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Reminder Last Lecture

Randomized rumor spreading (RRS):
= round-based process in a graph G = (V,E)
= starts with one node informed (knows the rumor)

= in each round, each informed node calls a random neighbor and
informs it (if it wasn’t already)

Main result last lecture: With probability 1 — o(1), RRS informs all vertices
of a complete graph on n vertices in log, n + Inn + o(logn) rounds

Same result holds for G (n, p) random graphs when p = w((logn)/n), but
not when p = 0((logn)/n)

Same result holds for random regular graphs G(n,d) when d = w(1), but
not for constant d
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Kosta’s Question

End of last lecture: r-termination tricky rumor spreading in complete
networks with node labels 1, ..., n:

= |n each round, each informed node calls another node.
= |n the first round of activity, node k calls k + 1
= in all other rounds, it calls a random node
= Termination: Nodes stop calling after having called r informed nodes

Result: This informs all nodes in log, n + 0((logn) /T + (logn)'/?) rounds
and O(rn) calls.

Kosta’s question: Can you get log, n 4+ o(logn) rounds using O (n) calls
with a more clever protocol?

Johannes’ idea (that convinced the coffee round): Node k calls first k + 1,
then a random node in [k + (logn)/2, k + 2(logn)'/?], then random nodes.
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Part 1:
Definition Rumor Spreading Time

= Last lecture, we had a slightly informal start into rumor spreading. Before
proceeding with lot’s of hand-waiving, let’s clarify a basic question first:

= how to define rumor spreading time ?

= Definition [rumor spreading times T,]: Consider a round-based rumor
spreading process in a graph G = (V, E) that surely finishes in finite time.

= Forv eV, the T, denote the number of rounds after which a rumor
starting in v for the first time has reached all nodes of G

= Notes:
= T, is a random variable taking values in N := {0,1,2, ... }

= You can extend all that follows to include the time c denoting that a
process does not finish, but you’ll not gain a lot from it
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Towards Defining T

= Definition: Let X and Y be random variables. We say that Y stochastically
dominates X, written X <Y, if for all A € R we have
Pr[Y < 4] < Pr[X < 1].

= Note: a very strong sense of “Y is bigger than X”

= Lemma: There is a unique random variable T such that
1) forallveV, T,<T
2) forany T’ satisfying 1) we have T < T’

= Proof: Go from the probability mass functions to the cumulative
distributions, take the minimum, and convert it fo a mass function

= F(t) := min{Pr|T, < t]|v € V}

» Define Tby Pr[T =0]=F(0),Pr[T=t]=F({t)-F(t—-1)fort>1

= This T satisfies 1). If some T’ satisfies 1), then F'(t) = Pr[T' < t]is at
most Pr[T, < t]forallv e Vby 1), hence F' < F,andthus T < T'.

Alea'l6, epidemic algorithms, lecture 2 5



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Rumor Spreading Time T of G

Definition [D, Friedrich, Sauerwald ‘14]: The unique T from the lemma is
called the rumor spreading time of ¢ and denoted by T

Trivialities:
= Pr|T; < t] = p is equivalent to saying that regardless of where the

rumor starts, after t rounds with probability at least p all vertices are
informed.

= Pr|T; = t] = p is equivalent to saying that there is a vertex v € IV such
that the rumor spreading process started in v with probability at least p
has not informed all vertices earlier than after t rounds.

Note: E[T;] = max{E[T,]|v € V}, but there is no argument for equality

Not very important open problem: Do we have equality above?

= Equivalent question: are there “worst” starting points w for the rumor
(inthe sensethatT, < T,, forall v € V)?

Alea'l6, epidemic algorithms, lecture 2 6



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Part 2: Path-Arguments

= Main argument so far:

= Analyze how many nodes become informed in a round starting with i
informed nodes

= Works well when the graph is highly symmetric (complete graphs,
random graphs)

= Now: Use the argument “how long does it take for the rumor to traverse a
given path”
= potential disadvantage: we have to fix a path first and thus ignore the
fact that the rumor could also use a different path

= advantage: since we look at many steps together, we may use
concentration on the whole process (instead of only one round)

Alea'l16, epidemic algorithms, lecture 2 7



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Path-Arguments:
Trivial Lower Bound

= Trivial remark: If the rumor starts in s and v is a node in distance d (s, v)
from s, then the rumor cannot reach v earlier than in round d(s, v).

