
CHAPTER 6: FELLER-DYNKIN PROCESSES

1. Preliminaries

In Chapter 5 on Markov processes with countable state spaces, we have investigated in which
sense we may think of transition functions Pt as exponentials exp(tQ) of matrices Q with certain
properties: In finite state spaces, there is a one-to-one correspondence between standard transition
functions and conservative Q-matrices, given by

Pt = exp(tQ), Q =
d

dt
Pt|t=0.

In countably infinite spaces, the situation was complicated by possibly instataneous states (c(x) =
|q(x, x)| = ∞), non-conservative matrices and the phenomenon of explosion. It is natural to ask
whether analogous relations can be formulated for uncountable state spaces, and what the appro-
priate substitute for the notion of conservative Q-matrix is.

Brownian motion. To get a feel for what changes in relation with finite or countable state spaces,
let us look at the transition function of the Brownian family X

Pt(x,A) = Px(Xt ∈ A) =

∫
A

1√
2πt

exp
(
− (x− y)2

2t

)
dy

and the induced family of operators Pt : bE → bE given by

(Ptf)(x) = Ex[f(Xt)] =

∫
R

1√
2πt

exp
(
− (x− y)2

2t

)
f(y)dy.

Changing variables as y = x+
√
tz we see that

Ptf(x) =
1√
2π

∫ ∞
−∞

f(x+
√
tz) exp

(
−z

2

2

)
dz = E[f(x+

√
tZ)]

with Z ∼ N (0, 1) a standard normal variable. If f ∈ C2(R), then

f(x+
√
tz) = f(x) + f ′(x)

√
tz +

1

2
f ′′(x)tz2 + o(t)

as t→ 0 at fixed z and x. This suggests (but does not prove!) that

Ptf(x) = f(x) +
√
tf ′(x)E[Z] +

1

2
f ′′(x)tE[Z2] + o(t2) = f(x) + t

1

2
f ′′(x) + o(t)

and
d

dt
(Ptf)(x)

∣∣∣
t=0

=
1

2
f ′′(x).

So if we try to generalize the relation between Q-matrices and transition function from countable
state spaces, it is reasonable to expect that for Brownian motion, the linear map f 7→ 1

2f
′′ should

play a certain role. Notice that 1
2f
′′ is not well-defined for all f ∈ bE , even though Ptf is. So the

situation is more complicated than for standard transition functions in countable state spaces, for
which we were able to define q(x, y) for all x, y. Instead of conservative or weakly conservative
Q-matrices, we are going to deal with unbounded linear operators.

Substitute for standardness. Let us go a step back and ask how we might generalize the notion
of standardness. The definition in terms of matrix elements makes no sense for uncountable state
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spaces, but we can try something else. If (Pt) is a standard transition function on a countable
space E, then for every bounded function f : E → R,

|Ptf(x)− f(x)| ≤
∑
y∈E
|Pt(x, y)− δx,y| |f(y)| ≤ 2||f ||∞(1− Pt(x, x))→ 0

with
||f || := sup

y∈E
|f(y)|.

If E is finite, we even have the stronger property

||Ptf − f || → 0 as t→ 0.

This leaves us with two natural substitutes for standardness: we ask that Ptf → f as t → 0,
either pointwise on R or uniformly on R. Pointwise convergence is easier to satisfy but uniform
convergence is more convenient from an analytic point of view, so we go for the latter.

Unfortunately, for the transition function of Brownian motion, it is not true that ||Ptf−f ||∞ →
0 for all f ∈ bE (exercise!). This can be remedied by only considering functions f that are con-
tinuous and go to zero as |x| → ∞; the space of such functions is denoted C0(R) (exercise!).
Intuitively, this is not so surprising: we ask for Ex[f(Xt)]→ f(x) as t→ 0. If f is not continuous,
there is no reason why this should be true. For the uniformity of the convergence, it is worth
observing that for all fixed y 6= x, (2πt)−1/2 exp(−(x− y)2/(2t)) goes to zero as t→∞, however
the convergence is slower and slower the larger |y − x| is: if y is very far away from X0 = x,
it should take the process longer to reach y. So for the convergence Ptf → f to be uniform, it
is natural to ask for some condition on f that guarantees that far away y do not matter that much.

Locally compact spaces with countable base. In general topological state spaces E, we say that a
function f : E → R vanishes at infinity if, for every ε > 0, there exists a compact set K ⊂ E such
that supE\K |f | ≤ ε, and we define

C0(E) := {f : E → R | f is continuous and vanishes at infinity}
Cb(E) := {f : E → R | f is continuous and bounded}
C(E) := {f : E → R | f is continuous}.

