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Introduction

This is the continuation of work begun in ... and to be finished in ... . It
studies affine recursions on R, i.e. sequences (X, ),>o defined by

X, =Y, X,1+24, for neN.

Here, (Y,, Zy)nen is a sequence of independent identically distributed Ri—
valued random variables which is independent of the initial variable Xy > 0.
Without loss of generality, the common distribution v of (X, Z,),n € N, will
be assumed to belong to the class A defined in Section 0.

A central result of Part I then states that the lower and upper limit of
(Xn)n>o are constants z and 7, independent of the initial law £(X,). Accord-
ingly the sequence is called recurrent in the case z < co and transient in the
case £ = oo. The aim of Part II is a more specific study of the asymptotic
behaviour in the recurrent case; its contents are summarized below.

Section 4. For information about limit points of the sequence (X, )n>0
different from z and T existence and uniqueness of invariant measures for the
corresponding transition kernel are essential. Here, in accordance with the
topological structure of the state space, only locally finite measures are of in-
terest. The support M of such an invariant measure y satisfies a functional
equation (4.1), by which lower and upper limit can be identified as minimum
and maximum of M (4.3). Moreover, M inherits connectedness from the sup-
port of the joint law £(Y},, Z,) (4.4). An important property of y itself consists
in the fact that the measure u([0,t]) grows only polynomially for ¢ — oo, un-
less the underlying affine maps are expansive almost surely (4.5).

Section 5. The main result of this section is basic for all that follows. To
each recurrent sequence (X,),>o it assigns an essentially unique locally finite
invariant measure (5.6). While its existence is settled by usual compactness
arguments (5.3), the uniqueness requires an elaborate localization. It is com-
plicated by the fact that the hitting kernel of an interval [0, t] with z < ¢ < oo,
though being still stochastic, need no longer be a Feller kernel. To determine
the invariant measure explicitly, an integral equation for its Laplace transform
is available (5.7), which, however, is more or less of theoretical interest. In the
example
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(E) X,=Y,X,1+1 with P(Y,= 5) =5= P(Y, =2)
it leads to the functional equation
a1l u
P(u) =e 5 W(5) +¢(2u) for u>0,
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which can hardly be solved.

Section 6. In view of the computational problems it is important to study
the invariant measure p at least qualitatively. The first assertion concerns its



support M, which, whenever unbounded, can be shown to be an interval (6.1).
More precisely, here as in some of the following results, P(Y,, = 0) = 0 has
to be assumed. It is not hard to show u to be either absolutely continuous or
singular with respect to Lebesgue measure (6.2). The first statement applies,
unless the joint law L£(Y},, Z,) is singular (6.3). It is more involved to prove
that u, apart from a trivial exception, is nonatomic (6.4). The section closes
with a stability result that may be used for approximating the invariant mea-
sure (6.5).

Section 7. Here the main ergodic theorems for ratios are established.
While the version for means follows easily from earlier results (7.1), for the
pointwise version a localization as in Section 5 is necessary (7.4). It makes
essential use of the fact that the hitting kernel from Section 5 enjoys at least
some weaker Feller property. As a consequence of the ergodic theorems the
support M and its complement can be identified with the conservative and dis-
sipative part of the process (7.5). If specialized to the example (E) above, this
means that the set of limit points of the sequence (X,,),>o equals the interval
[2, 00] almost surely. Rather general results on irreducibility and aperiodicity
conclude the section (7.6).

4. Excessive and invariant measures

Basic for the ergodic theorems in Sections 5 and 7 are some properties of
measures € M(R,) that are excessive or invariant with respect to v. Here
the reference to v, suppressed in general, actually refers to the corresponding
kernel P. Moreover, it should be noted that for this section it is irrelevant
whether the underlying distribution v is recurrent or transient. The results
concern mainly the support of u, where in the first assertion A denotes the
closure of a subset A of R.:

(4.1) Proposition. With the mapping

h: Ry xR2 3 (z3y,2) > ay+2€ Ry
the support M of a measure u € M(R.) satisfies:
(a) M D h[M x N|, if pis excessive,

(b) M =h[M x N|, if uisinvariant.

Proof. The measure pP is the image of u ® v under the continuous mapping
h. Therefore, due to a general result from topological measure theory, the
support of pP is the closure of the image of

supp (L®v)=M x N

under h, which clearly proves (a) and (b). O



Equally simple is the following auxiliary result:

(4.2) Lemma. If p € M(R,) is a nontrivial excessive measure with support
M, then

V4
-y

eM  for (y,z) € N withy < 1.
Proof. With an arbitrary zo € M # () and (y, z) as above, (4.1a) yields recur-
sively

Tp =YTy 1+2EM for n € N.

Since M is closed, this implies

% = lim,, o (y" 20 +y" e+ z) =lim, oz, € M. O
-y

An excessive measure y obviously preserves this property, if P is replaced
by some power P™. Thus it is clear that for (y,,z,) € N with y,, < 1 the
support M contains not only the fixed points z,, / (1 — y,,,) of the associated
affine maps ¢, : £ — ymx + 2, but as well those of the composition g;0...0g,
for any n € N.

The next result is closely related to (1.3):

(4.3) Theorem. If p € M(R,) is a nontrivial invariant measure with sup-
port M, then, with the notation of (1.3),

(a) infM = inf{lL : (y, 2) € N},
-y

(b) supM= sup{ﬁ : (y,2) € N} if N.=10,
= 00 otherwise.

