
CHAPTER 6: FELLER-DYNKIN PROCESSES

1. Preliminaries

In Chapter 5 on Markov processes with countable state spaces, we have investigated in which
sense we may think of transition functions Pt as exponentials exp(tQ) of matrices Q with certain
properties: In finite state spaces, there is a one-to-one correspondence between standard transition
functions and conservative Q-matrices, given by

Pt = exp(tQ), Q =
d

dt
Pt|t=0.

In countably infinite spaces, the situation was complicated by possibly instataneous states (c(x) =
|q(x, x)| = ∞), non-conservative matrices and the phenomenon of explosion. It is natural to ask
whether analogous relations can be formulated for uncountable state spaces, and what the appro-
priate substitute for the notion of conservative Q-matrix is.

Brownian motion. To get a feel for what changes in relation with finite or countable state spaces,
let us look at the transition function of the Brownian family X

Pt(x,A) = Px(Xt ∈ A) =

∫
A

1√
2πt

exp
(
− (x− y)2

2t

)
dy

and the induced family of operators Pt : bE → bE given by

(Ptf)(x) = Ex[f(Xt)] =

∫
R

1√
2πt

exp
(
− (x− y)2

2t

)
f(y)dy.

Changing variables as y = x+
√
tz we see that

Ptf(x) =
1√
2π

∫ ∞
−∞

f(x+
√
tz) exp

(
−z

2

2

)
dz = E[f(x+

√
tZ)]

with Z ∼ N (0, 1) a standard normal variable. If f ∈ C2(R), then

f(x+
√
tz) = f(x) + f ′(x)

√
tz +

1

2
f ′′(x)tz2 + o(t)

as t→ 0 at fixed z and x. This suggests (but does not prove!) that

Ptf(x) = f(x) +
√
tf ′(x)E[Z] +

1

2
f ′′(x)tE[Z2] + o(t2) = f(x) + t

1

2
f ′′(x) + o(t)

and
d

dt
(Ptf)(x)

∣∣∣
t=0

=
1

2
f ′′(x).

So if we try to generalize the relation between Q-matrices and transition function from countable
state spaces, it is reasonable to expect that for Brownian motion, the linear map f 7→ 1

2f
′′ should

play a certain role. Notice that 1
2f
′′ is not well-defined for all f ∈ bE , even though Ptf is. So the

situation is more complicated than for standard transition functions in countable state spaces, for
which we were able to define q(x, y) for all x, y. Instead of conservative or weakly conservative
Q-matrices, we are going to deal with unbounded linear operators.

Substitute for standardness. Let us go a step back and ask how we might generalize the notion
of standardness. The definition in terms of matrix elements makes no sense for uncountable state
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2 CHAPTER 6: FELLER-DYNKIN PROCESSES

spaces, but we can try something else. If (Pt) is a standard transition function on a countable
space E, then for every bounded function f : E → R,

|Ptf(x)− f(x)| ≤
∑
y∈E
|Pt(x, y)− δx,y| |f(y)| ≤ 2||f ||∞(1− Pt(x, x))→ 0

with
||f || := sup

y∈E
|f(y)|.

If E is finite, we even have the stronger property

||Ptf − f || → 0 as t→ 0.

This leaves us with two natural substitutes for standardness: we ask that Ptf → f as t → 0,
either pointwise on R or uniformly on R. Pointwise convergence is easier to satisfy but uniform
convergence is more convenient from an analytic point of view, so we go for the latter.

Unfortunately, for the transition function of Brownian motion, it is not true that ||Ptf−f ||∞ →
0 for all f ∈ bE (exercise!). This can be remedied by only considering functions f that are con-
tinuous and go to zero as |x| → ∞; the space of such functions is denoted C0(R) (exercise!).
Intuitively, this is not so surprising: we ask for Ex[f(Xt)]→ f(x) as t→ 0. If f is not continuous,
there is no reason why this should be true. For the uniformity of the convergence, it is worth
observing that for all fixed y 6= x, (2πt)−1/2 exp(−(x− y)2/(2t)) goes to zero as t→∞, however
the convergence is slower and slower the larger |y − x| is: if y is very far away from X0 = x,
it should take the process longer to reach y. So for the convergence Ptf → f to be uniform, it
is natural to ask for some condition on f that guarantees that far away y do not matter that much.

Locally compact spaces with countable base. In general topological state spaces E, we say that a
function f : E → R vanishes at infinity if, for every ε > 0, there exists a compact set K ⊂ E such
that supE\K |f | ≤ ε, and we define

C0(E) := {f : E → R | f is continuous and vanishes at infinity}
Cb(E) := {f : E → R | f is continuous and bounded}
C(E) := {f : E → R | f is continuous}.

If E is compact, then every continuous function is bounded and vanishes at infinity, i.e., C0(E) =
Cb(E) = C(E), but in general we only know

C0(E) ⊂ Cb(E) ⊂ C(E).

There exist Polish spaces E for which C0(E) consists only of one element, the function that is
everywhere equal to zero. This is clearly not what we want. A sufficient condition that guarantees
that C0(E) is rich enough is that E is locally compact with countable base, or lccb for short. This
means, by definition, that

(i) There exists a countable family (On)n∈N of open sets such that every open set O ⊂ E
can be written as a union O = ∪i∈IOi for some I ⊂ N. This property is automatically
satisfied when the space is metric and separable (take the open balls with rational radius
and centers in a dense countable set).

(ii) For every x ∈ E, there exists an open set O ⊂ E such that x ∈ O and the closure O is
compact.

For example, R is lccb but C[0, 1] with the supremum norm and topology of uniform convergence
is not. Every lccb space is Polish, but the converse is not true.

Some properties of lccb spaces are collected in Appendix A.

2. Main definitions and theorems

2.1. Feller-Dynkin semi-group and Feller-Dynkin family.

Definition 1. Let E be an lccb space. A Feller-Dynkin semi-group (abbreviated FD semi-group)
on E is a family (Pt)t≥0 such that:
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(i) Each Pt : C0(E)→ C0(E) is a linear operator.
(ii) Pt+s = PtPs for all s, t ≥ 0 and P0 = I.
(iii) We have 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1, for all f ∈ C0(E) and t ≥ 0.
(iv) ||Ptf − f || → 0 as t↘ 0, for all f ∈ C0(E).

We call a normal Markov family X a Feller-Dynkin family ( FD family) if it is has càdlàg sample
paths and the family (Pt)t≥0 given by (Ptf)(x) = Ex[f(Xt)] is a Feller-Dynkin semi-group.

For a FD family we may assume without loss of generality that the filtration is right-continuous,
moreover the family is strong Markov. The proof is completely analogous to our earlier theorems,
the only difference is that we use C0(E) instead of Cb(E).1

Remark (Strongly continuous contraction semi-group). Property (iv) is called strong continuity.
Property (iii) implies that

(iii’) ∀f ∈ C0(E) ∀t ≥ 0 : ||Ptf || ≤ ||f ||,
i.e., each Pt is a contraction. Families that satisfy (i), (ii), (iii’), and (iv) are called strongly
continuous contraction semi-groups. They can be defined in general Banach spaces (not necessarily
C0(E)).

Let us have a closer look at what we are really asking for a family to be Feller-Dynkin. Let X be
a Markov family with càdlàg sample paths and transition function Pt(x,A) = Px(Xt ∈ A). We
have noted earlier that if f ∈ bE , then the function Ptf defined by Ptf(x) =

∫
E
Pt(x, dy)f(y) =

Ex[f(Xt)] is in bE as well. The map Pt is clearly linear. The semi-group property Pt+s = PtPs is
inherited from the Chapman-Kolmogorov equations. The implication 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1
holds true for all f ∈ bE because E 3 A 7→ Pt(x,A) is a probability measure for all t > 0 and
x ∈ E. So we really only need to check two things: First, whether it is true that

f ∈ C0(E) ⇒ ∀t > 0 : Ptf ∈ C0(E). (1)

Second, is the semi-group strongly continuous on C0(E) (property (iv) of Definition 1)? Notice
that, because of the right-continuity of sample paths and normality, we know that for all f ∈ C0(E),
Ptf(x) = Ex[f(Xt)] → Ex[f(X0)] = f(x) as t → 0. The following lemma tells us that strong
continuity then comes for free.

Lemma 2. Let E be an lccb space and (Pt)t≥0 a family of operators that satisfies properties (i),
(ii), and (iii) of Definition 1, and in addition

(iv′) ∀f ∈ C0(E) ∀x ∈ E : lim
t→0

(Ptf)(x) = f(x).

Then (Pt)t≥0 also satisfies (iv) of Definition 1 and it is a FD semi-group.

The important consequence for us is the following:

A normal Markov family with càdlàg sample paths is a FD family if and only if
its transition function preserves C0(E), i.e., Eq. (1) holds true.

It is not too difficult to check, with the help of the Riesz-Markov theorem (see Appendix A), that
for every FD semi-group there is a uniquely defined sub-Markov transition function (Tt)t≥0 such
that (Ptf)(x) =

∫
E
Tt(x, dy)f(y). For (Tt)t≥0 to be a Markov transition function, it is necessary

and sufficient that the semi-group satisfies an additional condition. Notice that 1 ∈ C0(E) if and
only if E is compact.

Definition 3. Let E be an lccb space. We call (Pt)t≥0 a Markovian FD semi-group if it is a FD
semi-group and in addition

(v) If E is compact: Pt1 = 1 for all t > 0. If E is not compact: there is a sequence (fn)n∈N
with fn → 1 pointwise and supn ||fn|| <∞ such that Ptfn → 1 pointwise.

1Remember that one of the key elements was a functional monotone class theorem, applied to the multplicative

class Cb(E), which in metric spaces generates the Borel σ-algebra. In lccb spaces, something still works with C0(E)
as well because the Borel σ-algebra is already generated by the smaller class C0(E).
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2.2. Infinitesimal generator.

Definition 4. Let E be an lccb space and (Pt)t≥0 a FD semi-group on E. The infinitesimal
generator of (Pt)t≥0 is the operator L : D(L)→ C0(E) with domain

D(L) = {f ∈ C0(E) | ∃g ∈ C0(E) : lim
t↘0
|| 1t (Ptf − f)− g|| = 0}

that maps f ∈ D(L) to

Lf = lim
t↘0

1

t
(Ptf − f).

Conditions (i)–(iii) in the following theorem provide a substitute for the notion of weakly conser-
vative Q-matrix.