= d(s,v): smallest length (=number of edges) of a path between s and v

= Consequence: The diameter diam(G) is a lower bound for the rumor
spreading time (worst-case over starting vertex) in the graph ¢ = (V, E)

* diam(G) = max{d(u,v)|u,v € V}
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Path-Arguments:
Upper Bounds

Lemma: Let P: x = x4, x4, ..., X, = y be any path from x to y in G. Assume
that the rumor starts in x. Then the first time T,, when y is informed satisfies

E[Ty] = Zg‘:_ol deg x;
= proof: add the pessimistic waiting times for the events that the rumor
moves from x; to x;,4

= more precisely: it takes an expected number of deg x; rounds for x; to
call x;,4

Hence the expected time for the rumor to traverse one path is easy, but to
say something about the rumor spreading time, we need to pick a path
from the source to each vertex y and say something about T = maxT,,
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= Path-Lemma:

Let G be any graph. Assume that the rumor starts in a vertex x,.

Let P: x,, ..., x;, be any path of length k in G.

Let A := max{degx; |i € [0..k — 1]} be the maximum degree of the
vertices on P.

Let k' > k. [‘safety margin over the expectation”]

Then after T = 2k'A rounds, the whole path is informed with probability
1—exp(—k'/4).

= Proof: Chernoff bound (details next slide)

= Corollary (degree-diameter bound): k' = max{diam(G), 81n(n)} gives that
all vertices are informed after T = O(A max{diam(G),logn}) rounds with
probability 1 — n~1

= Proof: Take a shortest path from the rumor source to each vertex. This is
traversed in T rounds with prob. 1 — n~2. Union bound
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Proof of the Path Lemma

Path lemma: Let G be any graph. Let P: x,, ..., x; be a path of length k in G. Let

A := max{degx; |i € [0..k — 1]} be the maximum degree on P. Assume the rumor starts in x,.
Let k' > k. Then after T = 2Ak’ rounds, the whole path is informed with probability at least
1—exp(—k'/4).

Proof. We analyze the following modified process: In each round, each informed node
x;,i € [0..k — 1], calls node x;,, with probability exactly 1/A.

Observation: The modified process clearly is slower in informing x;,.

For each round t, define a binary random variable X; as follows. Let i(t) be the maximal
Jj € [0..k] such that x,, ..., x; are informed at the start of the round.

= Ifi(t) <k and x;(+)+; becomes informed in round ¢, then X, := 1.

= Ifi(t) = k, then set X; := 1 with probability 1/A independently from all other random
decisions.

= |n all other cases, set X; = 0.
Then the X, are independent and satisfy Pr[X; = 1] = 1/A.
Let X := ¥'T_, X,. Then x, is informed after T rounds if and only if X > k .

The multiplicative Chernoff bound shows that this fails with probability at most Pr[X < k] =
Pr[X < 0.5E[X]] < exp(—E[X]/8) = exp(—k'/4).
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Application to Trees

Let G be a k-regular rooted tree of height h, that is, an undirected graph having
n=1+k+k?+ -+ k" vertices such that there is one “root” vertex which has k
neighbors such that each of them is the root of a r-regular tree of height h — 1
(when we delete the original root and all edges incident with it). Assume that you

run the randomized rumor spreading protocol in this graph, starting the rumor in the
root.

Degree diameter bound
= diameter ©(h)
= max-degree 0(k)
= rumor spreading time 0 (k max{h,logn}) = O(hklogk)

= matching lower bound: just look at how long it takes to inform all leaves
(assuming that all the rest is informed)
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Application to Grids

Let G = (V,E) be a d-dimensional grid, that is, V = [1..k]¢ and two vertices
are neighbors if they differ in exactly one coordinate, and this difference is
exactly one.

