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Introduction

This is the final part of work begun in ... and continued in ... . It studies
affine recursions on R, i.e. sequences (X,,),>o defined by

X, =Y. X,.1+7Z, for n € N.

Here, (Y., Z,)nen is a sequence of independent identically distributed R%;
valued random variables which is independent of the initial variable X, > 0.
Without loss of generality, the common distribution v of (X, Z,),n € N, will
be assumed to belong to the class A defined in Section 0.

The object of Part II was to study the asymptotic behaviour of (X,),>0
in the recurrent case, i.e. under the assumption that the sequence does not
diverge to infinity. A central result assigns an essentially unique invariant
measure to (the transition kernel of) a recurrent sequence (X,),>0. As a
consequence mean as well as pointwise ergodic theorems for ratios can be es-
tablished. Part III strengthens this study by distinguishing positive recurrence
and null recurrence; its contents are summarized below.

Section 8. It is only natural to classify the recurrent case further: the
sequence (Xy,)n>o is called “positive recurrent” if the invariant measure is fi-
nite and “null recurrent” otherwise. This yields the connection between the
present work and the existing literature, because a finite invariant measure
can be normalized to a stationary distribution. An example for positive recur-
rence is the regenerative case (8.3) and a simple necessary condition requires
divergence of the associated random walk (S,)n,>0 to —oo (8.4). If it exists,
the stationary distribution equals the distribution of 3 ,en Y1 - .. Yn_1Z, (8.2).
Employing Kesten’s extension of the strong law of large numbers a criterion
for positive recurrence can be established (8.5), which can be shown to be best
possible in a sense (8.6). When combined with earlier results, this leads to a
very satisfasctory trichotomy: under a weak boundedness condition on Z,,, the
affine recursion (X,),>o is positive recurrent resp. null recurrent resp. tran-
sient, if the associated random walk (S, )n>o diverges to —oo resp. oscillates
resp. diverges to +0o (8.7). The section closes with a stability result for the
stationary distribution under a uniform boundedness condition for moments
of Y, and Z, of some order (8.8).

Section 9. As in classical Markov chain theory positive recurrence can be
characterized by weak convergence of the laws £(X,,) to the stationary distri-
bution, while in the null recurrent case the total mass disappears to infinity
(9.1). In the positive recurrent case the ergodic theorems from Section 7 can
be strengthened considerably: Under the stationary distribution the sequence
(Xn)n>o is actually mixing (9.2), while under an arbitrary initial law almost
sure convergence of successive averages holds more generally than for bounded
continuous functions (9.3). The second half of this section treats mean pas-
sage times. While ascending ladder indices have a finite expectation in any
case (9.4), the ergodic behaviour of the sequence is essential for descending



ladder indices (9.5). The section closes with an extension of the main criterion
for positive/null recurrence from classical Markov chain theory to the topolog-
ical setting (9.6).

Section 10. Since the moments of a stationary distribution p, as far as
they exist, can be obtained recursively from the mixed moments of Y, and
Z, (10.1), it is of interest whether p is determined by all of the moments
[a*dp, k € N. This leads in a natural way to the weakly contractive case
(10.2). The strongly contractive case establishes the connection with self—
similarity. It provides one of the rare situations allowing explicit results, for
instance concerning uniform distributions (10.3). The second half of this sec-
tion studies the multiplicative model with Y,, < 1, which is important in some
applications. Here at least a partial answer concerning the singularity of the
stationary distribution is possible (10.4). Finally, the exact order in which an
upper limit oo is approached by (X,,),>¢ is derived (10.6).

In conclusion, here are some directions for further research:
— As already mentioned, the extension from R, to R — for some results with-
out difficulties — on the whole is a nontrivial problem.
— It is much easier to keep the state space R, and to deal with other mono-
tone recursions as for instance the process

X, =YX, 1V 2, for n € N,

as considered by Goldie [16] and Rachev [34] (for a special case see also Alpuim
[1])-

— New problems arise, if the total order in R is given up and R* is considered
instead; for some results in the additive model see Elton and Yan [12].

— A multidimensional generalization results also from autoregressive pro-
cesses of higher order, treated in the context of random matrices for instance
by Kesten [24].

— Even more general is a treatment in the framework of topological semi-
groups as begun by Mukherjea and Tserpes [31] and continued recently in the
special case of nonnegative matrices by Mukherjea [30].

— There are, moreover, attempts to weaken the asumption on the sequence
(Y, Zn)nen to stationarity and ergodicity; here Borovkov [4] and Brandt [5]
have to be mentioned.

— Finally, it is only natural to ask for continuous—time analogues; for these
Wolfe [40] and de Haan and Karandikar [19] may be consulted.

8. Positive recurrence and null recurrence

A further classification in the recurrent case is suggested by (5.6):

(8.1) Definition. Let v be recurrent with invariant measure p. Then the
distribution v (or the kernel P or the process (X,)n>0) s called



(a)  “positive recurrent” if p(Ry) < oo,
(b)  “null recurrent” if u(Ry) = oco.