Theorem 5. Let E be an lccb space. An operator L : D(L)→ C0(E) is the infinitesimal generator
of a FD semi-group if and only if the following three conditions hold true:

(i) D(L) is a dense subspace of C0(E).
(ii) L satisfies the positive maximum principle, i.e., for every f ∈ D(L) and every maximizer

x0 ∈ E of f with f(x0) ≥ 0,2 we have (Lf)(x0) ≤ 0.
(iii) There exists a λ > 0 such that R(λI − L) = C0(E).

Condition (i) is the next best thing to ask for if the generator L has a domain smaller than C0(E).
Condition (ii) goes well with the candidate generator Lf = 1

2f
′′ (and yet to be determined domain

D(L)), it replaces the conditions on the signs of the matrix elements of a weakly conservative Q-
matrix and on its row sums. Condition (iii) is usually the hardest to check, it does not work if
the domain D(L) is too small. Conditions (ii’) below and (iii) reflect that a weakly conservative
Q-matrix in finite state space E has no strictly positive eigenvalue, see the remark below.

Remark (Dissipativity, Hille-Yosida theorem). Condition (ii) implies that L is dissipative,3 i.e.,

(ii’) ∀λ > 0 ∀f ∈ D(L) : ||λf − Lf || ≥ λ||f ||. (2)

See [EK86, Chapter 4.2, Lemma 2.1]. The Hille-Yosida theorem says that an operator L is the
generator of a strongly continuous contraction semi-group if and only if it satisfies conditions
(i),(ii’), and (iii). The Hille-Yosida theorem holds true in general Banach spaces.

Remark (Bijectivity of λI−L). Later we will see that if L satisfies (i), (ii), and (iii), then condition
(iii) is actually satisfies for all λ > 0 so that the operator λI − L : D(L) → C0(E) is surjective
for all λ > 0. The dissipativity (ii’) implies that the operator λI −L : D(L)→ C0(E) is injective
with bounded inverse, ||(λI − L)−1g|| ≤ 1

λ ||g||. Thus λI − L is in fact bijective with bounded
inverse. The counterpart in finite state spaces is the following: If Q is a conservative Q-matrix in
a finite state space E, then Q cannot have strictly positive eigenvalues. In fact, one knows a little
more: all eigenvalues of Q must lie in the complex half-plane {λ ∈ C | Reλ ≤ 0} (exercise!).

The additional condition of the following proposition replaces the condition that a conservative
Q-matrix has row sums equal to zero.

Proposition 6. Let E be an lccb space. An operator L : D(L) → C0(E) is the infinitesimal
generator of a Markovian FD semi-group if and only if it satisfies the conditions (i) to (iii) from
Theorem 5 and in addition:

• If E is compact: 1 ∈ D(L), and L1 = 0,
• If E is not compact: for all sufficiently small λ > 0, there exists a sequence (fn)n∈N (that

may depend on λ) so that gn = fn − λLfn satisfies supn ||gn|| < ∞ and both fn and gn
converge to 1 pointwise.

2CORRECTION!! the additional condition f(x0) ≥ 0 was missing in class and in earlier versions of these notes,
it is only needed when E is compact and FD semi-group is really sub-Markovian and not Markovian.

3The word is explained as follows: Suppose that we work in a Hilbert space with scalar product 〈·, ·〉 and

norm ||f || =
√
〈f, f〉 (instead of the supremum norm). Then the condition (2) is equivalent to Re 〈f, Lf〉 ≤ 0

for all f , from which we may in turn deduce that d
dt
|| exp(tL)f ||2 ≤ 0. In some PDE applications, the Hilbert

space might be L2(R3) and |u(x, t)|2 := |(exp(tL)f)(x)|2 may have the interpretation of an energy density. Then
d
dt

∫
R3 |u(x, t)|2dx ≤ 0 says that the total energy can only decrease or be dissipated, but never increase.
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2.3. Canonical process associated with a given FD semi-group. In order to show that for a
given Markovian FD semi-group an associated FD family exists, we construct the canonical version.
Let Ω = DE [0,∞) be the space of càdlàg functions ω : [0,∞)→ E. For t ≥ 0, let Xt(ω) := ω(t).
Further let F := σ(Xt, t ≥ 0) and F0

t := σ(Xs, s ≥ t). Finally let (θsω)(t) := ω(s+ t).

Theorem 7. Let E be an lccb space and (Pt)t≥0 a Markovian FD semigroup on E. Then there
exists a uniquely defined family (Px)x∈E of probability measures on (Ω,F) such that

X = (Ω,F , (F0
t )t≥0, (Px)x∈E , (Xt)t≥0, (θs)s≥0)

is a FD family with Ex[f(Xt)] = (Ptf)(x) for all f ∈ C0(E), t ≥ 0, x ∈ E.

Remark (Sub-Markov case). The sub-Markov case is usually dealt with by making the state space
a little larger. Let ∂ be some element not in E, called coffin or cemetery, and E∂ := E ∪ {∂}.
Equip E∂ with E∂ := σ(B(E), {∂}), i.e., the smallest σ-algebra that contains the singleton {∂}
and all sets from the Borel σ-algebra E. Extend the sub-Markov transition function (Pt)t≥0 as
follows:

P ∂t (x, {∂}) := 1− Pt(x,E) (x ∈ E),

P ∂t (x,A) := Pt(x,A) (x ∈ E,A ∈ B(E)),

P ∂t (∂, ·) := δ∂(·).

Then (P ∂t )t≥0 is a transition function on (E∂ , E∂). For example, if E = {1, 2}, we may represent
Pt and P ∂t by 2× 2 and 3× 3 stochastic matrices, respectively, and

P ∂t =

Pt(1, 1) Pt(1, 2) 1− Pt(1, 1)− Pt(1, 2)
Pt(2, 1) Pt(2, 2) 1− Pt(2, 1)− Pt(2, 2)

0 0 1

 .

Each function f ∈ C0(E) is extended to a function f : E∂ → R by defining f(∂) := 0; we have
(P ∂t f)(x) = (Ptf)(x) for all x ∈ E. So as far as functions f ∈ C0(E) are concerned, there is no
difference between the extended semi-group and the original semi-group.

The path space is extended as follows: let Ω∂ be the set of paths ω : R+ → E∂ such that:

• either ω(t) ∈ E for all t ≥ 0, and t 7→ ω(t) is càdlàg,
• or there exists ζ(ω) > 0 such that ω(t) = ∂ for all t ≥ ζ(ω), ω(t) ∈ E for all t < ζ(ω), and
ω(·) is right-continuous and has left limits in every t0 < ζ(ω),

• or ω(t) = ∂ for all t ≥ 0.

We do not ask for the existence of left limits as t ↗ ζ(ω). Define X∂
t (ω) := ω(t). Then an

analogue of Theorem 7 holds true with Ω replaced with Ω∂ , and the natural choices of σ-algebra,
filtration, and shift operators. The definition of ζ(ω) is extended to all ω ∈ Ω by

ζ(ω) := inf{t ≥ 0 | X∂
t (ω) = ∂}.

ζ is the life-time of the process. See [RW94, Section III.7].

3. Important examples

3.1. Finite and countable state spaces.

Example 1 (Conservative finite Q-matrices). Let E be a finite set with cardinality n ∈ N, equipped
with the discrete topology, and Q a conservative Q-matrix. Then E is lccb and in fact compact,
and we can identify C0(E) = C(E) with Rn. Let L be the operator with domain D(L) = C0(E)
and

Lf(x) =
∑
y∈E

q(x, y)f(y).

Notice that, because of the conservativity of Q,

Lf(x) = −c(x)f(x) +
∑
y∈E:
y 6=x

q(x, y)f(y) =
∑
y∈E

q(x, y)
(
f(y)− f(x)

)
.
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Then L satisfies conditions (i)–(iii) from Theorem 5, the associated FD semi-group is given by
Pt = exp(tQ) (exercise!).

More generally, if E be a countable space, equipped with the discrete topology, we may ask two
questions:

(1) True or false: A standard transition function (Pt)t≥0 induces a Feller-Dynkin semi-group
if and only if it has a weakly conservative Q-matrix.

(2) Let Q be a conservative Q-matrix. Consider the linear operator LQ in C0(E) with domain

D(LQ) :=
{
f ∈ C0(E) | the map x 7→

∑
y∈E

q(x, y)
(
f(y)− f(x)

)
is in C0(E)

}
and LQf(x) :=

∑
y∈E q(x, y)(f(y) − f(x)). True or false: LQ is a FD generator if and

only if the minimal solution (Pt)t≥0 is stochastic (i.e., there is no explosion).

It turns out that the answer to both question is: false. We sketch why and leave the details as
exercise: Consider for example E = N0. Then a standard transition function (Pt)t≥0 in E is FD
if and only if, for all t > 0 and y ∈ N0,

lim
|x|→∞

Pt(x, y) = 0,

i.e., for each column of Pt, the matrix elements go to zero as you move further and further down
the column. The probabilistic interpretation is that

Feller-Dynkin means that the process cannot come in from infinity in finite time

(think about death chains), while intuitively,

non-explosion means that the process cannot reach infinity in finite time.

(think about birth chains). These are two different things! The difference carries over to Q-
matrices and generators: with the inequality

Pt(x, y) ≥ e−c(x)t +

∫ t

0

e−c(x)sq(x, y)e−c(y)(t−s)ds,

one can show that any weakly conservative Q-matrix associated with a FD semi-group necessarily
satisfies

∀y ∈ E : lim
x→∞

q(x, y) = 0,

which can be used to build counter-examples for the second question. For another counter-example,
look at the death chain from Sheet 12. So in general, Feller-Dynkin property and non-explosion
of minimal solutions are not equivalent.

3.2. Jump processes.

Example 2. Let K : E×B(E)→ R+ be a kernel (i.e., x 7→ K(x,A) is measurable for all A ∈ B(E)
and A 7→ K(x,A) is a measure, for all x ∈ A) with K(x, {x}) = 0. Consider the formal operator

(Lf)(x) :=

∫
E

K(x, dy)
(
f(y)− f(x)

)
.

