Exercises for Stochastic Processes

1. Show that, for any square-integrable martingale $(M_t)_{t \ge 0}$ and r < s < t,

$$\mathbb{E}\left[(M_t - M_s)^2 \mid \mathfrak{F}_r\right] = \mathbb{E}\left[M_t^2 - M_s^2 \mid \mathfrak{F}_r\right].$$

- 2. Show that Gaussian processes $(X_t)_{t\geq 0}$ that are martingales have independent increments.
- 3. Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and $(\mathfrak{F}_t)_{t\geq 0}$ the corresponding natural filtration.
 - (a) Show that, for $\sigma \geq 0$, the process

$$\left(e^{\sigma B_t - \frac{\sigma^2 t}{2}}\right)_{t \ge 0}$$

is a martingale.

- (b) Show that the following processes are martingales:
 - $(B_t^2 t)$
 - $(B_t^3 3tB_t)$
 - $(B_t^4 6tB_t^2 + 3t^2)$
 - •

and find the general formula for the above sequence.

3. Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and $(\mathfrak{F}_t)_{t\geq 0}$ the corresponding natural filtration.

Are the following processes martingales with respect to $(\mathfrak{F}_t)_{t\geq 0}$? Prove or disprove:

- (a) $e^{\sigma B_t}$ for $\sigma > 0$,
- (b) $cB_{\frac{t}{c^2}}$ for c > 1,
- (c) $tB_t \int_0^t B_s ds$.

Deadline: Tuesday, 11.12.2018. Hand in in groups, please!