Proof. 1. If inf M and sup M are denoted by m and 7, respectively, it is
immediate from (4.2) that

m<inf{...} and W >sup{...}.
Moreover, m = oo holds in the case N, # (). Indeed, (4.1a) implies
(1) MnN]o,00[#0,
and 0 # xy € M combined with (yo, 29) € N, yields, again by (4.1a),
M 9y3x0+y8_1z0+...+20—>oo.

2. To prove the inverse inequality for m, abbreviate

. z
Y= lnf{m B (y,Z) € Nc},



which so far may be infinite, and choose § € [0,[. Then
yo+z>6  forall (y,z) €N,
because this inequality is trivial for y > 1. Therefore
{z:yz+z<dé}Cc{z:2<6} forall (y,z) € N,
while by the invariance of p on the other hand
Inp{z:yz+z<d0p)dv=pu({z: 2 <d}) = [y p({z:z < 6})dv.
Since p is locally finite, this implies
{z:yz+2<6}E{r:2 <5} for v-almost all (y,z) € R2.
If ¢ varies through [0, +[, this yields
(yz+2)AyEx Ay  for v-almost all (y,2) € R.

Since both sides of this equation are continuous functions of z and (y, z), they
agree therefore on the support of u ® v, hence

(yr+2)Ay=xzAvy for z€ M and (y,z) € N.
By choosing (o, 29) € N with 2y > 0 thus
(yox + 20) A\y=x A~y  forall x € M.

This proves indeed the inequality m > +, because any zy € M N [0,~[ would
lead to yoxg + 20 = g, hence yy < 1, and thus to the contradiction

20

Lo > -

Cl-vyo

3. The corresponding proof for 7, under the additional hypothesis N, = (),
differs only at the beginning. Define here

7y 1= sup {ﬁ : (y,2) € N},

which now may be assumed to be finite, and choose ¢ € [y, 00[. Then
yo+z2<46 forall (y,z) €N,

because N \ N, may contain (y, z) = (1,0) only. Therefore
{z:yz+2<06} D{zr:2<d} forall (y,2) € N,

and the proof continues in complete analogy to part 2. O

While it is easily seen that (b) extends to excessive measures, this fails
for (a). Indeed, if v is transient, the excessive measure gy (¥ >0 P") is locally
finite according to (2.2b) with inf M = 0, while the infimum on the right-hand
side may be arbitrarily large.



A simple consequence of (4.3) is the following result:

(4.4) Proposition. The support M of a nontrivial invariant measure
u € M(Ry) is an interval whenever N is connected.

Proof. With 0 # 2o € M (see (1) in the proof of (4.3)) the set
M, = {y"zo+y" '2+...+2: (y,2) € N}
is the continuous image of a connected set, hence
(1) m,,m,[ C M, C [m,,m,] for neN
with appropriate bounds m,, and m,. Moreover, according to (4.1a) and (4.3)

(2) M,cM for neN,
3) m,—>infM and m, —supM,

where in the case N, # () the choice zy # 0 is essential. Together, (1) — (3)
prove the assertion. 0O

As will be seen in (6.1), the converse of (4.4) fails in a surprisingly general
sense.

The final part of this section concerns properties not only of the support
but of excessive measures themselves. The following technical result will be
important:

(4.5) Proposition. Let (yo,20) € R3 with yo < 1 be given. Then for p > 0
and s > zy [ (1 — yo) there exist finite constants

a=ap) and y=7(ps)
such that under the hypothesis
V(0,50 x [0, 20[) = p
each excessive measure 1 € M(R) satisfies
p((0,2]) <y u((0,s]) % for t = s.
Proof. If 1 is excessive with respect to v, then
([0, 2]) v([0,0[ X [0, 20)) < (L@ V)({(259,2) : yz + 2 < yot + 20})
< w([0, yot + 20])  forall t> 0.
This yields the estimate
p((0,2]) < p~ ([0, Yot + 20])

< p?uw([0, yo(yot + 20) + 20)),



hence by iteration

p(0,4) < p*u((0, yst +y5 20 + - ..+ 20))

20

< phu(0, g+ ) for kEN.
— Yo
Therefore
—k k <0
p((0t]) <p~"p([0,s])  whenever  y5t+ < <s.
— Y%
This condition holds for £ € N satisfying
k> [(log (s - 7——) — log?) /log yo] > 0,
— Yo
with the convention logy, = —oo for yo = 0. Since for ¢ > s this bound is
nonnegative, finally
p((0,2]) <p~E IV p(lo,s])  for > s,
and a simple computation provides the constants
1 20\
a:=logp/logy and =—(s— “. 0
gp /logyo 7= (5= 1= ?Jo)

The essential content of this result lies in the fact that the growth of an
excessive measure is only polynomial whenever P(Y < 1) > 0.
The last result of this section will be required for stability theorems:

(4.6) Lemma. Let N' 3 vy = v and puy, € M(R) be excessive with respect
to vg. Then pp — u € M(Ry) implies that y is excessive with respect to v.