The simplest example for positive recurrence is provided by the case T < oo,
in which the support of i is bounded. A first general criterion, derived under
moment conditions but not restricted to the case Y,Z > 0, was given by
Vervaat [39]. In the present framework it is easily established:

(8.2) Theorem. v is positive recurrent if and only if
W .= ZREN Y]_ Ce Yn,lzn < o0 a.s.
In this case the stationary distribution is given by L(W).

Proof. 1. If the invariant measure p is finite, 4 € M;(R,) may be assumed
as well. Under the initial law u the sequence (X,),>o is stationary, and with
the dual sequence (W;,)n>0, defined in Section 0, this implies by monotonicity

u((0,t]) = (liminf, o) [P(X7 < 1) p(dx)
liminf, ,., P(X? <t)

IN

= liminf, ,,  P(W, <t)

= P(W <)

IN

P(W < x0),

which for ¢ — oo yields the assertion.

2. To prove the converse, let (Yy, Zp) be independent of (Y,,,Z,), n € N,
with distribution v. Then Zy+ YW is distributed as W, hence p = L(WW) is a
stationary distribution for P. Moreover, the recurrence of v is a consequence
of (2.2b), because the potential kernel G := Y ,>¢ P" satisfies by monotonicity

G0;[0,2]) = JG(x;[0,1]) plde)
= o (LP")([0,2])
= Y.>opu([0,t]) forall t>0. O

To derive the stationary distribution y associated with a positive recurrent
distribution v, (8.2) is not of much use. For some explicit examples, obtained
by an ad hoc principle in the framework of exponential families, see [7].

The next result strengthens (2.3):

(8.3) Proposition. v is positive recurrent whenever P(Y = 0) > 0.

Proof. Since Y,, = 0 for some n € N with probability 1, the series in (8.2) is a
finite sum almost surely. O

In this context it is worthwhile to point out the following:
— The stationary distribution p can be computed, at least in principle, from
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the probabilities p := P(Y = 0) and ¢ := 1 — p and the distributions v and v/
of (Y, Z) under the condition Y = 0 and Y # 0, respectively (the assumption
g # 0 is no real restriction). To this end let (Yp, Zp) and (Y, Z)), n € N,
be independent with distributions vy and v/, respectively, and denote by W}
the analogue of W, with (Y, Z! ), m < n, replacing (Y, Zm), m < n, and
(Yo, Zy) replacing (Y, Z,). Then it is easily seen that

p=Ynenpq" " H,  with = LW).

— While in the null recurrent case the hypotheses of (6.4) are satisfied and
thus the invariant measure is nonatomic, in the positive recurrent case the
mass (1({0}) of the stationary distribution can be computed from the equation

p{0}) = (wev){(z;y,2):yr+2z=0})
= p({0)P(Z =0)+ u(]0,00)) P(Y = 0 = 2),
resulting in
{0} =P(Y =0=2)/ (1-P(Y #0=2)).

— If Y is restricted to the values 0 and 1, then the Laplace transform v of u
can be computed from (5.7). To this end let y; denote the Laplace transform
of the distribution of Z under the condition Y = ¢ (s = 0, 1). Then ¢(0) =1
leads to

P(u) =P =0) xo(u) / (1 =P =1) x1(u))

(for a related result see [39]).
Next, the analogue of (2.4) can be stated, providing a necessary condition
for positive recurrence instead of a sufficient condition for transience:

(8.4) Proposition. If v is positive recurrent, then S, — —o0.

Proof. Assuming sup >0 Sn, = +00, consider the random times 77 <75 < ...
when (S, )n>0 hits Ry (being defined with probability 1). Since T}, k € N,
are stopping times with respect to (Y;,, Z,)nen, the random variables Zrg, 1,
k € N, are independent and distributed as Z. Thus

W>YkenYi...Y5, 21, 11 2> Y keN 21, 11
diverges almost surely and (8.2) yields a contradiction. O

That the converse of (8.4) does not hold in general is an immediate conse-
quence of (2.5).

A first criterion for P(W < oo) = 1 appears in [27] under the assumption
E(logY) < 0, ensuring S,, — —oo. Later its sufficiency was shown by Vervaat
[39] along the same lines but under a weaker moment assumption. Employing
Kesten’s extension of the strong law of large numbers, this assumption actually
can be dropped completely:



(8.5) Theorem. If S, — —oo, then the condition
E(log, 7) < 00
(a) 18 always sufficient for positive recurrence,
(b)  is necessary for positive recurrence whenever E(|logY|) < oo.
Proof. Applying Borel-Cantelli it follows easily that

=0 as. if E(log 7)< oo,

1
li n—oo — 108 Zp )
HI SR nooo ) 108+ { =+o0 a.s. if E(log,Z) = oo.

Applying [23], moreover, it follows from the hypothesis S,, = —oo that

€]—00,0] as. if E(|logY]) < oo,

1
i n—oo _ m ”1 Ym .
im0 2 1<m<n 108 { - o0 a.s. if E(|logY|) = oo,

because the trichotomy for (Sy)n>o carries over to (S,/n)nen in the case
E(log_Y) = co = E(log,Y).