Under suitable assumptions on K, the operator L with suitable domain D(L), is a FD generator.
If K(x,E) < ∞ for all x ∈ E, then we need not use FD theory and can actually construct

the process by techniques quite similar to what we did for countable state spaces. See [EK86,
Chapter 4.2] for the bounded case supxK(x,E) < ∞ and [Fel71, Chapter X.3] for the general
case. The process behaves as follows: when started in x, it waits for an exponentially distributed
time Exp(c(x)) with c(x) = K(x,E) and then it jumps to another point according to the kernel
Π(x, dy) := 1

c(x)K(x, dy).

Notice that
||Lf || ≤ ||f || sup

x∈E
|K(x,E)|,

so if supx∈E K(x,E) <∞, we may view L as a bounded operator in bE and define Pt = exp(tL)
by the exponential series.
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An outcome of the Yosida approximation constructed below is that every FD process can be
approximated by a jump process with bounded generator.

3.3. Brownian motion and relatives.

Example 3 (Brownian motion). The infinitesimal generator of Brownian motion is the operator
Lf = 1

2f
′′ with domain

D(L) = {f ∈ C0(R) ∩ C2(R) | f ′, f ′′ ∈ C0(R)}.

In particular, this operator satisfies conditions (i)—(iii) from Theorem 5.

Example 4 (Uniform motion to the right). Consider the operator L in C0(R) with domain

D(L) := {f ∈ C0(R) ∩ C1(R) | f ′ ∈ C0(R)}

given by (Lf)(x) = f ′(x). Then L satisfies conditions (i)—(iii) from Theorem 5. The generated
FD semi-group is given by Ptf(x) = f(x+ t), the associated FD family satisfies Xt = x+ t, Px-a.s.

The previous two examples raise the question whether there are processes with a generator L
given by a third-order derivative. The answer is no (exercise!). However a whole class of generators
can be built by combining second- and first-order derivatives, of the type

Lf =
1

2
a(x)f ′′(x) + b(x)f ′(x)

with suitable domain D(L) and under conditions on a and b. The intuition is that first-order
differential operators are associated with deterministic motions while second-order differential
operators bring in Brownian motion; the corresponding processes can often be written as solutions
to stochastic differential equations. This topic belongs to the chapter of diffusions.4

The following two examples illustrate that the domain D(L) really matters and often encodes
the behavior of a process at the boundary of an interval.

Example 5 (Brownian motion on [0,∞) with reflection at 0). Let

X = (Ω,F , (Ft)t≥0, (Px)x∈R, (Xt)t≥0, (θs)s≥0)

be a Brownian family, think Px(Xt ∈ A) = P(x + Bt ∈ A) with (Bt)t≥0 a standard Brownian

motion defined on some probability space (Ω̃,G,P). Define

Yt(ω) := |Xt(ω)| (t ≥ 0, ω ∈ Ω).

Then Y = (Ω,F , (Ft)t≥0, (Px)x∈R, (Yt)t≥0, (θs)s≥0) is a FD family with state space E = [0,∞)
(exercise!). The associated generator Lrefl has domain

D(Lrefl) = {f ∈ C0(R+) | f ′, f ′′ ∈ C0(R+), f ′(0) = 0}

and is given by Lreflf = 1
2f
′′. Indeed, let f ∈ C0([0,∞)) and fe : R→ R the even extension, given

by fe(x) := f(|x|). Then fe ∈ C0(R) and for all x ≥ 0 and t ≥ 0,

Ex[f(Yt)] = Ex[f(|Xt|)] = Ex[fe(Xt)].

It follows that if fe ∈ D(L) with L be the generator of Brownian motion, then f ∈ D(Lrefl),
furthermore

Lreflf = Lfe

∣∣∣
R+

=
1

2
f ′′.

Conversely, if f ∈ D(Lrefl): let g := Lreflf . Then

lim
t↘0

sup
x≥0

∣∣∣1
t

(
Ex[fe(Xt)]− fe(x)

)
− g(x)

∣∣∣ = 0.

4A Feller-Dynkin diffusion in Rn is a FD process in Rn with continuous sample paths such that the domain

D(L) of the generator contains the space C∞κ (Rn) of C∞-functions with compact support. It is a general theorem

that the generator of every FD diffusion, restricted to C∞κ (Rn), is a second-order differential operator. See Rogers
and Williams, Vol. 1, Chapter III.13.3.
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Because of Since the Brownian semi-group (Pt)t≥0 maps even functions to even functions (exercise!
think Ex[fe(Xt)] = E[fe(x+Bt)] = E[fe(x−Bt)] = E[fe(−x+Bt)] = E−x[f(Xt)]), we deduce

lim
t↘0

sup
x∈R

∣∣∣1
t

(
Ex[fe(Xt)]− fe(x)

)
− ge(x)

∣∣∣ = 0

with ge ∈ C0(R) the even extension of g. It follows that fe ∈ D(L). Thus f ∈ D(Lrefl) if and
only if fe ∈ D(L), which in turn happens if and only if f ∈ C0(R+) satisfies f ′, f ′′ ∈ C0(R+) and
f ′(0) = 0. This last condition is needed for the continuity of f ′e at x = 0.

Example 6 (Brownian motion on [0,∞) with absorption at 0). Let X be a Brownian family and
τ := inf{t ≥ 0 | Xt = 0}. Define

Yt(ω) :=

{
Xt(ω), t < τ(ω),

0, t ≥ τ(ω).

Then we obtain again a FD family with state space R+. The generator is Labsf = 1
2f
′′ with

domain

D(Labs) = {f ∈ C0(R+) | f ′, f ′′ ∈ C0(R+), f(0) = 0, f ′′(0) = 0}. (3)

Let fo ∈ Cb(R) be the bounded function given by

fo(x) :=

{
f(x), x ≥ 0,

2f(0)− f(−x), x < 0.

We show that Ex[f(Yt)] = Ex[fo(Xt)] for all x ≥ 0 but have to work a little harder than for
Brownian motion reflected at 0. Notice fo ∈ C0(R) if and only if f(0) = 0, and f ′′o is continuous
at x = 0 if and only if f ′′(0) = 0.

Using the strong Markov property (in a way similar to the reflection principle), we see that the
process Zt := Xt1l{t<τ} + (−Xt)1l{t≥τ} leads again to a Brownian family, therefore for x ≥ 0

Ex
[
fo(Xt)1l{t≥τ}

]
= Ex

[
fo(Zt)1l{t≥τ}

]
= Ex

[
fo(−Xt)1l{t≥τ}

]
hence

Ex
[
fo(Xt)1l{t≥τ}

]
= Ex

[1
2

(fo(Xt) + fo(−Xt))1l{t≥τ}
]

= f(0)Px(t ≥ τ)

and

Ex[f(Yt)] = Ex
[
f(Xt)1l{t<τ}

]
+ f(0)Px(τ ≤ t)

= Ex
[
fo(Xt)1l{t<τ}

]
+ Ex

[
fo(Xt)1l{t≥τ}

]
= Ex

[
fo(Xt)

]
.

Let us write G for the generator of (Yt)t≥0. We wish to show that G is given by Labs with
domain (3).

First we show D(Labs) ⊂ D(G) and Gf = 1
2f
′′ = Labsf for all f ∈ D(Labs): If f ∈ C0(R+)

satisfies f ′, f ′′ ∈ C0(R+) and f(0) = f ′(0) = 0, then fo ∈ C0(R) with f ′o, f
′′
o ∈ C0(R), thus

fo ∈ D(L) with L the generator of Brownian motion on R. It follows that f ∈ D(G) with
Gf = Lf |R+ = 1

2f
′′.

The proof is complete once we check that not only is D(Labs) ⊂ D(G) but in fact D(G) =
D(Labs). The proof is concluded as follows: 1. Show that Labs with domain (3) satisfies conditions
(i)—(iii) in Theorem 5. 2. Notice that the generator G satisfies these conditions as well because of
Theorem 5. 3. Show that if L1, L2 are two operators that satisfy conditions (i)—(iii) in Theorem 5
and D(L1) ⊂ D(L2) with L2f = L1f for all f ∈ D(L1), then D(L1) = D(L2). (A generator cannot
be the extension of another generator.) 4. Conclude that D(G) = D(Labs).
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3.4. Cauchy process.

Example 7 (Cauchy process). The Cauchy process is a process with state space R and stationary
independent increments such that Xt+s − Xs has probability density function ρt(x) = 1

π
t

t2+x2 .
The associated semi-group is

(Ptf)(x) :=

∫
R
ρt(y − x)f(y)dy =

1

π

∫ ∞
−∞

t

t2 + (y − x)2
f(y)dy.

Then (Pt)t≥0 is a FD semi-group. Furthermore if f ∈ C0(R) is twice differentiable, then f ∈ D(L)
and

(Lf)(x) = lim
ε↘0

∫
R\[−ε,ε]

f(x+ u)− f(x)

u2
du =

1

π

∫ ∞
0

f(x+ u) + f(x− u)− 2f(x)

u2
du.

Notice that 1/u2 is not integrable near u = 0, so in general, the integral
∫
R(f(x + u) − f(x))du

u2

is not absolutely absolutely convergent. The divergence is cured by working instead with the
middle expression, which is the so-called Cauchy principal value of

∫
R(f(x + u) − f(x))du

u2 . For
the existence of the Cauchy principal value, we use a change of variables for the integral over
(−∞,−ε), which yields∫

R\[−ε,ε]

f(x+ u)− f(x)

u2
du =

∫ ∞
0

f(x+ u) + f(x− u)− 2f(x)

u2
du,

Next we notice that u 7→ f(x+u)+f(x−u)−2f(x)
u2 is integrable near u = 0 because it converges to

f ′′(0). For large u we use the bound by 4||f ||/u2 and remember
∫∞

1
du
u2 < ∞. It follows that

integrand in the right-hand side is integrable on (0,∞) and the limit as ε↘ 0 exists.

Remark (Cauchy process and uniform angles). Changing variables as z = (y − x)/t and then
θ = arctan z, we get

(Ptf)(x) =
1

π

∫ ∞
−∞

f(x+ tz)

1 + z2
dz =

1

π

∫ π/2

−π/2
f(x+ t tan θ)dθ.

Thus

(Ptf)(x) = E[f(x+ t tan Θ)]

with Θ a random variable uniformly distributed in (−π2 ,
π
2 ). The Markov property translates into

the following surprising fact: if Θ1,Θ2 ∼ U((−π2 ,
π
2 )) are two additional independent variables,

then for all s, t > 0,

s tan Θ1 + t tan Θ2
d
= (s+ t) tan(Θ),

which in turn can be interpreted as a special case of the Huygens principle in geometric optics (see
the footnote to Example (e) in [Fel71, Chapter II.4]). Notice that the naive guess d

dtPtf(x)|t=0 =

f ′(x)E[tan Θ] = f ′(x) 1
π

∫
R

z
1+z2 dz fails because

E[| tan Θ|] =
1

π

∫
R

|z|
1 + z2

dz =∞.