Proof. Vague convergence is implied by weak convergence and compatible with
forming product measures, hence

[k ®@ Vg = Qv
By monotone approximation this yields

Jgd(p®v) <liminfy e [gd(u, ®v)  for 0< g€ C(RyxRY).
Therefore, with P, denoting the kernel corresponding to vy,

pPf = [flyz+z)p(dz)v(dy, dz)
liminf ;o | f(yz + 2) pe(dz) vk (dy, dz)

IN

liminf o0 p P f

IN

lim inf k—o0 ,U‘k:f

pf  for 0< fe LRy,



which proves pP < p. O

It should be mentioned that this result does not carry over to invariant
measures, as can be shown by somewhat involved examples.

5. Existence and uniqueness of invariant measures
To derive ergodic theorems in the recurrent case, the following “localization”
is essential:
(5.1) Definition. Let v be recurrent and z < t < co. Then:
(a)  'P denotes the “hitting kernel” belonging to P and [0,t], i.e.
'P(z; B) .= P*(Xpy € B)  for z €[0,t] and B € B([0,1)),
where
T :=inf{n € N: X, € [0,t]};

(b) ("Xy)n>0 denotes the “sojourn process” belonging to (Xy)n>o and [0,1],
i.e.

X, == X7,  for n>0,

where Ty < Ty < ... are the random times when (X,)n>0 is in [0,t] and the
notation 'X¥ is used in the case Xy = .

For easy reference a simple conclusion from probabilistic potential theory
is stated explicitly:

(5.2) Lemma. Letv be recurrent and p € M(R) be excessive. If 'u denotes
the restriction of p to [0,t], z <t < oo, then

(a) Y is invariant with respect to 'P,
(b) s invariant with respect to P.

Proof. 1. If I4 for A € B(R,) denotes the kernel
Ij(z;) :=14(x)e, for z € Ry,

the crucial point is the inequality

(1) paX o (PIrpa)") < 1

(see e.g. IX, (62.4) and (31.6), in [8]).
2. Multiplied by PI4 from the right and specialized to A = [0, t], (1) yields

(u'P)(B) < (uP)(B)
< wB)
‘w(B)  for B e B([0,1)).

7



This proves (a), because % is finite and P is a stochastic kernel.
3. For 0 < f € K(R;) choose now ¢t > z with supp f C [0,¢] and denote
the restriction of f to [0,¢] by ’f. Then (a) implies

pf = u'f
= (u'P)'f
< (wP)f  for 0< fe KRy),
once more by (1), and this yields the inequality u < uP needed for (b). O

Now the existence of an invariant measure can be proved in the usual
way (see e.g. [14]), under some simplification due to the monotonicity. More
generally, the following version is required in Section 7:

(5.3) Proposition. If v is recurrent and x < t < 0o, the measures

Qn(B) = ZOSm<nP(Xm € B) / 20§m<nP(Xm S t) fO’f‘ B € B(R—I—)a
defined for n > ng according to (2.2a), satisfy:
(a)  {on:n >mnp} is a sequentially compact subset of M(R),

(b)  each limit point p of the sequence (0n)n>n, 1S @ nontrivial invariant
measure.

Proof. (a) For arbitrary s > 0 choose [ € N such that
9 :=P(X; <t) >0,

which is possible in view of t > z. With p,, := £(X,,) this implies by mono-
tonicity

P(Xmt1 <t) > [o<azs P(X] <) pm(da)
> [o<e<s P(X] <) pin(dz)
= YP(X,, <s) for m>0.
With the norming constants
Tn =2 0<men P(Xm < 1)
this provides the estimate
Y 0<men P(Xm < 8) <O ocman P(Xinpt < t) <9 (1 + 1),
Since r, — oo by (2.2a), this yields
lim Sup 5, 500 04([0, 5]) <9 < o0,

i.e. the measures p,, n > ng, are uniformly locally finite, and the assertion
follows from general results of topological measure theory.

8



(b) The assumption g,, — 4 yields u # 0, because
([0, ]) > Hm sup g 00 0n, ([0, 7]) = 1.
With g := £(Xy), moreover,
On, f = r;kl > o<m<ny o P for 0 < fe K(Ry).
By monotone approximation of Pf € C(R) this yields
wPf < liminf,_ , 0,, Pf
= liminf, ,» T;kl > o<m<ny, o P™f
= liminfy o007y 3 0<meny toP™f
= uf for 0< fe KRy,

because r,, — oo and poP™f is bounded by max f. Therefore u is excessive
and thus invariant by (5.2b). O

The proof of the uniqueness of ;4 is much more involved. For the first step
(2.6) is crucial:

(5.4) Lemma. Let v be recurrent and define

C:={(s1):0<s<t and z <t < o0},
Qj,t = lim lnfn—)oo 20§m<n 1[0,5] (X:;El) / 20§m<n 1[O,t] (X;z),

Qs 7= HMSUP 1 s00 T 0<men L0,5)(X70) / T o<men Lo (Xin)
for (s,t) € C and z € [0,t]. Then the set

C?:={(s,t)eC: QO and QO are continuous at (s,t) almost surely},
with A denoting Lebesgue measure, satisfies
(@)  A(C\C°) =0,

(b) Q’S‘t = Qg,t a.s. and @ft = @S,t a.s. for z €10,t]

whenever (s,t) € C°.