Theorem: A rumor starting in an arbitrary vertex reaches all vertices in time
0(d?k) with probability 1 — 0(1) [asymptotics for n := k¢ tending to infinity]

Proof: Degree-diameter bound. A = ©(d) and diam(G) = d(k — 1), the
latter being Q(logn) for all values of d and k

Comment:
= Ford = 0(1), this is tight (diameter is a lower bound).

= For k = 2,d = log, n, this is not tight: We now prove 0(logn) instead of
the above 0(log® n).

= “so many paths that one will be much faster than its expectation.”
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= Definition: The d-dimensional Aypercube is a graph H; having
= V ={0,1}¢ as vertex set (hence n == |V| = 29), and
= two vertices are adjacent if they differ in exactly one position.

= Note: A(G) =d =logn
= distances in H;: d(u,v) = “number of positions u and v differ in”.
= diameter (max. distance between vertices): diam(G) = d = logn,

=  Good communication network: Small diameter, relatively few edges, high
connectivity (d disjoint paths between any two vertices)

Alea'16, epidemic algorithms, lecture 2 14



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Rumor Spreading in Hypercubes

= The degree-diameter bound gives a rumor spreading time of
0 (A max{diam(H,),logn}) = 0(log®n)

= Might be overly pessimistic, because there are many path between any
pair of vertices:

= d! different shortest paths between (0, ...,0) and (1, ..., 1)

= so there might be one path where we are much more lucky than what
the expectation tell us.

= Theorem: With probability 1 — 1/n, a rumor started in an arbitrary node of
the hypercube has reached all nodes after O (log n) rounds.

= beautiful proof (next couple of slides)
= major open problem to determine the leading constant
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Proof: General Stuff

= We assume that the rumor starts in s = (0, ..., 0). [symmetry]

= We show that for any f > 0 there is a K > 0 such that after K logn rounds,
the vertex t = (1, ..., 1) is informed with probability 1 — n—P
= similar arguments work for any target t
= a union bound shows that all vertices are informed w.p. 1 — n=#+1

= Two technical assumptions that do not change how the rumor spreads, but
help in the proof

= all-work assumption: We assume that in each round every node calls a
random neighbor — if the caller is not informed, nothing happens

= everything-predefined assumption: We assume that before the process
starts, each node has already fixed whom to call in which round
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Expansion Phase

Observation: The rumor quickly moves away from s = (0, ..., 0), butitis
increasingly difficult to argue that the rumor truly approaches the target.

Plan: Show that you get at least close to the target!

= for reasons that will become clear later, we show that we get close to
any target we want.

Expansion Lemma: Leta > 0. Let v € V. Let C = 2. After Cd/a rounds,
with probability at least 1 — exp(— Cd/8) there is an informed vertex w
such that d(v,w) < ad.

= “in O(d) rounds the rumor reaches v apart from at most the last ad
steps (and apart from an 0(n=%W) failure probability”
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Proof: Expansion Lemma

Similar to the analysis how rumors traverse a path.
Let d; denote the distance of v to the closest informed vertex after round t.
Define binary random variables X; (counting true/artificial progress) as follows
= ifdi(_; > ad,then X, =1ifandonlyifd,_; > d;
= ifd;—; < ad, then X; = 1 with probability a (independent of everything)
Pr[X, =1] > aforall t
Note: XT :=¥T_. X, > d(s,v) — ad if and only if d; < ad (our aim)

The X; are not independent, but we have Pr[X; = 1|X; = x{, ..., X;_1 = x;_1] = «a for
all x4, ...,x,_1 € {0,1}. Hence XT dominates a sum YT of T independent random
variables that are 1 with probability exactly a (Lemma 1.18 in book chapter).

For T = Cd/a we have

Pr[XT < d] < Pr[YT < d] <Pr [yT < %E[YT]] < exp <_E[g7’]> < exp (_ C_d)

by the multiplicative Chernoff bound.
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Backward Phase

Plan: Do something “dual”: starting in t and going backward in time,
spread “uninformedness”

Recall that we assumed that all nodes call in each round.

Assume that our target node t is uninformed after some round T.

