Geometric Inhomogeneous Random Graphs (GIRGs)

Johannes Lengler (ETH Zürich)

joint work with K. Bringmann, R. Keusch, C. Koch
Motivation: Network Models

- want to develop good algorithms for large real-world networks
 want to have asymptotic statements, benchmarks, …

- real network data is scarce and hard to obtain
 social: facebook, twitter, mobile phone, friendship, collaboration..
 technological: internet, www, web of things,…

- these networks share many properties
 power law degrees, (ultra-)small world, strong clustering, small separators,…
Motivation: Network Models

<table>
<thead>
<tr>
<th>properties models</th>
<th>power law degree?</th>
<th>small world?</th>
<th>clustering?</th>
<th>non-rigid clust.?</th>
<th>easy to analyze?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleinberg</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>pref. attachm.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Chung-Lu</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>geom. random</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>hyperbolic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>spatial pref. att.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>GIRGs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Motivation: Hyperbolic Random Graphs

- best model so far: hyperbolic random graphs

- each vertex draws a random position in a hyperbolic disc of radius R.

- two points connect if and only if their distance is at most R.

- has many nice properties:
 power law degrees, clustering, small world, …
Motivation: Hyperbolic Random Graphs

- best model so far: *hyperbolic random graphs*

- each vertex draws a random position in a hyperbolic disc of radius \(R \).

- two points connect if and only if their distance is at most \(R \).

- has many nice properties:
 - power law degrees, clustering, small world, …

BUT: kind of complicated…. 😐

\[
\bar{k}(r) = \frac{N}{2\pi(\cosh R - 1)} \left\{ 2\pi(\cosh R - 1) - 2\cosh R \left(\arcsin \frac{\tanh(r/2)}{\tanh R} + \arctan \frac{\cosh R \sinh(r/2)}{\sqrt{\sinh(R + r/2) \sinh(R - r/2)}} \right) \right. \\
+ \left. \arctan \frac{(\cosh R + \cosh r)\sqrt{\cosh 2R - \cosh r}}{\sqrt{2}(\sinh^2 R - \cosh R - \cosh r) \sinh(r/2)} - \arctan \frac{(\cosh R - \cosh r)\sqrt{\cosh 2R - \cosh r}}{\sqrt{2}(\sinh^2 R + \cosh R - \cosh r) \sinh(r/2)} \right\}, \quad (11)
\]
Motivation: GIRGs

GIRGs (Geometric Inhomogeneous Random Graphs)

- are natural.
- are very easy to analyze.
- are extremely flexible.
Motivation: GIRGs

GIRGs (Geometric Inhomogeneous Random Graphs)

- are natural.
- are very easy to analyze.
- are extremely flexible.
Motivation: GIRGs

GIRGs (Geometric Inhomogeneous Random Graphs)

- are natural.
- are very easy to analyze.
- are extremely flexible.
Motivation: GIRGs

GIRGs (Geometric Inhomogeneous Random Graphs)

- are natural.
- are very easy to analyze.
- are extremely flexible.
Model 1: Euclidean
Model 1: Euclidean

- We start with n vertices.
Model 1: Euclidean

- We start with n vertices.

- Each vertex v_i draws independently a weight w_i from a power law distribution:

$$\Pr[w_i = w] = \Theta(w^{-\beta}), \quad \text{where } 2 < \beta < 3.$$
Model 1: Euclidean

- We start with n vertices.

- Each vertex v_i draws independently a weight w_i from a power law distribution:
 \[\Pr[w_i = w] = \Theta(w^{-\beta}), \quad \text{where} \ 2 < \beta < 3. \]

- Each vertex v_i draws independently a position x_i from the hypercube $[0, 1]^d$.
Model 1: Euclidean

- We start with n vertices.

- Each vertex v_i draws independently a weight w_i from a power law distribution:

$$\Pr[w_i = w] = \Theta(w^{-\beta}), \quad \text{where } 2 < \beta < 3.$$

- Each vertex v_i draws independently a position x_i from the hypercube $[0, 1]^d$.

- For each pair (i,j), we \textit{independently} connect v_i and v_j with prob.

$$p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, |x_i - x_j|^{-d\alpha} \left(\frac{w_i w_j}{n} \right)^{\alpha} \right\} \right),$$

where $\alpha > 1$ is a parameter.
Lemma: For any fixed x_i, w_i, w_j,

1. $\Pr_{x,j}[v_i \sim v_j] = \Theta \left(\min \{ 1, \frac{w_i w_j}{n} \} \right)$.