Proof. (a) For brevity let 5, stand for Q7 or @:t in the sequel. Then Q5 , is
well-defined, due to X§ < ¢, and (s,t;w) — Qf ,(w) is a measurable mapping
from C x Q to [0,1]. Therefore

A={(s,t;w) € C x Q:sup peN QS_%,H%(w) <infjen QSJF%J_%(W)}
is a measurable set such that

(1) @’ (w) is discontinuous at (s,t)  if and only if  (s,) € A,,

9



because Q° (w) is nondecreasing in s and nonincreasing in ¢. Again by this
monotonicity the section A, is countable along each line s + ¢ = const., hence

M(A,) =0 forall weQ.
By Fubini this implies
P(Ay;;) =0  for A-almost all (s,t) € C,

and by (1) this verifies assertion (a).
(b) If r stands for s or ¢, monotonicity in z yields

(2) 1o (XE) <1p.(X2)  forall m > 0.
Now consider § > 0 small enough to satisfy
§<sA(t—s)A(t—zx)
and choose f € IC(R,) such that
Logr—s < f < 1joq-
Then according to (2.6) the set
{m>0:1p,(X5) < 1pr5(Xp)} C {m>0:f(X7) =0, f(X) = 1}
is almost surely finite, hence with probability 1
(3) 1 (XE) > 1p,-g(X2)  for almost all m > 0.

Since for r = ¢ the terms on the right—hand side of both (2) and (3) sum up
to oo almost surely, this implies

S—J,t <@g < Q(s),t—é a.8.
Now assertion (b) follows for § = 1/k — 0 from the hypothesis (s,t) € C°. O
At the next step the pointwise ergodic theorem enters:

(5.5) Lemma. Let v be recurrent and p € M(Ry) be a nontrivial invariant
measure. Then for (s,t) € C°, with the notation of (5.4):

(@)  E(Qr,)=pn(0,s])/u((0,]) =E(@,,)  forall z €0,],

0) = Socmen POXG < ) = ((0,5]) /(0. 1)

for p—almost all z € [0,¢].

Proof. 1. Since p([0,t]) is finite and, by (4.3a) and (1.3a), strictly positive,
the restriction %u of u to [0,¢] may be assumed to be normalized, hence by
(5.2a) to be a stationary distribution for ‘P. Assume in the sequel that X

10



is distributed according to (the trivial extension of) %. Then (X, ),> is a
stationary process, hence the classical ergodic theorem ensures that

1
(1) Mmoo =3 0<men Lo, (Xm)  exists almost surely.
2 0<

Now the sequence of quotients defining Qf , and @ft in (5.4) arises from the

sequence of successive means of (1j,5("X%))n>o through “extension to the right
by constancy” in an evident sense. Therefore it follows from (1) by Fubini that

1
(2) ﬁz 0<m<n 1[0,] (IXT) — Q5 as. for p—almost all x € [0, ],

z T N*
where 5, stands for Q7 or (.

2. Next, by stationar,ity and bounded convergence

/f'([o’ S]) = (hm n—>oo) E(%E 0<m<n 1[0,5](tXm))

_ 1

. 1 =
= f [0,] E(hm n—00 EZ 0<m<n 1[0,5] (tXm)) ,LL(d.T)

= J [0,t] E(Qf,t) p(dz)

in view of (2). This verifies (a), because E(Q5,) by (5.4b) is in fact independent
of z € [0,t]. Finally, (a) implies (b) by taking expectations in (2). O

Now one of the main results can be established:

(5.6) Theorem. If v is recurrent, then there exists a nontrivial invariant
measure € M(Ry) such that each excessive measure i € M(R.) is a multiple

of .
Proof. Choose i according to (5.3) and let u' € M(R.) be another nontrivial

excessive, hence by (5.2b) invariant, measure. For any r choose, moreover,
t > r such that

1) y:=u(0,f)) >0 and 5" :=4([0,t]) >0,
(2)  A(C\C)) =0,

which is possible according to (5.4a). If u and %’ denote the restrictions of
w and g’ to [0,¢], the measures v~' % and (7)™ %’ are contained in M;(R,)
by (1) and according to (5.5a) agree for sets [0, s] with (s,#) € C°, hence on
B([0,t]), by (2). Therefore u and %' are linearly dependent, which for ¢ — oo
extends to g and p/. O

Two comments on this result are in order:
— Uniqueness holds within the class of locally finite measures only, as is seen

11



already by a deterministic example: If Y = 1/2 = Z, then v is recurrent
with invariant measure p = ;. Since x — x/2 + 1/2 is a bijection of the
set A := QNJ1,00], however, the definition p'(B) := |A N B| yields another
(o—finite) invariant measure.

— In the transient case nontrivial invariant measures p € M(R,) may be
absent, as follows from (4.3a) in the case Y > 1, or present, as can be shown
in the case Y =~ €10, 1] by a limiting procedure.

It is another question how to get the invariant measure from (5.6). It is
not hard to translate the equation uP = p into an integral equation for the
function F'(¢) := u([0,1]), but in general it is impossible to solve it. Passing to
Laplace transforms simplifies at least the integral equation:

(5.7) Proposition. Let v and p be given according to (5.6). Then:

(a)  YP(u) == fe ™ u(dx) <oo  for u>0,

(b) up to a scalar, 1 is uniquely determined by the equation
Y(u) = [Y(uy)e *v(dy,dz)  for u > 0.