If E is compact, then every continuous function is bounded and vanishes at infinity, i.e., C0(E) =
Cb(E) = C(E), but in general we only know

C0(E) ⊂ Cb(E) ⊂ C(E).

There exist Polish spaces E for which C0(E) consists only of one element, the function that is
everywhere equal to zero. This is clearly not what we want. A sufficient condition that guarantees
that C0(E) is rich enough is that E is locally compact with countable base, or lccb for short. This
means, by definition, that

(i) There exists a countable family (On)n∈N of open sets such that every open set O ⊂ E
can be written as a union O = ∪i∈IOi for some I ⊂ N. This property is automatically
satisfied when the space is metric and separable (take the open balls with rational radius
and centers in a dense countable set).

(ii) For every x ∈ E, there exists an open set O ⊂ E such that x ∈ O and the closure O is
compact.

For example, R is lccb but C[0, 1] with the supremum norm and topology of uniform convergence
is not. Every lccb space is Polish, but the converse is not true.

Some properties of lccb spaces are collected in Appendix A.

2. Main definitions and theorems

2.1. Feller-Dynkin semi-group and Feller-Dynkin family.

Definition 1. Let E be an lccb space. A Feller-Dynkin semi-group (abbreviated FD semi-group)
on E is a family (Pt)t≥0 such that:
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(i) Each Pt : C0(E)→ C0(E) is a linear operator.
(ii) Pt+s = PtPs for all s, t ≥ 0.
(iii) We have 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1, for all f ∈ C0(E) and t ≥ 0.
(iv) ||Ptf − f || → 0 as t↘ 0, for all f ∈ C0(E).

We call a normal Markov family X a Feller-Dynkin family ( FD family) if it is has càdlàg sample
paths and the family (Pt)t≥0 given by (Ptf)(x) = Ex[f(Xt)] is a Feller-Dynkin semi-group.

For a FD family we may assume without loss of generality that the filtration is right-continuous,
moreover the family is strong Markov. The proof is completely analogous to our earlier theorems,
the only difference is that we use C0(E) instead of Cb(E).1

Remark (Strongly continuous contraction semi-group). Property (iv) is called strong continuity.
Property (iii) implies that

(iii’) ∀f ∈ C0(E) ∀t ≥ 0 : ||Ptf || ≤ ||f ||,
i.e., each Pt is a contraction. Families that satisfy (i), (ii), (iii’), and (iv) are called strongly
continuous contraction semi-groups. They can be defined in general Banach spaces (not necessarily
C0(E)).

Let us have a closer look at what we are really asking for a family to be Feller-Dynkin. Let X be
a Markov family with càdlàg sample paths and transition function Pt(x,A) = Px(Xt ∈ A). We
have noted earlier that if f ∈ bE , then the function Ptf defined by Ptf(x) =

∫
E
Pt(x, dy)f(y) =

Ex[f(Xt)] is in bE as well. The map Pt is clearly linear. The semi-group property Pt+s = PtPs is
inherited from the Chapman-Kolmogorov equations. The implication 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1
holds true for all f ∈ bE because E 3 A 7→ Pt(x,A) is a probability measure for all t > 0 and
x ∈ E. So we really only need to check two things: First, whether it is true that

f ∈ C0(E) ⇒ ∀t > 0 : Ptf ∈ C0(E). (1)

Second, is the semi-group strongly continuous on C0(E) (property (iv) of Definition 1)? Notice
that, because of the right-continuity of sample paths and normality, we know that for all f ∈ C0(E),
Ptf(x) = Ex[f(Xt)] → Ex[f(X0)] = f(x) as t → 0. The following lemma tells us that strong
continuity then comes for free.

Lemma 2. Let E be an lccb space and (Pt)t≥0 a family of operators that satisfies properties (i),
(ii), and (iii) of Definition 1, and in addition

(iv′) ∀f ∈ C0(E) ∀x ∈ E : lim
t→0

(Ptf)(x) = f(x).

Then (Pt)t≥0 also satisfies (iv) of Definition 1 and it is a FD semi-group.

The important consequence for us is the following:

A normal Markov family with càdlàg sample paths is a FD family if and only if
its transition function preserves C0(E), i.e., Eq. (1) holds true.

It is not too difficult to check, with the help of the Riesz-Markov theorem (see Appendix A), that
for every FD semi-group there is a uniquely defined sub-Markov transition function (Tt)t≥0 such
that (Ptf)(x) =

∫
E
Tt(x, dy)f(y). For (Tt)t≥0 to be a Markov transition function, it is necessary

and sufficient that the semi-group satisfies an additional condition. Notice that 1 ∈ C0(E) if and
only if E is compact.

