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 Randomized rumor spreading (RRS): 
 round-based process in a graph 𝐺 = 𝑉,𝐸  
 starts with one node informed (knows the rumor) 
 in each round, each informed node calls a random neighbor and 

informs it (if it wasn’t already) 
 

 Main result last lecture: With probability 1 − 𝑜(1), RRS informs all vertices 
of a complete graph on 𝑛 vertices in log2 𝑛 + ln𝑛 + 𝑜(log𝑛) rounds 
 

 Same result holds for 𝐺(𝑛,𝑝) random graphs when 𝑝 = 𝜔 (log𝑛) 𝑛⁄ , but 
not when 𝑝 = Θ log𝑛 𝑛⁄   
[FountoulakisHuberPanagiotou’10, PanagiotouPerezSauerwaldSun’15] 
 

 Same result holds for random regular graphs 𝐺(𝑛,𝑑) when 𝑑 = 𝜔(1), but 
not for constant 𝑑  
[PanagiotouPerezSauerwaldSun’15, FountoulakisPanagiotou’10] 
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Reminder Last Lecture 



 End of last lecture: 𝑟-termination tricky rumor spreading in complete 
networks with node labels 1, … ,𝑛: 
 In each round, each informed node calls another node. 

 In the first round of activity, node 𝑘 calls 𝑘 + 1 
 in all other rounds, it calls a random node 

 Termination: Nodes stop calling after having called 𝑟 informed nodes 
 

 Result: This informs all nodes in log2 𝑛 + 𝑂 log𝑛 𝑟⁄ + log𝑛 1 2⁄  rounds 
and 𝑂(𝑟𝑟) calls. 
 

 Kosta’s question: Can you get log2 𝑛 + 𝑜(log𝑛) rounds using 𝑂(𝑛) calls 
with a more clever protocol? 
 

 Johannes’ idea (that convinced the coffee round): Node 𝑘 calls first 𝑘 + 1, 
then a random node in [𝑘 + log𝑛 1 2⁄ ,𝑘 + 2 log𝑛 1 2⁄ ], then random nodes. 
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Kosta’s Question 



 Last lecture, we had a slightly informal start into rumor spreading. Before 
proceeding with lot’s of hand-waiving, let’s clarify a basic question first:  
 how to define rumor spreading time ? 

 
 

 Definition [rumor spreading times 𝑇𝑣]: Consider a round-based rumor 
spreading process in a graph 𝐺 = (𝑉,𝐸) that surely finishes in finite time. 
 For 𝑣 ∈ 𝑉, the 𝑇𝑣 denote the number of rounds after which a rumor 

starting in 𝑣 for the first time has reached all nodes of 𝐺 
 

 Notes: 
 𝑇𝑣 is a random variable taking values in ℕ ≔  0,1,2, …  
 You can extend all that follows to include the time ∞ denoting that a 

process does not finish, but you’ll not gain a lot from it 
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Part 1:  
Definition Rumor Spreading Time 



Towards Defining 𝑇𝐺  

 Definition: Let 𝑋 and 𝑌 be random variables. We say that 𝑌 stochastically 
dominates 𝑋, written 𝑋 ≼ 𝑌, if for all 𝜆 ∈ ℝ we have 

Pr 𝑌 ≤ 𝜆 ≤ Pr 𝑋 ≤ 𝜆 . 
 Note: a very strong sense of “𝑌 is bigger than 𝑋” 

 

 Lemma: There is a unique random variable 𝑇 such that  
1) for all 𝑣 ∈ 𝑉, 𝑇𝑣 ≼ 𝑇 
2) for any 𝑇𝑇 satisfying 1) we have 𝑇 ≼ 𝑇𝑇 

 

 Proof: Go from the probability mass functions to the cumulative 
distributions, take the minimum, and convert it to a mass function 
 𝐹 𝑡 ≔ min Pr 𝑇𝑣 ≤ 𝑡 𝑣 ∈ 𝑉  
 Define 𝑇 by Pr 𝑇 = 0 = 𝐹(0), Pr 𝑇 = 𝑡 = 𝐹 𝑡 − 𝐹(𝑡 − 1) for 𝑡 ≥ 1 
 This 𝑇 satisfies 1). If some 𝑇𝑇 satisfies 1), then 𝐹′ 𝑡 ≔ Pr [𝑇′ ≤ 𝑡] is at 

most Pr [𝑇𝑣 ≤ 𝑡] for all 𝑣 ∈ V by 1), hence 𝐹′ ≤ 𝐹, and thus 𝑇 ≼ 𝑇𝑇. 
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Rumor Spreading Time 𝑇𝐺 of 𝐺 

 Definition [D, Friedrich, Sauerwald ‘14]: The unique 𝑇 from the lemma is 
called the rumor spreading time of 𝐺 and denoted by 𝑇𝐺  
 

 Trivialities: 
 Pr 𝑇𝐺 ≤ 𝑡 ≥ 𝑝 is equivalent to saying that regardless of where the 

rumor starts, after 𝑡 rounds with probability at least 𝑝 all vertices are 
informed. 

 Pr 𝑇𝐺 ≥ 𝑡 ≥ 𝑝 is equivalent to saying that there is a vertex 𝑣 ∈ 𝑉 such 
that the rumor spreading process started in 𝑣 with probability at least 𝑝 
has not informed all vertices earlier than after 𝑡 rounds. 
 