Therefore

(1)  limsup, e (Y1-- .Yn_lZn)% <1 as.  whenever E(log,Z) < oo,

while

(2)  limsup, e (Y5 -- .Yn_lZn)% =o00 as. whenever E(log,Z) = oo,

if in this case E(|logY|) < oo holds in addition. Clearly, (1) and (2) imply
almost sure convergence and divergence of W, respectively, and the assertion
follows from (8.2). O

Specialized to Y = v €0, 1] and combined with (3.1), this result shows that
even in the additive model all three possibilities — transience, null recurrence,
positive recurrence — really occur.

The statement of (8.5b) is best possible in some sense. However large Z
may be, Y can be made small enough for positive recurrence without attaining
the value 0, even if in addition independence of Y and Z is postulated. More
precisely, (2.5) has the following counterpart:

(8.6) Proposition. For any v, € Mi(R;) with v,({0}) # 1 there exists
vy € My(Ry) with v,({0}) = 0 and v, ({1}) # 1 such that v = v, Q v, is
positive recurrent.

Proof. Let Z,, n € N, be independent with distribution v,. Then choose se-
quences (zn)nENa (yn)nENa (pn)nEN SatiSfying

(1) Y neN Gn < 00 with ¢, :==P(Z > z,),

(2) l=yo>y1>...—0 and > neN Ynzn < 00,



n—1

3) O=p<p1<...—»1 and Y,enpl <

(e.g. pp = n 2=V for n > 1). Independently of Z,,n €N, let now Y,,n€N,
be independent with a distribution v, such that

PYY >y, =p, for n>0.
Then 0 < Y <1 and thus
PWYi...YouZy>ynzn) < P, ..., Yo 1> y,) + P(Z, > z,)
= p"'t+gq, forneN.
Therefore, by the summability in (1) and (3), with probability 1
Yi... Yo 1Z, <y,z, for almost all n € N,

hence, by the summability in (2), the assertion follows from (8.2). O

Now the close relationship between the behaviour of an affine recursion
(Xn)n>o and the associated random walk (Sy)n>o can be summarized. Under
a weak boundedness condition on Z, satisfied for instance in the multiplicative
model, there is in fact a bijection:

(8.7) Theorem. With arbitrary o > 0 let one of the following two conditions
be satisfied:

(a) E(Z*|Y) <~y forsome vy < oo,

Then the following trichotomy holds:

Sp, = +o00 = v transient,
S, — oo = v null recurrent,
S, = —00 = v positive recurrent.

Proof. 1. Clearly, < 1 may be assumed and o = 1 will be considered
first. Then the case S,, — 400 is settled by (2.4), while the case S,, — +oo
follows from (8.4). Thus it remains to consider the case S,, — —oo. Under
condition (a) clearly E(log, Z) < oo and (8.5a) applies, while under condition
(b) similarly E(log, (Z/Y)) < co. In view of

Zn

W:ZnEN}/iYn?n

the assertion follows from (8.2) as in the proof of (8.5).



2. For a < 1 the transient case is again settled by (2.4), because the passage
from (Y, Z") = (Y, Z*) to (Y, Z) does not affect the asymptotic behaviour of
the associated random walk. The recurrent case follows from the inequalities

Zlifz...Yn+...+Zn§(Z{YZ,’...YTZ+...+Z;)5,

Q=

Zi+ oAV Yy 1 Zy < (Z7+ ...+ Y] .Y Z)s.
Indeed, if ' and W' denote the analogues of z and W, this means

z<(z)> and W< (W)a. O

It should be mentioned that conditions (a) and (b) according to (3.4) can
be simplified to

E(Z%) <oo  for some a >0,

provided Y and Z are independent or Y is bounded away from 0.

This section will be concluded by a stability result. Related, but not com-
parable, conditions for continuous dependence of y on v can be found in [5]
(see also [6], chapter 9.1). The following result strengthens (6.5):

(8.8) Proposition. Let N' > vy — v and vy, be positive recurrent with sta-
tionary distributions uy such that

y:i=supgen Jy*dy, < 1 and 0 :=Supgen [ 2% dyp < 00
for some a > 0. Then

(a) v is positive recurrent,

(b) =g,

where p s the stationary distribution associated with v.

Proof. (a) In view of the weak convergence
Jy*dv <~y and  [2%dv <,

which by the hypotheses on v and ¢ (and Jensen’s inequality) yields
—00 < [logydr <0 and  [log,zdv < oo.

Thus v is positive recurrent according to (8.5a).
(b) Since the L, norms increase with the order, clearly @ < 1 may be
assumed. In this case

Ja%duy = [ [ (zy+2)* p(dr) v(dy, dz)
I T ((zy)® + 2%) p(dz) vy (dy, dz)
< (Jz%dpe) v+,

IN



which implies
N 0
sup gen J % dpy, < 1~ < 0.
-7

In view of a > 0, therefore, the sequence (x)ren is uniformly tight in M;(R,)
and each limit point p is excessive with respect to v according to (4.6), because

weak convergence implies vague convergence. The assertion thus follows from
(5.6). O

In this result the conditions on v and ¢ both can be shown to be essential.
The following counterexamples resemble those in [5], represent, however, even
more extreme situations. In both cases the notation P refers to v;.

k 1 1
=—)= PyZ=2)=1——
fZ=2) vk

with z > 0 and Y = y €]0, 1] yield positive recurrent vy, k € N, such that
Uk~ €y and e~ Ecc.
The first convergence is clear and the second one follows from