Remark (Cauchy process as a jump process). Formally (not worrying about domains, convergence
of integrals etc.), the generator of the Cauchy process is of the form

(Lf)(x) =

∫
R
K(x, dy)

(
f(y)− f(x)

)
with kernel K(x,A) =

∫
R 1lA(x+ u)du

u2 . This should remind you of the formal generator for jump

processes given earlier, even though here K(x,R) =
∫
R

du
u2 = ∞. Despite this difference, it turns

out that the sample paths of the Cauchy process are piecewise constant functions. However the
number of jump discontinuities in bounded intervals is infinite with positive probability. This is
no contradiction with the property of having càdlàg paths because jump heights can be arbitrarily
small.
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It is not too difficult to check that the Cauchy process has stationary independent increments.
Looking back, we notice that by now we know three examples of processes that are Feller-Dynkin
and have stationary increments: Brownian motion, the Poisson process,5 and the Cauchy process.
All three are examples of Lévy processes, i.e., processes with stationary independent increments
and càdlàg paths.

4. Resolvent

In addition to the transition function (Pt)t≥0 and the generator L another family of operators
plays an important role: the resolvent. Let X be a Markov family with transition function (Pt)t≥0.
Assume that R+ 3 t 7→ Pt(x,A) is measurable for all x ∈ E and A ∈ E . This is the case, for
example, when X has càdlàg sample paths. Then the resolvent of the process is the family (Uα)α>0

of maps Uα : bE → bE given by

(Uαf)(x) :=

∫ ∞
0

e−αt(Ptf)(x)dt (x ∈ E).

The probabilistic interpretation is the following: let T ∼ Exp(α) be an exponential random
variable, with parameter α, independent of (Xt)t≥0. Then

(Uαf)(x) = Ex
[
f(XT )

]
.

If Pt(C0(E)) ⊂ C0(E) for all t ≥ 0, then Uα(C0(E)) ⊂ C0(E) for all α > 0 (exercise!), so we may
also view the resolvent as a map Uα : C0(E)→ C0(E).

The resolvent of a semi-group is defined in a completely analogous way.

Example 8. If E = {1, . . . , n} with n ∈ N, then we can identify C0(E) with Rn (think of functions
as column vectors) and linear operators from C0(E) to itself with matrices. If Q is a conservative
Q-matrix and Pt = exp(tQ), then the resolvent is given by

Uα =

∫ ∞
0

eαtetQdt = (α−Q)−1 (α > 0).

(remember our earlier remark that Q has no strictly positive eigenvalue). For α = 0, we recover
the Green’s function G, which need not be finite.

Proposition 8. Let (Pt)t≥0 be a sub-Markov semi-group in C0(E), i.e., it satisfies properties
(i), (ii), and (iii) of Definition 1. Assume that t 7→ (Ptf)(x) is measurable for all x ∈ E and
f ∈ C0(E). Then (Uα)α>0 is a sub-Markov resolvent in C0(E), meaning that:

(i) Each Uα is a linear map from C0(E) to C0(E).
(ii) We have 0 ≤ f ≤ 1 ⇒ 0 ≤ αUαf ≤ 1, for all α > 0 and f ∈ C0(E).
(iii) The resolvent identity holds: for all α, β > 0,

Uα − Uβ = (β − α)UαUβ .

Moreover (Pt)t≥0 is strongly continuous if and only if in addition

(iv) For all f ∈ C0(E): ||αUαf − f || → 0 as α→∞.

The resolvent identity implies that UαUβ = UβUα for all α, β > 0.

Remark (Strongly continuous contraction resolvent). Condition (ii) implies the condition

(ii’) ∀α > 0 ∀f ∈ C0(E) : ||αUαf || ≤ ||f ||.

Families of operators that satisfy (i), (ii’), and (iii) are called contraction resolvents. If in addition
(iv) holds true then (Uα)α>0 is called a strongly continuous contraction resolvent.

5In our definition, the Poisson process (Nt)t≥0 was an N0-valued process with N0 = 0 a.s., but because of

N0 ⊂ R we can also view it as a real-valued process, and one can define an associated family with Px(Xt ∈ A) =
P(x+Nt ∈ A). The proof that this results in a FD family is left as an exercise.
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Remark (Range of the resolvent). A close look at the proof of Proposition 8 reveals that strong
continuity is equivalent to the density of R = R(Uα) in C0(E). The range does not depend on α
because of the resolvent identity. Indeed, if f ∈ R(Uα), write f = Uαg. Then

f = Uαg = Uβg + (β − α)UαUβg = Uβ(g + (β − α)Uαg) ∈ R(Uβ)

hence R(Uα) ⊂ R(Uβ). The roles of α and β can be inverted and we deduce R(Uα) = R(Uβ) for
all α, β > 0.

When computing the action of the semi-group on functions in the resolvent, the following obser-
vation proves useful: Let f ∈ C0(E) and α > 0. Then for all t > 0 and x ∈ E,

(PtUαf)(x) =

∫ ∞
0

e−αsPt+sf(x)ds.

Indeed, let (Tt)t≥0 be the transition function associated with the semi-group (whose existence is
proven with the Riesz-Markov theorem). Set µt,x(A) := Tt(x,A). Then by Fubini’s theorem,

(PtUαf)(x) =

∫
E

Tt(x, dy)(Uαf)(y)

=

∫
E

(∫ ∞
0

e−αs
(
Psf

)
(y)ds

)
µt,x(dy)

=

∫ ∞
0

(∫
E

e−αs
(
Psf

)
(y)µt,x(dy)

)
ds

=

∫ ∞
0

e−αs(Pt+sf)(x)ds.

Proof of Proposition 8 . The proof of (i) is left as an exercise. For (ii), we note that if 0 ≤ f ≤ 1,
then using (ii) of Definition 1, we get

0 ≤ α
∫ ∞

0

e−αt(Ptf)(x)dt ≤
∫ ∞

0

αe−αtdt = 1.

For (iii), we evaluate

(UαUβf)(x) =

∫ ∞
0

e−αt
(∫ ∞

0

e−βs(Ps+tf)(x)ds
)

dt

=

∫ ∞
0

(Prf)(x)
(∫ r

0

e−αt−β(r−t)dr
)

=

∫ ∞
0

(Prf)(x)
exp(−αr)− exp(−βr)

β − aα
dr

=
1

β − α

(
(Uαf)(x)− (Uβf)(x)

)
.

Finally if (Pt)t≥0 is strongly continuous, then for all t0 > 0,

|αUαf(x)− f(x)| ≤
∫ ∞

0

αe−αt|Ptf(x)− f(x)|dt ≤ t0 sup
t∈[0,t0]

||Ptf − f ||+ 2||f ||e−αt0 .

Because of the strong continuity of (Pt)t≥0, given ε > 0, we can find t = t0(ε) > 0 such that for
all t ∈ [0, t0], we have ||Ptf − f || ≤ ε/2. Making t0 smaller if needed, we may always assume that
t0 ≤ 1. Then we can find α0 = α0(t0, ε) such that for all α ≥ α0, we have 2||f || exp(−αt0) ≤ ε/2.
Altogether ||αUαf − f || ≤ ε, for all α ≥ α0. It follows that ||αUαf − f || → 0.
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Conversely, if ||αUαf − f || → 0 for all f ∈ C0(E): We prove first that ||Ptf − f || → 0 whenever
f lies in the range of one of the αUα’s. Thus let f = αUαg with α > 0, g ∈ C0(E). Then

Ptf(x)− f(x) =

∫ ∞
0

αe−αs
(
Pt+sg(x)− Psg(x)

)
ds

=

∫ ∞
t

αeα(t−u)Pug(x)du−
∫ ∞

0

αe−αsPsg(x)ds

= −
∫ t

0

αe−αsPsg(x)ds+ (eαt − 1)

∫ ∞
t

αe−αsPsg(x)ds

hence
||Ptf − f || ≤ t||g||+ (eαt − 1)||g||

which goes to zero as t → 0. This proves the claim if f lies in the range of αUα. For general f :
let ε > 0 and α > 0 small enough so that ||αUαf − f || ≤ ε/3. Set F := αUαf . Then

||Ptf − f || ≤ ||Ptf − PtF ||+ ||PtF − F ||+ ||F − f || ≤ 2 ε3 + ||PtF − F ||.
We have already checked that ||PtF − F || → 0 so there exists t0 > 0 such that for all t ≤ t0, we
have ||PtF − F || ≤ ε/3. Then also ||Ptf − f || ≤ ε/3 for all t ≤ t0. �

Proof of Lemma 2. Let (Pt)t≥0 be a weakly continuous sub-Markov semi-group, i.e., it satisfies
conditions (i)–(iii) from Definition 1 and condition (iv’) from the statement of the lemma. By the
semi-group property, the map R+ 3 t → Ptf(x) is right-continuous, hence measurable, for every
f ∈ C0(E) and x ∈ E. Therefore the resolvent Uαf is well-defined and we are in the situation
of Proposition 8. We prove that R(Uα) is dense in C0(E). An argument similar to the proof of
the implication “strongly continuous ⇒ (iv)” in Proposition 8 shows that the weak continuity of
(Pt)t≥0 implies

∀f ∈ C0(E) ∀x ∈ E : lim
α→∞

αUαf(x) = f(x).

Note in addition ||αUαf || ≤ ||f ||. As a consequence, the α-independent range R = R(Uα) of the
resolvent is dense in C0(E) with respect to pointwise convergence of uniformly bounded sequences.
A functional analytic argument6 allows us to deduce that R must be also dense in C0(E) with
respect to uniform convergence. The strong continuity of (Pt)t≥0 is then deduced by an argument
similar to (iv) in Proposition 8. �

5. From semigroup to generator

Here we prove the implications “⇒” in Theorem 5 and Proposition 6. First we explain how the
resolvent is related to the infinitesimal generator.