= if some node x calls t in round T, then x must be uninformed after
round T — 1

= iterate this argument to construct a path ending in t such that if the
start of the path was informed at some time T — i then t would be
informed attime T

Here we use the all-work and all-predetermined assumptions!
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Backward Phase — Some Detalls

= Lemma: LetT be large. Let @ > 0. Let v € V. Then with probability at least
1 —exp(—Cd/8) thereisaw € V such thatd(w,v) < ad and if w is in-
formed after round T — Cd /(1 — exp(—a)), then t is informed after round T.

= Proof;

= Fori=0,1,2...let d; be the smallest d(v, x) of a node x having the
property that if x is informed at the end of round T — i, then t is
informed after round T.

= d,=d(v,t)<d
= ifd; > ad,thenPr[d;;; =d; —1]>1—-(1—-1/d)*? > 1 — exp(—a)
= Use an analogous “artificial progress counting” argument as before

= X;=1ifd; <d;_; and d;_; > ad, otherwise independent random
bit that is 1 with prob. 1 — exp(—a)
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Coupling Phase

= So far: For any v € V, with probability 1 — exp(Q(d)) [as large as we want]

= thereisan A, € V such that d(v,4,,) < ad and s informs A,, within 0(d)
rounds

= thereis a B, € VV such that d(v, B,) < ad and “the rumor would go from
B, totin O(d) rounds”

= Remains to do: Get the rumor from 4,, to B,,!

= Problem: Very hard to get the rumor exactly somewhere (we need
already d rounds to call a particular neighbor)

= Solution: Take many v as above, sufficiently far apart, and play this
game many times in parallel — once we will be lucky ©
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From A, to B, With Small Probability

Let B:=B(v,2ad) ={ueV|du,v) < 2ad} “2ad ball around v”
Target: Get the rumor from A, to B, but only using nodes in B
= needed later to ensure that processes for different v don’t interact

Lemma: The probability that the rumor moves inside B from A, to B, in
time at most 2ad, is at least (2a/e)?%2.

Proof: Send the rumor along a direct path with speed one! (d’' .= d(4,, B,))

o Probability that the rumor moves closer to B, in every round:
2ad

(2ad)! _ (2ad/e)**d _ (22"
ﬂd ﬂd qzad = gzad _(?>

= Small exercise: Any such path remains in B
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= Target: Find a large set of v’s such that the distance of any two is more
than 4ad — so the 2ad-balls do not intersect.

= Lemma: Thereis asetS € V such that |S| = exp(d/32) =: m and for all
x,y € S with x # y we have d(x,y) = d /4.

= Proof: Take a random set!

Let x4, ..., x,,, be random vertices.

For i # j, we have E|d(x;,x;)] = d/2

d(x;,x;) is a sum of d independent {0,1} random variables

Chernoff bound: p := Pr[d(xi,xj) < d/4] < exp(—d/16)

Union bound: Pr[$ bad] < %;; ; Pr[d(xl-, xj) < d/4] <m’p<1
= Consequently, there is such a set S
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Proof. Putting Everything Together

Choose a small enough so that (2a/e)?* > exp(—1/32) and ad < d/4
= note that (2a/e)?** tends to one for a« — 0
Choose the set S as on the previous slide.

Apply expansion lemma with C large enough and union bound to show that
with probability 1 — n=# for all v € S there is an 4, € B(v, ad) that is
informed after T; = 0(d) rounds

Apply backward lemma with C large enough and union bound to show that
with probability 1 — n=# for all v € S there is a B, € B(v, ad) such that if B,
is informed after T, := T; + 2ad rounds, then t is informed after T, + 0(d)
rounds

Coupling phase: The probability that for no v € S the rumor goes (inside
B(v,2ad) from A, to B, is at most

(1- (Za/e)zo‘d)eXp(d/Sz) < exp (—((Za/e)za exp(1/32))d) = exp(—n®®)
Hence apart from a failure prob. of 2n=# + exp(—n®W), t is informed....
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Part 4. Rumor Spreading in Social
Networks, Real-World Graphs

= "Real-world graph”:
airports connected by direct flights

scientific authors connected by a joint
publication

Facebook users being “friends”