 Note: 𝐸 𝑇𝐺 ≥ max 𝐸[𝑇𝑣] 𝑣 ∈ 𝑉 , but there is no argument for equality 
 

 Not very important open problem: Do we have equality above? 
 Equivalent question: are there “worst” starting points 𝑤 for the rumor  

(in the sense that 𝑇𝑣 ≼ 𝑇𝑤 for all 𝑣 ∈ 𝑉)? 
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Part 2: Path-Arguments 

 Main argument so far: 
 Analyze how many nodes become informed in a round starting with 𝑖 

informed nodes 
 Works well when the graph is highly symmetric (complete graphs, 

random graphs) 
 

 Now: Use the argument “how long does it take for the rumor to traverse a 
given path” 
 potential disadvantage: we have to fix a path first and thus ignore the 

fact that the rumor could also use a different path 
 advantage: since we look at many steps together, we may use 

concentration on the whole process (instead of only one round) 
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 Trivial remark: If the rumor starts in 𝑠 and 𝑣 is a node in distance 𝑑(𝑠, 𝑣) 
from 𝑠, then the rumor cannot reach 𝑣 earlier than in round 𝑑 𝑠, 𝑣 . 
 𝑑(𝑠, 𝑣): smallest length (=number of edges) of a path between 𝑠 and 𝑣 

 
 Consequence: The diameter 𝑑𝑑𝑑𝑑(𝐺) is a lower bound for the rumor 

spreading time (worst-case over starting vertex) in the graph 𝐺 = (𝑉,𝐸) 
 𝑑𝑑𝑑𝑑 𝐺 = max {𝑑(𝑢, 𝑣)|𝑢, 𝑣 ∈ 𝑉} 
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Path-Arguments:  
Trivial Lower Bound 



 Lemma: Let 𝑃: 𝑥 = 𝑥0, 𝑥1, … , 𝑥𝑘 = 𝑦 be any path from 𝑥 to 𝑦 in 𝐺. Assume 
that the rumor starts in 𝑥. Then the first time 𝑇𝑦 when 𝑦 is informed satisfies 
𝑬 𝑻𝒚 ≤ ∑ 𝐝𝐝𝐝𝒙𝒊𝒌−𝟏

𝒊=𝟎   
 proof: add the pessimistic waiting times for the events that the rumor 

moves from 𝑥𝑖 to 𝑥𝑖+1  
 more precisely: it takes an expected number of deg 𝑥𝑖  rounds for 𝑥𝑖 to 

call 𝑥𝑖+1 
 

 Hence the expected time for the rumor to traverse one path is easy, but to 
say something about the rumor spreading time, we need to pick a path 
from the source to each vertex 𝑦 and say something about 𝑇 = max𝑇𝑦  
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Path-Arguments:  
Upper Bounds 



Path-Lemma, Degree-Diam. Bound 

 Path-Lemma:  
 Let 𝐺 be any graph. Assume that the rumor starts in a vertex 𝑥0.  
 Let 𝑃: 𝑥0, … , 𝑥𝑘 be any path of length 𝑘 in 𝐺.  
 Let Δ ≔ max {deg𝑥𝑖 |𝑖 ∈ [0. . 𝑘 − 1]} be the maximum degree of the 

vertices on 𝑃.  
 Let 𝑘′ ≥ 𝑘. [“safety margin over the expectation”] 
 Then after 𝑇 = 2𝑘𝑘Δ rounds, the whole path is informed with probability 

1 − exp −𝑘𝑘 4⁄ . 
 Proof: Chernoff bound (details next slide) 

 
 Corollary (degree-diameter bound): 𝑘′ = max {𝑑𝑑𝑑𝑑 𝐺 , 8 ln 𝑛 } gives that 

all vertices are informed after 𝑻 = 𝑶(𝚫 𝐦𝐦𝐦 𝒅𝒅𝒅𝒅 𝑮 , 𝐥𝐥𝐥𝒏 ) rounds with 
probability 1 − 𝑛−1 

 Proof: Take a shortest path from the rumor source to each vertex. This is 
traversed in 𝑇 rounds with prob. 1 − 𝑛−2. Union bound 
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Proof of the Path Lemma 
 Path lemma: Let 𝐺 be any graph. Let 𝑃: 𝑥0, … , 𝑥𝑘 be a path of length 𝑘 in 𝐺. Let 

Δ ≔ max {deg 𝑥𝑖 |𝑖 ∈ [0. .𝑘 − 1]} be the maximum degree on 𝑃. Assume the rumor starts in 𝑥0. 
Let 𝑘′ ≥ 𝑘. Then after 𝑇 = 2Δ𝑘𝑘 rounds, the whole path is informed with probability at least 
1 − exp −𝑘𝑘 4⁄ . 
 

 Proof: We analyze the following modified process: In each round, each informed node 
𝑥𝑖 , 𝑖 ∈ 0. . 𝑘 − 1 , calls node 𝑥𝑖+1 with probability exactly 1 Δ⁄ . 

 Observation: The modified process clearly is slower in informing 𝑥𝑘. 
 For each round 𝑡, define a binary random variable 𝑋𝑡 as follows. Let 𝑖(𝑡) be the maximal 

𝑗 ∈ [0. .𝑘] such that 𝑥0, … , 𝑥𝑗 are informed at the start of the round.  
 If 𝑖 𝑡 < 𝑘 and 𝑥𝑖 𝑡 +1 becomes informed in round 𝑡, then 𝑋𝑡 ≔ 1.  
 If 𝑖 𝑡 = 𝑘, then set 𝑋𝑡 ≔ 1 with probability 1 Δ⁄  independently from all other random 

decisions.  
 In all other cases, set 𝑋𝑡 = 0. 