Definition 3. Let E be an lccb space. We call (Pt)t≥0 a Markovian FD semi-group if it is a FD
semi-group and in addition

(v) If E is compact: Pt1 = 1 for all t > 0. If E is not compact: there is a sequence (fn)n∈N
with fn → 1 pointwise and supn ||fn|| <∞ such that Ptfn → 1 pointwise.

1Remember that one of the key elements was a functional monotone class theorem, applied to the multplicative

class Cb(E), which in metric spaces generates the Borel σ-algebra. In lccb spaces, something similar still works
because the Borel σ-algebra is already generated by the smaller class C0(E).
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2.2. Infinitesimal generator.

Definition 4. Let E be an lccb space and (Pt)t≥0 a FD semi-group on E. The infinitesimal
generator of (Pt)t≥0 is the operator L : D(L)→ C0(E) with domain

D(L) = {f ∈ C0(E) | ∃g ∈ C0(E) : lim
t↘0
|| 1t (Ptf − f)− g|| = 0}

that maps f ∈ D(L) to

Lf = lim
t↘0

1

t
(Ptf − f).

Conditions (i)–(iii) in the following theorem provide a substitute for the notion of weakly conser-
vative Q-matrix.

Theorem 5. Let E be an lccb space. An operator L : D(L)→ C0(E) is the infinitesimal generator
of a FD semi-group if and only if the following three conditions hold true:

(i) D(L) is a dense subspace of C0(E).
(ii) L satisfies the positive maximum principle, i.e., for every f ∈ D(L) and every maximizer

x0 ∈ E of f , we have (Lf)(x0) ≤ 0.
(iii) There exists a λ > 0 such that R(λI − L) = C0(E).

Condition (i) is the next best thing to ask for if the generator L has a domain smaller than C0(E).
Condition (ii) goes well with the candidate generator Lf = 1

2f
′′ (and yet to be determined domain

D(L)), it replaces the conditions on the signs of the matrix elements of a weakly conservative Q-
matrix and on its row sums. Condition (iii) is usually the hardest to check, it does not work if
the domain D(L) is too small. Conditions (ii’) below and (iii) reflect that a weakly conservative
Q-matrix in finite state space E has no strictly positive eigenvalue, see the remark below.

Remark (Dissipativity, Hille-Yosida theorem). Condition (ii) implies that L is dissipative,2 i.e.,

(ii’) ∀λ > 0 ∀f ∈ D(L) : ||λf − Lf || ≥ λ||f ||. (2)

The Hille-Yosida theorem says that an operator L is the generator of a strongly continuous con-
traction semi-group if and only if it satisfies conditions (i),(ii’), and (iii). The Hille-Yosida theorem
holds true in general Banach spaces.

Remark (Bijectivity of λI−L). Later we will see that if L satisfies (i), (ii), and (iii), then condition
(iii) is actually satisfies for all λ > 0 so that the operator λI − L : D(L) → C0(E) is surjective
for all λ > 0. The dissipativity (ii’) implies that the operator λI −L : D(L)→ C0(E) is injective
with bounded inverse, ||(λI − L)−1g|| ≤ 1

λ ||g||. Thus λI − L is in fact bijective with bounded
inverse. The counterpart in finite state spaces is the following: If Q is a conservative Q-matrix in
a finite state space E, then Q cannot have strictly positive eigenvalues. In fact, one knows a little
more: all eigenvalues of Q must lie in the complex half-plane {λ ∈ C | Reλ ≤ 0} (exercise!).

The additional condition of the following proposition replaces the condition that a conservative
Q-matrix has row sums equal to zero.

Proposition 6. Let E be an lccb space. An operator L : D(L) → C0(E) is the infinitesimal
generator of a Markovian FD semi-group if and only if it satisfies the conditions (i) to (iii) from
Theorem 5 and in addition:

• If E is compact: 1 ∈ D(L), and L1 = 0,
• If E is not compact: for all sufficiently small λ > 0, there exists a sequence (fn)n∈N (that

may depend on λ) so that gn = fn − λLfn satisfies supn ||gn|| < ∞ and both fn and gn
converge to 1 pointwise.

2The word is explained as follows: Suppose that we work in a Hilbert space with scalar product 〈·, ·〉 and

norm ||f || =
√
〈f, f〉 (instead of the supremum norm). Then the condition (2) is equivalent to Re 〈f, Lf〉 ≤ 0

for all f , from which we may in turn deduce that d
dt
|| exp(tL)f ||2 ≤ 0. In some PDE applications, the Hilbert

space might be L2(R3) and |u(x, t)|2 := |(exp(tL)f)(x)|2 may have the interpretation of an energy density. Then
d
dt

∫
R3 |u(x, t)|2dx ≤ 0 says that the total energy can only decrease or be dissipated, but never increase.
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2.3. Canonical process associated with a given FD semi-group. In order to show that for a
given Markovian FD semi-group an associated FD family exists, we construct the canonical version.
Let Ω = DE [0,∞) be the space of càdlàg functions ω : [0,∞)→ E. For t ≥ 0, let Xt(ω) := ω(t).
Further let F := σ(Xt, t ≥ 0) and F0

t := σ(Xs, s ≥ t). Finally let (θsω)(t) := ω(s+ t).

