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Let (X,, n > 0) be a random dynamical system and its state space be
endowed with a reasonable topology. Instead of completing the structure
as common by some linearity, this study stresses — motivated in particu-
lar by economic applications — order aspects. If the underlying random
transformations are supposed to be order-preserving, this results in a fairly
complete theory. First of all, the classical notions of and familiar criteria
for recurrence and transience can be extended from discrete Markov chain
theory. The most important fact is provided by existence and uniqueness of
a locally finite invariant measure for recurrent systems. It allows to derive
ergodic theorems as well as to introduce an attractor in a natural way. The
classification is completed by distinguishing positive and null recurrence
corresponding, respectively, to the case of a finite or infinite invariant mea-
sure; equivalently, this amounts to finite or infinite mean passage times.
For positive recurrent systems, moreover, strengthened versions of weak
convergence as well as generalized laws of large numbers are available.

Introduction. The random dynamical systems studied in this paper evolve
in one-sided discrete time with independent and stationary increments. Therefore
the formalism needed for more general models (see the monographs by Kifer [26]
or Arnold [2]) is dispensable, and the process (X, n > 0) can be introduced as an
“iterated function system”

X, =Hp(Xp—1) for neN,

where (H,,n € N) is a sequence of i.i.d. transformations of the state space E,
independent of the initial EF—valued variable Xj. If no specific structure in £ has to
be taken into account, this is just another way to introduce a homogeneous Markov
chain on E (see von Weizsicker [39]).

If, however, state space and mappings are supposed to have appropriate linearity
(or smoothness) properties, the multiplicative ergodic theorem yields additional in-
sight, provided the relevant integrability conditions are satisfied. Another common
model — studied in particular by Barnsley and Elton (see e.g. [6, 5, 14]) — supposes
E to be a complete metric space and the mappings H,, to satisfy an average con-
tractivity. But in both cases research concerns primarily existence resp. uniqueness
of an equilibrium and consequences on the long-term behaviour of the system. In
both cases, too, the required moment conditions are by no means necessary.

To exemplify the problems left open, choose £ = R and restrict H, to affine
maps, i.e. consider the “autoregressive model”

X, =UXpn1+V, for neN
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with a sequence of i.i.d. R?%-valued variables (Up,V;). If (Sp, n > 0) denotes
the random walk with increments logU, (> —o0), then — without any moment
conditions on U, and under weak boundedness conditions on V,, — the following
trichotomy is established in the preprint [24]:

(a) if S, & —o0, then (X,, n > 0) is “positive recurrent”,
(b) if (Sp, n > 0) oscillates, then (X,, n > 0) is “null recurrent”,
(c) if S, — 400, then (X, n > 0) is “transient”.

In the existing literature (see in particular the surveys by Vervaat [38] and by
Embrechts/Goldie [15] and Goldie/Maller [20]) there is nearly no distinction between
cases (b) and (c), though a common treatment of cases (a) and (b) is in fact much
more adequate. But it is not the affine (and topological) structure that allows
a natural extension of classical notions and central criteria from discrete Markov
chain theory to an uncountable state space. While under a topological structure
alone there is a variety of definitions for transience and (null or positive) recurrence
(see e.g. the various notions in Tweedie [37] and Meyn/Tweedie [32]), the results
obtained in the preprint [25] prove that order and topology combined provide an ideal
framework for a fairly complete theory of random dynamical systems as considered
in this paper.

To cover, however, autoregressive models of higher dimension or stochastic recur-
sions of higher order, assuming E to be totally ordered, as is the case in [24] or [25],
is too restrictive. In the sequel, therefore, these preprints are disregarded, and the
state space is supposed to be any (partially) ordered topological space. In essence,
there is only one restriction: F is supposed to be bounded from below, a condition
that is largely in accordance with theory as well as with applications. Indeed, to
give only two typical examples: most work on products of i.i. d. matrices is actually
restricted to nonnegative matrices (see e.g. Hognds/Mukherjea [22, Chapter 4]),
while economic processes, modeling dams, insurance risk, queues, storage, traffic
etc. (see e.g. Asmussen [3, Part C]) in general have 0 as natural lower bound. These
and other examples, moreover, justify the restriction to mappings H,, that respect
the structure of F, i.e. are order-preserving and continuous.

The precise assumptions on the state space F are collected at the beginning of
Section 0. They are met not only in the classical case E = Ri, but as well, for
instance, by (rooted) tree models. The significance of the order is reflected by the
singular role of order convex sets and functions of bounded variation, leading to
the basic classes U(E) and V(E), respectively. The extension of these notions from
total to partial order is straightforward, apart from the fact that monotone sets or
functions need not be measurable in the general case. But the arising problems,
as some less common notions and facts concerning ordered topological spaces, are
postponed to the final section. Random is introduced by specifying an element v
in the space N[E] of distributions on the space H[E] of order-preserving continuous
transformations of E. This defines a (coupled) family of homogeneous Markov chains
(X% n >0), depending on the initial state z € E.

If the interest is not limited to stationary distributions and more generally recur-
rence properties are studied, the existence of not necessarily finite invariant measures
for the underlying transition kernel is just as interesting. To assure uniqueness, be-
ing essential for ergodic theorems, restriction to suitably “irreducible” systems is
inevitable. As it turns out, the adequate notion — introduced at the beginning of



Section 1 — employs the order instead of the topology of E. It has to be emphasized
here that this, as all subsequent notions, is invariant under conjugation, i.e. under
order-preserving homeomorphisms (not distinguishing, for instance, state spaces R,
and [0, 1[). Since in general no natural metric is available in E, to answer the basic
question of asymptotic equivalence of two processes (XZ,n > 0) and (X¥,n > 0)
translations f : £ — R must be used. Again, topology has to be replaced by
order: while the differences |f(XZ) — f(X¥)| need not converge to zero for bounded
continuous functions f, they even are summable, if f is of bounded variation. The
fundamental inequality (1.4) and its corollaries are crucial in the sequel.

A first consequence is the zero-one law (2.1), applying to all sets in the algebra
U(F) and concerning the probability of an infinite number of visits by the process
(Xn, n > 0). Since this value is independent of the initial law, the definition of
recurrence resp. transience in Section 2 is straightforward, if restricted to these
sets. Then it is quite natural to introduce recurrent systems by employing the
topological structure and requiring the existence of a compact recurrent set K. As
can be shown only in (4.5), K may actually be replaced by an interval [0, y] (where 0
stands for min F). Transient systems are characterized in (2.6) in two different ways:
by almost sure divergence of the process (X, n > 0) to infinity (in the Alexandrov
compactification) or, equivalently, by convergence of the associated potential kernel
for all compact sets.

The main result of Section 3 is fundamental for all what follows: whenever the
process (X,,, n > 0) does not diverge to infinity, there is a unique invariant measure
u for the associated Markov kernel. The easy part is the existence proof, being
based on the topological properties of the state space. To establish uniqueness, F
is exhausted by an increasing sequence of compact sets, and the classical ergodic
theorem is applied to the associated embedded systems. The main tool, however,
are the summability results from (1.5). An example at the end of the section shows
that the uniqueness result in fact requires a restriction to measures compatible with
the topological structure, i.e. to Radon measures. The only results related to (3.4),
known so far, are due to Babillot et al. [4], who study order-preserving affine sys-
tems of a special structure and under suitable moment conditions (see the remarks
following (9.3)). In addition, they derive a limit theorem for occupation times as
considered in the next section.

Without postulating the invariant measure to be finite, the ergodic theorems
in Section 4 have to concern ratios, regarding bounded functions with compact
support. While the version for means in (4.2) is restricted to functions in K(E), the
pointwise version in (4.3) can be established for functions of bounded variation and
their uniform limits, defining a class R(E) that in general is much larger than K(E).
As a consequence recurrent sets can simply be described as those having positive
invariant measure. More generally, (4.4) characterizes recurrence resp. transience of
a given system through hitting probabilities as well as through the potential kernel
— in complete analogy to the well-known criteria for discrete Markov chains. The
section concludes by deriving a strong version of irreducibility and aperiodicity in
the recurrent case.

From the above description of recurrent sets it is easily deduced that, with prob-
ability 1, the set of limit points of a recurrent system equals the support M of the
invariant measure y, independently of the initial law. By (5.2) it is justified to call
M the “attractor” of the system, whether p is finite or not. Since M need not



be compact, to state its self-similarity in general involves a passage to the closure.
Nevertheless it allows to characterize the attractor as the smallest nonempty closed
set that is mapped into itself by the mappings H,, with probability 1. A more ex-
plicit characterization of the attractor is established at the end of Section 5: M
can be identified with the set of constants in the closed semigroup generated by the
mappings that define the system, i.e. that are contained in the support N of v. If
the state space is only partially ordered, actually “local boundedness” of F has to
be supposed here (see the final section).

As mentioned above, the existing literature concerns almost exclusively positive
recurrent systems, i.e. the case of a finite invariant measure, as treated in Section 6.
There are numerous studies considering E = R with its total order and random
transformations preserving this order as, for instance, Alpuim/Athayde [1], Goldie
[19], Helland/Nilsen [21], Lund et al. [30], Yahav [40]. There is, moreover, a number
of papers dealing also with only partially ordered state spaces as Bougerol/Picard
[10], Diaconis/Freedman [12, Section 3], Glasserman/Yao [18], Jarner/Tweedie [23],
Mairesse [31], Rachev/Samorodnitsky [34], Rachev/Todorovic [35], and in particular
Brandt et al. [11, Section 1.3] (where, however, a metric compatible with the order
is postulated). The full benefit from order and monotonicity turns out under time
reversal, i.e. replacing left by right composition of the underlying random trans-
formations. The resulting (non-Markovian) “dual process” (Y%, n > 0) increases
pointwise, and its limit Y satisfies a zero-one law, distinguishing positive and null
recurrence, where in the positive recurrent case (6.7) reveals the stationary distri-
bution as the law of Y. Combined with the asymptotic behaviour of the original
process (X2, n > 0) this yields the criterion (6.8) and the unified characterization of
positive recurrence, null recurrence, and transience at the end of the section.

Another criterion for positive resp. null recurrence can be established by con-
sidering the hitting times Tz of sets B that are determined by the order. While
for increasing intervals [z, -] it is shown already in (1.2) that E(T];,.)), regardless
of the initial law, is always finite, (7.1) exhibits a different behaviour for decreasing
intervals [0, z]. Now, with T denoting the hitting time of B for the process starting
at y, for any £ € M the mean passage time E(T[g’m]) is finite if and only if the
system is positive recurrent. The main tool in the proof is (a slight extension of) the
recurrence theorem of Kac. Section 7 concludes by the topological analogue (7.3)
of the classical result on mean passage times for discrete Markov chains (here again
local boundedness enters).

