starting in 𝑛  ) 
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Properties of PA Graphs* 

 diameter Θ(log 𝑛 / log log 𝑛): less than logarithmic despite Θ 𝑛  edges! 
– 𝐺(𝑛, 𝑝) with 𝑝 = Θ(1 𝑛⁄ ): far from connected 
– random regular graphs, 𝑘-out graphs: diameter Θ log𝑛  

 
 power law degree distribution: For 𝑑 ≤  𝑛1 5⁄ , the expected number of 

vertices having degree 𝑑 is proportional to 𝑑−3.  
 

 clustering coefficient = roughly the probability that two neighbors of some 
node are connected by an edge 
– PA graphs: Θ(1 𝑛⁄ ) 
– real-world graphs: typically constant   

28 

*All statements hold “with high probability” (whp), that is, with prob. 1 − 𝑜(1) 



Alea'16, epidemic algorithms, lecture 2 

Rumor Spreading in PA Graphs 𝐺𝑚𝑛  

 Chierichetti, Lattanzi, Panconesi (2009): 
– Classic “push” rumor spreading: 𝑛𝛼 rounds (𝛼 a small constant) with 

constant probability do not suffice 
– If both informed and uninformed nodes call random neighbors to 

spread or seek rumors (push-pull protocol), then 𝑂( log𝑛 2) rounds 
inform a PA graph 𝐺𝑚𝑛 , 𝑑 ≥  2, whp. 

 
 

 D, Fouz, Friedrich (2011): In the push-pull  
protocol, the rumor spreading time is 
– Θ(log 𝑛) whp 
– Θ(log (𝑛) log log𝑛⁄ ) whp, if contacts are chosen excluding the neighbor 

contacted in the very previous round (no “double-contacts”) 
 Note: Avoiding double-contacts does not improve the 𝑂(log 𝑛) 

times for complete graphs, RGGs, hypercubes, … 
29 
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Two Questions 

 Theorem: Randomized rumor spreading in the push-pull model informs the 
PA graph 𝐺𝑛 (with 𝑑 ≥ 2) with high probability in 
– Θ(log 𝑛) rounds when choosing neighbors uniformly at random 
– Θ(log 𝑛 / log log 𝑛) rounds without double-contacts 

 
 Two questions: 

– Why do double-contacts matter? 
– What makes PA graphs spread rumors faster than other graphs? 
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With Double-Contacts… 

 Critical situation:  
– A pair of uninformed neighboring nodes, each having a constant 

number of outside neighbors 
 
 
 
 

 With constant probability, the following happens in one round: 
– the two nodes of the pair call each other 
– all their neighbors call someone outside the pair 
–  hence the situation remains critical (pair uninformed) 

 
 Problem: Initially, there are Θ(𝑛) such critical situations in a PA graph. 

Since each is solved with constant probability in one round, Ω(log 𝑛) 
rounds are necessary 
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Without Double-Contacts 

 The uninformed pair is not critical anymore, because the two nodes cannot 
call each other twice in a row  
 
 
 
 

 Remaining critical situations: Uninformed cycles having a constant number 
of outside neighbors in total. 
– Again, each round, with constant probability the situation remains 

critical (cycle uninformed) 
 

 No problem! There are only 𝑂(exp ( log𝑛 3 4⁄ )) such critical situations 
initially in a PA graph. If each is solved with constant probability, we need 
𝑂 log(exp ( log𝑛 3 4⁄ )) = 𝑂 log𝑛 3 4⁄  rounds to solve them all  
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Why are PA Graphs Faster? 

 Large- and small-degree nodes: 
– hub: node with degree log𝑛 3 or greater 
– poor node: node with degree exactly 𝑑 (as small as possible) 

 
 Observation: Poor nodes convey rumors fast! 

– Let 𝑑 and 𝑏 be neighbors of a poor node 𝑥  
– If 𝑑 is informed, the expected time for 𝑥 to pull the rumor from 𝑑 is less than 𝑑  

– After that, it takes another less than 𝑑 rounds (in expectation) for 𝑥 to push the 
news to 𝑏  
 

𝑑  𝑏  

𝑥  

… 

33 



Alea'16, epidemic algorithms, lecture 2 

Why Are PA Graphs Faster (2)? 