 Then the 𝑋𝑡 are independent and satisfy Pr 𝑋𝑡 = 1 = 1 Δ⁄ . 
 Let 𝑋 ≔ ∑ 𝑋𝑡𝑇

𝑡=1 . Then 𝑥𝑘 is informed after 𝑇 rounds if and only if 𝑋 ≥ 𝑘 . 
 The multiplicative Chernoff bound shows that this fails with probability at most Pr 𝑋 < 𝑘 =

Pr 𝑋 < 0.5𝐸 𝑋 ≤ exp −𝐸 𝑋 8⁄ = exp(−𝑘𝑘 4⁄ ). 
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 Let 𝐺 be a 𝑘-regular rooted tree of height ℎ, that is, an undirected graph having 
𝑛 = 1 + 𝑘 + 𝑘2 + ⋯+ 𝑘ℎ vertices such that there is one “root” vertex which has 𝑘 
neighbors such that each of them is the root of a 𝑟-regular tree of height ℎ − 1 
(when we delete the original root and all edges incident with it). Assume that you 
run the randomized rumor spreading protocol in this graph, starting the rumor in the 
root.  
 
 
 

 Degree diameter bound 
 diameter Θ(ℎ) 
 max-degree Θ 𝑘  
 rumor spreading time 𝑂 𝑘max ℎ, log𝑛 = 𝑂(ℎ𝑘 log𝑘) 
 matching lower bound: just look at how long it takes to inform all leaves 

(assuming that all the rest is informed) 
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Application to Trees 



Application to Grids 

 Let 𝐺 = (𝑉,𝐸) be a 𝑑-dimensional grid, that is, 𝑉 = 1. . 𝑘 𝑑 and two vertices 
are neighbors if they differ in exactly one coordinate, and this difference is 
exactly one.  
 

 Theorem: A rumor starting in an arbitrary vertex reaches all vertices in time 
𝑂(𝑑2𝑘) with probability 1 − 𝑜 1  [asymptotics for 𝑛 ≔ 𝑘𝑑 tending to infinity] 
 

 Proof: Degree-diameter bound. Δ = Θ(𝑑) and diam 𝐺 = 𝑑(𝑘 − 1), the 
latter being Ω(log𝑛) for all values of 𝑑 and 𝑘 
 

 Comment:  
 For 𝑑 = Θ(1), this is tight (diameter is a lower bound). 
 For 𝑘 = 2,𝑑 = log2 𝑛, this is not tight: We now prove 𝑂(log𝑛) instead of 

the above 𝑂(log2 𝑛).  
 “so many paths that one will be much faster than its expectation.” 
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 Definition: The 𝑑-dimensional hypercube  is a graph 𝐻𝑑 having 
 𝑉 = 0,1 𝑑 as vertex set (hence 𝑛 ≔ 𝑉 = 2𝑑), and 
 two vertices are adjacent if they differ in exactly one position. 

 
 
 
 
 

 Note: Δ 𝐺 = 𝑑 = log𝑛  
 distances in 𝐻𝑑: 𝑑 𝑢, 𝑣 = “number of positions 𝑢 and 𝑣 differ in”. 
 diameter (max. distance between vertices): diam 𝐺 = 𝑑 = log𝑛, 

 

 Good communication network: Small diameter, relatively few edges, high 
connectivity (𝑑 disjoint paths between any two vertices) 
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Rumor Spreading in Hypercubes 
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 The degree-diameter bound gives a rumor spreading time of  
𝑂 Δmax diam 𝐻𝑑 , log 𝑛 = 𝑂(log2 𝑛) 

 
 Might be overly pessimistic, because there are many path between any 

pair of vertices:  
 d!  different shortest paths between (0, … , 0) and (1, … , 1) 
 so there might be one path where we are much more lucky than what 

the expectation tell us. 
 

 Theorem: With probability 1 − 1 𝑛⁄ , a rumor started in an arbitrary node of 
the hypercube has reached all nodes after 𝑂(log 𝑛) rounds.  
 beautiful proof (next couple of slides) 
 major open problem to determine the leading constant 



Proof: General Stuff 

 We assume that the rumor starts in 𝑠 = (0, … , 0).  [symmetry] 
 

 We show that for any 𝛽 > 0 there is a 𝐾 > 0 such that after 𝐾 log𝑛 rounds, 
the vertex 𝑡 = (1, … , 1) is informed with probability 1 − 𝑛−𝛽 
 similar arguments work for any target 𝑡 
 a union bound shows that all vertices are informed w.p. 1 − 𝑛−𝛽+1  

 
 Two technical assumptions that do not change how the rumor spreads, but 

help in the proof 
 all-work assumption: We assume that in each round every  node calls a 

random neighbor – if the caller is not informed, nothing happens 
 everything-predefined assumption: We assume that before the process 

starts, each node has already fixed whom to call in which round 
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Expansion Phase 

 Observation: The rumor quickly moves away from 𝑠 = (0, … , 0), but it is 
increasingly difficult to argue that the rumor truly approaches the target. 
 

 Plan: Show that you get at least close to the target! 
 for reasons that will become clear later, we show that we get close to 

any target we want. 
 