P.(W<k) < PyZ=2zfor 1<i<k)

1
= 1-—=)=0
( \/E)
1 1 1 2 1 1
2 P.(Y =0)=— V=2)=1—= V = k)= = _ —
(2) WY =0) =15, PulY =) o PV =k =2 — o3

and Z =1 yield positive recurrent v, kK € N, such that
W W,
Vi = €(0,1) and ke = Eco-
Again the first convergence is clear, while the second one follows from

P,(W<k) < P(Y1... V2 <k)

1
< Pr(Uicicrz{Yi = 0}) + Pr(N1<icrz{Yi = E})

1 2 2
- 1_(1_5)’C +(1-)F —>o.

9. Further ergodic theorems
The mean ergodic theorem (7.1) can be strengthened to weak convergence in
the positive recurrent case, holding in an extended sense also in both the other

cases. This is a consequence of more general results in [18], but for the state
space R, a direct proof is too simple to refer to other work. In the present
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framework the following holds, independently of the initial law:

(9.1) Theorem. If u, := L(X,) for n >0, then

@) b p
whenever v is positive recurrent with stationary distribution p,
(D) fn > €0y d.e. pn([0,1]) = 0 for all t < oo,

whenever v s null recurrent or transient.

Proof. (a) By bounded convergence (2.6) implies

pinf — pf = E([ (f(Xn) = F(X7)) p(dz)) = 0 forall feK(Ry).

(b) It follows from the representation
W=7Zi+...+V1.. Yo 1(Z,+ Yo Zpi1 +..) for ne N

that the event {/W = oo} is contained in (the completion of) the tail-field of
(Y, Zy)nen, because P(Y = 0) = 0 by (8.3). Therefore W = oo a.s. by (8.2)
and this implies by monotonicity

un([0,7]) < P(Xp <t)
= P(W,<t)
- PW<t)=0 forall t<oo. O

Clearly, (9.1) strengthens (7.6) in the positive recurrent case. Moreover,
the condition “X finite—valued” in (1.4b) can now be replaced by the condition
P(X = o0) # 1, because convergence in probability implies weak convergence.

The pointwise ergodic theorem for the positive recurrent case can be derived
from (7.4). To obtain it for as many functions as possible, it is, however,
preferable to establish first ergodicity under stationarity. Actually a stronger
result holds:

(9.2) Proposition. If the process (X, )n>0 is stationary, it is mizing.

Proof. 1. Extending (Yy,, Z,), n € N, let (Y,,, Z,), n € Z, be independent with
distribution v. Then by (8.2)

X,Il = E —co<m<n ZmYm+1 ce Yn < 00 a.s.
and, moreover, ;= £(X]) is the stationary distribution. Since
X, =X, Yo+Z, forneN,

the processes (X,)n>0 and (X} )»>o have the same distribution and it suffices
to prove the assertion for (X, )n>0.



2. Denote by o and ¢’ the shift in [],cz Ri and in [] >0 R4, respectively,
and consider the mapping
Tt (Yns Zn)nez — (X —cocm<n ZmYm+1 - - - Yn)n>0
from [] ez R%r to [1n>0 R+. It is compatible with ¢ and o', i.e.
TOO = O'I OoT.

Therefore the mixing property of o with respect to the measure Q,,cz v carries
over to o' with respect to its image by 7. Since this is the distribution of
(X} )n>0, the assertion follows. O

In the case P(Y = 0) > 0 it can be shown that (9.2) holds in the stronger
sense of (X,),>o having a trivial tail-field. This can fail extremely in the
general case, as is seen by the following example:

Y=1/2 and P(Z=0)=1/2=P(Z=1)

obviously represents the simplest nontrivial positive recurrent case. Here
(Xn)n>o is stationary, if the initial law is the uniform distribution on [0,2].
Since X,_; can be reconstructed from X,, via

Xn—l =2 (Xn - 1{Xn>1}) a.s.,

the tail-field of (X, )n>0 coincides in this case with the full o-algebra generated
by (Xn)n>o (modulo null sets).

Now the pointwise ergodic theorem is a simple consequence. Related results
in the context of Lipschitz maps can be found in [3], [10], [11]. In the present
framework the following is true, again independently of the initial law:

(9.3) Theorem. Let v be positive recurrent with stationary distribution p
and f be p—integrable. Then the convergence

1
- Y o<men [(Xm) = pf a.s.
holds under each of the following conditions:

(a) f € CN(R+)7
(b)  funiformly continuous (with respect to Euclidean metric).

Proof. 1. If py := L(Xo) equals p, the process (X,),>0 is ergodic by (9.2),
hence the asserted convergence holds without any further condition on f. This
extends to arbitrary uo by (2.6), if f is restricted to C(R).