2. $\mathbb{E}[\deg(v_i)] = \Theta(w_i)$.
Basic Properties

Lemma: For any fixed x_i, w_i, w_j,

1. $\Pr_{x_j} [v_i \sim v_j] = \Theta \left(\min \{ 1, \frac{w_i w_j}{n} \} \right)$.

2. $\mathbb{E}[\deg(v_i)] = \Theta(w_i)$.

Corollary:

- The degree of a vertex v_i of weight w_i is Poisson distributed (in the limit) with mean $\Theta(w_i)$.

- $\mathbb{E}[w_i] = \Theta(1) \Rightarrow$ There are $O(n)$ edges.
(Ultra-)Small World

Theorem: Whp,

1. the graph contains a giant component of linear size.
2. all other components are of polylog size.
3. the diameter of the graph is polylogarithmic.
4. the average distance in the giant is \((2 + o(1)) \frac{\log \log n}{\log(\beta - 2)}\).
(Ultra-)Small World

Theorem: Whp,

1. the graph contains a giant component of linear size.
2. all other components are of polylog size.
3. the diameter of the graph is polylogarithmic.
4. the average distance in the giant is \((2 + o(1)) \frac{\log \log n}{\log(\beta - 2)}\).

- holds in the most general model (including Chung-Lu graphs)
- same is true for other power-law graph models (e.g., preferential attachment)
Clustering

Definition:
The clustering coefficient of a graph is

$$cc := \Pr_{u,v,w}[v \sim w \mid u \in V, v, w \in \Gamma(u)].$$
Clustering

Definition:
The clustering coefficient of a graph is

\[cc := \Pr_{u,v,w}[v \sim w \mid u \in V, v, w \in \Gamma(u)]. \]

- Social (and other) networks have large clustering coefficient.
- most models with power law degrees have \(cc = \Theta(1/n) \).
 (Chung-Lu, preferential attachment, …)
- exception: hyperbolic random graphs have \(cc = \Omega(1) \).
Definition:
The **clustering coefficient** of a graph is
\[
cc := \Pr_{u,v,w}[v \sim w \mid u \in V, v, w \in \Gamma(u)].
\]

- Social (and other) networks have large clustering coefficient.
- most models with power law degrees have \(cc = \Theta(1/n) \).
 (Chung-Lu, preferential attachment, …)
- **exception**: hyperbolic random graphs have \(cc = \Omega(1) \).

Theorem: GIRGs have \(cc = \Omega(1) \).
Theorem: GIRGs have *small separators*:

It suffices to delete $n^{1-\Omega(1)}$ edges from the graph to split the giant into two components of linear size.
Stability

Theorem: GIRGs have small separators:

It suffices to delete $n^{1-o(1)}$ edges from the graph to split the giant into two components of linear size.

- was unstudied for hyperbolic random graphs.
- Chung Lu and pref. attachment models are different: Removing $o(n)$ edges or vertices reduces the giant by at most $o(n)$.
- Real-world networks have small separators.
Entropy/Compression

Observation:
The web graph can be stored using \(\text{bits per edge} \).
Observation:
The web graph can be stored using 2-3 (!) bits per edge.
Entropy/Compression

Observation:
The web graph can be stored using $2-3 \, (!)$ bits per edge.

Theorem: We can store a GIRG with expected $O(n)$ bits, so that we can answer the queries
- “What is the degree of v?”
- “What is the i-th neighbor of v?”
in time $O(1)$. The algorithm has expected runtime $O(n)$.
Entropy/Compression

Observation:
The web graph can be stored using $2-3$ (!) bits per edge.

Theorem: We can store a GIRG with expected $O(n)$ bits, so that we can answer the queries
- “What is the degree of v?”
- “What is the i-th neighbor of v?”
in time $O(1)$. The algorithm has expected runtime $O(n)$.

- compression algorithm for hyperbolic graphs was known.
- Chung Lu and pref. attachment models have entropy $\Theta(n \log n)$. (I.e., need $\Theta(\log n)$ bits per edge.)
Theorem: For every concrete function

\[p(w_i, w_j, x_i, x_j) = \Theta \left(\min \{ 1, \left(|x_i - x_j|^{-d} \cdot \frac{w_i w_j}{n} \right)^\alpha \} \right), \]

we can sample a GIRG in expected linear time (under some technical assumptions).
Sampling

Theorem: For every concrete function

\[p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(|x_i - x_j|^{-d} \cdot \frac{w_i w_j}{n} \right)^\alpha \right\} \right), \]

we can sample a GIRG in expected linear time (under some technical assumptions).