In Section 8 the ratio ergodic theorems are considerably strengthened for positive
recurrent systems. In this case the laws u, = L(Y,0) of the dual process, hence
also the laws L£(X0) = pu,, are easily seen to converge weakly to the stationary
distribution p. By (1.6) this extends to arbitrary initial laws and from functions in
C(E) to those in the class R(E). The resulting convergence for all decreasing sets
suggests the introduction of a metric d for distributions on the space E (lacking
any metric structure) such that metric convergence is strictly stronger than weak
convergence. Employing an idea in Dubins/Freedman [13] (apparently the first
treatment of iterated function systems, though restricted to the case E = [0,1]), it
is then possible to verify even d(u,,p) — 0 in (8.3) — with geometric convergence
whenever the state space is bounded. The section concludes by proving the mixing
property for the stationary version (X,, n > 0) and deriving from it in (8.5) a fairly
general law of large numbers, again independent of the initial law.



Basic assumption throughout the preceding sections is — apart from the existence
of min F — the irreducibility of the system. Under a total ordering this means in
fact no real restriction: simply reduce the state space to those elements that can be
reached from 0 in the sense of (1.1). But this procedure need not work in general,
as is demonstrated in Section 9. The arising problems, however, can be settled as
above, whenever the system is strictly order-preserving. This is a familiar hypothesis
in affine models, for instance, where it concerns the occurrence of zero entries in the
associated random matrix. For strictly order-preserving systems the reduction works
as in the totally ordered case and leads to a state space that is in addition locally
bounded (as required for one half of (5.7) and (7.3)).

The concluding Section 10 collects the necessary material on ordered topological
spaces. The fundamental fact needed here is the existence of an open base consisting
of order convex sets. This is a simple consequence of Nachbin’s extension theorem,
i.e. of Tietze’s extension theorem carried over to ordered topological spaces. Results
not to be found in the standard reference [33] concern the Alexandrov compactifi-
cation of ordered topological spaces with a lower bound in (10.5), its consequences
for the approximation by nonnegative decreasing functions from K(E) in (10.6) and
(10.7), and finally the explicit representation of sets in the algebra U(FE) resp. of
functions in the vector lattice V(E) seen from the viewpoint of universal measura-
bility in (10.8).

0. Preliminaries. Throughout Sections 1 — 9 the state space E is an ordered
topological space (the definition being recalled in Section 10), where regarding the
topology it is sufficient to suppose that

(E1) E is locally compact and second countable,
while regarding the order it is necessary to suppose that
(E2) E has a lower bound, denoted by 0.

If E* = EU{oo} is the Alexandrov compactification of E (oo being an isolated point
if E is compact), the order is extended from E to E* in accordance with (E2) by
letting oo be an upper bound of E*. This makes E* again an ordered topological
space if and only if (see (10.5))

(E3) the decreasing hull of a compact subset of E is compact,

entailing compactness in particular for each interval [0, z]. In the sequel conditions
(E1) — (E3) will be taken for granted, calling E admissible in this case.

The topological notations are as usual: &(F) / F(E) / &(E) / B(FE) denote,
respectively, the class of open / closed / compact / Borel subsets of E, while C(E) /
K(E) |/ B(E) stand, respectively, for the class of bounded continuous / compactly
supported continuous / Borel functions f : £ — R.

The following notations refer to the order: If A is a subset of E, then A* and A"
denote, respectively, its decreasing and increasing hull, i.e.

AL:UweA [0,z] and A’ :U$€A [z, -].

A is called (order) conver if A > x <y € A implies [z,y] C A or, equivalently, if
A= A'*'NA". Arrows are also used to denote, for instance, by &*(E) the class of
decreasing sets in &(E) or by B'(E) the class of increasing functions in B(E).



To extend the notion of bounded variation from total to partial order, let V(E)
be the class of functions f € B(FE) satisfying

sup{ZkeN |f(zgs1) = flz)| i1 <z <. } < 0

and U(F) the class of sets B € B(F) with 1p € V(E). Universal null sets dis-
regarded, V(E) is the linear space generated by the bounded monotone functions,
while 2U(F) is the algebra generated by the convex sets (see (10.8)). The closure
of V(FE) with respect to the uniform norm, yielding the class of regular functions
(having finite limits from left and right everywhere on E*) under a total ordering
and including X(F) in the general case (see (10.6)), is denoted by R(E).

M(E) denotes the class of all locally finite measures on B(FE), which due to (E1)
are Radon measures and can be identified with the positive linear functionals on
K(E). If pf denotes the y—integral of a function f, then M(E) is endowed with
the vague (weak*) topology, generated by the mappings >t puf, f € K(E); the

corresponding convergence is denoted by —> . On the subspace M;(E) of probabil-
ity measures this induces the weak (narrow) topology, generated by the mappings
wruf, f € C(E); the corresponding convergence is denoted by - .

The space C[E] := C(E, E) of continuous mappings from E to E, endowed with
the compact-open topology, is a Polish space due to (E1), and this carries over to
the closed subspace H[E] of order-preserving continuous mappings h : E — E, being
a central object of this paper. Under composition H[E] is a subsemigroup of C[E],
where composition is continuous by the local compactness of £ and thus measurable
by the second countability of C[E].

The main object of this paper is the space N[E] of distributions v on H[E]. The
semigroup structure of #[E] induces a convolution in N[E], making this space a
semigroup itself. Occuring powers are denoted by v", hence

/H[E] F(h(z)) v™(dh) :/H[E} .../H[E] F(hio...o0hy () v(dh) ... v(dhn)

for z € E, f € C(E) and n € N, while ¥ is the unit measure &5 with h being
the identy map. Since H[E] is second countable, the support N is well-defined for
v € N[E].

Now the stochastic model can be formally introduced. Let be given an admissible
space F and, on some probability space (Q,2, P),
— a sequence of independent random variables H, : @ — H[E] with identical
distribution v € N[E],
— arandom variable Xy : Q — E that is independent of (Hy,n € N).
This defines an order-preserving random dynamical system by

X, =Hp(X,—1) for neN.

Therefore the distribution of (X,, n > 0) is completely determined by v and the
initial law pg = L£(Xp). If in particular Xy = z, this will be expressed by the
notation (X%, n > 0), i.e.

Xy =Hpo...oHi(z) for z€ F and n>0.
Thus for general uo conditional probabilities are given by
P*((Xp, n>0) e B)=P((XZ,n>0) € B)

with an analogous equation for conditional expectations.



As usual, the initial law is largely of secondary importance, and the primary
component is the distribution v. Therefore, whenever possible, it will be briefly
referred to the (dynamical) system (E,v). All notions to be defined in Sections
1 -9 will depend on v, but this dependence will be suppressed in related notations
(as for the support N/ above), because v is supposed to be fixed.

Clearly, (X,,, n > 0) is a homogeneous Markov chain. Its transition kernel P
transforms (nonnegative) functions f € B(E) into Pf given by

Pf(z) = /H[E] F(h(@)) v(dh) for z€E

and a measure p on F into uP given by

uP(B) = /E v(h(z) € B) u(dz) for B e B(E),

which in the o—finite case equals

uP(B) = /H[E] u(h(z) € B)u(dh) for B e B(E).

P is a Feller kernel, which in addition transforms increasing functions into func-
tions of the same type. By (E2) this implies in particular:

(0.1) LEMMA The sequence (g P™, n > 0) is stochastically increasing, i.e.

E(f(Xn_1) <E(f(X3)) for 0< feB'(E).

PrOOF. This is immediate from the equations

E(f(Xp_1)) = [z P" '/ (0) P(0;dz),
E(f(X)) = [z P""'f (z) P(0;dz). O

Finally, it has to be mentioned that the passage from the distribution v to the
kernel P in general is not injective.

1. Irreducible systems. Let (E,v) be a dynamical system as introduced in
the preceding section. Then, to classify it as recurrent or transient, requires some
communication structure to prevent the state space from splitting into different
classes. It turns out to be sufficient that, starting from the minimal state 0, each
state x with positive probability can be reached or exceeded in the following sense:

(1.1) DEFINITION The system (E,v) is called “(upwards) irreducible”, if for
any = € F there is some n € N such that

P"(0;[z,-]) = P(Xp > ) = v"(h(0) > ) > 0.

It is immediate from (0.1) that the system (E,v") is irreducible for all n € N,
whenever this holds for one n € N.

The question, whether irreducibility can be accomplished by suitably reducing
the state space, is postponed to Section 9. As an example consider the “Cantor



system”, assigning mass v({h;}) = % to the two mappings hy : z — z/3 and
he : z— x/3 4+ 2/3: the adequate state space in the present setting is E = [0, 1].

In spite of its weak appearance, the condition in (1.1) has strong recurrence
implications for increasing intervals:

(1.2) PROPOSITION If the system (E,v) is irreducible, then for arbitrary initial
law and all x € E

(a) P(limsup{X, > z}) =1,
n—oQ

(v) B(T}, )) < oo,

where Tp :=inf{n € N : X,, € B} (< o0) for B € B(E).

PROOF. By assumption ¢ := v"(h(0) > z) > 0 for some n, which yields by
monotonicity and independence

P(Tj;,.1 > kn) < P%Ty, . > kn)

< HOSKk (1 =P(Hg1)n 0.0 Hiny1 (0) > z))
= (1-9)* forall keN.
This settles (b), which in turn implies (a) by the Markov property. O

Under a total ordering the state space of an irreducible system, due to (E1), is
a countable union of intervals [0,y,]. Somewhat surprisingly, this result extends to
the general case:

(1.3) PROPOSITION If the system (E,v) is irreducible, then there is a countable
subset A of E such that E = A*.

PRrROOF. If (Y2, n > 0) is an independent copy of (X2, n > 0), then (1.2a)
implies

P(ﬂmeN UnEN {zm gY,?}) =1 forall (z,,neN)eEN,

Applying Fubini to the product of the distributions of (X2, n > 0) and (Y,2, n > 0)
twice, it follows that

P(mmeN UnEN (X0 < yn}) =1 for some (y,, neN)eEN.
For any = € F and | € N satisfying P(X > z) > 0 therefore
x>0 (Nen Upen X <wn}) # 0,
hence for m = in particular
(x>} 0 (U,en (X7 <wn}) # 0.
This implies z € A* for A := {y, : n € N}. a

The following inequality is the crucial tool in the sequel:



(1.4) THEOREM Let the system (E,v) be irreducible and suppose 0 < f € B'(E).
Then for all x € E

> o BUXT) - F(X2) < EB(T}; ) sup E(f(Xp),

where T} := inf {n € N : X¥ € B} (< 00) fory € E and B € B(E).