Proof. While (a) is a simple consequence of (4.5), (b) follows from
e (uP)(dz) = [ [ e~ p(dx) v(dy, dz)

and (5.6), because the Laplace transform determines p. 0O

If Y and Z are independent (as in the additive or multiplicative model),
the integral equation in (5.7b) simplifies to

Y(u) = B(e ™) E(y(uY))  for u >0,

but is still rarely solvable.

6. Main properties of the invariant measure

The measure p that (5.6) assigns to a recurrent distribution v actually stands
for a one—dimensional family. Nevertheless it will be briefly called “the invari-
ant measure” in this and the following section. As pointed out at the end of
the preceding section its quantitative determination is in general out of reach.
Thus it is important to obtain at least a qualitative description.

A first property of the support M of u entered already: (1.3) and (4.3)
combine to the equations

infM = z = inf{% (Y, 2) € N},
-y

V4
11—y

supM = T = sup{ : (y,2) € N} if N, =1,
= 00 otherwise.

12



It is a natural question to ask under which conditions, less restrictive than
in (4.4), the whole interval [z, Z| is exhausted by M. A surprisingly general
answer is given by the following result (for a special case see [2]):

(6.1) Theorem. Let v be recurrent with P(Y = 0) = 0 and T = oo. Then
the invariant measure p has the support

M = [z, 0.

Proof. 1. By the hypothesis P(Y =0) = 0 points (0, z) € N cannot be isolated,
hence

g:inf{li—y :(y,2) € N with 0 <y < 1}.

Thus it suffices to prove that x € M if

1 -1

Zo <z <oo  with (yo,20) € N and 0 <y < 1.

To this end points (y, z) and the associated mappings ¢ : £ — yz + 2z will be
identified throughout this proof. It will be accomplished by constructing two
sequences ni,No,... € N and ¢1, go,... € N such that

Oznognlg...,
gi = (Yi,z)  with y; >0,
0<z—2p <(1—yo)(x—m) for g =g10...0g, (7).

Clearly, this implies x € M by (4.1a) and (4.2).

2. Tt suffices to construct ng1 and gn, 4 1,- - -, gn,,, from ny and g1, ..., gy,
under the additional assumption x;, < x, because otherwise the definition
ng+1 = N, works. Now the hypothesis T = oo enters, providing

gi=,2z)EN with y;>0 for 1<i<m
such that
O = Y1 ---Yn, (1 0 - .. 0 gpy (T0) — o) > T — Ty

Indeed, this follows from lim sup,,_,,c X2° = 00, because the relations Y,, > 0
and (Y, Z,) € N hold almost surely.
3. Let now [ € N be defined by

(1) Yo 0k > — xp > Y Oy
Then the construction can be continued by nx.1 = ng +{+ m and

g":{go for ny <i < ny+1,
' gg,(nkﬂ) for np +1 <@ < gy

13



Indeed, since z is a fixed point of gy = (v, 20), by affinity
Thyr =Tk = G10...0gn, 0g; (g1 0... 04, (20))
— g10...08n, ©gh(w0)
= Y1 YuYo (9100 gy (%0) = 0)
= ?J(l) O
By (1) this implies the required inequalities

Tr4+1 = Tk —l—yé 514: S z,
T —Tpyr = (z— ) —yots O < (1 —yo)(&—mz). O

Clearly, the condition P(Y = 0) = 0 is essential for this result, as is seen
from the trivial case Y = 0, where p is (a multiple of) the distribution of Z.

The argument used in the following proof can be traced back to Karlin [22];
it applies to locally finite measures as well:

(6.2) Theorem. Let v be recurrent with P(Y = 0) = 0. Then the invariant
measure |4 1S either absolutely continuous or singular with respect to Lebesque
measure.

Proof. From the equation

B—z

(WP)(B) = [ oo (——2) dv  for B € BRy)

it is clear that p < X implies uP < A as well. If, therefore, p is decomposed
into the absolutely continuous part u. and the singular part g, it follows from

peP + psP = pP = p= pie + s

that p.P < p.. Thus by (5.6) there exists a constant 7, such that y. = vu,
hence also a constant ~, such that pus = ysu. Now p.Aps = 0 implies y.Avys = 0
and verifies the assertion. O

The remark following (6.1) shows that the condition P(Y = 0) = 0 is
essential for (6.2) as well.

It is another question how to decide on the alternative in (6.2). While some
special cases are considered in Section 10, the only general result is provided
by the following necessary conditions for singularity of u:

(6.3) Proposition. Let v be recurrent and the invariant measure [ be sin-
gqular with respect to Lebesque measure. Then:

(a) v is singular with respect to A2,

(b) vy and v, are singular with respect to A, if v =1, Qv,.
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Proof. (a) Let B € B(R) satisfy
A(B)=0 and pu(Ry\B)=0.
Then on the one hand
1) NM{(y,2):yr+2€B}) = AB—yx)Ady) =0 forall z € Ry,
while on the other hand
0 = p({z:z¢ B}
= (ev){(zy,2) :yz+2 ¢ B})
= Jv({(y,2) : yz + 2 ¢ B}) p(da).
In view of p # 0 this ensures the existence of z; € R, such that
(@) v({(12) s ymo+2 ¢ By =0,

By (1) and (2), therefore, A? and v are supported by disjoint sets.
(b) With B as above it follows now that

0 = (u®vy@v){(zy,2): yr+2¢ B})

= Jw({y:yz+2z¢ B}) puldr) v.(dz).