 Expansion Lemma: Let 𝛼 > 0. Let 𝑣 ∈ 𝑉. Let 𝐶 ≥ 2. After 𝐶𝐶 𝛼⁄  rounds, 
with probability at least 1 − exp −  𝐶𝐶 8⁄  there is an informed vertex 𝑤 
such that 𝑑 𝑣,𝑤 ≤ 𝛼𝛼. 
 “in Θ(𝑑) rounds the rumor reaches 𝑣 apart from at most the last 𝛼𝛼 

steps (and apart from an 𝑂(𝑛−Ω 1 ) failure probability” 
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Proof: Expansion Lemma 

 Similar to the analysis how rumors traverse a path. 
 Let 𝑑𝑡 denote the distance of 𝑣 to the closest informed vertex after round 𝑡. 
 Define binary random variables 𝑋𝑡 (counting true/artificial progress) as follows 

 if 𝑑𝑡−1 > 𝛼𝛼, then 𝑋𝑡 = 1 if and only if 𝑑𝑡−1 > 𝑑𝑡 
 if 𝑑𝑡−1 ≤ 𝛼𝛼, then 𝑋𝑡 = 1 with probability 𝛼 (independent of everything) 

 Pr 𝑋𝑡 = 1 ≥ 𝛼 for all 𝑡 
 Note: 𝑋𝑇 ≔ ∑ 𝑋𝑡𝑇

𝑡=1 ≥ 𝑑 𝑠, 𝑣 − 𝛼𝛼 if and only if 𝑑𝑇 ≤ 𝛼𝛼 (our aim) 
 The 𝑋𝑡 are not independent, but we have Pr 𝑋𝑡 = 1 𝑋1 = 𝑥1, … ,𝑋𝑡−1 = 𝑥𝑡−1 ≥ 𝛼 for 

all 𝑥1, … , 𝑥𝑡−1 ∈ 0,1 . Hence 𝑋𝑇 dominates a sum 𝑌𝑇 of 𝑇 independent random 
variables that are 1 with probability exactly 𝛼 (Lemma 1.18 in book chapter).  

 For 𝑇 = 𝐶𝐶 𝛼⁄  we have 

Pr 𝑋𝑇 ≤ 𝑑 ≤ Pr 𝑌𝑇 ≤ 𝑑 ≤ Pr 𝑌𝑇 ≤
1
2𝐸 𝑌𝑇 ≤ exp −

𝐸 𝑌𝑇

8 ≤ exp −
𝐶𝐶
8  

by the multiplicative Chernoff bound. 
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Backward Phase 

 Plan: Do something “dual”: starting in 𝑡 and going backward in time, 
spread “uninformedness” 

 
 Recall that we assumed that all nodes call in each round.  

 
 Assume that our target node 𝑡 is uninformed after some round 𝑇. 

 if some node 𝑥 calls 𝑡 in round 𝑇, then 𝑥 must be uninformed after 
round 𝑇 − 1 

 iterate this argument to construct a path ending in 𝑡 such that if the 
start of the path was informed at some time 𝑇 − 𝑖 then 𝑡 would be 
informed at time 𝑇  
 

 Here we use the all-work and all-predetermined assumptions! 
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Backward Phase – Some Details  

 Lemma: Let 𝑇 be large. Let 𝛼 > 0. Let 𝑣 ∈ 𝑉. Then with probability at least 
1 − exp −𝐶𝐶 8⁄  there is a 𝑤 ∈ 𝑉 such that 𝑑 𝑤, 𝑣 ≤ 𝛼𝛼 and if 𝑤 is in-
formed after round 𝑇 − 𝐶𝐶 (1 − exp −𝛼 )⁄ , then 𝑡 is informed after round 𝑇. 
 

 Proof:  
 For 𝑖 = 0,1,2 … let 𝑑𝑖 be the smallest 𝑑(𝑣, 𝑥) of a node 𝑥  having the 

property that if 𝑥 is informed at the end of round 𝑇 − 𝑖, then 𝑡 is 
informed after round 𝑇. 
 𝑑0 = 𝑑 𝑣, 𝑡 ≤ 𝑑 
 if 𝑑𝑖 > 𝛼𝛼, then Pr 𝑑𝑖+1 = 𝑑𝑖 − 1 ≥ 1 − 1 − 1 𝑑⁄ 𝛼𝛼 ≥ 1 − exp −𝛼  

 Use an analogous “artificial progress counting” argument as before 
 𝑋𝑖 = 1 if 𝑑𝑖 < 𝑑𝑖−1 and 𝑑𝑖−1 > 𝛼𝛼, otherwise independent random 

bit that is 1 with prob. 1 − exp −𝛼  
 … 

Alea'16, epidemic algorithms, lecture 2 20 



Coupling Phase 

 So far: For any 𝑣 ∈ 𝑉, with probability 1 − exp (Ω 𝑑 ) [as large as we want] 
 there is an 𝐴𝑣 ∈ 𝑉 such that 𝑑 𝑣,𝐴𝑣 ≤ 𝛼𝛼 and 𝑠 informs 𝐴𝑣 within 𝑂(𝑑) 

rounds 
 there is a 𝐵𝑣 ∈ 𝑉 such that 𝑑 𝑣,𝐵𝑣 ≤ 𝛼𝛼 and “the rumor would go from 
𝐵𝑣 to 𝑡 in 𝑂(𝑑) rounds” 
 