» Big insight of the last 20 year: Real-world
graphs have very special properties!

small diameter
non-uniform degree distribution:
= few nodes of high degree: “hubs”
= many nodes of small (constant) degree

= power law: number of nodes of degree d is proportional to d?
[ a constant, often between 2 and 3]
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Preferential Attachment (PA) Graphs

Barabasi, Albert (Science 1999):
try to explain why social networks could look like this
suggest a model for real-world graphs: preferential attachment (PA)

Preferential attachment paradigm:
networks evolve over time

when a new node enters a network, it chooses at random a constant
number m of neighbors

random choice is not uniform, but gives preference to “popular’ nodes
= probability to attach to node x is proportional to the degree of x

Once made truly precise (by Bollobas and Riordan (2004)), the PA
paradigm defines a cool random graph model (“PA graphs”)

Today: One of the most used models for real-world networks
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Precise Definition of PA Graphs

= Preferential attachment graph G/},
n: number of vertices, vertex set [1..n]
m: density parameter

= The PA graph G™ := G}, is recursively defined:
G1: 1 is the single vertex that has m self-loops
G™: Obtained from adding the new vertex n to G™* 1
= one after the other, the new vertex n chooses m neighbors
= the probability that some vertex x is chosen, is
— proportional to the current degree of x, if x + n

— proportional to “1 4 the current degree of x”, if x = n (self-loop
probability takes into account the current edge starting in n)
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Properties of PA Graphs*

diameter ©(logn /loglogn): less than logarithmic despite 8(n) edges!
G (n,p) with p = ©(1/n): far from connected
random regular graphs, k-out graphs: diameter ©(logn)

power law degree distribution: For d < n'/3, the expected number of
vertices having degree d is proportional to d 3.

clustering coefficient = roughly the probability that two neighbors of some
node are connected by an edge

PA graphs: 6(1/n)
real-world graphs: typically constant ®

*All statements hold “with high probability” (whp), that is, with prob. 1 — o(1)
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Rumor Spreading in PA Graphs G,

= Chierichetti, Lattanzi, Panconesi (2009):

Classic “push” rumor spreading: n* rounds (a a small constant) with
constant probability do not suffice

If both informed and uninformed nodes call random neighbors to
spread or seek rumors (push-pull protocol), then 0((logn)#) rounds
inform a PA graph G/}, m > 2, whp.

= D, Fouz, Friedrich (2011): In the push-pull
protocol, the rumor spreading time is

O(logn) whp
O(log(n)/loglogn) whp, if contacts are chosen excluding the neighbor
contacted in the very previous round (no “double-contacts”)

= Note: Avoiding double-contacts does not improve the O(logn)
times for complete graphs, RGGs, hypercubes, ...
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Two Questions

= Theorem: Randomized rumor spreading in the push-pull model informs the
PA graph ¢" (with m > 2) with high probability in
®(logn) rounds when choosing neighbors uniformly at random
®(logn /loglogn) rounds without double-contacts

= Two questions:

Why do double-contacts matter?
What makes PA graphs spread rumors faster than other graphs?
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With Double-Contacts...

Critical situation:

A pair of uninformed neighboring nodes, each having a constant
number of outside neighbors / x

N

With constant probability, the following happens in one round:
the two nodes of the pair call each other
all their neighbors call someone outside the pair
- hence the situation remains critical (pair uninformed)

Problem: Initially, there are ®(n) such critical situations in a PA graph.
Since each is solved with constant probability in one round, Q(logn)
rounds are necessary
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Without Double-Contacts

The uninformed pair is not critical anymore, because the two nodes cannot
call each other twice in a row ©

N

Remaining critical situations: Uninformed cycles having a constant number
of outside neighbors in total.

Again, each round, with constant probability the situation remains
critical (cycle uninformed)

No problem! There are only 0 (exp((logn)3/4)) such critical situations
initially in a PA graph. If each is solved with constant probability, we need

0(log(exp((logn)3/*))) = 0 ((log n)3/4) rounds to solve them all ©
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Why are PA Graphs Faster?