- Naive sampling needs time \(\Theta(n^2) \).
- Efficient algorithms were known for Chung-Lu model and others.
- Best previous algorithm for hyperbolic random graphs had runtime \(\Theta(n^{3/2}) \).
Greedy Routing
Greedy Routing

- Vertex s wants to send message to vertex t.
- s only knows position and weight of its neighbors and of t.
Greedy Routing

- Vertex s wants to send message to vertex t.
- s only knows position and weight of its neighbors and of t
- We try to maximize greedily \(\varphi(v) := \Pr[t \text{ is neighbor of } v] \).
Greedy Routing

- Vertex \(s \) wants to send message to vertex \(t \).
- \(s \) only knows position and weight of its neighbors and of \(t \).

- We try to maximize greedily \(\varphi(v) := \Pr[t \text{ is neighbor of } v] \).

- ALGORITHM (greedy routing):
 REPEAT until we find \(t \):
 - \(s' := \) best neighbor of \(s \)
 - IF \(\varphi(s') > \varphi(s) \) THEN \(s' := s \) ELSE fail.
Greedy Routing

- Vertex s wants to send message to vertex t.
- s only knows position and weight of its neighbors and of t
- We try to maximize greedily $\varphi(v) := \Pr[t \text{ is neighbor of } v]$.

ALGORITHM (greedy routing):
REPEAT until we find t:
- $s' := \text{best neighbor of } s$
- IF $\varphi(s') > \varphi(s)$ THEN $s' := s$ ELSE fail.

Theorem: With probability $\Omega(1)$, greedy routing succeeds in $(2 + o(1)) \frac{\log \log n}{|\log(\beta - 2)|}$ steps.

With small modifications (e.g. backtracking), it succeeds within this time whp and in expectation.
Bootstrap Percolation

- We fix a region B of volume \cdot
- In round 0, every vertex in B turns active with probability p.
- An active vertex stays active forever.
- A vertex has with k active neighbors turns active next round.
Bootstrap Percolation

- We fix a region B of volume ν.
- In round 0, every vertex in B turns active with probability p.
- An active vertex stays active forever.
- A vertex has with k active neighbors turns active next round.

Theorem: Let $p_0 := \nu^{-1}/(\beta-1)$. Then
- if $p \gg p_0$ then $\Theta(n)$ vertices turn active whp;
- if $p \ll p_0$ then no vertex turns active after round 0 whp;
- if $p = \Theta(p_0)$ then either case happens with prob $\Omega(1)$.

Bootstrap Percolation

- We fix a region B of volume.
- In round 0, every vertex in B turns active with probability p.
- An active vertex stays active forever.
- A vertex has with k active neighbors turns active next round.

Theorem: Let $p_0 := \nu^{-1}/(\beta-1)$. Then

- if $p \gg p_0$ then $\Theta(n)$ vertices turn active whp;
- if $p \ll p_0$ then no vertex turns active after round 0 whp;
- if $p = \Theta(p_0)$ then either case happens with prob $\Omega(1)$.

Theorem: Assume $\alpha > \beta - 1$. Let v be a vertex of weight $w \gg 1$ and distance $r \geq \ldots$ from B. The whp v turns active in round $(1 \pm o(1))\ell(v) \pm O(1)$, where

$$
\ell(v) := \begin{cases}
\max\{0, \log \log_\nu (|r^d n/w|/|\log(\beta - 2)|)\}, & \text{if } w > (r^d n)^{1/(\beta-1)}, \\
(2 \log \log_\nu(r^d n) - \log \log_\nu w)/|\log(\beta - 2)|, & \text{if } w \leq (r^d n)^{1/(\beta-1)}.
\end{cases}
$$
Non-Euclidean GIRGs

Model 1: Euclidean

Model 2: GIRGs

Model 3: General

Chung-Lu

Norros-Reittu

hyperbolic
Non-Euclidean GIRGs

Model 1: Euclidean

Model 2: GIRGs

Model 3: General

hyperbolic

Chung-Lu

Norros-Reittu
Model 1: Euclidean

- We start with n vertices.

- Each vertex v_i draws independently a weight w_i from a power law distribution:

 \[\Pr[w_i = w] = \Theta(w^{-\beta}), \text{ where } 2 < \beta < 3. \]

- Each vertex v_i draws independently a position x_i from the hypercube $[0, 1]^d$.

