Exercises for Stochastic Processes

- 1. Let $(\mathfrak{F}_t)_{t\geq 0}$ be a right-continuous filtration and let $\tau, (\tau_n)_{n\in\mathbb{N}}$ be (\mathfrak{F}_t) -stopping times.
 - (a) Show that

$$\mathfrak{F}_{\tau} := \{ A \mid \forall t \ge 0 : A \cap \{ \tau \le t \} \in \mathfrak{F}_t \}$$

is a σ -algebra.

- (b) Show that τ is F_{τ} -measurable.
- (c) Show that, if $\tau_1 \leq \tau_2$, then $\mathfrak{F}_{\tau_1} \subset \mathfrak{F}_{\tau_2}$.
- (d) Show that, if $\tau_n \downarrow \tau$, then $\mathfrak{F}_{\tau} = \bigcap_n \mathfrak{F}_{\tau_n}$.
- 2. The "tail σ -algebra" w.r.t. standard Brownian motion $B_t(\omega) = \omega(t)$ on $C[0, \infty)$ is defined as

$$\mathfrak{T} := \bigcap_{t>0} \sigma\bigl(\{B_s \mid s \ge t\}\bigr) \,.$$

Show that, for any $A \in \mathfrak{T}$, $\mathbb{P}(A) \in \{0, 1\}$.

- 3. Let $(\mathfrak{F}_t)_{t\geq 0}$ be a right-continuous filtration, B an (\mathfrak{F}_t) -Brownian motion and τ a finite (\mathfrak{F}_t) -stopping time. Show that $X_t := B_{\tau+t} B_{\tau}$ defines a Brownian motion, which is independent of \mathfrak{F}_{τ} .
- 4. Consider the Markov family X given by the space $\Omega := \{\omega : \mathbb{R}_+ \to \mathbb{R} \mid \omega(t) = a + bt \text{ for some } a, b \in \mathbb{R}\}$ equipped with the σ -algebra $\mathfrak{F} := \sigma(X_s : s \geq 0)$, the process $X_t(\omega) := \omega(t)$ for $\omega \in \Omega$, the canonical family of time-shift to the right $(\theta_t)_{t\geq 0}$, the filtration $(\mathfrak{F}_t)_{t\geq 0} := (\sigma(X_s : s \leq t))_{t\geq 0}$ and the family of probability measures \mathbb{P}_x on Ω . For $x \in \mathbb{R}$, let \mathbb{P}_x be defined by: $\mathbb{P}_x(\{t \mapsto -t\}) = 1$ for x < 0, $\mathbb{P}_x(\{t \mapsto t\}) = 1$ for x > 0 and $\mathbb{P}_0(\{t \mapsto -t\}) = \mathbb{P}_0(\{t \mapsto t\}) = \frac{1}{2}$.
 - (a) Show that X satisfies the Markov property.
 - (b) Compute the corresponding transition function $(P_t)_{t>0}$.
 - (c) Prove that, in general, $x \mapsto (P_t f)(x)$ is not in $C_b(\mathbb{R})$ for $f \in C_b(\mathbb{R})$.

Deadline: Tuesday, 04.12.2018. Hand in groups, please!