Theorem 7. Let E be an lccb space and (Pt)t≥0 a Markovian FD semigroup on E. Then there
exists a uniquely defined family (Px)x∈E of probability measures on (Ω,F) such that

X = (Ω,F , (F0
t )t≥0, (Px)x∈E , (Xt)t≥0, (θs)s≥0)

is a FD family with Ex[f(Xt)] = (Ptf)(x) for all f ∈ C0(E), t ≥ 0, x ∈ E.

Remark (Sub-Markov case). The Sub-Markov case is usually dealt with by making the state space
a little larger. Let ∂ be some element not in E, called coffin or cemetery, and E∂ := E ∪ {∂}.
Equip E∂ with E∂ := σ(B(E), {∂}), i.e., the smallest σ-algebra that contains the singleton {∂}
and all sets from the Borel σ-algebra E. Extend the sub-Markov transition function (Pt)t≥0 as
follows:

P ∂t (x, {∂}) := 1− Pt(x,E) (x ∈ E),

P ∂t (x,A) := Pt(x,A) (x ∈ E,A ∈ B(E)),

P ∂t (∂, ·) := δ∂(·).

Then (P ∂t )t≥0 is a transition function on (E∂ , E∂). The path space is extended as follows: let Ω∂
be the set of paths ω : R+ → E∂ such that:

• either ω(t) ∈ E for all t ≥ 0, and t 7→ ω(t) is càdlàg,
• or there exists ζ(ω) > 0 such that ω(t) = ∂ for all t ≥ ζ(ω), ω(t) ∈ E for all t < ζ(ω), and
ω(·) is right-continuous and has left limits in every t0 < ζ(ω),

• or ω(t) = ∂ for all t ≥ 0.

We do not ask for the existence of left limits as t↗ ζ(ω). Define Xt(ω) := ω(t). Then an analogue
of Theorem 7 holds true with Ω replaced with Ω∂ , and the natural choices of σ-algebra, filtration,
and shift operators. The definition of ζ(ω) is extended to all ω ∈ Ω by

ζ(ω) := inf{t ≥ 0 | Xt(ω) = ∂}.
ζ is the life-time of the process.
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Appendix A. Some properites of lccb spaces

Every lccb space E satisfies a number of useful properties, some of them not easy to prove
(some proofs build on theorems from set theoretic topology such as metrization lemmas etc.):

• E is Polish, i.e., separable and metrizable with complete metric.
• E is σ-compact : there is a sequence of compact sets (Kn)n∈N such that E = ∪n∈NKn.
• If E is compact, then the constant function 1 is in C0(E). If E is not compact, then

1 /∈ C0(E) but there exists a sequence of functions (fn)n∈N in C0(E) such that fn ≤ fn+1

and fn ↗ 1 pointwise as n→∞. Such sequences are sometimes called approximate units
or approximate identities.

• The functions in C0(E) generate the Borel-σ-algebra: σ(f, f ∈ C0(E)) = B(E). This is
useful in applications of the functional monotone class theorem.

• The Riesz-Markov theorem holds true: Let ϕ : C0(E)→ R be a bounded linear map3 in the
Banach space (C0(E), || · ||) (supremum norm). Then there exists a uniquely defined finite
signed measure4 µ on E (equipped with the Borel σ-algebra) such that ϕ(f) =

∫
E
fdµ.

Alexandroff one-point compactification. When E is not compact, it can be useful to compactify
it by adding one point; think R → R ∪ {∞}—for E = R, the one-point compactification does
not distinguish between +∞ and −∞. This is done as follows: Let T be the collection of open
sets of E. Let ∞ be some point that is not in E. Define E∗ := E ∪ {∞}. On E∗ we define a
topology T ∗ as the coarsest topology for which: (i) T ⊂ T ∗, and (ii) T ∗ contains all sets of the
form E∗ \K with K ⊂ E compact in (E, T ) (every such set is considered an open neighborhood
of ∞). Then (E∗, T ∗) is a compact lccb space, moreover we can identify C0(E) with the set of
functions f : E∗ → R that are continuous and satisfy f(∞) = 0.

3Meaning: |ϕ(f)| ≤ C||f || for some C ∈ R+ and all f ∈ C0(E).
4Every such measure can be written as µ = αµ1 − βµ2 with α, β ≥ 0 and µ1, µ2 probability measures on E.
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