 Large- and small-degree nodes: 
– hub: node with degree log𝑛 3 or greater 
– poor node: node with degree exactly 𝑑 (as small as possible) 

 
 Observation: Poor nodes convey rumors fast! 

– Let 𝑑 and 𝑏 be neighbors of a poor node 𝑥  
– If 𝑑 is informed, the expected time for 𝑥 to pull the rumor from 𝑑 is less than 𝑑  

– After that, it takes another less than 𝑑 rounds (in expectation) for 𝑥 to push the 
news to 𝑏  
 

 Key lemma: Between any two hubs, there is a path of length 𝑂(log 𝑛 / log log 𝑛) with 
every second node a poor node. 

 
 Key lemma + observation + some extra arguments: If one hub is informed, after 

𝑂(log 𝑛 / log log 𝑛) rounds all hubs are. 
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Equivalent description of the PA model (also Bollobás & Riordan (2004)) 
 

 For 𝑑 = 1 
– Choose 2𝑛 random numbers in [0,1]: 𝑥1,𝑦1, … , 𝑥𝑛,𝑦𝑛  
– If 𝑥𝑖 > 𝑦𝑖, exchange the two values 

 Pr (𝑦𝑖 ≤ 𝑟) = 𝑟2 

– Sort the (𝑥, 𝑦) pairs by increasing 𝑦-value; call them again (𝑥1,𝑦1), (𝑥2,𝑦2), … 
– For all 𝑘, vertex 𝑘 chooses the unique 𝑖 ≤  𝑘 as neighbor which satisfies 

𝑦𝑖−1  ≤  𝑥𝑘  <  𝑦𝑖  
 Note: 𝑥𝑘 is uniform in [0,𝑦𝑘] 

 For 𝑑 ≥  2: Generate 𝐺1𝑛𝑚 as above, then merge each 𝑑 consecutive nodes 
 

 Advantage: Many independent random variables, not a sequential process 
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Some More Results 

 Fountoulakis, Panagiotou, Sauerwald (SODA’12):  
– Chung-Lu graphs: variation of the classic Erdős-Rényi random graphs 

(independent edges) that yields a power-law degree distribution 
– Synchronized randomized rumor spreading in the push-pull model informs all 

but 𝑜(𝑛) nodes of the Chung-Lu graph 
 in Θ(log 𝑛) rounds, if the power-law exponent 𝛽 >  3 
 in Θ(log log 𝑛) rounds, if 2 <  𝛽 <  3 

[no result for 𝛽 =  3, the PA exponent] 
– Asynchronous: Nodes call at times triggered by (their private) Poisson clock 

(with rate 1  one call per time unit in expectation) 
 2 <  𝛽 <  3: most nodes informed after a constant  number of rounds! 

 
 D, Fouz, Friedrich (SWAT’12): 

– Asynchronous rumor spreading informs most nodes of the PA graph in  
𝑂( log𝑛 1 2⁄ ) time [not at all clear is this is sharp] 

36 



Alea'16, epidemic algorithms, lecture 2 

 Theorem: Randomized rumor spreading in the push-pull model informs the 
PA graph 𝐺𝑚𝑛  (with 𝑑 ≥  2) with high probability in 
– Θ(log 𝑛) rounds when choosing neighbors uniformly at random 
– Θ(log 𝑛 / log log 𝑛) rounds without double-contacts 
– asynchronous: most nodes informed after 𝑂( log𝑛 1 2⁄ ) rounds 
 

 Explanation: Interaction between hubs and poor nodes (constant degree) 
– hubs are available to be called  
– poor nodes quickly transport the news from one neighbor to all others 

 
 Difference visible in experiments. 
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Summary: Rumor Spreading  
in Preferential Attachment Graphs 

Merci  



Alea'16, epidemic algorithms, lecture 2 38 

Part X: Rumor Spreading in  
Wireless Sensor Networks 

 Wireless sensor network: spatially distributed system of sensor nodes 
used for collecting data in a large area (often difficult to access) 
 

 Sensor node 
 radio transmitter and receiver: communication with near-by nodes 
 sensors: collect data 
 microcontroller 
 battery: crucial for the life-time of the system 