 Remains to do: Get the rumor from 𝐴𝑣 to 𝐵𝑣! 
 Problem: Very hard to get the rumor exactly somewhere (we need 

already 𝑑 rounds to call a particular neighbor) 
 Solution: Take many 𝑣 as above, sufficiently far apart, and play this 

game many times in parallel – once we will be lucky   
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From 𝐴𝑣 to 𝐵𝑣 With Small Probability 

 Let 𝐵 ≔ 𝐵 𝑣,2𝛼𝛼 ≔ 𝑢 ∈ 𝑉| 𝑑 𝑢, 𝑣 ≤ 2𝛼𝛼    “2𝛼𝛼 ball around 𝑣” 
 Target: Get the rumor from 𝐴𝑣 to 𝐵𝑣, but only using nodes in 𝐵 

 needed later to ensure that processes for different 𝑣 don’t interact 
 

 Lemma: The probability that the rumor moves inside 𝐵 from 𝐴𝑣 to 𝐵𝑣 in 
time at most 2𝛼𝛼, is at least 2𝛼 𝑒⁄ 2𝛼𝛼. 
 

 Proof: Send the rumor along a direct path with speed one! (𝑑′ ≔ 𝑑(𝐴𝑣,𝐵𝑣)) 
 Probability that the rumor moves closer to 𝐵𝑣 in every round: 

�
𝑖
𝑑

𝑑′

𝑖=1

≥�
𝑖
𝑑

2𝛼𝛼

𝑖=1

=
2𝛼𝛼 !
𝑑2𝛼𝛼

≥
2𝛼𝛼 𝑒⁄ 2𝛼𝛼

𝑑2𝛼𝛼
=

2𝛼
𝑒

2𝑎𝑎

 

 Small exercise: Any such path remains in 𝐵 
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Many 𝑣’s that are far apart 

 Target: Find a large set of 𝑣’s such that the distance of any two is more 
than 4𝛼𝛼 – so the 2𝛼𝛼-balls do not intersect. 
 

 Lemma: There is a set 𝑆 ⊆ 𝑉 such that 𝑆 = exp 𝑑 32⁄ =:𝑚 and for all 
𝑥,𝑦 ∈ 𝑆 with 𝑥 ≠ 𝑦 we have 𝑑 𝑥,𝑦 ≥ 𝑑 4⁄ . 
 

 Proof: Take a random set!  
 Let 𝑥1, … , 𝑥𝑚 be random vertices. 
 For 𝑖 ≠ 𝑗, we have 𝐸 𝑑 𝑥𝑖 , 𝑥𝑗 = 𝑑 2⁄  
 𝑑 𝑥𝑖 , 𝑥𝑗  is a sum of 𝑑 independent {0,1} random variables 
 Chernoff bound: 𝑝 ≔ Pr 𝑑 𝑥𝑖 , 𝑥𝑗 ≤ 𝑑 4⁄ ≤ exp −𝑑 16⁄  
 Union bound: Pr 𝑆  bad ≤ ∑ Pr 𝑑 𝑥𝑖 , 𝑥𝑗 ≤ 𝑑 4⁄𝑖,𝑗 < 𝑚2𝑝 ≤ 1 

 Consequently, there is such a set 𝑆 
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Proof: Putting Everything Together 

 Choose 𝛼 small enough so that 2𝛼 𝑒⁄ 2𝛼 > exp − 1 32⁄  and 𝛼𝛼 < 𝑑 4⁄  
 note that 2𝛼 𝑒⁄ 2𝛼 tends to one for 𝛼 → 0 

 Choose the set 𝑆 as on the previous slide. 
 Apply expansion lemma with 𝐶 large enough and union bound to show that 

with probability 1 − 𝑛−𝛽 for all 𝑣 ∈ 𝑆 there is an 𝐴𝑣 ∈ 𝐵(𝑣,𝛼𝛼) that is 
informed after 𝑇1 = 𝑂(𝑑) rounds 

 Apply backward lemma with 𝐶 large enough and union bound to show that 
with probability 1 − 𝑛−𝛽 for all 𝑣 ∈ 𝑆 there is a 𝐵𝑣 ∈ 𝐵(𝑣,𝛼𝛼) such that if 𝐵𝑣 
is informed after 𝑇2 ≔  𝑇1 + 2𝛼𝛼 rounds, then 𝑡 is informed after 𝑇2 + 𝑂(𝑑) 
rounds 

 Coupling phase: The probability that for no 𝑣 ∈ 𝑆 the rumor goes (inside 
𝐵(𝑣,2𝛼𝛼) from 𝐴𝑣 to 𝐵𝑣 is at most 

1 − 2𝛼 𝑒⁄ 2𝛼𝛼 exp 𝑑 32⁄
≤ exp − 2𝛼 𝑒⁄ 2𝛼 exp 1 32⁄ 𝑑 = exp −𝑛Θ(1)   

 Hence apart from a failure prob. of 2𝑛−𝛽 + exp(−𝑛Θ 1 ), 𝑡 is informed…. 
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 “Real-world graph”: 
– airports connected by direct flights 
– scientific authors connected by a joint 

publication 
– Facebook users being “friends” 

 
 Big insight of the last 20 year: Real-world  

graphs have very special properties!  
– small diameter 
– non-uniform degree distribution: 

 few nodes of high degree: “hubs” 
 many nodes of small (constant) degree 
 power law: number of nodes of degree 𝑑 is proportional to 𝑑𝛽 