Proposition 9. Let (Pt)t≥0 be a FD semi-group, (Uα)α>0 its resolvent, and L its infinitesimal
generator. Then L satisfies the positive maximum principle. Moreover for all α > 0, we have
D(L) = R(Uα), and for all f ∈ D(L) and g ∈ C0(E), we have

g = (α− L)f ⇔ f = Uαg. (4)

So the resolvent Uα is the inverse of the operator αI−L : D(L)→ C0(E), we write Uα = (α−L)−1.

Proof. Step 1: L satisfies the positive maximum principle. Let f ∈ D(L) and x0 ∈ E a maximizer

of f . Assume first f(x0) > 0. Then 0 ≤ f+
f(x0) ≤ 1 so by the sub-Markov property, 0 ≤ Pt f+

f(x0) ≤ 1

i.e. 0 ≤ Ptf+ ≤ f(x0). If f(x0) = 0, then f ≤ 0, f+ = 0, and 0 ≤ Ptf+ ≤ f(x0) holds true as
well. Therefore

Ptf = Pt(f+ − f−) ≤ Ptf+ ≤ f(x0)

6Suppose by contradiction that R is not dense with respect to uniform convergence, i.e., convergence with
respect to || · ||. Then, by the Hahn-Banach theorem, there exists a bounded linear map ϕ : C0(E) → R that
vanishes on R but not on all of C0(E); let f0 ∈ C0(E) with ϕ(f0) 6= 0. By the Riesz-Markov theorem, there exists a

finite signed measure µ such that ϕ(f) =
∫
E fdµ for all f ∈ C0(E). Let (gn)n∈N be a uniformly bounded sequence

in R ⊂ C0(E) with gn → f0 pointwise, then 0 = ϕ(gn) =
∫
E gndµ→

∫
E fdµ by the bounded convergence theorem

for finite signed measure, hence ϕ(f) = 0, contradiction.
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for all t ≥ 0 and

(Lf)(x0) = lim
t↘0

(Ptf)(x0)− f(x0)

t
≤ 0.

Step 2: R(Uα) ⊂ D(L). Let f ∈ R(Uα) and g ∈ C0(E) with f = Uαg. Then

Ptf(x) =

∫ ∞
0

e−αsPs+tg(x)ds = eαt
∫ ∞
t

e−αuPug(x)du,

so we expect the derivative at time t to be

ϕt = αeαt
∫ ∞
t

e−αuPug(x)du+ eαt
(
−e−αtPtg(x)

)
.

We are only interested in t = 0 and note

ϕ0 = αUαg − g = αf − g.
Remember from the proof of Proposition 8 that

Ptf(x)− f(x) = (eαt − 1)

∫ ∞
t

e−αsPsg(x)ds−
∫ t

0

e−αsPsg(x)ds.

It follows that

Ptf(x)− f(x)− tϕ0(x) =
(
e−αt − 1− αt

) ∫ ∞
t

e−αsPsg(x)ds− αt
∫ t

0

e−αtPsg(x)ds

−
∫ t

0

e−αsPsg(x)ds+ tg(x)

and

||1
t
(Ptf − f)− ϕ0|| ≤

(eαt − 1

t
− α

)
||Uαg||+ αt||g||+ t sup

s∈[0,t]

||e−αsPsg − g||,

which goes to zero as t→ 0 because of the strong continuity of (Pt)t≥0. It follows that f ∈ D(L)
and Lf = ϕ0, moreover (α− L)f = αf − ϕ0 = g.

Step 3: D(L) ⊂ R(Uα). Let f ∈ D(L). Set g := (α−L)f . We would like to show Uαg = f . By
Step 1, the operator L satisfies the positive maximum principle. It follows that L is dissipative and
α−L is injective. Consequently it is enough to s check (α−L)Uαg = (α−L)f i.e. (α−L)Uαg = g.
Let h := Uαg. We already know from Step 2 that h ∈ D(L) and (α−L)h = g. Thus g = (α−L)h =
(α− L)Uαg, which is the inequality that we wanted to have. It follows that D(L) ⊂ R(Uα).

Step 4: The equivalence (4) holds true. Let f ∈ D(L) and α > 0. If f = Uαg, then (α−L)f = g
by the considerations from Step 2. Conversely, if g = (α−L)f , then f = Uαg by the considerations
from Step 3. �

Proof of “⇒” in Theorem 5. By Proposition 9, we have D(L) = R(Uα), which is dense in C0(E)
because of the strong continuity of (Pt)t≥0 and Proposition 8(iv). Therefore D(L) is dense in
C0(E). The positive maximum principle has been proven in Proposition 9. For the surjectivity of
αI − L, given g ∈ C0(E), let f := Uαg. Then by Eq. (4), we have g = (α − L)f ∈ R(αI − L).
Thus αI − L is surjective, actually for all α > 0. �

Proof of “⇒” in Proposition 6. Let (Pt)t≥0 be a FD semi-group with generator L. Assume that
(Ptf)(x) =

∫
E
Tt(x, dy)f(y) for some Markovian transition function (Tt)t≥0, so that Tt(x,E) = 1.

If E is compact, then the constant function 1 is in C0(E) = Cb(E) = C(E) and (Pt1)(x) =∫
E
Tt(x, dy)1 = Tt(x,E) = 1 hence Pt1 = 1. If E is not compact, then 1 /∈ C0(E) but by the

properties of lccb spaces listed in Appendix A, there exists a sequence (fn)n∈N of non-negative
functions in C0(E) such that fn ↗ 1 pointwise on E. Such a sequence is necessarily uniformly
bounded since supn ||fn|| ≤ 1 < ∞. Moreover (Ptfn)(x) =

∫
E
Tt(x,dy)fn(y) →

∫
E
Tt(x,dy) = 1

by dominated convergence. �

Next we prove an analogue of the Kolmogorov backward and forward equations, and show how to
go directly from resolvent to generator. This is not needed for the proofs of Theorem 5 but is of
interest on its own.
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Proposition 10. Let (Pt)t≥0 be a FD semi-group and L its infinitesimal generator. Then for all
f ∈ D(L), the function R+ 3 t 7→ Ptf is differentiable, takes values in D(L), and satisfies

d

dt
Ptf = PtLf = LPtf.

Moreover for all f ∈ C0(E) and t > 0, we have

Ptf = lim
n→∞

(
I − t

n
L
)−n

f = lim
n→∞

(n
t
Un/t

)n
f (5)

and the semi-group is uniquely determined by its generator.

Proof. Because of the semi-group property Pt+h = PtPh = PhPt, we have for all t ≥ 0 and h > 0

1

h
(Pt+hf − Ptf) = Pt

( 1

h
(Phf − f)

)
=

1

h

(
Ph(Ptf)− Ptf

)
.

By the strong continuity, the middle expression converges in norm to PtLf as h ↘ 0. Therefore
the limit of the right expression exists and is equal to PtLf . It follows that Ptf ∈ D(L) and
LPtf = PtLf . and the right expression converges to LPtf . The limit of the left expression exists
as well. Consequently the map R+ 3 t 7→ Ptf has right derivatives everywhere, and the right
derivative is given by the continuous map t 7→ LPtf = PtLf . Proceeding as in Exercise 1(a)
from Sheet 10 (or Lemma 3.3.2 in [Scheutzow, StochMod]), we deduce that t 7→ Ptf is in fact
differentiable with derivative PtLf = LPtf .

An induction over n ∈ N shows that for all α > 0 and n ∈ N, we have(
I − 1

α
L
)n
f = αnUnαf =

∫ ∞
0

αnsn−1

(n− 1)!
e−αsPsfds. (6)

The function R+ 3 s 7→ αnsn−1

(n−1)! exp(−αs) is the probability density function of the Gamma

distribution with parameters n and α, which is equal to the distribution of the sum of n i.i.d.
Exp(α)-variables τ1, . . . , τn (exercise!). For α = n/t, we may write τi = t

nTi with T1, . . . , Tn i.i.d.
Exp(1) variables. The probabilistic interpretation of (6) is that

(I − t
nL)nf(x) = E

[
P t
n (T1+···+Tn)f(x)

]
or, if we are already given a Markov family X that goes with (Pt) and assume that T1, . . . , Tn live
on the same space Ω and are independent of (Xt)t≥0,

(I − t
nL)nf(x) = Ex

[
f
(
X t

n (T1+···+Tn)

)]
.

Assume that f ∈ D(L). Then by the differentiability of t 7→ Ptf and || d
dtPtf || = ||PtLf || ≤ ||Lf ||,

we have
||Ptf − Psf || ≤ ||Lf || |t− s|

for all s, t ≥ 0. It follows that

||(I − t
nL)nf − Ptf || ≤ ||Lf || |t|

∣∣∣E[ 1

n
(T1 + · · ·+ Tn

]
− 1
∣∣∣

which goes to zero by the law of large numbers. This proves the required convergence in the case
f ∈ D(L). The convergence for f ∈ C0(E) follows by an ε/3-argument, exploiting the density of
D(L), the inequality

||(I − t
nL)nf − Ptf || ≤ ||(nt Un/t)

n(f − g)||+ ||(I − t
nL)ng − Ptg||+ ||Pt(g − f)||

valid for all f, g ∈ C0(E), and the contractivity of αUα and Pt.

Finally if (P̃t)t≥0 is another FD semi-group with generator L̃ = L, then Eq. (5) shows that

P̃t = Pt for all t > 0. �

6. From generator to semigroup

From now on let L : D(L) → C0(E) be an operator that satisfies conditions (i), (ii), and
(iii) from Theorem 5. Our first task is to verify that L is associated with a strongly continuous
contraction resolvent.
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6.1. From generator to resolvent. As a preliminary observation, we note that the dissipativ-
ity (2) shows that for all α > 0, the operator α − L : D(L) → C0(E) is injective, moreover the
inverse operator (α− L)−1 : R(α− L)→ D(L) satisfies

α||(α− L)−1g|| ≤ ||g||. (7)

We would like to define Uαg := (α−L)−1 and have Uαg well-defined for all g ∈ C0(E), so we have
to check that R(α− L) = C0(E), i.e., α− L is surjective for all α > 0. So far we only know this
is true for (at least) one α > 0 !

Lemma 11. The operator L is closed, i.e., for every sequence (fn)n∈N in D(L) with the property
that ||fn − f || → 0 and ||Lfn − g|| → 0 for some f, g ∈ C0(E), we must have f ∈ D(L) and
g = Lf .