2. If f € C,(R;) and for the moment 0 < f < 1 is assumed, monotone
approximation from (R ) yields the inequality

1
lim inf n—oo Z 0<m<n f(Xm) 2 ,U'f a.s.
n >

10



and its counterpart for 1 — f. Both inequalities together, in view of ul = 1,
prove the assertion under condition (a), because the assumption 0 < f <1 is

easily removed.
3. Under condition (b)

FX) — f(X?) — 0 as.  forall z; € Ry
follows from
X" — X" = (z; — 29) e = 0 as.,

which in turn follows from (8.4). Thus the initial law g is irrelevant for the
asserted convergence. [

Applying (9.3) to a countable dense subset of the normed space K(R;)
yields as usual

1 w
- > 0<m<n€X, — M AS.,

i.e. the stationary distribution is the weak limit of the empirical distributions
almost surely.

As an important special case (9.3b) yields the strong law of large numbers
for the process (X,)n>0, stating

1
- > o<m<n Xm — [ dp as.

and holding also, if the integral is infinite.

While in the case P(Y = 0) > 0 the conditions (a) and (b) can be shown
to be superfluous, in the general case (9.3) can hardly be improved. Indeed
convergence can fail, if f is assumed to be u-integrable and continuous only,
as is seen by the following example:

V:p€(1/2,1)+q€(2,0) with O<q<p<1

is obviously positive recurrent with £ = 2 and T = oco. For pg = ¢y consider
the random times

Ty ==inf{n e N: X,, > 2¥}  for k € N.

Since X,, < 2* implies X,,1; < 2**!, they satisfy 7T} < Ty < ..., both with
probability 1. Choose n; € N such that

(1) limsup 400 P(Th <) =1
and consider the sets

Ay = {z : P(T} < ng, Xr, = z) > 0}.
Since Ay is a finite subset of

By, = [2F, 2811

11



and the stationary distribution p is nonatomic by (6.4), a continuous function
f:Ry — R, can be constructed such that

(2)  f(z) > kn, for z € Ay,

(3)  [p, fdu<2F for keN.

Then by (2) the sequence

1
Vo = o 2 1<m<n f(Xn) for ne N

satisfies

P(lim sup 00 Vyy = 00)

v

P(hm SUp ko0 {VTk > k})
> P(imsup goo {1k < nk}),

where the last inequality follows from

1
Vp, > Tf(XTk) >k for Ty < ny.
k

In view of (1) this implies
limsup ;00 Vy, = +00 a.s.,

while by (3) on the other hand pf < 1.

The rest of this section treats mean passage times, where first the region
above and below the initial level will be considered. Whether v is recurrent or
transient, the ascending ladder indices have a finite expectation:

(9.4) Proposition. Let Tp denote the — possibly infinite — hitting time of a
set B € B(Ry) by (Xn)n>o- Then, for arbitrary z < 7,

E*(Tiz,c01) < 00.
Proof. Due to x < T there exists n € N such that
9 :=P(X?>x)>0.
Since by monotonicity
{Tp oo > kn} C {Xp<uz,...,Xpm <z}
c {XP<um,...,Xp <z}
C N o<ick {Zin+1Yint2-- Yingn + ... + Zinin < x},
independence implies
P(Tipoo > kn) < (P(X) < 2))f =(1-9)*  for k> 0.

Therefore the assertion holds for any initial distribution. O

12



The following counterpart of (9.4) distinguishes positive and null recur-
rence:

(9.5) Proposition. Let Tz be defined as in (9.4) and v be recurrent. Then,
for arbitrary x > x,

(a)  E*(Tjoq]) < oo  whenever v is positive recurrent,
(b)  E®(Tpa) =00  whenever v is null recurrent.

Proof. (a) Let u be the stationary distribution and £(Xy) = p. Then it follows
from the recurrence theorem by Kac [21] that

E(Tjo,q | Xo < z) = (u([0,2]))™".

Since by (5.2a) the hitting distribution on [0, 2] equals the distribution of Xj
under the condition X; < z, by induction this equation can be extended to
the k-th hitting time T} of [0, z], i.e.

E(T) | Xo < z) = k (u([0,2]))".
This implies all that is needed in the sequel, namely
(1) [ixo<a} TwdP < oo  forall k€ N.

Now z < Z may be assumed, because otherwise E*(Tjo4) = 1 by (1.2b). Under
this assumption there exists £ € N such that

(2) P(Xo <z < Xg) >0.
By the inequality
T:=inf{n >k : X, <z} < Ty,

with po x denoting the distribution of (Xo, X), and by monotonicity it follows
that

[ (xo<ay Ter1 AP > [ (xo<a<xy) T dP
= f$0§m<$k (k + E** (ﬂO,a:])) ,U‘O,k(da:Oa da:k)

This proves the assertion in view of (1) and (2).
(b) Let u be the invariant measure and x < ¢ < oo. Then

p'(B) = (u([0,¢])) *u(B)  for B € B([0,1])

by (5.2a) defines a stationary distribution with respect to ‘P. Now let X be
distributed according to (the trivial extension of) y' and let 7" denote the
hitting time of [0, z] by (*X,,)n>0. Then it is obvious that

T < T[O,z] )

13



and it follows from the above—mentioned theorem by Kac that
[ (xo<a} T'dP = 1.