[𝛽 a constant, often between 2 and 3] 
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Preferential Attachment (PA) Graphs 

 Barabási, Albert (Science 1999):  
– try to explain why social networks could look like this 
– suggest a model for real-world graphs: preferential attachment (PA) 

 

 Preferential attachment paradigm: 
– networks evolve over time 
– when a new node enters a network, it chooses at random a constant 

number 𝑚 of neighbors 
– random choice is not uniform, but gives preference to “popular” nodes 

 probability to attach to node 𝑥 is proportional to the degree of 𝑥  
 

 Once made truly precise (by Bollobás and Riordan (2004)), the PA 
paradigm defines a cool random graph model (“PA graphs”) 
– Today: One of the most used models for real-world networks 
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Precise Definition of PA Graphs 

 Preferential attachment graph 𝐺𝑚𝑛  
– 𝑛: number of vertices, vertex set [1. .𝑛] 
– 𝑚: density parameter 

 

 The PA graph G𝑛 ≔ 𝐺𝑚𝑛  is recursively defined: 
– 𝐺1: 1 is the single vertex that has 𝑚 self-loops 
– 𝐺𝑛: Obtained from adding the new vertex 𝑛 to 𝐺𝑛−1  

 one after the other, the new vertex 𝑛 chooses 𝑚 neighbors 
 the probability that some vertex 𝑥 is chosen, is 

– proportional to the current degree of 𝑥, if 𝑥 ≠  𝑛  
– proportional to “1 + the current degree of 𝑥”, if 𝑥 =  𝑛 (self-loop 

probability takes into account the current edge starting in 𝑛  ) 
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Properties of PA Graphs* 

 diameter Θ(log 𝑛 / log log 𝑛): less than logarithmic despite Θ 𝑛  edges! 
– 𝐺(𝑛, 𝑝) with 𝑝 = Θ(1 𝑛⁄ ): far from connected 
– random regular graphs, 𝑘-out graphs: diameter Θ log𝑛  

 
 power law degree distribution: For 𝑑 ≤  𝑛1 5⁄ , the expected number of 

vertices having degree 𝑑 is proportional to 𝑑−3.  
 

 clustering coefficient = roughly the probability that two neighbors of some 
node are connected by an edge 
– PA graphs: Θ(1 𝑛⁄ ) 
– real-world graphs: typically constant   

28 

*All statements hold “with high probability” (whp), that is, with prob. 1 − 𝑜(1) 
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Rumor Spreading in PA Graphs 𝐺𝑚𝑛  

 Chierichetti, Lattanzi, Panconesi (2009): 
– Classic “push” rumor spreading: 𝑛𝛼 rounds (𝛼 a small constant) with 

constant probability do not suffice 
– If both informed and uninformed nodes call random neighbors to 

spread or seek rumors (push-pull protocol), then 𝑂( log𝑛 2) rounds 
inform a PA graph 𝐺𝑚𝑛 , 𝑚 ≥  2, whp. 

 
 

 D, Fouz, Friedrich (2011): In the push-pull  
protocol, the rumor spreading time is 
– Θ(log 𝑛) whp 
– Θ(log (𝑛) log log𝑛⁄ ) whp, if contacts are chosen excluding the neighbor 

contacted in the very previous round (no “double-contacts”) 
 Note: Avoiding double-contacts does not improve the 𝑂(log 𝑛) 

times for complete graphs, RGGs, hypercubes, … 
29 
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Two Questions 

 Theorem: Randomized rumor spreading in the push-pull model informs the 
PA graph 𝐺𝑛 (with 𝑚 ≥ 2) with high probability in 
– Θ(log 𝑛) rounds when choosing neighbors uniformly at random 
– Θ(log 𝑛 / log log 𝑛) rounds without double-contacts 

 
 Two questions: 

– Why do double-contacts matter? 
– What makes PA graphs spread rumors faster than other graphs? 
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With Double-Contacts… 

 Critical situation:  
– A pair of uninformed neighboring nodes, each having a constant 

number of outside neighbors 
 
 
 
 

 With constant probability, the following happens in one round: 
– the two nodes of the pair call each other 
– all their neighbors call someone outside the pair 
–  hence the situation remains critical (pair uninformed) 

 
 Problem: Initially, there are Θ(𝑛) such critical situations in a PA graph. 

Since each is solved with constant probability in one round, Ω(log 𝑛) 
rounds are necessary 
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Without Double-Contacts 

 The uninformed pair is not critical anymore, because the two nodes cannot 
call each other twice in a row  
 
 
 
 

 Remaining critical situations: Uninformed cycles having a constant number 
of outside neighbors in total. 
– Again, each round, with constant probability the situation remains 

critical (cycle uninformed) 
 

 No problem! There are only 𝑂(exp ( log𝑛 3 4⁄ )) such critical situations 
initially in a PA graph. If each is solved with constant probability, we need 
𝑂 log(exp ( log𝑛 3 4⁄ )) = 𝑂 log𝑛 3 4⁄  rounds to solve them all  
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Why are PA Graphs Faster? 

 Large- and small-degree nodes: 
– hub: node with degree log𝑛 3 or greater 
– poor node: node with degree exactly 𝑚 (as small as possible) 

 
 Observation: Poor nodes convey rumors fast! 