ProoOF. If f is replaced by f Ak, k € N, then the corresponding differences on
the left-hand side increase for k — oo to the difference in question, i.e. f may be
assumed to be bounded. In addition, by (1.2b) the stopping time 7" := T[g,_} may be
assumed to be finite everywhere. Then, with the notation A; := {T <[}, forn >0
fixed and m < n arbitrary

() Bla, f(X) = BQa, f(Hromo ..o Hr (X9)))
> E(la, , f(Hrimo...o Hyy(z)))
— P(An-m) B(f(X5),

where the inequality is a consequence of f being increasing, while the final equal-
ity uses the fact that (Hpy1,...,Hryn) is independent of T and distributed as
(Hi,...,Hy). But, f is nonnegative and thus

Zogmgn f(X?n) 2 ZOSm,T-i—mgn f(X%-Fm) = Zongn ]‘An—m f(X%+m) .
This leads by integration and inserting from (*) to
Z 0<m<n E(f(ern) - f(ng))
> ocmen BUKR)) = 3 oy PAn-m) BU/(XR)
= D ocmen (1= P(An-m)) (B (X7) - F(X7)) + E(f(XR))

which by (0.1) implies

> ocmen P(T <n—m)E(f(Xg) - F(XD)

IA

< 2 oemen P > n—m) B(f(X7))
< E(T)E(f(Xp)).
Since P(T' < n —m) 11 for n — oo, the assertion follows. O

Apart from arising measurability problems the preceding result can be easily
extended to a larger class of functions:

(1.5) PROPOSITION Let the system (E,v) be irreducible and suppose f € V(E).
Then for all x € E

(@) > im0 BUFXE) = F(XD))) < o0,
and for arbitrary initial law

(b) ano ‘f(Xn) - f(X2)| <X a.s..



PROOF. According to (10.8) there are bounded increasing and universally mea-
surable functions f; > 0 such that f = f; — f2. Since the variables XY : ) — E are
universally measurable as well, provided the underlying probability space (Q,2, P)
is assumed to be complete, the proof of (1.4) works for f;, too. In view of (1.2b)
this proves assertion (a), which by Fubini implies assertion (b). O

For some applications, where summability of the differences may be replaced by
convergence to zero, the class of admissible functions can be enlarged once more:

(1.6) PROPOSITION Let the system (E,v) be irreducible and suppose f € R(E).
Then for arbitrary initial law

f(Xn) — f(XS) — 0 a.s..

ProoF. This is immediate from (1.5b) and the definition of R(E). O

It has to be emphasized that, even under a total ordering, the last result may fail
for functions f € C(E). To construct a nondegenerate (i.e. recurrent) counterexam-
ple consider the following system: on E = R, let the support A of v consist of the
fractional linear mappings

hi:z—z+1 and hy:z—z/(x+1).
Starting with ng := 0 choose a sequence (ng, k > 0) such that

limsup P(4x) =1 with Az :=] {X% >k},

Ng—1<n<n
k—00 k15T STk

as is possible in view of (1.2). Denote the finite support of £(X?) by B? and define
the discrete sets

B% .= UkeN ((Unk_1<n3nk B;f) n [k,oo[) for z € E.

Then the sets B® and BY are disjoint for fixed irrational y, due to h;'[Q.] = Q.
for i = 1, 2. Thus there is a function f € C(E) with 0 < f < 1, satisfying f(z) =0
for z € B® and f(z) =1 for z € BY. Then on Ay almost surely

max_ (f(Xy) - f(Xp) =1,

Ng—1<n<ng

hence in view of P(limsup A;) = 1 finally

k—o00

limsup (f(X¥) — f(X2)) = 1 as..

n—o0

2. Recurrence and transience. In general, the probability that the process
(XZE, n > 0) visits a set B € B(F) infinitely often neither obeys a zero-one law nor
is independent of the starting point z € E — as can be seen, for instance, by the
Cantor system even for appropriate countable sets. But an application of the final
result of Section 1 yields:

(2.1) THEOREM Let the system (E,v) be irreducible and suppose B € U(E).
Then
P(limsup {X, € B}) = 0 or 1,

n—oo

where the value is independent of the initial law.

10



PROOF. Choosing f =15 € V(E) in (1.6) proves

limsup {X,, € B} = limsup {X? € B} =: A° as..
— 00

n—oo n

Applying this result to the distribution of X9 as initial law and the shifted sequence
(Hp,n > 1) yields

A = limsup{H, 0...0 Hy (0) € B} as..

n—oo

Repeating the argument shows A° to be contained in the completed tail o—field of
(Hp,n € N), and the assertion follows. O

The preceding result justifies:

(2.2) DEFINITION Let the system (E,v) be irreducible. Then B € U(E) is
called “recurrent”, if

P(limsup {X7 € B}) =1 for one (or all) z € F,
n—oo

and “transient” otherwise.

The following consequence of recurrence will be needed:

(2.3) LEMMA Let the system (E,v) be irreducible and B € U(E) be recurrent.
Then for any finite subset A of E there exists some n € N such that

P(X? € B forall z € A) >0.

PROOF. According to (1.6)
15(X%) —15(X%) -0 as. forall z€ A.
Since A is finite and B is recurrent, this implies

limsup {XZ € B for all z € A} =limsup{X_ € B} =Q as..
n—oo n—oo

Therefore the probabilities in question even sum up to oo. O

It is immediate from (1.2) that each increasing set B # () is recurrent. For de-
creasing sets the following criterion is available:

(2.4) PROPOSITION Let the system (E,v) be irreducible. Then for arbitrary
initial law a set B € B*(E) is recurrent if and only if Y . P(X, € B) = oco.

PROOF. Due to (2.1), the condition is certainly necessary. To prove its suffi-
ciency, let B be transient and assume without restriction Xy = 0. Therefore the
variable Z := 37 15(X0) satisfies 9 := P(Z > 1) < 1 for suitable [ € N. Using
the stopping time

T:=if{fneN:} ,_ 1p(X%) =1}

with respect to (H,,n € N), it follows as in the proof of (1.4) that
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P(Z>kl) = P(T<oo, Y  1g(Hrino...0Hry1(X3)) > (k—1)1)
)

< P(T<oo, Y 1e(Hrino...0Hry1(0) > (k—1)0)
P(Z>)P(Z>(k—-1)I).

Therefore
P(Z>kl)<d®® forall ke N

and thus indeed E(Z) < oc. O
The topological structure enters in the central classification:

(2.5) DEFINITION An irreducible system (E,v) (or the process (X,, n > 0)
or the kernel P) is called “recurrent”, if U(FE) contains a compact recurrent set K,
and “transient” otherwise.

In Section 4, using the invariant measure, it will be shown that the set K required
in this definition may in fact be postulated to be an interval [0, y].

The assumption (E3), connecting compactness and order in Section 0, is essential
for the following criterion:

(2.6) THEOREM Let the system (E,v) be irreducible. Then for arbitrary initial
law the following conditions are equivalent:

(1) (E,v) is transient,
(2) X, > a.s.,
(3) Zn>0 P(X, € K) <o forall K e RE).

PROOF. The equivalence (1) < (2) follows from the existence of a sequence of
sets K; € R(F) such that each K € K(F) is included in some K;. The implication
(1) = (3) is a consequence of (2.4), because the compact set K, due to (E3), may
be assumed to be decreasing. The final implication (3) = (1) is straightforward. O

Restricting condition (3) to decreasing sets K, it follows by (0.1) that the system
(E,v™) is recurrent for all n € N, whenever this holds for one n € N.

For an application consider an “exchange process” as has been studied in [21]
and in its best accessible form is given by the recursion

Xpn=Xpn-1—-1)VU, for neN

with a sequence of i.i.d. variables U,, > 0. Here, X,,_; is the utility of some equip-
ment in use at time n — 1, losing one unit during period n, and U, the utility of a
new equipment available at time n. The corresponding mappings h :  — (x—1)Vu,
restricted to the state space

E={z>0:P(U, >z) >0},

belong to H[E] for all u € E. With v € N[E] being the associated distribution, the
system (F,v) is obviously irreducible. The explicit representation

X0=U-(n-1))V...V(Ur1—-1)VU, for neN

12



implies by independence

0
X <y H0<m<n y+m)’

where F' denotes the common distribution function of U, n € N. Therefore (2.6)
yields recurrence whenever E is bounded, because the summands P(X? < y) are
strictly positive and eventually constant for any y € E satisfying P(U, < y) > 0.
For £ = R both cases are possible:

(1) if U,, n € N, have the common density fi(z) = (z + 1)72, then F(y) = ﬁ
implies
0 _ vy _
ZnZOP(any)—ZRZOH—n—OO for all y>0,

i.e. the process is recurrent;

(2) if the density is replaced by fo(z) = 2z(z +1)73, then F(y) = (%)2, and it
follows similarly that the process is transient. Y

It should be noted that — in spite of the contrasting asymptotic behaviour — the
variables U,, behave similarly in both cases as far as it concerns the existence of
moments, due to fi(z) < fo(z) < 2f1(z) for z > 1 (for a continuation see Sections
3, 4, and 6).

In general, as in discrete Markov chain theory, it may demand some effort to
decide whether a system (E,v) is recurrent or transient. For an example consider
E = [0,1] with v assigning mass 3 to the mappings defined by hy(z) = (z + 1)/2
and hy(z) = z? (solvable by conjugation).

3. Invariant measures. As in discrete Markov chain theory, a central question
concerns the existence and uniqueness of invariant measures in the recurrent case.
In accordance with the topological assumptions, this question will — and must —
be treated within the class M(E) of locally finite measures. The easy task here is
existence, where general results by Foguel [17] apply. Since the arguments can be
simplified, due to monotonicity, the proof of the following assertion is outlined:

(3.1) PROPOSITION Let the system (E,v) be irreducible and suppose
0<g€KkK"E) with Z>0 X%) = .
Then the measures g, € M(E) defined by

) =2 ocmen BUXR) /D gcmen B0(XR))  for f € K(E)

for all n > ny (say) satisfy
(a) the sequence (on,n > ng) is relatively compact,

(b) each limit point € M(E) is a nontrivial invariant measure for (E,v) (i.e. for
the kernel P).

PROOF. (a) By assumption and (1.5a) the functions

Sn :=205m<n P"geC(E) for neN
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increase to infinity for all x € E. Therefore for fixed f € K(FE) there exists [ € N
with f < s;, which by (0.1) implies

P™f(0) < P™s(0) <IP™g(0) forall m>0.

Thus the sequence (o,(f),n > ng) is bounded for all f € K(F), i.e. the sequence
(0n,n > mp) is uniformly locally finite, which proves (a).

(b) If on, - 1 € M(E), then g = 1 and thus p is indeed nontrivial. To prove

v

its invariance consider 0 < f € K(E) and approximate 0 < Pf € C(F) from below
by functions from K(E). This yields

pPf < liminf g, Pf
k—o0
_ . . —1
= hkrggf Sn, (0) Z O<m<ny, P™f(0)

= liminf s, 7 D" g<men, P (0)
= uf,

because sy, (0) — oo and P™ f (0) is bounded by max f. Applying the resulting
inequality uP < u to s; — f > 0, with f and [ chosen as in the proof of (a), yields

pf—pPf < psp—pPs; < pg=:7.
Disregarding the middle term, this implies
uf —pPf <y forall feK(E),

and — replacing f by multiples — proves the invariance of p. O

Uniqueness of the invariant measure is established by a localization, which re-
quires an elementary result from probabilistic potential theory:

(3.2) LEMMA Let the system (E,v) be irreducible and K € &' (E) be recurrent.
With the almost surely finite hitting time Tk define the Markov kernel KP by
Kp(z; B) := P*(X7, € B) for z € K and B € B(K).
If a measure p € M(E) is invariant for P, then its restriction Ku € M(K) is invari-
ant for KP.