By monotonicity this implies
1 = [g<s B™(T") 4 (d)

/ zo<x E™ (T[o,z]) Ml(diﬂo)

< ([0, 2]) E*(Tjo,0)),

IN

hence

p([0,#]) < ([0, 2]) E* (Tio,01)-
In view of p([0,z]) < oo the assertion follows for t — co. O

Since P*(Tjo,4 < 00) = 1 obviously implies < z, in the transient case the
equation E*(Tjy ) = oo holds for all z € Ry.

The next result concerns mean recurrence times and makes again essential
use of the monotonicity:

(9.6) Theorem. Let Ts be defined as in (9.4) and v be recurrent with invari-
ant measure . Then, for arbitrary x € supp u, v is positive recurrent if and

only if
E*(Tg) < o0 for all open subsets G of R, containing x.

Proof. 1. Let v be positive recurrent and consider first the case x = 0. Then
G = [0, 2¢] may be assumed, which yields by (9.5a)

EO(TG) < EE(Tg) < EE(T[O’g]) < 0.

In the case z > 0 similarly G =]z —¢,x+¢[C R; may be assumed. Choose
first G' =]z —¢', x+¢'] with arbitrary ¢’ € |0, e[. In view of u(G") > 0 it follows
as in the proof of (9.5a) that

(1) E¥(Tg)<oo  forsome ' € G
For fixed w € Q consider now n € N with X (w) € G'. Then the inequality
X2() = XZ @) = [2-2'| M izmen V(@)

1
S 5I E (xl H 1<m<n Ym(w))

1
< s'x_gl (x+¢&)

in view of | X% (w) — 2| < ¢’ implies that

x+¢e 2e'x

| X2 (w) — x| <&'( +1) =

z—¢ x—¢

14



Therefore by (1)

2e'

E*(Ty) <E*(Tg) <oo  for <e,

x—e —

where the last condition is satisfied for sufficiently small &'.

2. To prove the converse suppose only
E?(Tjy) < oo  forall t > x.
Assuming now v not to be positive recurrent implies
(2) PYz+Z>t)=0 forall t> .
Indeed, with p; := L(X¥) monotonicity yields
E"(Tio,) > [sst B(1 4 Tjoy) pa(ds)
> P(Ye+2Z > 0) B (Tjy),
where E*(Tjo4) = co by (9.5b). Letting ¢ | z in (2) leads to
PYz+Z<z)=1,

hence by (1.2b) to T < x < oco. This implies positive recurrence and thus a
contradiction to the assumption. O

Together, (9.1) and (9.6) show that the two main characterizations of
positive/null recurrence from classical Markov chain theory in essence carry
over to affine recursions.

10. The contractive case

As outlined in Section 5 it is in general impossible to determine the invariant
measure p of a recurrent distribution v explicitly. In spite of (8.2) this holds
as well for the stationary distribution in the positive recurrent case (for an
exception see (10.3)). This is compensated to some extent by the fact that,
due to the algebraic form of the underlying recursion, the moments of u can
be easily computed from those of v, as far as they exist. The following simple
criterion for their existence extends a result by Vervaat [39]:

(10.1) Proposition. Let (X,)n>0 be stationary and 0 < o < co. Then
E(X;) < o

iof and only iof
EY*) <1 and E(Z°%) <.

15



Proof. With W as defined in (8.2) it follows from
EW®) =suppenE((Z1 + ...+ Y1...Y,12,)%)

by elementary inequalities that

h

E(W*) { ; VS en (B(Y®)" 1E(2%)  for a{

IV IA

while on the other hand
W=suppen (Z1+...+Y1... Y, 12,)

by Minkowski’s inequality implies

e { 2} SV I 020 for @ {5 }1.

This proves the assertion in view of E(Z%) # 0 resp. ||Z]|o # 0. O

For ae =1 the bounds in the proof coincide and yield the equation
E(X,) = E(2) / (1 - B(Y)).
If finite, moments of any order £ € N can be computed from
[z'du= [ [(zy+2) pldz)v(dy,dz) for 1 <i<Ek,

a system of linear equations that can be solved recursively due to [’ dv < 1.
Two further comments are in order:
— The existence of moments of some order is clearly related to the tail-
behaviour of p. For relevant results see the papers by Kesten [24] and Goldie
[16].
— (10.1) does not extend to the case & = co. While ||Y||oc < 1 and || Z]|oc < 00
obviously imply T < oo, conversely this condition yields only ||Y||. < 1 and
|Z]|co < oo (consider for instance the case N = {(1,0),(0,1)}, where p = &,
according to (1.4)).
In view of (10.1) it is of interest, under which conditions p has an expo-
nential moment and is thus determined by its moments of natural order. Here
contractivity enters:

(10.2) Proposition. Let (X, )n>0 be stationary. Then
E(e"*") < oo for some u >0

iof and only if
Y <1 and E(e*?)<oo for some u> 0.

Proof. 1. The conditions on Y and Z are necessary, because E(X*) < oo for
all k£ € N implies by (10.1)

1 oo = Tim oo ¥ [l < 1,
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while E(e%?) < oo is immediate from Z; < X;.
2. To prove sufficiency, consider first the special case Y <4 < 1. With W
as defined in (8.2) this yields the estimate

E(euw) < E(exp (X nen 9" 1 Z,))

k
= Zk>0 ||EneN19n 1Z ||k

< Zk>0 (ZneNﬁ N Zallk)®

<1“79)

= E(e*Z/0-)  for u >0,

= k>0 E(Z")

i.e. if u is suited for Z, then (1—19)u is suited for W.