 
 Typical characteristics: Simple and cheap, so you don’t care about setting 

up a clever network, but you distribute the nodes in a simple fashion 
(randomly) 
 multi-hop network: communication is via intermediate nodes, so that 

the communication range can be kept small (saves energy) 
 

 
 



 Random geometric graph (RGG)  𝐺(𝑛, 𝑟): 
 Nodes: 𝑣1, … , 𝑣𝑛 ∈ 0,1 2 be chosen uniformly at random 
 Edges: {𝑣𝑖 , 𝑣𝑗} is an edge if and only if 𝑑 𝑣𝑖 , 𝑣𝑗 ≤ 𝑟 
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Mathematical Model 

Fig.: A random geometric graph 𝐺 256, 0.1  
[Wikipedia] 



Alea'16, epidemic algorithms, lecture 2 40 

Properties of RGG 

 Theorem [Penrose (2003)]: If 𝑟 = (𝜋𝑛)−0.5 ln 𝑛 + 𝛼 0.5, then 
lim
𝑛→∞

Pr 𝐺 𝑛, 𝑟   is connected = exp −𝑒−𝛼  

 Theorem [Penrose (2003)]: There is a constant 𝑐 such that 
 if 𝑟 > 𝑐𝑛−0.5, then 𝐺(𝑛, 𝑟) has a “giant component”, that is, a connected 

component consisting of Θ(𝑛) vertices; the proportion of this 
component tends to one if 𝑟 = 𝛼𝑛−0.5 for 𝛼 → ∞ 

 if 𝑟 < 𝑐𝑛−0.5, then there is no giant component 
 

 Implications for wireless sensor networks obtained by randomly distribution 
nodes: 3 regimes 
 disconnected: 𝑟 < 𝑐𝑛−0.5  - all nodes can talk to only few others 
 giant component: There a large connected subnetwork, but some 

nodes are not part of it 
 connected: 𝑟 ≥ 1 + 𝜀 𝜋𝑛 −0.5 ln0.5 (𝑛) 
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Rumor Spreading in  
Well-Connected RGGs (1) 

 Well-connected regime: 𝑟 ≥ 𝐶𝑛−0.5 ln0.5 𝑛  for 𝐶 large enough. Typical 
computational geometry argument shows that 𝐺 is connected. 
 

 Key approach: Make your life discrete! 
 Partition the unit square 0,1 2 into Θ(1 𝑟2)⁄  squares of side length 
𝑙 = 𝑟 2 2 ⁄ = Θ(𝑟) 

 call two squares adjacent if they touch (vertical, horizontal, diagonal) 
 vertices in adjacent squares are adjacent in the RGG 

 

 Claim: Each square 𝑆 contains a similar number of vertices! 
 The number 𝑋𝑆 of vertices in 𝑆 is a sum of 𝑛 independent binary random 

variables 𝑋𝑖 with Pr 𝑋𝑖 = 1 = 𝑙2 = 𝑟2 8⁄ ≥ 𝐶2 ln (𝑛) 𝑛⁄ . Hence 
 𝐸 ≔ 𝐸 𝑋𝑆 = 𝑛 𝑟2 8⁄ ≥ 𝐶2ln (𝑛) 

 Pr 𝑋𝑆 − 𝐸 𝑋𝑆 ≥ 0.25𝐸 𝑋𝑆 ≤ 𝑛−2 when 𝐶 is sufficiently large. 
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Rumor Spreading in  
Well-Connected RGGs (2) 

 Properties of well connected RGGs (𝑟 ≥ 𝐶𝑛−0.5 ln0.5 𝑛  for 𝐶 large) 
 diameter Θ 1 𝑟⁄    

 upper bound: the graph of the squares has diameter Θ(1 𝑟⁄ ), each 
square contains at least one vertex, and there is an edge between 
any two vertices in neighboring squares 

 lower bound follows easily from the geometry 
 all degrees Θ(𝑛𝑟2): all vertices in the (usually) 8 neighboring squares 

are neighbors and all neighbors lie in the (usually 48) squares in 
distance at most 3; hence deg 𝑣 is the sum of a constant number of 𝑋𝑆 
 