PROOF. pP < yu implies Ky XP < Ky (see e.g. Proposition 2.2.6 in [36]). Since
Ky is a finite measure and XP is a stochastic kernel, in fact equality has to hold in
this inequality. O

For the main step towards uniqueness the results from Section 1 are crucial:

(3.3) PROPOSITION Let the system (E,v) be irreducible and K € R'(E) be
recurrent. Moreover, let p € M(E) be invariant for (E,v) and satisfy p(K) > 0.
Then for 0 < f € BY(E) with supp f C K and allz € E

ZO§m<n f(ern)/ Zogm<n 1(Xp) = pf/u(K) as..

PRrROOF. 1. The variables
Q" :=liminf (Y F(XE) /Y (cen 16(X2)) for z€E

n—oo

are almost surely independent of x. Indeed:
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(1) In the denominator x can be replaced by 0, because the quotient

Z 0§m<n Xz / z 0<m<n XO )
=1+ (20<m<n (lK(Xw B lK / 20<m<n XO ))

tends to 1 almost surely by (1.5b) and the recurrence of K.

(2) In the nominator z can be replaced by 0, because the difference

20§m<n f(an)/ 20§m<n 1k 20<m<n XO / 20<m<n X;)n)
= 20§m<n (f( XO / 20<m<n ng)

tends to 0 almost surely for the same reasons.

Neglecting single summands and applying Fubini, it follows as in the proof of (2.1)
that in fact Q" equals some constant g almost surely.

2. Because of 0 < p(K) < oo the restriction ¥y of y to K may be assumed
to be normalized, hence by (3.2) to be a stationary distribution for the Markov
kernel XP. Let (XX,,, n > 0) denote the corresponding “embedded process” of
(Xn, n > 0), where X is distributed according to (the trivial extension of) X
Since f is bounded, the classical ergodic theorem applies to the stationary process
(5X,, n > 0), i.e. the limit

Q= nll)rgo n 20<m<n m)

exists almost surely and in view of supp f C K satisfies

E(Q) = E(f("Xo)) = uf.

But on {Xy = z} the sequence of quotients defining Q* arises from the successive
means of (f(¥X,), n > 0) through “extension to the right by constancy” in an
evident sense. Therefore, applying Fubini once more, it turns out that the variable
@ and the constant g agree almost surely and thus ¢ = puf. Since the argument
carries over to the upper limit, the assertion is established. O

Now one of the main results of this paper can be stated:

(3.4) THEOREM For any recurrent system (E,v) there ezists one and — up to
multiples — only one nontrivial invariant measure p € M(E).

PRrOOF. 1. If K € &"(E) is recurrent and g; € K*(E) with g; > 1 is chosen
according to (10.7), then the condition in (3.1) is satisfied for g = g; by (2.4), and
the existence of yu is established.

2. To prove uniqueness, let y' € M(E) be another nontrivial invariant measure
for (E,v) and exhaust E by an increasing sequence of sets K; € &' (FE), where
w(K;) > 0 and p'(K;) > 0 and in addition recurrence of K; may be assumed. Then
an application of (3.3) yields constants -y; such that

Wl f) =mup(lkf) for 0< feB(E).
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Inserting f = 1k,,,m # [, proves v; to be a constant v independent of [ and thus,
with Ky as defined in (10.6a),

w1k, f) =yu(k,f) for feKo.

This equation extends to f € K(F), because the uniform approximation of f by
a sequence (fi, k& € N) from Ky according to (10.6a) can be carried out with all
functions vanishing outside a fixed compact set (otherwise multiply by some g; from
(10.7)). The assertion follows for [ — oo. O

As usual the actually one-dimensional family of invariant measures p € M(E)
will be briefly called the invariant measure in the sequel.

It has to be emphasized that, even under a total ordering, the uniqueness state-
ment in (3.4) concerns locally finite measures only. To exhibit a counterexample,
choose E = [0,1] and let v assign mass % to the piecewise affine maps defined by

1 1
hi(z) = 3 (2z+1) and ho(x) = 37 V(2z —1).
Then (E,v) is clearly irreducible, and the uniform distribution p on E is eas-
ily checked to be a finite invariant measure. With g as initial law the series
> >0 P(Xn < y) diverges for all y > 0, and thus (E,v) is recurrent by (2.6).
On the other hand, it is not hard to check that

p = ZzeD ey, with D:=E N Q

defines another invariant measure, which, however, is o—finite only. Incidentally,
the existence of both a finite and an infinite, but o—finite, invariant measure in this
example proves the Doeblin-Harris theory of recurrent Markov chains on an abstract
state space to be inadequate in the present setting.

Finally, it has to be mentioned that, again even under a total ordering, there is
no converse of (3.4), i.e. there are transient systems with a unique nontrivial and
locally finite invariant measure. For an example consider the transient case (2) of
the exchange process from Section 2. It is easily seen that a measure y € M(E) is
invariant if and only if the function ®(y) := u([0,y]) satisfies

B(y) = By + 1) Fy) = d(y + 1) <#>2 for y > 0.

Therefore ®y(y) = y? defines a solution, while for any other solution ® by iteration

d(y) :@(y+n)(i)2 for y >0 and n € N.

y+n
For 0 <y < m € N this provides by monotonicity the bounds

O(y) = B(y+n) ()* > B(0 +0) () = @)y ()7,
o) = 2y + ) () < Blm +m) ()7 = a(1)y? (B0,

which for n — oo lead to ®(y) = ®(1)»? and thus to the asserted uniqueness.
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4. Ergodic theorems. The first theorem in this section requires some prepa-
ration, concerning again asymptotic independence of the initial law:

(4.1) PROPOSITION Let the system (E,v) be recurrent with invariant measure
u and suppose 0 < f € Bi(E) with uf > 0. Then for arbitrary initial law

Z 0§m<n / Z 0<m<n XO )) - 1.

PRrRoOOF. With the abbreviation

Zo<m<n f(X%)) for z€FE
an application of (1.4) to the increasing function f’:= f(0) — f > 0 yields by (1.2b)
0<sd—5s% < E(T[g’_])f(O) < 0.
If K € R*(E) is a recurrent set with [, fdu > 0, then (3.3) implies

20§m<n 1Kf(X2) — 00 a.s.,

because the analogous result for 1x replacing 1x f follows from the recurrence of K.
Therefore s2 — oo and thus the quotients sZ/s% converge to 1. Since this conver-
gence is dominated by the constant 1, it continues to hold when integrated by the
initial law. O

Now a mean ergodic theorem can be established:

(4.2) THEOREM Let the system (E,v) be recurrent with invariant measure p
and suppose f, g € K(E). Then for arbitrary initial law

20§m<n E(f(Xm))/ 20§m<n E(g(Xm)) - Nf/“ga

whenever the quotient on the right-hand side makes sense.

PrOOF. 1. First, the problem will be simplified in four steps:
(1) By comparing both the nominator and the denominator with the corresponding
sum for a third function it is seen that 0 < g € K*(E) with ug > 0 may be assumed
in the sequel.
(2) Since the uniform approximation of f by a sequence (fx, £ € N) from Ky accord-
ing to (10.6a) can be carried out from below and above with all functions vanishing
outside a fixed compact set (otherwise multiply by some g; from (10.7)), f may be
restricted to KCg.
(3) Therefore it is sufficient to consider the case 0 < f € K*(E), where in addition
pf > 0 may be assumed (otherwise replace f by f + g).
(4) Thus f and g both satisfy the assumptions of (4.1), which justifies finally the
restriction to the initial law &g.

2. Now the relative compactness from (3.1a) and the uniqueness of the invariant
measure yield a constant -y such that

20§m<n XO / 20<m<n XO )) - 7/~‘f

with an analogous relation for g replacing f. This shows v = 1/ug and concludes
the proof. 0
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It has to be mentioned that the question, whether the convergence in (4.2) ex-
tends from f, g € K(F) to functions in R(E) with compact support, poses an open
problem. An affirmative answer is possible under a total ordering (see Theorem 6.3
in [25]) as well as concerning the following pointwise ergodic theorem:

(4.3) THEOREM Let the system (E,v) be recurrent with invariant measure
and the functions f, g € R(E) have compact support. Then for arbitrary initial law

> 0<m<n f(Xm)/ Y o<men 9&m) = nf/ug as.,

whenever the quotient on the right-hand side makes sense.

PROOF. Assume Xy = z, as is justified by Fubini, and simplify the problem as
in step (1) of the proof of (4.2) by considering g = 1x with supp f C K € &'(E)
and u(K) > 0. Then proceed as follows:

(1) For f € V(E) choose a representation f = f; — fo according to (10.8) and
a constant y > f1(0) V f2(0), so that f = f{ — f} with universally measurable
decreasing functions f{ := v — fo > 0 and f := v — f; > 0. If in addition
supp f/ C K, as can be achieved by multipying with 1x, then it follows as in
the proof of (1.5a) that the arguments for (3.3) work as well for the functions f;.

(2) For f € R(E) approximate uniformly by a sequence (f, ¥ € N) from V(E),
which can be carried out from below and above with supp fy C K for all Kk € N
(otherwise multiply again by 1x). O

As a first application of these ergodic theorems consider the recurrent case (1)

of the exchange process from Section 2. Here P(X? < y) = Y implies
n

B = [ 1w (L+1) "ay for neN
and thus

E(F(XD) [Ble(XD) » [ rwdy/ [ owdy tor f.g€ KR,

Since this convergence carries over to the corresponding quotients in (4.2), the invari-
ant measure is simply the Lebesgue measure )\ restricted to R;. By (4.3) this implies
that, regardless of the initial law, the process (X,, n > 0) is “equidistributed” on
R_|_, i.e.

> vemen 1n(Xm) /3 gcmen 16(Xm) = MI)/A(D) as.

for subintervals I}, of R of positive and finite length.

By means of (4.3) recurrence of a set B € U(F) can be seen to be simply
equivalent to u(B) > 0. More generally, extending (2.1) and (2.4) and replacing sets
by functions, the following dichotomy holds:

(4.4) THEOREM Let the system (E,v) be recurrent with invariant measure p.
Then for 0 < f € V(E) and any x € E

(a) pf >0 implies

ano [(XP) =00 a.s. and ano E(f(XF)) = o0,
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(b)  uf =0 implies
ano f(X¥) < oo a.s. and ano E(f(XF)) < o0.

PROOF. (a) Choose K € &*(E) with [, fdu > 0 and apply (4.3) to the func-
tions 1x f and 1x in V(E). This yields the first (and second) assertion.

(b) Use the invariance of x4 to obtain

[ (3 oo BUKED) i) = 3 wP"S =0.