Proof. The proof only uses the surjectivity of (λI − L) for some λ > 0 and the dissipativity of L.
Let λ > 0 such that R(λ − L) = C0(E). If fn → f and Lfn → g, then λfn − Lfn → λf − g.
By the surjectivity of λ − L, there exists some ϕ ∈ D(L) such that λf − g = λϕ − Lϕ. By the
dissipativity (2),

λ||fn − ϕ|| ≤ ||(λ− L)(fn − ϕ)|| = ||(λfn − Lfn)− (λf − g)|| → 0

hence ||fn − ϕ|| → 0. It follows that f = ϕ and g = Lϕ = Lf . �

Lemma 12. For all α > 0, the space R(α− L) is a closed subspace of C0(E).

Proof. The proof only uses that L is closed (by Lemma 11) and dissipative. Let (gn)n∈N be a
sequence in R(α− L) that converges to some g ∈ C0(E). Write gn = (α− L)fn with fn ∈ D(L).
By the dissipativity of L, we have

||gn − gm|| = ||(α− L)(fn − fm)|| ≥ α||fn − fm||
for all m,n ∈ N. It follows that (fn)n∈N is a Cauchy sequence and admits a limit f ∈ C0(E).
Since L is closed, we conclude that the limit f is in D(L) and g = (α− L)f ∈ R(α− L). �

Lemma 13. R(α− L) = C0(E) for all α > 0.

Proof. Let

J := {α ∈ (0,∞) | R(α− L) = C0(E)}.
We have to show J = (0,∞) and do this by proving that J is both open and closed in (0,∞).
“Closed in (0,∞)” means “for every sequence (αn)n∈N in J that has a limit α ∈ (0,∞), we must
have α ∈ J .” For example, the set (0, 1] is closed in (0,∞) !

Step 1: J is closed. Let (αn)n∈N be a sequence of strictly positive numbers in J that converges to
some α > 0. For g ∈ C0(E), let gn := (α−L)(αn −L)−1g. Notice that gn is well-defined because
(αn − L)−1 is an operator from R(αn − L)→ D(L). Clearly gn ∈ R(α− L). In view of αn → α,
it seems plausible that gn → g. For a proof, we exploit the dissipativity of L: first note

gn − g =
[
(α− αn) + (αn − L)

]
(αn − L)−1g − g = (α− αn)(αn − L)−1g

and then by (7) and αn → 0,

||gn − g|| ≤
|α− αn|

α
||g|| → 0.

It follows that each g ∈ C0(E) is the limit of a sequence gn of elements in R(α−L), i.e., R(α−L)

is dense in C0(E). By Lemma 12, the range is closed, so we find R(α− L) = R(α− L) = C0(E)
and α ∈ J .

Step 2: J is open. Because of the injectivity of α − L and the bound (7), an element α > 0 is in
J if and only if (α− L) is a bijective map from D(L) to C0(E) with continuous inverse, i.e., if it
is in the resolvent set ρ(L) of L: we have J = ρ(A) ∩ (0,∞). It is known from functional analysis
that the resolvent set is open, so J must be open as well.
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Step 3: J = (0,∞). By steps 1 and 2, J is both open and closed in (0,∞). Condition (iii) from
Theorem 5 guarantees that J is not empty. But because (0,∞) is connected, the only non-empty
subset that is both open and closed is (0,∞) itself.7 �

Now we have everything we need to check that Uα := (α − L)−1 forms a strongly continuous
sub-Markov contraction resolvent.

Proposition 14. For α > 0, define Uα : C0(E) → D(L) ⊂ C0(E) by Uα := (α − L)−1. Then
(Uα)α>0 satisfies properties (i)—(iv) from Proposition 8.

Proof. (i) Clearly each Uα is a linear map from C0(E) to C0(E).
(ii) The resolvent identity is a fact from functional analysis (exercise: verify it by hand!).
(iii) Let f ∈ C0(E) with 0 ≤ f ≤ 1 and g := (α − L)−1f ∈ D(L). We want to prove that

0 ≤ αg ≤ 1. Assume first that g has a maximizer x0. Then (Lg)(x0) ≤ 0, hence

1 ≥ inf f ≥ f(x0) = αg(x0)− Lg(x0) ≥ αg(x0) ≥ α sup g.

If g has no maximizer, then because of g ∈ C0(E) we must have sup g = 0 and the inequality
1 ≥ inf f ≥ α sup g holds true as well. Thus g ≤ 1. A similar argument applied to −g instead of
g yields

0 ≤ sup f ≤ α inf g,

hence g ≥ 0.
(iv) For the strong continuity ||αUαg− g|| → 0, we exploit again the dissipativity. If g ∈ D(L),

then

||αUαg − g|| = α||Uαg − 1
αg|| ≤ ||(α− L)(Uαg − 1

αg)|| = 1
α ||Lg|| → 0 (α→∞).

For general g ∈ C0(E), the claim follows from the density of D(L), the contractivity of αUα (which
in turn follows from (iii)) and an ε/3-argument. �

6.2. Yosida approximation. If L is a bounded operator, i.e., D(L) = C0(E) and ||Lf || ≤ c||f ||
for some c > 0 and all f ∈ C0(E), we can define a semigroup by the exponential series,

Ptf := f +

∞∑
n=1

tn

n!
Lnf = exp(tL)f.

The exponential series is absolutely convergent because ||Lnf || ≤ cn||f || for all n and

||f ||+
∞∑
n=1

tn

n!
||Lnf || ≤ exp(tc)||f ||.

The trouble is that in general, L is not bounded. The idea is to approximate L by a family of
bounded operators Lα. The Yosida approximation is

Lα := αL(α− L)−1 = L
(
I − 1

α
L
)−1

.

Notice that

Lα = (α2 + αL− α2)(α− L)−1 = α(αUα − I).

Lemma 15.

(a) For each α > 0, the operator Lα is bounded and (exp(tLα))t≥0 is a FD semi-group.
(b) For all α, β > 0, LαLβ = LβLα.
(c) For each f ∈ D(L), ||Lαf − Lf || → 0 as α→∞.
(d) For all α, β > 0, t ≥ 0, and f ∈ C0(E): || exp(tLα)f − exp(tLβ)f || ≤ t ||Lαf − Lβf ||.

7This is in fact the general topological definition of connectedness. If it feels too abstract to you, you can also

check this by hand: let m := inf J and M := sup J . Show that if J is both closed and open in (0,∞), then m > 0
or M <∞ lead to a contradiction (exercise!).
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Proof. (a) D(Lα) = C0(E) holds true by definition, moreover ||Lαf || ≤ α(||αUαf ||+||f ||) ≤ 2α||f ||
for all f ∈ C0(E). Thus Lα is bounded. Therefore we can define exp(tLα) by the exponential series.
The family (exp(tLα))t≥0 clearly satisfies (i) and (ii) in Definition 1, we leave the proof of the strong
continuity (iv) as an exercise. For the sub-Markov property (iii): Because of Lα = α2Uα − αI,
using exp(A + B) = exp(A) exp(B) = exp(B) exp(A) whenever A,B are bounded operators with
AB = BA, we get

exp(tLα) = exp(−αt) exp(tα2Uα).

Let f ∈ C0(E) with 0 ≤ f ≤ 1, then 0 ≤ αUα ≤ 1 by Proposition 14. An induction over n yields
0 ≤ (α2Uα)nf ≤ αn for all n and then

0 ≤ exp(tLα)f ≤ exp(−αt)
∞∑
n=0

(αt)n

n!
= 1.

This concludes the proof of (a).
The commutativity (b) follows because, by the resolvent identity, UαUβ = UβUα for all α, β > 0.

For the convergence (c), we note that Lαf = αUαLf whenever f ∈ D(L) and conclude with the
strong continuity of the resolvent ||αUαg − g|| → 0, applied to g = Lf . For (d) we note

exp(tLα)f − exp(tLβ)f =

∫ t

0

d

ds
esLαe(t−s)Lβfds =

∫ t

0

esLα(Lα − Lβ)e(t−s)Lβfds

and the claim follows from the triangle inequality and the contractivity of exp(tLα) and exp(tLβ).
�

Now we have everything we need to show how to go from generator to semi-group.

Proof of “⇐” in Theorem 5. Let L be a densely defined operator that satisfies the positive max-
imum principle and such that (α − L) is surjective for at least one α (hence by Lemma 13, all
α > 0). Define Uα := (α−L)−1 and let Lα be the Yosida approximation defined above. We show
that the limit

Ptf := lim
α→∞

exp(tLα)f (8)

exists for all f ∈ C0(E) and t > 0, and that (Pt)t≥0 defines a FD semi-group with infinitesimal
generator L.

The existence of the limit (8) for f ∈ D(L) follows from Lemma 15(d). The limit inherits
the contractivity ||Ptf || ≤ ||f || from exp(tLα). It follows that ||Ptf || ≤ ||f || on D(L). An ε/3-
argument, together with the density of D(L) in C0(E), allows us to conclude the existence of the
limit (8) for all f ∈ C0(E). Pt is a linear map in C0(E) by definition, the properties P0 = I,
Pt+s = PtPs, and 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1 are inherited from exp(tLα). For the strong
continuity, we bound

||Ptf − f || ≤ ||Ptf − etLαf ||+ ||etLαf − f ||.
If f ∈ D(L), we get from Lemma 15(d) that

||Ptf − exp(tLα)f || ≤ t ||Lf − Lαf ||.

Given ε > 0 and f ∈ D(L), we first choose α large enough so that ||Lf − Lαf || ≤ ε and then
t0 ∈ (0, 1) small enough so that || exp(tLα)f − f || ≤ ε for all t ∈ [0, t0]. Then ||Ptf − f || ≤ 2ε for
all t ∈ [0, t0]. Hence ||Ptf − f || → 0. For general f ∈ C0(E), the statement is deduced from an
ε/3-argument and the density of D(L) in C0(E). Thus (Pt)t≥0 is a FD semi-group.

It remains to show that the infinitesimal generator of (Pt)t≥0 is L. We start from the identity

exp(tLα)f = f +

∫ t

0

exp(sLα)Lαfds.