Since supp p # {0} (see (1) in the proof of (4.3)), this ensures the existence of
o > 0 and zg > 0 such that

B — B —
ZO) =0 and vy, (R;\ 0

A
( Zo Zo

) =0.

The corresponding argument for v, is even simpler. O

It is an easy consequence of (1.4) that the independence of Y and Z is
essential in (b). It applies, however, in the additive or multiplicative model.
Moreover, it should be mentioned that (a) and (b) are by no means sufficient
for singularity of p (in this context see Section 10).

The following result is easily established for measures ;4 containing an atom
with maximal mass (see [9]). Since this may fail for locally finite measures,
the general proof gets more involved:

(6.4) Theorem. Let v be recurrent with P(Y =0) =0 and x <Z. Then the
mvariant measure |4 1S nonatomic.

Proof. 1. It follows as in (6.2) that y is either nonatomic or purely atomic. It
suffices, therefore, to show that in the second case

1) Z=z(-Y),

thus in view of (1.4) obtaining a contradiction to the hypothesis z < Z. To
this end consider the countable set

R:={z e R, : u({z}) > 0}.
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By the invariance of y it satisfies

0= w(R4\R) = ¥ ser n({z}) P(z; R4\ R),

hence the definition

~

P(z,2") := P(z;{«"}) for z,2' € R
yields a Markov chain on the state space R with invariant measure
p(z) := u({z}) for z € R.

2. For z < t < oo define 'P and 'ji in analogy to 'P and % in Section 5.
Then !P is again a stochastic kernel with strictly positive and finite invariant
measure ‘fi. By classical Markov chain theory this implies that all states
z € RN[0,t] are (positive) recurrent with respect to ‘P, hence also recurrent
with respect to P. For t — oo this extends to all states z € R. The recurrent
Markov kernel P is in addition irreducible. Indeed, each restriction of [l to a
single class yields again an invariant measure for P and its trivial extension to
R, an invariant measure for P. Thus by the uniqueness property of u there
can exist only one class. Therefore, again by classical Markov chain theory,
every o—finite (not necessarily locally finite!) excessive measure for Pisin
fact a multiple of j.

3. Now by the hypothesis P(Y = 0) = 0 the sets

Az, 2") :={(y,2) ryz+z=2"}, z € R,
are v—almost disjoint for fixed z’, hence
Y eer P(2,7') = ¥ aernv(A(z,2')) <1 forall 2’ € R,

i.e. the equidistribution on R is excessive for P. Therefore, according to part
2 of the proof,

(2) p(x)=1 forall z€ R

may be assumed in the sequel.
4. Since p is locally finite, the support M of p in view of (2) must consist
of isolated points, hence R must contain z = min M. Now by (1.2a)

yx + 2z >z for v—almost all (y, z),
which in view of P(Y = 0) = 0 implies
yr + 2z >z for v—almost all (y,z)  whenever z > z.
By the invariance of i this yields
1 = YeerP(z,z)
= Yoerv({(y,2) 1 yr+2=12})

= v({(y,2) s yz + 2z =2z}),

16



and (1) is established. O

The remark following (6.1) shows again that the condition P(Y = 0) = 0
is essential for (6.4).

The final result of this section is a strong stability statement, valid under
an appropriate normalization:

(6.5) Theorem. Let v be recurrent with invariant measure j and assume
N3y S v If i € M(RY) is nontrivial and excessive with respect to vy,
then

(e ([0,1) 7" e = (u([0,2]) ™" 1o whenever t >z and p({t}) = 0.

Proof. By (1.3a) there exists (yo, 20) € N with yo < 1 satisfying the inequality
20/ (1 —yo) < t, where actually

v({(y,2) 1y <vo,2<2}) >0

may be assumed (slightly increasing yo and z if necessary). By weak conver-
gence therefore

pi=infrenvi({(y,2) 1 ¥y <%0,2 < %}) >0

may be assumed next. Then (4.5) (with the roles of s and ¢ interchanged)
provides constants a and 7y such that

(1) ([0, s]) < v p([0,2]) s*  for s >¢ and all k£ € N.
Due to py # 0 this implies p ([0, ¢]) > 0, hence
(2)  w([0,¢]) =1 for ke N and  p(]0,t]) =1

may be assumed finally. By (1), moreover, the sequence (u)ren is uniformly
locally finite, hence (as in the proof of (5.3a)) each subsequence (u},)ren con-
tains a vaguely converging subsubsequence (uf)ren. By (4.6) and (5.6) its
limit is of the form du assigning measure 0 to the set {¢t}. By (2) this implies

6 = op([0,t]) = lim 00 ([0, 2]) = 1,
and the assertion follows. O

This result offers an approximation method for the invariant measure u
associated with a recurrent distribution v: choose

1 1
Vg ::E8(0’0)+(1_E)y for ke N

and observe that an invariant measure p; for v, can be determined more or
less explicitly (see Section 8).
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7. Ratio ergodic theorems

A first information on the fluctuation of a recurrent sequence (X, ),>o by means
of its invariant measure is given by the following mean ergodic theorem for
ratios, holding without any assumption on the initial law:

(7.1) Theorem. If v is recurrent with invariant measure u, then
Y o<men E(f1(Xm)) / Zo<men E(fo(Xm)) = pfi /[ pnf

for fi € Ku(Ry) with pfz # 0.