Therefore the integrand vanishes y—almost everywhere and thus by (1.5a) is finite
for all z € E. This proves the second (and first) assertion. O

Together, (4.4) and (2.6) imply that the two familiar criteria for recurrence resp.
transience from discrete Markov chain theory carry over to the present setting in
the following form:

(1) If (E,v) is recurrent, then for z € supp p the assertion
P*(X, € G infinitely often) =1,

hence
E*({n >0: X, € G}|) = o,

holds, whenever G is an open neighborhood of .
(2) If v is transient, then for arbitrary z € E the assertion
E°({n>0: X, € K}|) < o0,

hence
P?(X,, € K infinitely often) =0,

holds, whenever K is a compact subset of E.

Clearly, under a total ordering the compact recurrent set in (2.5) can be required
to be an interval. Now it is possible to extend this simplification to the general case:

(4.5) THEOREM Let the system (E,v) be recurrent. Then there exists y € FE
such that K = [0,y] is recurrent.

PROOF. Since (1.3) provides y € F with invariant measure p([0,y]) > 0, the
assertion is an immediate consequence of (4.4a). O

Explicitly, this proves an irreducible system (FE,v) to be recurrent if and only if
ano P(X2<y)=oc0 forsome ycE.

As another consequence of (4.4), a recurrent system can be shown to be irre-
ducible and aperiodic in a very strong sense. The essential step concerns decreasing
intervals:

(4.6) LEMMA Let the system (E,v) be recurrent with invariant measure p.
Then any y € E with p([0,y]) > 0 satisfies

P(XY <y)>0 for almost all n > 0.
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PrROOF. The Markov property and monotonicity imply that
D:={n>0:P(X?<vy) >0}

is an additive semigroup. Therefore it is sufficient to prove d = 1 for the greatest
common divisor d of D. Now the assumption d > 1 yields P(X}, ; <y) = 0 for all
n > 0 and thus by (1.5a)

ano P(X2d+1 <y) <.

But this leads to a contradiction, because the probabilities P(X? < y) decrease by
(0.1) and sum up to infinity by (4.4a). O

It has to be added that under a total ordering u([0,y]) > 0 in fact implies
P(XY <y) > 0 for all n > 0. Indeed: the assumption v(h(y) > y) = 1 yields
P(XY > y) =1 for all n € N, while x([0,y]) > 0 implies X¥ < y infinitely often
with probability 1.

Now (4.6) can be considerably extended:

(4.7) PROPOSITION Let the system (E,v) be recurrent with invariant measure
w. Then for convex sets B € B(E) with u(B) > 0 and arbitrary initial law

P(X, € B) >0 for almost all n > 0.

ProoOF. Fix first y € E with u([0,y]) > 0, as is justified by (1.3). Then apply
(4.4a) and (4.1) to get k € N such that
(1) P(X;<y)>0.
Next, use (4.6) to obtain [ € N such that
(2) P(XY<y)>0 for n>1.
Finally, apply (4.4a) to f = 1p and (2.3) to A = {0,y} to find m € N such that
(3) P(X? € B forall z<y) >0.
Combining (1) — (3) it follows easily that

P(X;eB)>0 for n>k+1+m. O

5. The attractor. The following notation will be used in the sequel:

(5.1) DEFINITION Let the system (F,v) be recurrent with invariant measure
p. Then the closed set M := supp p is called the “attractor” of (E,v).

This terminology is readily justified:

(5.2) THEOREM Let the system (E,v) be recurrent with invariant measure .
Then for arbitrary initial law the random set

L(w) :={z € E : x is limit point of (X, (w), n >0)}

equals the attractor M with probability 1.
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PROOF. According to (10.4) the second countable space E has a base consisting
of convex open sets Gi, & € N, which in addition may be assumed to be rela-
tively compact (otherwise choose functions g;, [ € N, according to (10.7) and take
intersections with the sets {g; > 0}). Then the inclusion M C L(w) is obviously
equivalent to

(1) Zn>0 1Gk (Xn(w)) = WheneVeI‘ Gk N M 5& Q),
and it is easily checked that the inclusion L(w) C M is equivalent to
(2) Zn>0 1g,(Xn(w)) < co whenever Gy,NM=0,

where A denotes the closure of a subset A of E. Now it follows from (1.5b) that X,
in (1) and (2) can be replaced by X2 without changing probabilities. Then (4.4)
applies: the series in (1) diverges almost surely because of 1(Gy) > 0 for GxNM # (),
while the series in (2) converges almost surely because of u(Gj) = 0 otherwise. O

The following properties of ;1 and M will be needed in the sequel:

(5.3) PROPOSITION Let the system (E,v) be recurrent with invariant measure
p and attractor M. Then for each x € E there exists y > x such that u([z,y]) > 0
and M N [z,y] # 0.

PROOF. The interval [z, -] is recurrent by (1.2a), hence satisfies u([z,-]) > 0
by (4.4b). Now (1.3) provides y € E with p([z,y]) > 0, which implies the second
assertion due to u(E \ M) = 0. O

The self-similarity of the attractor is a direct consequence of the topological
assumptions. Since M need not be compact, however, it involves a passage to the
closure:

(5.4) PROPOSITION Let the system (E,v) be recurrent with invariant measure
. Then its attractor M satisfies

M = UheN h[M].

PROOF. Since the spaces E and H[E] both are second countable, the product
i ® v is again a Radon mesure, and its support is given by M x N. In view of the
continuity of the mapping ¢ : (z,h) — h(z) the image of y ® v under ¢ is easily
checked to have as its support the closure of ¢[M x N]. But this image equals p,
and thus the assertion is established. 0

Now M can be characterized as is familiar from elementary models:

(5.5) PROPOSITION Let the system (E,v) be recurrent with invariant measure
w. Then its attractor M is the smallest nonempty set F € F(E) satisfying the
condition

(1) v(h[F] C F) =1,
or, equivalently, the condition

(2) h[F]CF forall he N.
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PROOF. Since the mappings h — h(z),x € F, are continuous, the set of map-
pings h € H[E] with h[F] C F is closed, and thus both conditions are clearly
equivalent. Since, moreover, (5.4) shows that (2) is satisfied for F = M, it remains
only to prove FF D M for any nonempty set F € §F(FE) satisfying (1). But this
condition clearly continues to be satisfied, if v is replaced by v™. For any x € F
this implies P(X2 € F) = 1 for all n > 0, and thus the process (X%, n > 0) has
with probability 1 all its limit points in F. Therefore the inclusion M C F is a
consequence of (5.2). O

It is immediate from version (2) that the attractor depends on the distribution
v only through its support N.

Another application concerns the special case of a totally ordered state space.
Here z := min M exists and by (5.5) satisfies h(z) € M, hence h(z) > z for all
h € N, while on the other hand by (5.2) any z € E with h(z) > z for all h € N
yields M C [z,-], hence z > z. Put together, this means

min M =max{z € E: h(z) >z forall he N'}.

The term “attractor” does not mean that, regardless of the initial law, the event
“ X, € M eventually” has probability 1 — as can be seen, for instance, by the Cantor
system (E,v), where h;[E\ M] C E\ M for i = 1, 2. In the present setting there
is a substitute:

(5.6) PROPOSITION If the system (E,v) is recurrent with attractor M, then
for arbitrary initial law

P(X, € M" for almost all n >0) = 1.

PRrOOF. To settle first the necessary measurability, note that M is c—compact
and thus M = N K] with K; C &(E), hence K| € F(E) as follows by sequential

compactness of E. Therefore M" is in fact of type F,. Since (5.5) implies
h[M" C (h[M))' c M" forall h e N,

the process (X, n > 0) stays in M" almost surely whenever entering this set. But
by (1.2a) this entrance occurs with probability 1. O

For a final characterization of M let N° (N°) denote the (closed) semigroup
generated by A/. Then the following criterion holds:

(5.7) PROPOSITION Let the system (E,v) be recurrent with invariant measure
p and denote by j the canonical injection of E into H[E]. Then the attractor M
satisfies

(a) j(@)eN° = zeM,
(b) j(z) e N° &« z € M, provided E is locally bounded (see (10.2)).

PROOF. (a) By (5.5) the inclusion h[M] C M holds for h € N, hence for h € N°.
Thus the assertion follows from h[M] = {z} for h = j(z).

(b) By definition of the topology in H[E] it has to be shown that
{heN°:hK|]CG}#D
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for G € &(F) containing z, hence satisfying u(G) > 0, and arbitrary K € &(F).
Since E is locally bounded, K can be covered by a finite number of bounded open
sets and thus K C A' for some finite subset A of E. Since, moreover, 0 can be
included in A and G can be supposed to be convex by (10.4), it is sufficient to prove

{heN°:h(y) €G forall ye A} £0.
But translated into probabilities this is implied by
P(XY € G forall yc A) >0 for some n €N,
which follows indeed from (4.4a) and (2.3). O

Since a totally ordered space is locally bounded, in this case by (5.7) simply
M = j='[N°]. Whether this equation extends to the general case, remains an open
problem (see, however, (9.5)). It has to be mentioned here that the assumption
§7YN®] # 0 is the starting point of the PhD thesis [7], which tries to carry over
methods and results from [24] and [25] to random dynamical systems defined by
contractions of a complete metric space.

6. Positive recurrence and null recurrence. As usual two kinds of recur-
rence have to be distinguished:

(6.1) DEFINITION A recurrent system (F,v) with invariant measure 4 is called
“ positive recurrent” if y is finite and “ null recurrent” otherwise.

By (2.6) recurrence resp. transience of the system (F,v™) was seen to be inde-
pendent of n € N; this extends to the present classification, because the invariant
measures for these systems agree.

Nontrivial and locally finite invariant measures may exist also in the transient
case, as is shown at the end of Section 3. Therefore the following fact has to be
confirmed explicitly:

(6.2) PROPOSITION If the system (E,v) is irreducible, positive recurrence is
equivalent to the existence of a stationary distribution u.

Proo¥r. It is sufficient to deduce recurrence from the existence of u. But choos-
ing p as initial law and K € K(FE) with u(K) > 0, this is immediate from (2.6). O

Clearly, compactness of the state space always implies positive recurrence; more
generally:

(6.3) PROPOSITION An irreducible system (E,v) is positive recurrent under
each of the following conditions:
(a) v(h[E] is relatively compact) > 0,
(b) E contains a mazimal element y.

PRrROOF. (a) Choose a sequence of sets K; € R(FE) such that each K € K(F)
is included in some K;. Then the assumption concerns the union of the sets

{h € H[E] : h[E] C K}, which due to E and K, being of type K, and Gy, re-
spectively, are again of type Gs. This settles the question of measurability and
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ensures 7 := v(h[E] C K,) > 0 for some m, which in view of the estimate
P(X, € K,,) >P(H,(z) € K, forall € E)=v forall neN

proves the recurrence of (E,v) by (2.6). Invariance of y, moreover, implies

p(Em) = [ v(1(@) € Km) p(d) > v (E)

and thus pu(E) < oo as asserted.

(b) The maximality of z and the monotonicity of h € H[E] prove h(0) > z and
h[E] = {z} to be equivalent statements. Since v"(h(0) > z) > 0 for some n € N,
by (a) the system (F,v™) — and thus also (F,v) — is positive recurrent. O

It is a consequence of (6.3a) and (6.2) that the examples following (1.6) and (3.4)
both are even positive recurrent counterexamples; on the other hand the latter one
proves neither condition in (6.3) to be necessary for positive recurrence.