= Large- and small-degree nodes:
hub: node with degree (logn)3 or greater
poor node: node with degree exactly m (as small as possible)

= Observation: Poor nodes convey rumors fast!
Let a and b be neighbors of a poor node x
If a is informed, the expected time for x to pull the rumor from a is less than m

After that, it takes another less than m rounds (in expectation) for x to push the
news to b

a b

\/

X

Alea'l6, epidemic algorithms, lecture 2 33



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Why Are PA Graphs Faster (2)7?

Large- and small-degree nodes:
hub: node with degree (logn)3 or greater
poor node: node with degree exactly m (as small as possible)

Observation: Poor nodes convey rumors fast!
Let a and b be neighbors of a poor node x
If a is informed, the expected time for x to pull the rumor from a is less than m

After that, it takes another less than m rounds (in expectation) for x to push the
news to b

Key lemma: Between any two hubs, there is a path of length O(logn /loglogn) with
every second node a poor node.

Key lemma + observation + some extra arguments: If one hub is informed, after
O(logn /loglogn) rounds all hubs are.

Alea'l6, epidemic algorithms, lecture 2 34



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Main Tool: BR'04 Definition of
Preferential Attachment Model

Equivalent description of the PA model (also Bollobas & Riordan (2004))

= Form=1
Choose 2n random numbers in [0,1]: x4, ¥{, ) X5, Y
If x, > y;, exchange the two values
= Pr(y; <r) =r?
Sort the (x, y) pairs by increasing y-value; call them again (x;,y,), (x5, ¥5), .-
For all k, vertex k chooses the unique i < k as neighbor which satisfies
YVi-1 = X < Y
= Note: x,, is uniform in [0, y;]
= Form = 2: Generate G{'™ as above, then merge each m consecutive nodes

= Advantage: Many independent random variables, not a sequential process
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Some More Results

= Fountoulakis, Panagiotou, Sauerwald (SODA’12):

Chung-Lu graphs: variation of the classic Erdés-Rényi random graphs
(independent edges) that yields a power-law degree distribution

Synchronized randomized rumor spreading in the push-pull model informs all
but o(n) nodes of the Chung-Lu graph

= in O(logn) rounds, if the power-law exponent § > 3
= in O(loglogn) rounds, if 2 < f < 3
[no result for § = 3, the PA exponent]

Asynchronous: Nodes call at times triggered by (their private) Poisson clock
(with rate 1 - one call per time unit in expectation)

= 2 < B < 3:most nodes informed after a constant number of rounds!

= D, Fouz, Friedrich (SWAT’12):
Asynchronous rumor spreading informs most nodes of the PA graph in
0((logn)'/?) time [not at all clear is this is sharp]
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Summary: Rumor Spreading
In Preferential Attachment Graphs

Theorem: Randomized rumor spreading in the push-pull model informs the
PA graph G} (withm = 2) with high probability in

®(logn) rounds when choosing neighbors uniformly at random
®(logn /loglogn) rounds without double-contacts
asynchronous: most nodes informed after 0((logn)'/?) rounds

Explanation: Interaction between hubs and poor nodes (constant degree)

hubs are available to be called
poor nodes quickly transport the news from one neighbor to all others

Difference visible in experiments.
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Part X: Rumor Spreading in
Wireless Sensor Networks

Wireless sensor network. spatially distributed system of sensor nodes
used for collecting data in a large area (often difficult to access)

Sensor node
= radio transmitter and receiver: communication with near-by nodes
= sensors: collect data
= microcontroller
= Dbattery: crucial for the life-time of the system

Typical characteristics: Simple and cheap, so you don’t care about setting
up a clever network, but you distribute the nodes in a simple fashion
(randomly)

= multi-hop network: communication is via intermediate nodes, so that
the communication range can be kept small (saves energy)
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Mathematical Model

Random geometric graph (RGG) G(n,r):
= Nodes: vy, ..., v, € [0,1]? be chosen uniformly at random
= Edges: {v;,v;} is an edge if and only if d(v;, v;) <7

]
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Fig.: A random geometric graph G(256,0.1)
[Wikipedia]
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Properties of RGG