3. To reduce the general case to this situation a partition into random
blocks will be used, which is dual to that one used in the proof of (3.2).
Applying P(Y = 1) < 1 choose 9 < 1 satisfying P(Y > ) < 1 and denote
by 0 = Ty < T} < ... the random times with Y, < 9 (being defined with
probability 1). Now define

Y;cl = YTk—1+1 e YTka
Z]Ic = ZTk_1+1 + ...+ YTk—l 41 .- YTk—IZTk-

Since (Tj)r>o is a process with independent and identically distributed incre-
ments, the random variables (Y}, Z}), k € N, are independent with a distribu-
tion ' € N, where

(1) SkeNY] .Y 2, =W.
With T :=T; they have in addition the properties
2) Y'<v,
E(euZ’) < E(eWZrt-+7n))
= Y nen E (Il 1<men Ly €7 1y, <oy €477)
= Ynen (¥1(u)" o (u),
where
P1(u) :=E(lysp *?) > P(Y >9)  for u— 0,

Po(u) = E(ljy<py *?) < E(e*?)  for all u > 0.

17



For ug > 0 with 9;(ug) < 1 and ,(up) < oo this yields

(3)  E(e™”) < u(ug) / (1~ 1 (uo)) < co.
By (1) — (3) the reduction to the special case is settled. O

The simplest example for the situation of (10.2) is provided by the case
T < oo. If in addition the support NV is finite, the meanwhile classical field of
self—similarity is entered. Because of the extensive literature on this subject,
in particular in the context of fractals, only a question concerning uniform
distributions will be considered here:

(10.3) Proposition. Let v be positive recurrent with x < T and
N ={(yi,2:):0<i<k}
be such that 0 < y; <1 and

Jz, 7] = Uo<ick (i |z, Z] + 2)

15 a partition. Then the stationary distribution p satisfies

(a)  supp p = [z, 7],

(b) s the uniform distribution on [z, 7] if and only if

v({(ys, 2z)}) =y for 0 <i <k,

(c) if V' is any other distribution with support N, then its stationary dis-
tribution p' is orthogonal to p.

Proof. (a) Since M = supp p and N are compact, by (4.1b)

M = U o<i<k (M + 2;).

By the hypothesis this equation holds as well, if M is replaced by [z, Z], and
the assertion follows from well-known uniqueness results (see e.g. [20]).

(b) With v := 7 — z and p; := v({(v;, 2;)}) the condition on p translates
via its distribution function into

1 t—Zi

1
Eoggkih;(i, ,Ty=—(z,t,T) forall t >0,

Yi Y

where (a, b, c) denotes the medium of a,b,c € R. The assertion follows from
the partition properties.
(c) Consider the mapping

T (yin, Zz'n)nEN — Y neN Yiy - - Yin_1%in

from [Jnen N to [z,Z]. Under the assumption = zo/(1 — o) it is easily
seen that 7 is bijective and bimeasurable, if it is restricted to sequences not
terminating in the sense that i, = 0 for almost all n and z is deleted from
the range. Since the exceptional sequences form a null set with respect to the

18



orthogonal measures ®,,cn ¥ and ®,,cn V', orthogonality carries over to their
images by 7, being u and u' by (8.2). O
The simplest example for uniform distribution on [0,1] is provided by the
additive model
1 i 1
Y - d P Z = =
k+1 Z =) e

Since (10.3) extends easily to countable partitions, there are similar examples
in the multiplicative model:

for 0 <1 <k.

PY=2F=2FforkeN and Z=1

for instance yields the uniform distribution on [1,2].

It is obvious that the hypothesis in (10.3) implies 3 o<i<x ¥; = 1, and it is
easily seen that in the case > g<;<x 4; < 1 the support M is a Lebesgue null set
and thus the measure p is singular with respect to Lebesgue measure. More
intricate is the case ) o<i<k ¥ > 1, considered in detail by Garsia [15]. Even
for

1
N={0,1), (51} with > <y<1

only partial results are known, going back essentially to Erdos [13].

The rest of this section is devoted to situations not excluding weak con-
tractions, i.e. to the case Y < 1. The first result is of interest mainly in the
context of (10.6), though p occurs as limit distribution also in learning theory
(see e.g. [32]) or in a problem on random walks treated by Masimov [29]. The
method from [13] yields the following:

(10.4) Proposition. With1#1e€ N and 0 <p <1, ¢g=1— p suppose

1
P(Yzj):p,P(Yzl):q and Z =1.

Then v 1s positive recurrent and the stationary distribution p is singular with
respect to Lebesgue measure.