To obtain a necessary and sufficient condition ideas from queuing theory will be
taken up that can be traced back to [28, 29] and lead to the following notion:

(6.4) DEFINITION Let (Hp,n € N) be the generating sequence of the system
(E,v). Then the random variables

Y?:=Hjo...oH,(z) for n>0
define the “ dual process” belonging to z € E.

Clearly, the distributions of X! and Y,¥ agree for fixed n, but (Y%, n > 0)
need not be a Markov chain. Moreover, while the joint distribution of the process
(X%, n > 0) depends only on the kernel P and not on the underlying distribution v,
this fails in general for the process (Y,*, n > 0).

Considered in the compactification E* of E all dual processes converge to a com-
mon limit:

(6.5) PROPOSITION If the system (E,v) is irreducible, there is a random vari-
able Y : Q — E* such that

(a) Y) 1Y pointwise,
(b) Y=Y as. fordl z€E.

PROOF. (a) Since the ordered topological space E* is sequentially compact and
the sequence (Y,?(w), n > 0) is increasing, it converges in view of (10.4) to a limit
Y (w) for each w. Since, moreover, E* is metrizable, the mapping Y : Q@ — E* is
measurable.

(b) Whenever Y (w) = oo, monotonicity yields Y,¥(w) — oo for all z, too. Other-
wise choose a countable base of E , which may be assumed to consist of convex sets
Gy, k € N, by (10.4). Since (1.5a) — and thus (1.5b) — carries over from (X7, n > 0)
to (Y%, n > 0), due to L(XZ) = L(Y,*), this implies

lg, (V") —16,(Y,)) - 0 as. forall ke N.

Therefore Y7 (w) — Y (w) for almost all w satisfying ¥ (w) # oc. O
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The variable Y obeys a zero-one law characterizing the type of recurrence:

(6.6) PROPOSITION Let the system (E,v) be irreducible. Then, with Y being
defined by (6.5),

(a) P(Y =00)=0 if(E,v) is positive recurrent,
(b) P(Y =o0)

PROOF. (a) Let u be the stationary distribution and choose functions g;, [ € N,
according to (10.7). Identifying g; with its continuous extension to E* yields by
(6.5b) and the invariance of u

=1 otherwise.

E(q()) = lim [, BE(g(Yy))u(d)

n—oo

= hm/ E(g/(X})) p(dz)
= ugy forall [eN.

The assertion follows by the passage [ — oco.

(bl) If (E, v) is null recurrent and y is the invariant measure, it follows similarly,
now applying Fatou,

B(g(Y)u(E) < liminf [, Blg(¥)) u(de)

n—0oo
= liminf [, Bloi(X2) (do)
= pug<oo forall [eN.

In view of u(E) = oo therefore E(¢g;(Y)) = 0 for all [ € N, and the assertion follows
again for [ — oo.
(b2) If finally (E,v) is transient, then (6.5a) and (2.6) imply

P(Y €K) = nli_)IIOIOP(Y;? €K)= nli_)rgoP(Xg €EK)=0 for Kc&'(E),

hence for all K € R(E). O

For an application of this criterion consider once more the exchange process
from Section 2, denoting again by F' the relevant distribution function. The explicit
representation

Y = sup (Up — (n—1))
neN

shows that

P(Y <y = ano F(y+n)>0
if and only if F(y) > 0 and the series 3° _ (1 — F(y +n)) converges. Therefore
the system (E,v) is positive recurrent if and only if the variables Uy, n € N, have a

finite expectation (for extensions see [22]).
The following result is related to a “contraction principle” in [27]:

(6.7) THEOREM If the system (E,v) is positive recurrent, its stationary distri-
bution is given by L(Y), with Y being defined by (6.5).
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PROOF. Application of (6.5) and (6.6) to the sequence (Hp,n > 1) yields a
variable Y/ such that

Hyo...0H,(0) 1Y and P(Y'=o00)=0.

Therefore, by the continuity of the mappings H;(w), the variables Y and H;(Y”)
agree almost surely. Since Y’ is independent of H; and distributed as Y, this com-
mon law is indeed a stationary distribution. O

Finally, the criterion (2.6) for recurrence resp. transience can be completed:

(6.8) THEOREM Let the system (E,v) be recurrent. Then for arbitrary initial
law the following conditions are equivalent:

(1) (E,v) is null recurrent,

(2) P(X,e€K)—0 foral Kec&E).
PROOF. 1. In establishing that (1) implies (2) clearly K € &£'(E) may be
assumed. By (6.5) this yields
P(X,cK)<PXcK)=P(Y?cK) - P(Y € K)

with P(Y € K) =0 by (6.6).
2. Conversely, let condition (2) be satisfied. Then the estimate

P(X, € K)>P(Xo<z)P(XTc K) for K c &(E),
with P(Xy < z) > 0 for some z € F by (1.3), yields
PY*cK)=P(X*cK) -0 for Kc&'(E),
hence for all K € R(E). Again by (6.5) and (6.6), this verifies (1). O
Now the results of (2.6) and (6.8) can be summarized as follows:
(E,v) positive recurrent < P(X? - 00)=0 and P(Y;? = o) =0,
(E,v) null recurrent & P(X)—>00)=0 and P(Y) — o) =1,

(E,v) transient & PX!—2o00)=1 and P(Y — ) =1.

7. Mean passage times. As stated in (1.2), the expected time to enter
an increasing interval is finite in any case. In contrast, decreasing intervals can
serve to distinguish positive from null recurrence. This relies on the well-known
recurrence theorem of Kac, which is mostly stated under unnecessary restrictions.
In the present setting the following dichotomy can be established:

(7.1) THEOREM Let the system (E,v) be recurrent with invariant measure ji.
Then, with the notations Tp and T§ as defined in Section 1,

(a) E(T[“(”),w]) < oo, if (E,v) is positive recurrent and p([0,z]) > 0,
(b) E(T ) = oo, if (E,v) is null recurrent (and x € E arbitrary).
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PROOF. (a) Consider first the case that x is a maximal element of E. Then by
(1.2b)
E(T{5 ;) < E(T{,;) = B(Tf;, 1) <oo.

Otherwise choose y € [z, -]\ {z} and m € N such that P(X9, > y) > 0. If
(Xn, n > 0) is the stationary process belonging to (F,v), then it follows from
p([0,z]) > 0 by the Markov property and monotonicity that

P(Xy <z, X, >y) >0.
If m is chosen minimal with respect to this inequality, then
PXo<z,X; <z, X, >y)=0 for 0<I<m,

because otherwise, due to the stationarity, m could be replaced by m —[. Therefore
P(A) > 0 for the event

A:={Xo<z,X;¢[0,z] for 0 <l <m, Xy, >y} C{Tjo4 > m}.
With the increasing function
9(2) = E(T; ) for z€ E

the recurrence theorem of Kac in its familiar version and the Markov property imply

P(Tjoq) < o0) = / {Xo<z} Lo @P
2 /A Tio.0) dP
= [ (m+g(X)) dP
> P(4)(m +g(z)) -

Therefore g(z) < oo, as had to be shown.

(b) The extended version of the recurrence theorem of Kac needed here concerns
the infinite measure 0 .= p @ P® P ®... on Q ., B(E), which is shift invariant
by the invariance of y. Now the standard proof in the case of probability measures
is easily checked to work as well for g, resulting in

/B E(TY) u(dy) = /E P(TY < oo) u(dy) for all B € B(E).

In applying this equation to B = [0,z] it means no restriction to assume again
([0, z]) > 0, because otherwise an application of (4.4b) to f = 1jo ;) and the Markov
property yield P(T[”(”) 5 = 00) > 0. Under this assumption, now in view of (4.4a),

P(Tjp, < o0) =1 for all y € E and thus by monotonicity

B(TE ) u(0a) > [, BITS,) nldy)

= / 5 P(Tfp ;) < 00) p(dy)
= wE)
with u([0,z]) < co = u(E). O
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It is trivial that assertion (b) extends to transient systems, because in this case
again P(T(g ; = 00) > 0.

The final result of this section requires a uniform version of (7.1a), not restricted
to decreasing intervals:

(7.2) PROPOSITION Let the system (E,v) be positive recurrent with stationary
distribution p. Let moreover B € B(E) be convex with u(B) > 0 and y € E be fized.
Then the stopping time

T:=inf{neN: XS e B for 0 <z <y}
has a finite expectation.

PROOF. Since B is recurrent by (4.4a), an application of (2.3) with A = {0,y}
yields m € N such that

d:=P(XE eBfor 0<z<y)>0.

Since the system (E,v') with v/ = v™ meets the assumptions as well and the cor-
responding stopping time 7" satisfies T < mT", the notation can be simplified by
supposing m = 1. In view of (5.3), moreover, x([0,y]) > 0 may be assumed in the
sequel. Then the recursion

So:=0 and Sppi:=inf{n > S, : Hyo...0Hg 11(y) <y}

defines a sequence of stopping times with respect to (H,,n € N), which by (4.4a)
may be assumed to be finite. By (7.1a) it follows as in the proof of (1.4) that

(1) E(Sk — Sk—1) = E(T[%’y]) <oo for keN.

Moreover, the events

A :={Hg,+1(z) € B for 0 <z <y}
by the convention m = 1 satisfy
(2) P(Ay) =19 for £>0.

By construction the variables 14,,...,14, ,, Sk+1 — Sk are independent for fixed k.
Finally, the estimate

T < Zkzo Hogigk (1 —1a;) (Sk41 — k) + 1

holds, because for fixed w the right-hand side equals Si(w) + 1, if k is the first index
with w € Ay, and is infinite, if there is no such index. By cancelling for each k the
factor with 4 = k£ the bound for T is increased, and the summands are composed of
independent factors. By (1) and (2) this yields

E(T) <9 'E(TY

[O,y])+1<oo. O

Now the familiar criterion for positive resp. null recurrence by mean passage
times carries over from discrete Markov chain theory to the present setting in the
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following form:

(7.3) THEOREM Let the system (E,v) be recurrent with attractor M.
(a) If (E,v) is positive recurrent and x € M, then
E(T§) < oo forall G € &(E) with z € G,
(b) if (E,v) is null recurrent and x € E arbitrary, then
E(TE) =00 for some G € &(E) with =z € G,
provided E is locally bounded (see (10.2)).

PROOF. (a) Since G by (10.4) may be assumed to be convex, this is a special
case of (7.2).

(b) By the local boundedness there exist Gy € B(E) and y € E such that
x € Gy C [0,y], where y # z may be assumed, because otherwise by (7.1b)
E(T¢,) = E(T}5 4) = oo.

But then Gy N[y, -] = @ may be assumed as well, because otherwise Gy can be
decreased to Gg \ [y, - |- Now let m € N satisfy ¢ := P(X}, > y) > 0. If m is chosen
minimal, then

PX/=z,X2 >y)<P(X>_,>y)=0 for 0<Il<m.
Therefore outer regularity of L(X[) provides G; € &(F) with z € G; and
Zo<l<m P(X] € Gi, Xy 2 y) < 9.

