Exercises for Stochastic Processes

Let $(B_t)_{t\geq 0}$ be the standard Brownian motion and $(\mathfrak{F}_t)_{t\geq 0}$ the right-continuous completion of the natural filtration. In the following, the notion of stopping time is used with respect to $(\mathfrak{F}_t)_{t\geq 0}$.

- 1. Let for $\tau := \inf \{ t \ge 0 \mid B_t \in \{a, b\} \}$ for a < 0 < b.
 - (a) Determine the distribution of B_{τ} and compute the expected value of τ .
 - (b) Compute $\mathbb{E}[\tau^2]$.
- 2. Show that there exists a stopping time τ with $\mathbb{E}[\tau] = \infty$ and $\mathbb{E}[B_{\tau}^2] < \infty$.
- 3. Find stopping times σ and τ with $\mathbb{E}[\sigma] < \infty$, $\sigma \leq \tau$ almost surely and

$$\mathbb{E}[B^2_{\sigma}] > \mathbb{E}[B^2_{\tau}].$$

4. Show that

$$\mathbb{E}[\tau^2] \le 4\mathbb{E}[B_\tau^4]$$

for a stopping time τ with $\mathbb{E}[\tau] < \infty$.

Deadline: Tuesday, 18.12.2018. Hand in in groups, please!