The left side converges to Ptf . For f ∈ D(L), the right side converges to
∫ t

0
PsLfds (check!). It

follows that
1

t
(Ptf − f) =

1

t

∫ t

0

PsLfds→ Lf (t↘ 0).
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Let us write G (instead of L) for the infinitesimal generator of (Pt). We have just checked
that D(L) ⊂ D(G) and for all f ∈ D(L), Gf = Lf . The proof is complete once we show
D(G) = D(L). To that aim we note that the considerations from Section 5 apply to G and yield
that α−G : D(G)→ C0(E) is bijective. The map α−L : D(L)→ C0(E) is bijective as well because

of the dissipativity and by Lemma 13. Let f ∈ D(G) and f̃ := (α−L)−1(α−G)f ∈ D(L). Then

(α−G)f̃ = (α−L)f̃ = (α−G)f hence by the injectivity of α−G, f̃ = f . Therefore f = f̃ ∈ D(L).
This proves D(G) ⊂ D(L). �

Proof of “⇐” in Proposition 6. If E is compact and 1 ∈ D(L), L1 = 0: then d
dtPt1 = PtL1 = 0

by Proposition 10, hence Pt1 = P01 = 1 for all t ≥ 0. Notice that αUα1 = 1 for all α > 0.
If E is lccb but not compact: Fix α > 0. Let (fn)n∈N, (gn)n∈N be sequences in D(L) and

C0(E), respectively, such that gn = 1
α (α−L)fn, supn ||gn|| <∞, and (fn) and (gn) both converge

pointwise to 1. Then αUαgn = fn → 1.
On the other hand, let (Tt)t≥0 be the sub-Markov transition function such that (Ptf)(x) =∫

E
Tt(x, dy)f(y) for all f ∈ C0(E) and t ≥ 0. Then

αUαgn =

∫ ∞
0

αe−αs

(∫
E

Ts(x,dy)gn(y)

)
ds→

∫ ∞
0

αe−αsTs(x,E)ds

by dominated convergence and because gn → 1. It follows that

1 =

∫ ∞
0

αe−αsTs(x,E)ds

for all x ∈ E. Because of Ts(x,E) ≤ 1, it follows that Ts(x,E) = 1 for Lebesgue-almost all s ≥ 0.
Suppose by contradiction that there exists some s0 > 0 such that Ts0(x,E) < 1. Then by the
Chapman-Kolmogorov equation, for all h > 0,

Ts0+h(x,E) =

∫
E

Ts0(x, dy)Th(y,E) ≤
∫
E

Ts0(x, dy) = Ts0(x,E) < 1

hence Ts(x,E) < 1 for all s ≥ s0, in contradiction with Ts(x,E) = 1 for Lebesgue-almost all s ≥ 0.
Hence Ts(x,E) = 1 for all s ≥ 0 and x ∈ E, from which one readily deduces that (Tt)t≥0 and
(Pt)t≥0 are Markovian. �

6.3. Probabilistic interpretation of the Yosida approximation. The construction of the
previous section admit a nice probabilistic interpretation. Assume for simplicity that E is compact
(so that 1 ∈ C0(E)) and that we are in the Markovian situation L1 = 0. Then αUα1 = α(α −
L)−11 = 1. By the Riesz-Markov theorem, there exists a kernel Πα(x, dy) with Kα(x,E) = 1 for
all x ∈ E such that

αUαf(x) =

∫
E

Πα(x, dy)f(y).

Notice

(Lαf)(x) = α(αUα − I)f(x) = α

∫
E

Πα(x, dy)(f(y)− f(x)),

which should remind you of the form of generator of jump processes discussed earlier. If E is
finite, then Lα = α(Πα − I) is a conservative Q-matrix. Define

Pαt := exp(tLα).

By the considerations in the proof of Lemma 15(a), we have

Pαt f(x) = e−tα
∞∑
n=0

(αt)n

n!
(αUα)nf(x)

= e−αt
{
f(x) +

∞∑
n=1

(αt)n

n!

∫
En

Πα(x,dx1)Πα(x1,dx2) · · ·Πα(xn−1,dxn)f(xn)
}
.
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Since Πα is a Markov kernel, the n-fold integral is best interpreted with a discrete-time Markov
chain: Let (Zαn )n≥0 be a Markov chain with transition kernel Πα, assume that there is a family of
probability measures Px with Zαn = x, Px-a.s. Then

Pαt f(x) = e−αt
∞∑
n=0

(αt)n

n!
Ex
[
f(Zαn )

]
.

The summation over n is best interpreted as a sum over a number of jumps in [0, t). In fact we
recognize the distribution of a Poisson process (Nα

t )t≥0, whose holding times are i.i.d. Exp(α)-
variables Tαi .

Therefore (Pαt )t≥0 is the transition function of a Markov process constructed as follows: let
Tα1 , T

α
2 , . . . be i.i.d. Exp(α)-variables Ti, and (Zαn )n∈N0 a discrete-time Markov process with tran-

sition kernel Πα, independent of the Tαi ’s. Then we define Xα
t := Z0 on t ∈ [0, Tα1 ) and

Xα
t := Zαn , t ∈ Tα1 + · · ·+ Tαn ≤ t < Tα1 + · · ·+ Tαn+1 (n ∈ N)

and obtain a Markov process with transition function (Pαt ). Feller speaks of processes of pseudo-
Poisson type [Fel71, Chapter X.2].

Remark. The convergence of semi-groups Pαt f → Ptf proven for the implication “⇐” of Theorem 5
can actually be pushed to a notion convergence of processes Xα

t ⇒ Xt, see [EK86, Chapter 4.2,
Theorem 2.5]. This provides an alternative to what we do in Section 7 below: Instead of proving
existence of a Markov family with transition function (Pt) via Kolmogorov extension theorem &
path regularization, we could start from the jump processes (Xα

t ), prove that they converge in
some sense as α → ∞, and that the limit provides us with a Markov family with the required
properties. See [EK86, Chapter 4.2, Theorem 2.7].

Conversely, suppose that we are already given a FD family X with transition function (Pt)t≥0.
Assume that the underlying probability space Ω is big enough to carry variables Tαn : Ω → R+,
α > 0, n ∈ N, such that for each α > 0, and for each x ∈ E, the random variables Tα1 , T

α
2 , . . . on

the probability space (Ω,F ,Px) are independent Exp(α)-variables, independent from the process
(Xt)t≥0. The kernel Πα introduced above satisfies

Πα(x,A) = (αUα1lA)(x) = Px(XTα1
∈ A) (x ∈ E,A ∈ E).

More generally, defining Zα0 := X0 and

Zαn := XTα1 +···+Tαn (n ∈ N),

we obtain a discrete-time Markov process with transition kernel Πα. The process (Xα
t ) defined by

Xα
t := Zαn = XTα1 +···+Tαn , Tα1 + · · ·+ Tαn ≤ t < Tα1 + · · ·+ Tαn+1 (n ∈ N)

and Xα
t = Zα0 = X0 on [0, Tα1 ) is a jump process with transition function (Pαt ). The sample paths

are piecewise constant càdlàg functions that approximate the sample paths of (Xt), you should
try to draw a picture that reminds you of Riemann integration.

Again the convergence of semi-groups can be pushed to a convergence of processes: By [EK86,
Chapter 4.2, Theorem 2.5], for each x ∈ E, the distribution of (Xα

t )t≥0 under Px converges weakly
to the distribution of (Xt)t≥0 under Px, where weak convergence refers to a suitable topology on
the Skorokhod space DE [0,∞).

7. Path regularization. From semigroup to process

Here we sketch some ingredients for the proof of Theorem 7.

Step 1: From semi-group to transition function. We have already observed that, by the Riesz-
Markov theorem, there is a unique transition function associated with the semi-group. By a slight
abuse of language, we use the same letter Pt for the map Pt : C0(E) → C0(E) and the kernels
Pt(x, dy). The transition function is normal, i.e., P0(x, ·) = δx(·) for all x ∈ E.
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Step 2: Construction of a Markov family with the correct finite-dimensional distributions (fidis).Let

Ω̃ := ER+ be the set of all maps ω : R+ → E (càdlàg is not assumed). Let Yt(ω) := ω(t). The

space Ω̃ is equipped with the product σ-algebra F̃ = σ(Yt, t ≥ 0). Let x ∈ E. For I = {t1, . . . , tn}
with n ∈ N, 0 ≤ t1 < . . . < tn, define the measure µ̃xI on E{t1,...,tn} by

µ̃x{t1,...,tn}(A1 × · · · ×An)

:=

∫
En

Pt1(x, dx1)1lA1
(x1)Pt2−t1(x1,dx2)1lA2

(x2) · · ·Ptn−tn−1
(xn−1,dxn)1lAn(xn) (9)

for all A1, . . . , An ∈ E . (You may ask whether a case distinction is needed for t1, but it is not: if
t1 = 0, then P0(x, dy) = δx(dy) because the transition function is normal, and the formula above
agrees with the definition one would like to give.) The family (µ̃xI )I⊂R+,#I<∞ forms a consistent
family (exercise!) so by the Kolmogorov extension theorem, there exists a unique probability mea-

sure P̃x on (Ω̃, F̃) with fidis µ̃xI . It is not difficult to check that (P̃x)x∈E , (Yt)t≥0, with the canonical
filtration and the usual definition of shifts, define a Markov family with transition function (Pt).

Step 3: Path regularization. Our next task is to find càdlàg modifications of (Yt)t≥0. This step is
analogous to the application of Kolmogorov’s continuity theorem in the construction of Brownian
motion, however sample paths in general are not continuous so we need something else. The
presentation given here is adapted from [RW94, Chapter III.7] and [Lig10, Chapter 3.3]. Relevant
background on continuous-time supermartingales can be found in [RW94, Chapter II.5] and [Lig10,
Chapter 1.9, Propositions 1.113 and 1.114].

Set Q+ := Q∩ [0,∞). A map γ : Q+ → R is called regularizable if the following two conditions
are met:

(i) For each t ≥ 0, the limit limq↓t,q∈Q+
γ(q) ∈ R exists.

(ii) For each t > 0, the limit limq↑t,q∈Q+
γ(q) ∈ R exists.

The notation q ↓ t and q ↑ t stand for q → t along q > t and q < t, respectively. In particular, the
value at q = t is irrelevant even if t is rational. If γ is regularizable, we define γreg : R+ → R by

γreg(t) := lim
q↓t,t∈Q+

γ(q).

The regularized function γreg is càdlàg [RW94, Chapter II. 62, Theorem 62.13]. The following
theorem, called Doob’s regularity theorem: part 1 by Rogers and Williams, is extremely useful.