Proof. Choose t > z with p({t}) = 0 and consider the measures g, defined
in (5.3). If (on,)ken is any vaguely converging subsequence, (5.3b) and (5.6)
imply

(1) onf—opf forall feK(Ry),
where the constant § satisfies
5:“([05 t]) = limy o0 an([o, t]) =1,

hence is independent of the subsequence. Since (1) extends from IC(R.) to
K,.(R;) by monotone approximation, therefore

by (5.3a). Finally, the constant ¢ disappears by taking quotients. O

The proof of a pointwise analogue of (7.1) is much more involved. The first
step consists in proving a counterpart of (5.4):

(7.2) Lemma. Let v be recurrent with invariant measure . and for t in
D =]z, 00|

denote by Yu the restriction of u to [0,t]. Then the set
DY :={te D:P(Uns0{X:=1t}) =0 for p—almost all = € [0,1]},

with A\ denoting Lebesgue measure, satisfies

(@)  AD\D%) =0,

(b) P is a “u—Feller kernel” whenevert € D, i.e.
'PfeCy(0,t])  for feCuy(0,1]).

Proof. 1. X?(w) — t is measurable in (¢,z,w) for all n € N, hence
A:=Upen{(t,z,w) : 0 <z <t and XJ(w) =1}

is a measurable set with

AMAzw) =0 forall (z,w),
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because the sections A, ,, are countable. Therefore, by Fubini
(L@P)(A;) =0  for A-almost all t € D.

This proves (a), because the last equation is equivalent to
P(A:;) =0  for p-almost all z € [0,1].

2. To verify (b), fix t € D° and f € C¢,([0,1]). Then the set

By = {3 € [0,1] : P(Unso {XZ = 1}) > 0}

is a p—null set, and with the notation
B :={x € [0,t] : f discontinuous at x}

this holds as well for the set
By :={x €[0,t] : 'P(x; B) > 0}.

Indeed, % is by (5.2a) invariant with respect to P, hence
J "P(z; B) 'u(dz) = ‘u(B) = 0.

Since B’ := B; U B, is again a u—null set, the proof will be completed by
establishing

1) (Pf)(zx) = (Pf)(zy)  whenever [0,¢] >z — x0 ¢ B'.

3. To this end denote by T} the random time when (X?Z*),.N hits [0, ]
first. Since X7 depends continuously on z,

Xpo(w) >t for 0<m<n and X °(w)<t
entails
Xpkw) >t for 0<m<n and X ¢ (w) <t
for almost all £ € N, hence
{XR #t} C {1}, =1Tp for almost all k£ € N}.
By assumption 2o ¢ Bi, hence X7¥ # ¢ with probability 1 and thus
T, — Ty a.s.,
which, once more by the continuity of X7 in z, implies
() POE - XE) =1
By assumption xy ¢ By as well, hence

P(XZ € B) = 'P(zy; B) = 0
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and thus by the definition of B
(3)  P(f continuous at X7°) = 1.
Since f is bounded, (2) and (3) combine to
E(f(X7)) = E(f(XR)),
and (1) is established. O
At the next step (5.5) is essential:

(7.3) Lemma. Let v be recurrent with invariant measure p. Suppose, with
the notations of (7.2) and (5.4),

(%) te D and  C) dense in [0,1]

and, in accordance with (4.3), 'u to be normalized. Then the process ("X,,)n>0
is stationary and ergodic, if Xo is distributed according to (the trivial extension

of ) .
Proof. 1. The following fact will be used: the measures

1
Qz = ﬁz 0<m<n 5z(tP)m € M1([O,t])

satisfy
o 5% for py—almost all z € [0,1].

Indeed, this is a consequence of (5.5b), letting s vary through a countable
dense subset of C?. Thus

(1) ofg—'ug for g€ Cy,([0,t])  for p-almost all z € [0,¢].

2. The stationarity of (*X,,),>0 is immediate from (5.2a). To prove the
ergodicity it suffices to verify

1
- Y o<men B(f (Ko, -« " Xe) [T1<i<t i (Xomtnti)

— E(f(Xo, ..., X&) E(IT1<i<t fi('X3))

for k,1 € N and f € C(ITo<ick [0,4]), f € C([0,4]). With the notations
9(@) = E(licict i(X7))  and  hu(z) = 0ng

this is equivalent to

(2) E(f("Xo,...,"Xg) ha(Xk)) = E(f(Xo,...,! X3)) ' g.

3. Now g € C¢,([0,¢t]) holds even for f; € Cy,([0,]). Indeed, this is true for
[ =1 by (7.2b) and extends to general [ by induction, because by the Markov

property
9(z) = E(Il1<i<t fi(XT) (P i) (X))
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and C+,([0,¢]) is closed with respect to multiplication. Therefore (1) applies
and in view of £('X}) = %u yields

ha(Xi) = g as.,
which by bounded convergence verifies (2). O

Now the central result of this paper can be established, holding again with-
out any assumption on the initial law:

(7.4) Theorem. If v is recurrent with invariant measure u, then
2. 0<m<n fl(Xm) / 2. 0<m<n fQ(Xm) — pfi /,Ufz a.s.
for fi € Ku(Ry) with pfy # 0.