- For each pair (i,j), we \textit{independently} connect v_i and v_j with prob.

 \[p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{|x_i - x_j|^{-d} \cdot w_i w_j}{n} \right)^{\alpha} \right\} \right), \]

 where $\alpha > 1$ is a parameter,
Model 2: Distance

- We start with n vertices.

- Each vertex v_i draws independently a weight w_i from a power law distribution:
 \[
 \Pr[w_i = w] = \Theta(w^{-\beta}), \quad \text{where } 2 < \beta < 3.
 \]

- Each vertex v_i draws independently a position x_i from the hypercube $[0, 1]^d$.

- For each pair (i,j), we independently connect v_i and v_j with prob.
 \[
 p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta\left(\min\left\{1, \left(\frac{\text{Vol}(B_{i,j})^{-1}}{n}\right)^{\alpha}\right\}\right),
 \]
 where $\alpha > 1$ is a parameter,
 and $B_{i,j}$ is the ball around x_i with radius $d(x_i, x_j)$.
Model 2: Distance

For each pair \((i,j)\), we independently connect \(v_i\) and \(v_j\) with prob.

\[
p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{\text{Vol}(B_{i,j})^{-1} \cdot \frac{w_i w_j}{n}}{\alpha} \right) \right\} \right),
\]

where \(\alpha > 1\) is a parameter,

and \(B_{i,j}\) is the ball around \(x_i\) with radius \(d(x_i, x_j)\).

Example: minimum component distance
Model 2: Distance

- For each pair \((i,j)\), we independently connect \(v_i\) and \(v_j\) with prob.

\[
p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{\text{Vol}(B_{i,j})^{-1}}{n} \right)^\alpha \frac{w_i w_j}{n} \right\} \right),
\]

where \(\alpha > 1\) is a parameter,

and \(B_{i,j}\) is the ball around \(x_i\) with radius \(d(x_i, x_j)\).

Example: minimum component distance
For each pair \((i,j)\), we *independently* connect \(v_i\) and \(v_j\) with prob.

\[
p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{\text{Vol}(B_{i,j})^{-1}}{n} \right)^{\alpha} \right\} \right),
\]

where \(\alpha > 1\) is a parameter, and \(B_{i,j}\) is the ball around \(x_i\) with radius \(d(x_i, x_j)\).

Example: minimum component distance

\[
\varepsilon\text{-neighborhood}
\]
Model 2: Distance

- For each pair (i,j), we independently connect v_i and v_j with prob.

$$p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{\text{Vol}(B_{i,j})^{-1} \cdot w_i w_j}{n} \right)^{\alpha} \right\} \right),$$

where $\alpha > 1$ is a parameter,
and $B_{i,j}$ is the ball around x_i with radius $d(x_i, x_j)$.

Example: minimum component distance
Model 2: Distance

- For each pair \((i,j)\), we \textit{independently} connect \(v_i\) and \(v_j\) with prob.

\[
p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{\text{Vol}(B_{i,j})^{-1}}{n} \right)^{\alpha} \right\} \right),
\]

where \(\alpha > 1\) is a parameter,
and \(B_{i,j}\) is the ball around \(x_i\) with radius \(d(x_i, x_j)\).

Example: minimum component distance
For each pair \((i,j)\), we \textit{independently} connect \(v_i\) and \(v_j\) with prob.

\[
p_{i,j} = p(w_i, w_j, x_i, x_j) = \Theta \left(\min \left\{ 1, \left(\frac{\text{Vol}(B_{i,j})^{-1}}{n} \right)^{\alpha} \right\} \right),
\]

where \(\alpha > 1\) is a parameter,

and \(B_{i,j}\) is the ball around \(x_i\) with radius \(d(x_i, x_j)\).

Example: minimum component distance

\(\varepsilon\)-neighborhood
Summary

General Model:
- power law degrees
- small world: components, diameter, average distance

Distance Model:
- strong clustering (if distance function is “nice”)
- may be non-rigid clustering

Euclidean Model (or other norms):
- small separators
- small entropy, efficient compression
- linear time sampling
Future Work

Algorithms
- communication protocols
- de-anonymization

Processes
- infection processes (work in progress)
- information dissemination

Others
- recovering the underlying geometry
- attacks
- dynamic graph problems
- games on graphs
Thank you for your attention!

Questions?