– Let 𝑎 and 𝑏 be neighbors of a poor node 𝑥  
– If 𝑎 is informed, the expected time for 𝑥 to pull the rumor from 𝑎 is less than 𝑚  

– After that, it takes another less than 𝑚 rounds (in expectation) for 𝑥 to push the 
news to 𝑏  
 

𝑎  𝑏  

𝑥  

… 
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Why Are PA Graphs Faster (2)? 

 Large- and small-degree nodes: 
– hub: node with degree log𝑛 3 or greater 
– poor node: node with degree exactly 𝑚 (as small as possible) 

 
 Observation: Poor nodes convey rumors fast! 

– Let 𝑎 and 𝑏 be neighbors of a poor node 𝑥  
– If 𝑎 is informed, the expected time for 𝑥 to pull the rumor from 𝑎 is less than 𝑚  

– After that, it takes another less than 𝑚 rounds (in expectation) for 𝑥 to push the 
news to 𝑏  
 

 Key lemma: Between any two hubs, there is a path of length 𝑂(log 𝑛 / log log 𝑛) with 
every second node a poor node. 

 
 Key lemma + observation + some extra arguments: If one hub is informed, after 

𝑂(log 𝑛 / log log 𝑛) rounds all hubs are. 
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Equivalent description of the PA model (also Bollobás & Riordan (2004)) 
 

 For 𝑚 = 1 
– Choose 2𝑛 random numbers in [0,1]: 𝑥1,𝑦1, … , 𝑥𝑛,𝑦𝑛  
– If 𝑥𝑖 > 𝑦𝑖, exchange the two values 

 Pr (𝑦𝑖 ≤ 𝑟) = 𝑟2 

– Sort the (𝑥, 𝑦) pairs by increasing 𝑦-value; call them again (𝑥1,𝑦1), (𝑥2,𝑦2), … 
– For all 𝑘, vertex 𝑘 chooses the unique 𝑖 ≤  𝑘 as neighbor which satisfies 

𝑦𝑖−1  ≤  𝑥𝑘  <  𝑦𝑖  
 Note: 𝑥𝑘 is uniform in [0,𝑦𝑘] 

 For 𝑚 ≥  2: Generate 𝐺1𝑛𝑛 as above, then merge each 𝑚 consecutive nodes 
 

 Advantage: Many independent random variables, not a sequential process 
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Some More Results 

 Fountoulakis, Panagiotou, Sauerwald (SODA’12):  
– Chung-Lu graphs: variation of the classic Erdős-Rényi random graphs 

(independent edges) that yields a power-law degree distribution 
– Synchronized randomized rumor spreading in the push-pull model informs all 

but 𝑜(𝑛) nodes of the Chung-Lu graph 
 in Θ(log 𝑛) rounds, if the power-law exponent 𝛽 >  3 
 in Θ(log log 𝑛) rounds, if 2 <  𝛽 <  3 

[no result for 𝛽 =  3, the PA exponent] 
– Asynchronous: Nodes call at times triggered by (their private) Poisson clock 

(with rate 1  one call per time unit in expectation) 
 2 <  𝛽 <  3: most nodes informed after a constant  number of rounds! 

 
 D, Fouz, Friedrich (SWAT’12): 

– Asynchronous rumor spreading informs most nodes of the PA graph in  
𝑂( log𝑛 1 2⁄ ) time [not at all clear is this is sharp] 
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 Theorem: Randomized rumor spreading in the push-pull model informs the 
PA graph 𝐺𝑚𝑛  (with 𝑚 ≥  2) with high probability in 
– Θ(log 𝑛) rounds when choosing neighbors uniformly at random 
– Θ(log 𝑛 / log log 𝑛) rounds without double-contacts 
– asynchronous: most nodes informed after 𝑂( log𝑛 1 2⁄ ) rounds 
 

 Explanation: Interaction between hubs and poor nodes (constant degree) 
– hubs are available to be called  
– poor nodes quickly transport the news from one neighbor to all others 

 
 Difference visible in experiments. 
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Summary: Rumor Spreading  
in Preferential Attachment Graphs 

Merci  
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Part X: Rumor Spreading in  
Wireless Sensor Networks 

 Wireless sensor network: spatially distributed system of sensor nodes 
used for collecting data in a large area (often difficult to access) 
 

 Sensor node 
 radio transmitter and receiver: communication with near-by nodes 
 sensors: collect data 
 microcontroller 
 battery: crucial for the life-time of the system 

 
 Typical characteristics: Simple and cheap, so you don’t care about setting 

up a clever network, but you distribute the nodes in a simple fashion 
(randomly) 
 multi-hop network: communication is via intermediate nodes, so that 

the communication range can be kept small (saves energy) 
 

 
 



 Random geometric graph (RGG)  𝐺(𝑛, 𝑟): 
 Nodes: 𝑣1, … , 𝑣𝑛 ∈ 0,1 2 be chosen uniformly at random 
 Edges: {𝑣𝑖 , 𝑣𝑗} is an edge if and only if 𝑑 𝑣𝑖 , 𝑣𝑗 ≤ 𝑟 
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Mathematical Model 

Fig.: A random geometric graph 𝐺 256, 0.1  
[Wikipedia] 
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Properties of RGG 