 Degree-diameter bound: Rumors spread in time 𝑂(𝑛𝑟) 
 

 Observation: This bound becomes weaker for larger 𝑟 
 if this was true, then a larger communication power would reduce the 

rumor spreading speed 
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Rumor Spreading in  
Well-Connected RGGs (3) 

 Better: Two stage argument 
 Call a square informed if it contains one informed vertex. This gives a 

rumor spreading process similar to the one in 2D grids (time Θ(𝑟)) 
 Once all squares are informed (in the above sense), argue that what 

happens inside the square is similar to rumor spreading in a complete 
network (time Θ(log𝑛)) 

 

 Square process: 
 Since each vertex has a constant fraction of its neighbors in each of the 

8 neighbors, it takes expected constant time to call from one square to 
a given neighbor 

 “follow the path” argument (in grid of square): Θ(max {𝑟−1, log 𝑛}) rounds 
until each square has an informed node 
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Rumor Spreading in  
Well-Connected RGGs (4) 

 Making all squares fully informed (all vertices in the square are informed) 
 Each vertex has a probability greater than some constant 𝑐 to call 

another vertex in its own square (which then is chosen uniformly at 
random from the square) 

 Hence ignoring all calls that cross square boundaries, each square is 
running a rumor spreading process in a complete graph in which each 
informed vertex only call with probability 𝑐.  

 This process is very similar to the usual rumor spreading process in 
complete graphs, but slowed down by a factor of at most 1/𝑐. Hence a 
large log (𝑛) runtime is enough to have each square fully informed with 
probability 1 − 1 𝑛2⁄ . 

 Union bound: All squares fully informed… additional 𝑂(log𝑛) rounds for 
each square to inform itself 
 

 Theorem: With high probability a well-connected RGGs is such that rumors 
spread in time Θ(𝑑𝑖𝑑𝑑 𝐺 + log𝑛) with probability 1 − 1 𝑛⁄ . 



 Rumor spreading is an efficient epidemic algorithm to disseminate 
information in various network topologies 
 hypercubes (as models for man-made communication networks) 
 random geometric graphs (model for wireless sensor networks) 
 preferential attachment graphs (model for social networks) 

 

 Often, we can prove a rumor spreading time of 𝑂(diam 𝐺), which naturally 
is asymptotically optimal 
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Summary 


	Slide Number 1
	Reminder Last Lecture
	Kosta’s Question
	Part 1: �Definition Rumor Spreading Time
	Towards Defining  𝑇 𝐺  
	Rumor Spreading Time  𝑇 𝐺  of 𝐺
	Part 2: Path-Arguments
	Path-Arguments: �Trivial Lower Bound
	Path-Arguments: �Upper Bounds
	Path-Lemma, Degree-Diam. Bound
	Proof of the Path Lemma
	Application to Trees
	Application to Grids
	Part 3: Rumor Spreading �in Hypercubes  𝐻 𝑑 
	Rumor Spreading in Hypercubes
	Proof: General Stuff
	Expansion Phase
	Proof: Expansion Lemma
	Backward Phase
	Backward Phase – Some Details 
	Coupling Phase
	From  𝐴 𝑣  to  𝐵 𝑣  With Small Probability
	Many 𝑣’s that are far apart
	Proof: Putting Everything Together
	Part 4: Rumor Spreading in Social �Networks, Real-World Graphs
	Preferential Attachment (PA) Graphs
	Precise Definition of PA Graphs
	Properties of PA Graphs*
	Rumor Spreading in PA Graphs  𝐺 𝑚 𝑛 
	Two Questions
	With Double-Contacts…
	Without Double-Contacts
	Why are PA Graphs Faster?
	Why Are PA Graphs Faster (2)?
	Main Tool: BR’04 Definition of �Preferential Attachment Model
	Some More Results
	Summary: Rumor Spreading �in Preferential Attachment Graphs
	Part X: Rumor Spreading in �Wireless Sensor Networks
	Mathematical Model
	Properties of RGG
	Rumor Spreading in �Well-Connected RGGs (1)
	Rumor Spreading in �Well-Connected RGGs (2)
	Rumor Spreading in �Well-Connected RGGs (3)
	Rumor Spreading in �Well-Connected RGGs (4)
	Summary