Then z € G :=) G; € &(F) and P(A) > 0 for the event

0<l<m
A={X"¢G for 0 <l <m,X; >y}.

Since Go N[y, -] = 0 implies TE > m on A, the Markov property and monotonicity,
again by (7.1b), yield

E(T§) > P(A) (m + E(Tf ) = oo. 0

As in the context of (5.7) it is an open problem, whether local boundedness is es-
sential for assertion (b) (see, however, (9.5)). Moreover, assertion (b) extends again
to transient systems, because in this case P(T& = 0o) > 0 whenever G is relatively
compact.

8. Further limit theorems. From the results of Section 6 it is easily derived
that the distributions of X,,, n > 0, converge in the positive recurrent case weakly
to the stationary distribution (and otherwise vaguely to 0). Actually, the class of
functions, for which convergence holds, is considerably larger:

(8.1) PROPOSITION Let the system (E,v) be positive recurrent with stationary
distribution u. Then, for arbitrary initial law po and with py, := po P",

pnf — pf  forall feR(E).
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PROOF. Since f is bounded, application of (1.6) with initial variable Xy = zg
resp. Xy = x yields

o =8 = [ [ BUXE) = FX2) o(dao) aldz) 0.
This result implies in particular that
P(X, =z) > pu({z}) forall z€FE.

Under a total ordering this fact is easily seen to imply uniform convergence of the
distribution functions Fy(y) := P(X, < y) to the limit F(y) := p([0,y]). To extend
this result to the general setting, an appropriate metric on M1 (E) is needed:

(8.2) PROPOSITION The definition

d(p1, p2) = sup {|p1(B) — p2(B)| : B € B*(E)}

yields a metric on M1 (E) with the following properties:

(a) d(p1,p2) = sup{|u1f — pof|: f € BY(E) with 0< f <1},
(b) d(pin, p) = 0 implies pn 3 B,
(c) the mapping w» uP is a contraction .

PROOF. (a) This follows from p;f = f[o I wi(f(z) > y)dy.

(b) By (a)
pnf — pf for feBYE) with 0< f<1,

which implies convergence for f € Ky and thus for f € K£(FE) according to (10.6a).
Besides p;, 5 i this proves d to be indeed a metric.

(c) By (a) this follows from yPf = fH[E} u(f o h)v(dh). O

An application of (10.3) to E* yields d(e,€,) = 1 for = # y, showing metric con-
vergence in general to be much stronger than weak convergence. Using the notion of
a “splitting point ” (see z in the following proof), as introduced by Dubins/Freedman
[13] for E = [0, 1] and extended by Bhattacharya/Majumdar [8, 9] to higher dimen-
sion, the weak convergence from (8.1) can be strengthened to metric convergence:

(8.3) THEOREM If the system (E,v) is positive recurrent with stationary dis-
tribution u, then
d(po P", ) =0 for all py € M(E).

PrOOF. 1. Applying (1.3), choose z with u([0,z]) > 0 and, applying (5.3),
choose § > 0 such that

#((0,2)) Ap(lz, -1) > 6.

Then, for given € > 0 and with p, := po P", there exists a finite subset A of F
satisfying

p(E\AY < e and pn(E\AY)<de forall neN,

30



as follows from (1.3) and (8.1), applied to f = 1,,. Moreover, again by (8.1), there
exists k¥ € N such that

P(Xf<zforallz€ A")>6¢ and P(X)>2)>4,

where the first inequality uses the fact that by (1.5a)
P({X0 <2\ (N, (X7 <21)) € Xpen (PXR <2) ~P(X7 <2)) > 0.

Since the values d(pn, ) = d(pn—1 P, pP) by (8.2¢) form a decreasing sequence, it is
sufficient to prove d(gn, ) — 0. Therefore, passing from v to v*, the notation can
be simplified by assuming k& = 1 in the sequel.

2. For arbitrary B € %B*(E) there are now two possibilities:
(1) In the case z € B, i.e. [0,z] C B, consider

H, :={h € H[E] : h[A*] C [0,2]},

satisfying A* C h=![B] € B*(E) for h € H.. Therefore

|kn(B) — u(B)|

[y V10571 B)) — ™ (B ()
< (1—-0)d(pp—1,n) + de forall neN,

A

because by the first part v(H[E]\ H.) <1 — ¢ and on H, the integrand is bounded
by de.

(2) Inthecase z ¢ B, i.e. [z, ] C E\ B, replace H, by
H* :={h € H[E] : h(0) > =},

satisfying h ![B] = 0 for h € H*. Then it follows similarly, in fact somewhat
simpler, that

un(B) — u(B)| < (1 = 6)d(pn—1,p) forall neN.

Combining both cases and putting v := 1 — ¢ this yields

d(pin, ) < yd(pn—1,1) +de

and thus by recursion
d(pn, ) <" d(po,p) +€ forall n e N.

In view of v < 1 and d < 1 this proves the assertion. O

In case the state space is bounded (or at least of the form E = A* with A finite),
the proof is easily checked to work with € = 0, i.e. there is geometric convergence,
which in addition is uniform in pyg.

To conclude this section by a law of large numbers, ergodicity of the stationary
version of the process (X,, n > 0) is essential. Actually, by means of the dual
process from Section 6, a stronger result can be established:

31



(8.4) PROPOSITION Let the system (E,v) be positive recurrent with stationary
distribution p. Then the process (X, n > 0) with initial law p is mizing.

Proor. Extending H,, n € N, let H,,n € Z, be independent random variables
with distribution v. Then by (6.5) and (6.6)

X/ = lim H,o...0H,(0)€E as..

n>m-——oo
The continuity of the mappings Hy,(w) yields
X) = H,(X,_,) as. for neN.
Since X| is independent of (H,,n € N) and L£(X}) = u by (6.7), the processes
(Xpn, n > 0) and (X}, n > 0) have the same distribution, and thus it is sufficient

to prove the assertion for (X}, n > 0). To this end denote by ¢ and ¢’ the shift in
W = HneZ H[E] and W' := ] ., E*, respectively, and consider the mapping
7:(hp,n €Z)— ( lim hno...Ohm(O),nZO)
n>m——oo
from W to W', which is easily checked to be measurable, due to the topological
properties of E*. Then the mappings o and o’ are conjugate under 7, i.e. satisfy
700 = o' o7. Therefore the mixing property of o with respect to the product mea-
sure Q nez V carries over to o' with respect to its image by 7. Since this obviously
is the distribution of (X}, n > 0), the assertion follows. O

To be complete, it has to be mentioned that in general the tail o—field of
(Xn, n > 0), even under stationarity, need not be trivial. A counterexample is
provided by the Cantor system, where X,,_1 can be reconstructed from X, with
probability 1, and thus the tail o—field of (X,,, n > 0) coincides with the full o —field
generated by the process up to sets of probability 0.

Now a fairly general law of large numbers can be derived:

(8.5) THEOREM Let the system (E,v) be positive recurrent with stationary
distribution u. Then for arbitrary initial law

%20§m<n [(Xm) = uf as.,
whenever f € R(E) or f € C(E).

PROOF. If Xj is replaced by X with £(X{)) = p, the resulting copy (X}, n > 0)
of (X, n > 0) is ergodic by (8.4), hence satisfies

1

- Zogm<n f(X]) — uf as. for all bounded f € B(E).
(1) In the case f € R(FE) this convergence carries over to the process (X, n > 0),
because (1.6) implies f(X,) — f(X},) — 0 almost surely.

(2) In the case f € C(E) assume without restriction 0 < f < 1 and approximate
[ from below by functions from K(E). Since these functions by (10.6b) belong to
R(E), they satisfy the assertion and thus

el

hnn_l)lor.}f . 20§m<n f(Xm) > uf as..

Repeating the argument for 1 — f proves the assertion. O
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A further extension of (8.5) from continuous to semicontinuous functions fails in
general, as can be seen, for instance, by the Cantor system (F,v). Here, for fixed
z € E, there exists a countable subset B of E such that P(X? € B) = 1 for all
n > 0. Since the stationary distribution g is nonatomic, this yields a set F' € §(FE)
with BN F = () and p(F) > 0. Then the initial law ¢, and the function f = 1p are
suited for a counterexample.

9. Strictly order-preserving systems. Throughout Sections 1 — 8 the
system (E,v) has always been supposed to be irreducible. To see the crucial role
of this assumption consider the example following (3.4). If in this case the state
space is enlarged from [0, 1] to [0, 1] (extending the mappings h; continuously), the
definition y = e; yields another invariant measure. This observation suggests a
restriction of the original state space:

(9.1) DEFINITION For an arbitrary system (F,v) the “reduced state space” is
given by the subspace

E:={z € E:P(X">z) >0 for some n € N}.

If F is totally ordered, Eis obviously an open or closed decreasing subset of F
and thus again admissible in the sense of Section 0. Moreover, it makes sense to
restrict the mappings h to E, because

(%) h[E] C E for v—almost all h € H[E].

Indeed, fix 7y € E with P(X? > z() > 0 and consider hy € H[E] with ho(zo) ¢ E.
Then necessarily v(h(zo) > ho(zo)) = 0, because otherwise by independence

P(Xx?

n

11 = ho(z0)) > P(X)) > ) P(Hps1(zo) > ho(z0)) > 0.
Therefore, with the notation
H(y) := {h € H[E] : h(z9) >y} for ye E,

cach hy € H[E] with ho(zo) ¢ E is contained in the union of all sets H(y) with
v(H(y)) = 0. Since the sets H(y) decrease for increasing y, this union can be
replaced by a countable one, due to (E1), and thus is a v—null set itself. Therefore
ho(zo) € E for v—almost all hy € H[E] and, replacing zo by a sequence (z4, k € N)
with [0, z;] 1 E, this settles (x).

As this consideration shows, to treat only irreducible systems means no real
restriction under a total ordering. This, however, does not hold for a general state
space, as the following examples show. Choose F = Ri and let v be supported
by constant mappings (resulting in independent variables X,,, n > 0), taking their
values in the totally disordered subset D := {z € E': £1 + 22 = 1} only. If v assigns
positive mass to each constant in a dense subset of D, the reduced state space E
is easily seen to be no longer locally compact. If on the other hand v has no point
masses at all, obviously

REINE =0 for v—almost all h € H[E].
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This observation is the motivation to investigate systems (FE,v) that are not
necessarily irreducible but strictly order-preserving. Before introducing this notion
the necessary measurability has to be settled:

(9.2) PROPOSITION The subspace J[E] consisting of all mappings h € H[E]
such that
h(z1) < h(zg) whenever z; <

is of type Gs (i.e. a Polish space).