Theorem [Penrose (2003)]: If r = (7n)~ %> (In(n) + a)°®, then
lim Pr[G(n,r) is connected] = exp(—e™%)

n—>00

Theorem [Penrose (2003)]: There is a constant ¢ such that

= ifr > cn™%°, then G(n,7) has a “giant component”, that is, a connected
component consisting of ©(n) vertices; the proportion of this
component tends to one if r = an™%° for a —»

= if r < cn~%2, then there is no giant component

Implications for wireless sensor networks obtained by randomly distribution
nodes: 3 regimes

= disconnected: r < cn~%> - all nodes can talk to only few others

= giant component: There a large connected subnetwork, but some
nodes are not part of it

= connected: r = (1 + &)(mn)~%° In®>(n)
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Rumor Spreading in
Well-Connected RGGs (1)

Well-connected regime: r > Cn~°°In°>(n) for C large enough. Typical
computational geometry argument shows that G is connected.

Key approach: Make your life discrete!
= Partition the unit square [0,1]? into ©(1/72) squares of side length
L=71/2V2 =0(r)
= call two squares adjacent if they touch (vertical, horizontal, diagonal)
= Vertices in adjacent squares are adjacent in the RGG

Claim: Each square S contains a similar number of vertices!

The number X° of vertices in S is a sum of n independent binary random
variables X; with Pr[X; = 1] = 1> =r%/8 = C?In(n)/n. Hence
= E:=E[X°] =n7r?/8 = C?In(n)

o Pr[lXS — E[X°]| = 0.25E[X5]] < n~? when C is sufficiently large.
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Rumor Spreading in
Well-Connected RGGs (2)

Properties of well connected RGGs (r = Cn=%°1n%°(n) for C large)
= diameter O(1/7)

= upper bound: the graph of the squares has diameter @(1/r), each
square contains at least one vertex, and there is an edge between
any two vertices in neighboring squares

= lower bound follows easily from the geometry

= all degrees O(nr?): all vertices in the (usually) 8 neighboring squares
are neighbors and all neighbors lie in the (usually 48) squares in
distance at most 3; hence degv is the sum of a constant number of X

Degree-diameter bound: Rumors spread in time 0 (nr)

Observation: This bound becomes weaker for larger r

= if this was true, then a larger communication power would reduce the
rumor spreading speed

Alea'16, epidemic algorithms, lecture 2 42



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

Rumor Spreading in
Well-Connected RGGs (3)

= Better: Two stage argument

= Call a square informed if it contains one informed vertex. This gives a
rumor spreading process similar to the one in 2D grids (time 0(r))

= Once all squares are informed (in the above sense), argue that what
happens inside the square is similar to rumor spreading in a complete
network (time ©(logn))

= Square process:

= Since each vertex has a constant fraction of its neighbors in each of the
8 neighbors, it takes expected constant time to call from one square to
a given neighbor

= “follow the path” argument (in grid of square): ®(max{r—1,log n}) rounds
until each square has an informed node
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Rumor Spreading in
Well-Connected RGGs (4)

= Making all squares fully informed (all vertices in the square are informed)

= Each vertex has a probability greater than some constant ¢ to call
another vertex in its own square (which then is chosen uniformly at
random from the square)

= Hence ignoring all calls that cross square boundaries, each square is
running a rumor spreading process in a complete graph in which each
informed vertex only call with probability c.

= This process is very similar to the usual rumor spreading process in
complete graphs, but slowed down by a factor of at most 1/c. Hence a
large log(n) runtime is enough to have each square fully informed with
probability 1 — 1/n?.

= Union bound: All squares fully informed... additional O(logn) rounds for
each square to inform itself

= Theorem: With high probability a well-connected RGGs is such that rumors
spread in time O(diam(G) + logn) with probability 1 — 1/n.
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Summary

= Rumor spreading is an efficient epidemic algorithm to disseminate
information in various network topologies

= hypercubes (as models for man-made communication networks)
= random geometric graphs (model for wireless sensor networks)
= preferential attachment graphs (model for social networks)

= Often, we can prove a rumor spreading time of O(diam ), which naturally
Is asymptotically optimal
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