Proof. Positive recurrence is immediate from (8.5a). The random times
0=Ty <Ty <...withY = 1/l (being defined with probability 1) have
independent and geometrically distributed increments

U, =T, —Ti_ for k£ € N.
Since the random variable W from (8.2) has the representation
W =3 k0l Ugsa,

the Fourier transform ¢ of y is therefore given by

p(u) = Mesopett ™/ (1 —qelt ™).
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In view of

=

()] = Taso[1 +7 (1 = cos )]~

2q
with v := —
1k p?

it suffices to show

(1) liminf, oo [Tk>o[. -] < 00,

because then p cannot be absolutely continuous with respect to Lebesgue mea-
sure by the Riemann-Lebesgue lemma and (6.2) applies. To verify (1) consider
the values

Uy =27 1™ = o0 for m — oo,

which by shifting the index k£ to kK — m yield the constant value

2
Meol-- ] =Tlren 1+ (1 —cosl—kﬁ)).

Since 1 — cos(2m/I*) is bounded by £(27/IF)? for almost all k£ and thus is
summable, the latter product converges and (1) is established. 0O

The final result, which originally motivated the present work, requires some
preparation:

(10.5) Lemma. With0<y<1land0<p<1,¢=1—p assume
Y=v and P(Z=k) =p¢*' forkeN.

Then
limsup ,, y00 X/ logn = —1/logq a.s.

Proof. 1. It is less cumbersome to prove instead
lim sup , 00 X,/ logn = 1/6 a.s.

for a sequence (X}, ),>o where Y’ =, Z’ has an exponential distribution with
parameter 6 and in addition Xj = 0. Then

Z =3 reN k lp_1<z <y
has a geometric distribution with parameter p = 1 — e~?, while
OSXn—X:z SX()-FEmZ()’}’m < 0.

Moreover, replace Z' by 6Z' and thus X by 6X] to see that § = 1 means no

loss of generality. Finally, the superscripts will be suppressed in the sequel.
2. To show that 1 is a lower bound for the upper limit, use

1

1—u

(1)  E(e*) = for 0<u<1
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to conclude that
Y us1 P(Z,/logn > 1) = ¥ 151 P(e?" > n) = o0,

which by Borel-Cantelli and X,, > Z,, proves one half of the equation.
3. To prove the other half, choose an arbitrary ¢ > 1. Then

P(X,/logn>t) = P(Z,>tlogn— (V" 'Zi+...+7'Z, 1))

< E(exp(Y* 'Zi+...+~'Z,_1 — tlogn))
for n > 1, because P(Z > z) < e # holds for z < 0 as well and Fubini applies
due to independence. By (1) therefore

1

P(X,/logn>1) < n'licmen 7
— _ ,Ym

< 0/ Tlmen (1 =9™)  for n>1,
where the infinite product is strictly positive by Y ,en¥™ < 00. Thus
Y as1 P(Xn/logn > t) < oo for all ¢t > 1,

i.e. 1is also an upper bound. 0O

In conclusion the order in which an upper limit T = oo is approached will
be studied for the weakly contractive multiplicative model, being of particular
interest in applications. While the result provides just an upper bound in the
case P(Y =1) =0, it is exact otherwise and, somewhat surprisingly, depends
only on this probability:

(10.6) Theorem. IfY <1 and Z =1, then
Hmsup , 400 X/ logn = —1/logP(Y =1) a.s.

Proof. 1. Clearly, Xy = 1 can be supposed in the sequel. In proving the
right-hand side to be a lower bound for the upper limit, moreover, ¥ may
be decreased to 1yy_;}Y. Therefore in this part ¥ will be assumed to be
0, 1-valued, where

p:=P(Y =0)>0.

Then the random times 0 = Ty, < 77 < ... with Y,, = 0 are defined with
probability 1 and have independent and geometrically distributed increments

Uk = Tk - Tlc—l for kK € N.

Thus by the strong law of large numbers

1 1
ST, ==

1
Uy +...4+Ux) — E(T)) = - as.,
p k(l k) (1) 5
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which implies
(1) logTy/logk — 1 a.s.
Therefore the equation
Xy, 1 =U for k€N
yields the estimate
lim sup ;00 X/ logn > limsup e X1, 1/ log(T — 1)
= limsup g0 Ux / logk.

Now (10.5) applies with v = 0, in which case X,, and Z, agree.

2. In proving the inverse inequality Y may be increased to v on {Y < ~}
and to 1 on {Y > ~} for any v < 1 satisfying P(Y < v) > 0, because a
subsequent limiting procedure v — 1 yields the desired upper bound. There-
fore restrict Y to the values v and 1 and, with 0 replaced by <, introduce
the random variables T} and Uy as in the first part of the proof. Now for
Ty 1 < n < Ty clearly

X,/logn < Xp _1/ log T4,
where by (1)
logTy 1/ log (T —1) = 1 as.
Again by (1) this implies
lim sup ;00 Xn/logn < limsup e X1, —1/ log(T) — 1)
= limsup g0 X1, —1/ logk,
where
X1, -1 =Y 1<i<k ’yk’i U; for k € N.
Thus (10.5) applies again, with Z, replaced by U,. O

Finally, it should be mentioned that with probability 1 the limit points of
the normalized sequence (X, /logn),s: exhaust the interval

I:=[0,-1/logP(Y =1)].

Indeed, given [ € N and ¢ > 0, by £ < oo there exists a random time
T > 1V €e'% such that X7 /logT < e, hence in view of

Xpi1/log(n+1) < (X,+1)/logn < X,/logn +¢  for n>T

the values X,,/logn, n > [, are e-dense in I.
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