PROOF. Denote by S the open set of all pairs (z1,z2) with 21 < zo. Since E is
locally compact and second countable, it follows that

S=U,n (Kl x Ki) with K| € &(E).
Therefore it is sufficient to prove
H; := {h € H[E] : h[K!] x h[KL] C S}

to be open for all | € N. In view of h[K!] € &(E) a theorem of Wallace (see e.g.
[16]) applies, i.e. h € H; is equivalent to the existence of sets G; € &(F) satisfying
h[K!] C G; and G; x G C S. Since the sets {h € H[E]: h[K}] C G;} are open, the
assertion is established, O

Now the central assumption for this section can be made precise:

(9.3) DEFINITION The system (E,v) is called “strictly order-preserving”, if
the following two conditions are satisfied:

(a) v(J[E]) =1,
(b) v"(h(0) >0) >0 for some n € N.

Clearly, condition (a) is of relevance only in conjunction with condition (b).

To discuss briefly an important special case, consider generalized autoregressive
models on F = Ri, where v is supported by affine maps h: x — Az +0b. If A and b
are composed of the (nonnegative) variables a;; and b;, respectively, then conditions
(a) and (b) are satisfied as soon as

(a) Plan+...+aig>0)=1 for 1<i<d,
(1) P(b...bg>0)>0.

This example should be compared with the model in [4]. While the state space
there is enlarged to E = R%, only mappings h :  — az + b with strictly positive
scalar factors a are admitted, imposing in addition strong moment conditions on the
variables a and b.

The notions in (9.1) and (9.3) are related by the following facts:

(9.4) LEMMA If the system (E,v) is strictly order-preserving, then any x € E
satisfies

(a) P(X2>z)>0 for some neN,

34



(b) r<y forsome yeE,
(c) h(z) e E  for all he N'nJI[E].
PROOF.  Since J[E] is stable under composition, v(J[E]) = 1 implies

V¥(J[E]) = 1 for all k € N. In the sequel denote the support of v¥ by AN and
its elements by hy.

(a) By the assumptions on z and (F,v) there are | € N and m € N such that
V(r(0) > 2) >0 and v™(hpy(0) >0) > 0.

With n =1+ m and
To = {(hlahm) thyohy, (O) > "E}

this implies
V" (hp(0) > z) = L @™ (J,) > P @ v™ (hy(0) > z, hypn(0) > 0) > 0.

(b) By (a) there are hY, € N™ with hY (0) > 0 and A0 € N N J[E] with
:= h2(0) > x. Then A o Y (0) > v and thus

Io = {(hn, ) : by 0 by, (0) > y}
defines an open subset of H[E] x H[E] intersecting the support of v @ v™. Therefore
VT (hngm (0) > y) =" @ V™ () > 0,

hence in particular y € E.
(c) Choose hY = h and AQ as in (b). Then h? o hY (0) > h(z), and it follows as

above, considering now
Je :=A{(h1,hn) : h1ohn (0) > h(z)},
that h(z) € E. O
The crucial properties of the reduced state space follow readily:

(9.5) PROPOSITION If the system (E,v) is strictly order-preserving, then

(a) E s locally compact,
(b) hE] C E  for v—almost all h € H[E],
(c) E is locally bounded.

PROOF. (a) E is a decreasing subset of E, hence by (9.4b) open in E and thus
again locally compact.

(b) Since Eis second countable and by (9.4b) covered by the family of open sets
{z € E:z< yh,y € E, there are y; € E such that F = Uien [0,yk]. Therefore

h[E] C E if and only if h(y,) € E for all k € N, as holds indeed by (9.4c) for all
h e NN J[E].

(c¢) Local boundedness is immediate from (9.4b). O
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Since the assumptions (E2) and (E3) clearly carry over from E to E, too, the
reduced state space is again admissible in the sense of Section 0. Therefore the
reduction of a strictly order-preserving system (F, v) can be summarized as follows:
Disregarding the v—null set of mappings with h[E] ¢ E, let D be the image of v
under the (continuous) mapping that assigns to h € H[E| its restriction h € H[E].
Then the system (E, ) is irreducible, and an associated process (X,, n > 0) behaves
as (X,, n > 0), whenever the initial law is supported by E. By (9.5c), moreover, the
results (5.7) and (7.3) on attractor and mean passage time simplify for the reduced
system.

10. Order and topology. A set is called an ordered topological space (OTS),
if its topology and (partial) order are compatible, i.e.

R := {(331,.’172) tx1 < .’EQ} € ?{(E X E) .

By symmetry this holds as well for the inverse ordering, hence the diagonal is a closed
subset of E x E, and thus each OTS is a Hausdorff space. Moreover, each subspace
with the induced ordering and each product space with the product ordering yield
again an OTS.

The simplest example of an OTS is provided by a totally ordered set E, the
topology being generated by the “open intervals” F\ [z, -] and E'\[-,z]. While the
meaning of a strict inequality “z; < x2” is clear in this case, more care is necessary
in the general case:

(10.1) DEFINITION Let E be an arbitrary OTS. Then “z; < z2” means
existence of disjoint neighborhoods G; of x; such that

(a) G, € ®*(E) and Gy e &' (E),
(b) y1 <yg for y; €Gi.
This implies in particular
S = {(z1,22) 1 21 <22} € B(E x E)
and the transitivity law
1 < x3 whenever z1 <29 <x3 or z1 <z9 < 3.
Another notion combining order and topology appears in Sections 5 and 7:

(10.2) DEFINITION Let E be an arbitrary OTS. Then E is “locally bounded”,
if any x € F has a bounded neighborhood.

While this condition is clearly satisfied under a total ordering, it may well be
violated in the general case: consider, for instance, the subspace

E = {(z1,2) ERi cx1+x2 < 1}

The deepest result on order and topology used here is the analogue of Tietze’s
extension theorem, due to Nachbin:
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(10.3) PROPOSITION Let E be a compact OTS and Ey be a closed subspace.
Then any function fo € C'(Ey) can be extended to a function f € C'(E).

PROOF. See [33, Corollary 3.4 and Theorem 3.6]. O

The following fact is an immediate consequence of (10.3) and therefore supplied
with its simple proof:

(10.4) PROPOSITION Let E be (a subspace of) a compact OTS. Then the class
of conver open sets is a base of the topology.

PROOF. Assume E to be compact and apply (10.3) to Ey = {z1,z2} with
T1 # 3 to see that C'(E) separates the points of E. Therefore C'(E) induces a
Hausdorff topology in E coarser than the underlying compact topology, and thus
both topologies agree. Since sets {x € E : a < f(x) < b} are convex for f € C'(E)
and a,b € R and convexity is stable under intersection, the assertion follows. O

The next result is crucial for the introduction of admissible state spaces F in
Section 0:

(10.5) PROPOSITION Let E be a locally compact OTS and E* = E U {0} its
Alexzandrov compactification. Then, defining x < oo for all x € E makes E* again
an OTS if and only if

(%) K*e &(E) for dll K € &(E).

PrOOF. 1. Let first E* be an OTS and consider a set K € R(E) C K(E*).
Then denoting by R* the order graph of E* and by p; the projection of E* x E*
onto its first factor leads to

K'=pi[(E* x K)NR*] € &(E*),
where oo ¢ K* and thus indeed K* € K(E).

2. Let conversely condition (%) be satisfied and R* be defined as above. Then,
to prove (E* x E*)\ R* to be open, choose any (z1,z2) in this set.

(1) If {z1,22} C E, then there are G; € 8(F) C &(E*) such that
T; € G; and G1XG2C(EXE)\RC(E*XE*)\R*.

(2) If{z1,z2} ¢ E, then 1 = oo and z5 € E. Since E is locally compact, there is a
neighborhood Gy € &(E) C &(E*) of z9 with closure K € &(F). By condition (x),
therefore, K* € &(E) as well, and thus G; := E* \ K* € (E*) is a neighborhood
of z1. Then it is easily checked that (G x G2) N R* = (. O

Now an appropriate version of Stone’s theorem can be established:

(10.6) PROPOSITION Let E be a locally compact OTS satisfying condition (*)
of (10.5). Then

(a) Ko:={fi— f2:0< fi € K*(E)}
is a dense subspace of K(E) with respect to the uniform norm,
(b) K(E) CR(E).
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PROOF. Since E* according to (10.5) is a compact OTS, it follows as in the
proof of (10.4) that

Co={fi —f5:0< ff eC*(E")}
separates the points of E*. All further conditions in Stone’s theorem are obviously

satisfied, and thus Cj is dense in C(E*). Let now f € K(E) be given and f* be its
trivial extension to E*. Then there are nonnegative functions f} € C*(E*) with

Ifg = =0 for  fi:=fix — for>

where by adding suitable constants f;; (00) = 0 can be achieved. The restriction of
(f#, — 1/k)" to E yields nonnegative functions f;, € C(E) such that

Ife —fll =0 for fr:= fir — for-

Since the support of f;; is a subset of {f; > 1/k} and this set is compact in view
of f7(00) = 0, the functions f;;, are in fact contained in C(E). This proves (a) and,
due to Ky C V(FE), also (b). O

The next result requires some countability:

(10.7) PROPOSITION Let E be a locally compact and second countable OTS
satisfying condition () of (10.5). Then there are functions g € K*(E) such that
(1) 0<g1 <ge<...—>1,

(2) each K € K(E) is included in {g; =1} for some .

PROOF. By the topological properties of E there is a sequence of sets K; € &*(E)
such that each K € K(F) is included in some K;. Since E* according to (10.5) is a
compact OTS, (10.3) applies and yields functions f; € C*(E*) with f/|K; =1 and
[ (00) = =1. If f; denotes the restriction of f;* to E, the functions

g = f"V...Vff)Al for IeN
meet all requirements. O

The final result concerns the classes V(F) and U(F) introduced in Section 0.
Clearly, V(F) includes the linear space of all differences f; — fo with bounded func-
tions f; € B'(E), and thus U(E) includes the algebra of all finite unions of sets
B; \ By with B; € B"(E). Conversely:

(10.8) PROPOSITION Let E be a locally compact and second countable OTS
with lower bound 0. If U(E) and U(FE) denote the class of universally measurable
functions on and subsets of E, respectively, then

(a) each f € V(E) is a difference fi — fo with bounded functions 0 < f; € U'(E),
(b) each B € U(E) is a finite union of sets By \ By with B; € U'(E).

PROOF. (a) Assume without restriction f(0) = 0. As under a total order-

ing f can then be represented as f = fT — f~ with bounded increasing functions
f?>0,0 € {—,+}, defined by

7o) = sup { oo Flani) = flan)* o Sm <<
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To verify f? € U(E), consider the Borel measurable function

9° (21,2, - 57) := Lig  <op<..<a} ZkeN (f(zra1) — flzr))?

on the Suslin space EN x E. Then the set of z € E satisfying an inequality
f?(x) > v equals the projection of the set of (z1,z9,...;2) € EN x E satisfy-
ing ¢°(x1,x2,...;2) > v onto the second factor and is therefore a Suslin, hence
universally measurable, set for all v > 0.

(b) In the special case f = 1p the functions f? are integer-valued. This yields
the representation

B=Jen (T2 RIN{f™ 2K},

where the right-hand side is in fact a finite union. 0

It has to be mentioned that no null sets intervene under a total ordering, because
in this case increasing functions are Borel measurable.
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