Theorem 16. [RW94, Theorem 65.1] Let (Mt)t∈R+
be a supermartingale defined on some filtered

probability space (Ω,F , (Ft)t∈R+ ,P). Let

G := {ω ∈ Ω | the map Q+ 3 q 7→Mq(ω) is regularizable}.
Then G ∈ F and P(G) = 1. For t ∈ R+, define

Zt(ω) :=

{
limq↓t,q∈Q+

Mq(ω), ω ∈ G,
0, ω /∈ G.

Then (Zt)t≥0 has càdlàg sample paths.

We would like to apply the theorem to the process (Yt)t≥0. The trouble is, of course, that (Yt)
need not be a supermartingale. The idea instead is to find a family of functions h ∈H such that
(h(Yt))t≥0 is a supermartingale. Then hopefully if the limit lims↓t,s∈Q+

h(Ys) exists for all h ∈H ,
almost surely, the limit lims↓t,s∈Q+

Ys exists as well, almost surely.

3.1 Supermartingales from resolvent. Fix α > 0 (for example, α = 1). Suppose that h ∈ R(Uα) is
of the form h = Uαg with g ≥ 0. Then h is α-supermedian, i.e.,

∀s ≥ 0 : 0 ≤ e−αsPsh ≤ h.
Indeed,

e−αsPsUαg =

∫ ∞
0

e−α(s+t)Ps+tgdt =

∫ ∞
s

e−αuPugdu ≤ Uαg = h.
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As a consequence, for every x ∈ E, and all 0 ≤ s < t,

Ẽx
[
e−αth(Yt) | F̃s

]
= e−αt(Pt−sh)(Ys) ≤ e−αsh(Ys) P̃x-a.s.

with F̃t the canonical filtration for (Yt). Thus (e−αth(Yt))t≥0 is a (P̃x, (F̃t)t≥0)-supermartingale.

As a consequence, there exists a P̃x-null set Nx,h such that

∀ω ∈ Ω̃ \Nx,h : lim
s↓t
s∈Q+

h(Ys(ω)) exists for all t ∈ R+

and the analogous statement for limits s ↑ t holds true as well.

3.2 Countable convergence determining set H . Let g0, g1, . . . be a countable dense subset of
{f ∈ C0(E) | f ≥ 0} with g0 > 0 on E (such a set {gn}n∈N0 exists in lccb spaces, the reason for
the choice g0 > 0 will become clear later on). Set hn := Uαgn, and H := {hn | n ∈ N0}. Every
function f ∈ D(L) can be written as a limit of functions Uα(hnj − hmj ) with j → ∞, therefore
if hn(x) = hn(y) for all n ∈ N0, then f(x) = f(y) for all f ∈ D(L) and then for all f ∈ C0(E)
because D(L) is dense in C0(E). As a consequence, H separates points, i.e., for all x, y ∈ E, we
have the implication (

h(x) = h(y) for all h ∈H
)
⇒ x = y.

Lemma 17. Let (xn)n∈N be a sequence in E such that for each h ∈ H , the limit yh :=
limn→∞ h(xn) exists. Assume in addition that E is compact or that there exists h ∈ H such
that limn→∞ h(xn) 6= 0. Then x = limn→∞ xn exists as well.

Proof. Let x, x′ ∈ E be two accumulation points of the sequence. Then h(x) = h(x′) for all h ∈H
and therefore x = x′. Thus (xn)n∈N can have at most one accumulation point in E.

If E is compact, then every sequence has a convergent subsequence so (xn)n∈N has at least one
accumulation point. So (xn)n∈N has exactly one accumulation point x. Suppose by contradiction
that limn→∞ xn 6= x. Then (xn)n∈N has a subsequence (xnk) staying in E \ O with O some
open neighborhood of x. By compactness, (xnk) in turn has a convergent subsequence with limit
y ∈ E \ O. Thus y 6= x is another accumulation point of (xn), contradicting uniqueness of
accumulation points.

If E is lccb but not compact, for example, E = R, we need to rule out subsequences going to
infinity. Let h∗ ∈ H with y∗ = limn→∞ h∗(xn) 6= 0. Let K := {x ∈ E | |h∗(x)| ≥ 1

2 |y
∗|}. Then

K is compact and there exists some n∗ such that for all n ≥ n∗, we have xn ∈ K. From here on
we can repeat the argument given above for compact E. �

Concerning the additional condition in the lemma, we note that h0 > 0: we already know h0 ≥ 0
(because resolvents map non-negative functions to non-negative functions), and h0 = Uαg0 = 0
would imply g0 = 0 because the resolvent is injective. Therefore the supermartingale Mt :=
e−αth0(Yt) is strictly positive and the following proposition comes in handy.

Proposition 18. Suppose (Mt)t≥0 is a non-negative supermartingale. Then for every t ∈ Q+,
the probability of the event {Mt > 0, infs∈Q+∩[0,t]Ms = 0} vanishes.

See [Lig10, Proposition 1.114].

For the strictly positive supermartingale that we are dealing with, the proposition implies that
the event {infs∈Q+∩[0,t]Ms = 0} has probability zero, so any limit along subsequences must be
strictly positive.

3.3 Definition of a modified process (X̃t)t≥0. The set Nx :=
⋃
h∈H Nx,h is a countable union of

P̃x-null sets, hence, a P̃x-null set itself. Combining the considerations above, we see that for every
ω ∈ {X0 = x} \ Nx, and all t ≥ 0, the limit

X̃t(ω) := lim
s↓t,s∈Q+

Yt(ω)
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exists, and for all t > 0, the limit lims↑t,s∈Q+
Yt(ω) exists as well. Let

N := Ω̃ \
⋃
y∈E

(
{Y0 = y} \Ny

)
=
⋃
y∈E

(
Ny ∩ {Y0 = y}).

Notice that for each x ∈ E, N is contained in a P̃x-null set, since N ⊂ Nx ∪ {Y0 6= x} and

P̃x(Y0 6= x) = 0. We extend the definition of (X̃t) to all of Ω̃ by defining X̃t(ω) := x0 for ω ∈ N ,
with x0 ∈ E arbitrary dummy element not depending on x, ω, or t (for example, x0 = 0 when

E = R). The process (X̃t)t≥0 has càdlàg paths.

3.4 Show that (X̃t)t≥0 is a modification of (Yt)t≥0. Fix x ∈ E. We have, for all t ≥ 0 and
f1, f2 ∈ C0(E),

Ẽx
[
f1(Yt)f2(X̃t)

]
= lim

s↓t
s∈Q+

Ẽx
[
f1(Yt)f2(Ys)

]
= lim

s↓t
s∈Q+

Ẽx
[
f1(Yt)(Ps−tf2)(Ys)

]
= Ex

[
f1(Yt)f2(Yt)

]
.

A functional monotone class theorem shows that Ẽx[f(Yt, X̃t)] = Ẽx[f(Yt, Yt)] for all bounded
measurable f : E × E → R. It follows that

∀x ∈ E ∀t ≥ 0 : P̃x
(
X̃t = Yt

)
= 1.

Thus (X̃t)t≥0 is a modification of (Yt)t≥0, relative to each P̃x.

As a consequence, (X̃t)t≥0 has the same finite-dimensional distributions as (Yt)t≥0, hence

X̃0 = Y0 = x, P̃x-a.s., and (X̃t)t≥0 is a Markov process (relative to its own natural filtration)
with transition function (Pt)t≥0.

Step 4: Clean-up. To conclude, we come back to the smaller space Ω of càdlàg paths. The map

X̃ : Ω̃→ Ω, ω̃ 7→ (X̃t(ω̃))t≥0

is measurable, we define Px as the image of P̃x under this map. This definition is used to prove
existence of (Px)x∈E as claimed in the theorem.

The uniqueness is a consequence of the definition of the σ-algebra: let (Px)x∈E , (Qx)x∈E be two
families of probability measures such that (Ω,F , (F0

t )t≥0, (Px)x∈E , (Xt)t≥0, (θs)s≥0) and the same
tuple with (Qx)x∈E instead of (Px)x∈E become Markov families with transition function (Pt)t≥0.
Then for each x ∈ E, the measures Px and Qx have the same fidis, i.e.,

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) = Qx(Xt1 ∈ A1, . . . , Xtn ∈ An)

for all x ∈ E, n ∈ N, 0 ≤ t1 < · · · < tn, and A1, . . . , An ∈ E . The family C of sets of the
form {Xt1 ∈ A1, . . . , Xtn ∈ An} is a π-system that generates F = σ(Xt, t ≥ 0), it follows that
Px(B) = Qx(B) for all B ∈ F hence Px = Qx. This concludes the proof of Theorem 7.
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Appendix A. Some properties of lccb spaces

Every lccb space E satisfies a number of useful properties, some of them not easy to prove
(some proofs build on theorems from set theoretic topology such as metrization lemmas etc.):

• E is Polish, i.e., separable and metrizable with complete metric.
• E is σ-compact : there is a sequence of compact sets (Kn)n∈N such that E = ∪n∈NKn.
• If E is compact, then the constant function 1 is in C0(E). If E is not compact, then

1 /∈ C0(E) but there exists a sequence of functions (fn)n∈N in C0(E) such that fn ≤ fn+1

and fn ↗ 1 pointwise as n→∞. Such sequences are sometimes called approximate units
or approximate identities.

• The space C0(E) is separable.
• Every function f ∈ C0(E) is uniformly continuous.
• The functions in C0(E) generate the Borel-σ-algebra: σ(f, f ∈ C0(E)) = B(E). This is

useful in applications of the functional monotone class theorem.
• The Riesz-Markov theorem holds true: Let ϕ : C0(E)→ R be a bounded linear map8 in the

Banach space (C0(E), || · ||) (supremum norm). Then there exists a uniquely defined finite
signed measure9 µ on E (equipped with the Borel σ-algebra) such that ϕ(f) =

∫
E
fdµ.

Alexandroff one-point compactification. When E is not compact, it can be useful to compactify
it by adding one point; think R → R ∪ {∞} with +∞ and −∞ identified. This is done as
follows: Let T be the collection of open sets of E. Let ∞ be some point that is not in E. Define
E∗ := E ∪ {∞}. On E∗ we define a topology T ∗ as the coarsest topology for which: (i) T ⊂ T ∗,
and (ii) T ∗ contains all sets of the form E∗ \K with K ⊂ E compact in (E, T ) (every such set is
considered an open neighborhood of∞). Then (E∗, T ∗) is a compact lccb space, moreover we can
identify C0(E) with the set of functions f : E∗ → R that are continuous and satisfy f(∞) = 0.
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