 Theorem [Penrose (2003)]: If 𝑟 = (𝜋𝜋)−0.5 ln 𝑛 + 𝛼 0.5, then 
lim
𝑛→∞

Pr 𝐺 𝑛, 𝑟   is connected = exp −𝑒−𝛼  

 Theorem [Penrose (2003)]: There is a constant 𝑐 such that 
 if 𝑟 > 𝑐𝑛−0.5, then 𝐺(𝑛, 𝑟) has a “giant component”, that is, a connected 

component consisting of Θ(𝑛) vertices; the proportion of this 
component tends to one if 𝑟 = 𝛼𝑛−0.5 for 𝛼 → ∞ 

 if 𝑟 < 𝑐𝑛−0.5, then there is no giant component 
 

 Implications for wireless sensor networks obtained by randomly distribution 
nodes: 3 regimes 
 disconnected: 𝑟 < 𝑐𝑛−0.5  - all nodes can talk to only few others 
 giant component: There a large connected subnetwork, but some 

nodes are not part of it 
 connected: 𝑟 ≥ 1 + 𝜀 𝜋𝜋 −0.5 ln0.5 (𝑛) 
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Rumor Spreading in  
Well-Connected RGGs (1) 

 Well-connected regime: 𝑟 ≥ 𝐶𝑛−0.5 ln0.5 𝑛  for 𝐶 large enough. Typical 
computational geometry argument shows that 𝐺 is connected. 
 

 Key approach: Make your life discrete! 
 Partition the unit square 0,1 2 into Θ(1 𝑟2)⁄  squares of side length 
𝑙 = 𝑟 2 2 ⁄ = Θ(𝑟) 

 call two squares adjacent if they touch (vertical, horizontal, diagonal) 
 vertices in adjacent squares are adjacent in the RGG 

 

 Claim: Each square 𝑆 contains a similar number of vertices! 
 The number 𝑋𝑆 of vertices in 𝑆 is a sum of 𝑛 independent binary random 

variables 𝑋𝑖 with Pr 𝑋𝑖 = 1 = 𝑙2 = 𝑟2 8⁄ ≥ 𝐶2 ln (𝑛) 𝑛⁄ . Hence 
 𝐸 ≔ 𝐸 𝑋𝑆 = 𝑛 𝑟2 8⁄ ≥ 𝐶2ln (𝑛) 

 Pr 𝑋𝑆 − 𝐸 𝑋𝑆 ≥ 0.25𝐸 𝑋𝑆 ≤ 𝑛−2 when 𝐶 is sufficiently large. 
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Rumor Spreading in  
Well-Connected RGGs (2) 

 Properties of well connected RGGs (𝑟 ≥ 𝐶𝑛−0.5 ln0.5 𝑛  for 𝐶 large) 
 diameter Θ 1 𝑟⁄    

 upper bound: the graph of the squares has diameter Θ(1 𝑟⁄ ), each 
square contains at least one vertex, and there is an edge between 
any two vertices in neighboring squares 

 lower bound follows easily from the geometry 
 all degrees Θ(𝑛𝑟2): all vertices in the (usually) 8 neighboring squares 

are neighbors and all neighbors lie in the (usually 48) squares in 
distance at most 3; hence deg 𝑣 is the sum of a constant number of 𝑋𝑆 
 

 Degree-diameter bound: Rumors spread in time 𝑂(𝑛𝑛) 
 

 Observation: This bound becomes weaker for larger 𝑟 
 if this was true, then a larger communication power would reduce the 

rumor spreading speed 
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Rumor Spreading in  
Well-Connected RGGs (3) 

 Better: Two stage argument 
 Call a square informed if it contains one informed vertex. This gives a 

rumor spreading process similar to the one in 2D grids (time Θ(𝑟)) 
 Once all squares are informed (in the above sense), argue that what 

happens inside the square is similar to rumor spreading in a complete 
network (time Θ(log𝑛)) 

 

 Square process: 
 Since each vertex has a constant fraction of its neighbors in each of the 

8 neighbors, it takes expected constant time to call from one square to 
a given neighbor 

 “follow the path” argument (in grid of square): Θ(max {𝑟−1, log 𝑛}) rounds 
until each square has an informed node 
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Rumor Spreading in  
Well-Connected RGGs (4) 

 Making all squares fully informed (all vertices in the square are informed) 
 Each vertex has a probability greater than some constant 𝑐 to call 

another vertex in its own square (which then is chosen uniformly at 
random from the square) 

 Hence ignoring all calls that cross square boundaries, each square is 
running a rumor spreading process in a complete graph in which each 
informed vertex only call with probability 𝑐.  

 This process is very similar to the usual rumor spreading process in 
complete graphs, but slowed down by a factor of at most 1/𝑐. Hence a 
large log (𝑛) runtime is enough to have each square fully informed with 
probability 1 − 1 𝑛2⁄ . 

 Union bound: All squares fully informed… additional 𝑂(log𝑛) rounds for 
each square to inform itself 
 

 Theorem: With high probability a well-connected RGGs is such that rumors 
spread in time Θ(𝑑𝑑𝑑𝑑 𝐺 + log𝑛) with probability 1 − 1 𝑛⁄ . 



 Rumor spreading is an efficient epidemic algorithm to disseminate 
information in various network topologies 
 hypercubes (as models for man-made communication networks) 
 random geometric graphs (model for wireless sensor networks) 
 preferential attachment graphs (model for social networks) 

 

 Often, we can prove a rumor spreading time of 𝑂(diam 𝐺), which naturally 
is asymptotically optimal 
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Summary 
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