Exercises for Stochastic Processes

1. Let $(\mathfrak{F}_t)_{t\geq 0}$ be an arbitrary filtration. Show that $(\mathfrak{F}_{t+})_{t\geq 0}$, given by

$$\mathfrak{F}_{t+} := \bigcap_{s>t} \mathfrak{F}_s, \quad t \ge 0,$$

is a right-continuous filtration.

- 2. Let $(\mathfrak{F}_t)_{t\geq 0}$ be a right-continuous filtration.
 - (a) Show that $\tau : \Omega \to \mathbb{R}_+ \cup \{\infty\}$ is a (\mathfrak{F}_t) -stopping time if and only if $\{\tau < t\} \in \mathfrak{F}_t$ for all $t \ge 0$.
 - (b) Let $(\tau_n)_{n\in\mathbb{N}}$ be a sequence of (\mathfrak{F}_t) -stopping times. Show that $\sup_n \tau_n$, $\inf_n \tau_n$, $\limsup_n \tau_n$, $\lim \sup_n \tau_n$, $\lim \inf_n \tau_n$ and, if existent, $\lim_n \tau_n$ are (\mathfrak{F}_t) -stopping times.
- 3. Let B be a Brownian motion. Show that the random set of times at which B has local maxima is a.s. dense in \mathbb{R}_+ .

(Hint:

First prove the following: A continuous function on [a, b] that is monotone in no subinterval of [a, b] has a local maximum in (a, b). Then show that the paths of Brownian motion are monotone in no interval a.s.)

4. Let B be a standard Brownian motion. Compute the distribution function of the stopping time $\tau_1 := \inf\{t \ge 1 \mid B_t = 0\}.$

(Hint:

You may use the following result without proof: Let $\tau^x := \inf\{t \ge 0 : x + B_t = 0\}$, then for $x \ne 0$

$$\mathbb{P}(\tau^{x} < t) = \int_{0}^{t} \frac{|x|}{\sqrt{2\pi z^{3}}} exp\{\frac{-x^{2}}{2z}\} dz.$$

Use the Markov property to express the distribution of τ_1 in terms of the distribution of τ^x .)

Deadline: Tuesday, 27.11.2018. Hand in in groups, please!