Proof. 1. Tt suffices to prove the assertion under the assumption X, = xg,
because its general validity then follows by integration. According to (5.4a)
and (7.2a) there exists ¢ such that

(1) t>zp and suppf; C[0,¢t] for i=1, 2,
(2)  t satisfies condition (*) in (7.3).

Therefore the classical ergodic theorem, combined with Fubini, yields

(3)  +Sozmen T (X5) > ([0, )/u([0,1) as

for p—almost all z € [0,¢]. But the sequence defining Q;, and Q. in (5.4) is
a trivial extension (as specified in the proof of (5.5)) of the sequence in (3).
Thus (5.4b) applies and under the assumption s € C? implies that (3) in fact
holds for all z € [0, ], hence in particular for z;.

2. Now assume f; to be a linear combination of functions 1jg,,s € CP.
Then it follows from part 1 that

1
> 0<m<n fi(Xm) / > o<m<n Lo, (Xm) = ——— J o4 fidp a.s.
1([0,1])

Since C? is dense in [0, ¢], this convergence extends by monotone approximation
first to the case f; € (R, ) and then to the general case. The assertion follows
by taking quotients. O

As a first consequence of this pointwise ergodic theorem it can be shown
that a recurrent sequence (X,),>o is in fact recurrent and irreducible in a
rather strong sense:

(7.5) Theorem. Let v be recurrent with invariant measure p and define the
random set

L(w) := {z € Ry : z is limit point of (Xp(w))n>0}-
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Then with probability 1

L(w) = supp p.

Proof. 1. Let Gy, k € N, be a countable base of R consisting of bounded
sets with a boundary of y—measure 0 and let ¢t > z satisfy pu({t}) = 0. Then
by (7.4) with probability 1

> 0<m<n Lay (Xim) / 2 0<men 110,4(Xm) = 1(Gr) / ([0, 2])
for all £ € N. Therefore

P(> >0l (X,) = 0o whenever u(Gy) > 0) =1,
which implies the inclusion

L(w) D supp 4 a.s.

2. To prove the converse denote by L;(w) the analogue of L(w) for the
sequence (“X,,)n>o. Clearly

L(w) = U g<ten Li(w),
hence it suffices to verify
Li(w) Csuppp a.s.  for t > z.

This is obvious, if X, is distributed as in (7.3), because in this case with
probability 1

X, €suppp N [0,¢]  for all n > 0.

Now an application of (2.6) to any function f € (R, ) with f(z) = z on [0, t]
shows that the distribution of Xj is actually irrelevant. O

Together, (2.2) and (7.5) imply that the two main characterizations of
recurrence/transience from classical Markov chain theory carry over to affine
recursions in the following form:

— If v is recurrent, then for z € supp p always

P?(X,, € G infinitely often) =1,
hence
E*([{n>0: X, € G}|) = o0,

provided G is an open neighborhood of z.
— If v is transient, then for x € R, always

E*([{n>0: X, € K}|) < o0,
hence

P?(X, € K infinitely often) = 0,
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provided K is a compact subset of R, .
The final result of this section shows that affine recursions in the recurrent
case are not only irreducible but also aperiodic in a strong sense:

(7.6) Proposition. Let v be recurrent with invariant measure u. Then for
every o € Ry and each open subset Gy of Ry with u(Gy) > 0 there exists
ng € N such that

P* (X, € Gy) >0  for all n > ny.

Proof. 0. If X,, — z a.s., then supppy = {z} (e.g. by (7.5)). Since the
assertion is trivial in this case, x < T will be assumed henceforth.
1. In a first step m > 0 and s > z can be found such that

(1) P(X; €G>0 forz<z<s.

Indeed, P(XE € Gy) > 0 for some m follows from (7.5) and extends to a
neighborhood of z, because P™ is again a Feller kernel and thus P™1g, is
lower semicontinuous.

2. In the next step £ > 0 can be found such that

(2) Pl<Xp*<s)>0.

Indeed, (X7?°),>o hits ]z, o[ in view of z < T and stays afterwards in [z, oo]
according to (1.2a), hence visits [z, s infinitely often by (7.5) — all this with
probability 1.

3. In a final step [ > 0 can be found such that

3) P<X’<s)>0 and Plz<X7,<s5)>0 forz<z<s.
Indeed, fix x and choose ¢t > s and [ > 0 such that
P(X;<t)>0 and P(X;<s)>0.
Then by (1.2a) and monotonicity
Plz< X' <s)=P(X<s)>P(X]<s)>0.
With py := L£(XT) moreover
Pz < Xf, < 5) > [ g Pz < X7 < s) pu(day),
where as above
Pz <X <s)>0 for z; € [z,1]

and
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4. By combining k& steps according to (2), i times [ steps and j times [ + 1
steps according to (3), and m steps according to (1), the Markov property
yields

P*(X, €Gy) >0 forn=k+il+j(+1)+m.
Since 7, j > 0 are arbitrary, the requirement is met by
ng:=k+(—1)l4+m. O

In view of (7.6) the following open problem can be posed: is it possible to
strengthen (7.1) to a strong ratio limit theorem as valid for irreducible and
aperiodic recurrent random walk?
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