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Introduction

A discrete—time Markov process (X}, ),>0 with a decent (say, Polish) state space
E can be given the form of a “stochastically recursive sequence” (in the sense
of Borovkov [4])

Xn=g.(Xn 1) for n € N,

where ¢,, n € N, is a sequence of independent and identically distributed
random mappings from E to F which is independent of the initial variable Xj.

A first systematic treatment under this aspect goes back to Dubins and
Freedman [9], who, for £ = [0, 1], considered in particular two cases:

(C)  regarding the metric structure of E, they restricted the mappings g, to
the class of contractions;

(A)  specializing further, they limited these mappings to the class of affini-
ties.

Generalizations of (C) from [0,1] to a complete metric space E attracted
much interest during the last decade, mainly in the context of fractals. Under
the heading “iterated function systems” Barnsley, Elton and others considered
questions concerning stationary distributions, weak convergence, recurrence,
ergodicity etc. Crucial for their results is an “average contractivity” (see [2],
(3], [10], [11], [12]).

Extensions of (A) from the compact interval [0,1] to R occur first in papers
by Lev [27] and Masimov [29]. More comprehensive are independent treat-
ments by Grincevicius [17] and Vervaat [39]. Explicitly, affine recursions on R
have the form of a stochastic difference equation

(*) X, =YX, 1+ 7, for ne N

(which is somewhat more general than X,, = Y, (X,_1 + Z,)). Here, X; is a
real random variable, independent of a sequence (Y;, Z,),en of independent
identically distributed R2-valued random variables.

These affine recursions include as degenerate cases random walks (Y;, = 1)
and infinite products (Z, = 0). Of particular interest are the “additive model”,
where

X, =yX,.1+ 72, with constant y € R

(the simplest case of an autoregressive process), and the “multiplicative model”,
where

X, =Y, X,_1+=2 with constant z € R.

Both models can be subsumed under the case where Y,, and Z, are indepen-
dent.

Due to the particular role of 0 with respect to multiplication, the situation is
especially simple for P(Y = 0) > 0. This “regenerative” case can be studied in
a more general context (see e.g. Nummelin [33]). Another particular situation
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is provided by the “contractive” case, where in the weak version |Y,| <1 and
in the strong version |Y,,| <9 < 1.

To conclude the historical remarks, two central results concerning the gen-
eral case have to be mentioned:

— If an affine recursion has a stationary distribution, it is unique and the laws
L(X,,) converge weakly to it, independently of the initial law £(Xj).

— Conditions on the existence of a stationary distribution can be formulated
via logarithmic moments of Y,, and Z,.

The present work originates in the observation that most applications in
economics, biology, physics etc. (see the long list of references in [39]) in fact
work in the state space R, and thus the case Xy > 0 and Y,,, Z, > 0 is of
special importance. From the mathematical point of view this restriction is
supported by the fact that a state space R allows only one kind of divergence
to infinity and the assumption Y, 7, > 0 entails additional monotonicity
properties of the associated transition kernel.

In the existing literature these aspects do not find much attention. Apart
from an approach by Lamperti [25], [26], too general for affine recursions,
there are only two exceptions: a recent paper by Mukherjea [30], coupling
in the context of nonnegative matrices the sequence (X,),>o with the partial
products of (Y,,),eN, and a preprint by Rachev [34], concentrating on central
limit theorems for suitably normalized variables X, in the divergent case.

To summarize the main feature of the present work before going into details:
affine recursions on R, seem to provide one of the best suited models for
extending classical Markov chain theory to an uncountable state space. Since
the Harris theory (see e.g. [35]) is easily seen not to be adequate, the study
has to be based on the topological structure. This, in general, leads to various
notions of irreducibility and aperiodicity, of (positive or null) recurrence and
transience (see the papers by Rosenblatt [37] and Tweedie [38]). In the present
case, however, these notions merge into very natural definitions satisfying the
classical criteria.

This allows for a rather complete theory, developed in the sections:

Lower and upper limit

Recurrence and transience

Recurrence criteria

Excessive and invariant measures

Existence and uniqueness of invariant measures
Main properties of the invariant measure

Ratio ergodic theorems

Positive and null recurrence

Further ergodic theorems

The contractive case
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Thus the paper divides into three parts: Sections 1-3 classify affine
recursions on R, according to recurrence and transience, Sections 4-7 treat
existence and uniqueness of invariant measures as well as ergodic theorems,



Sections 8-10 continue to classify the recurrent case by introducing the no-
tions of positive recurrence and null recurrence. Part IT and III will appear in
. and ... ; the contents of Part I are summarized below.

Section 1. Since convergence of an affine recursion, even in probability,
occurs only in an exceptional case (1.4), the lower and upper limit are of in-
terest. It is a crucial consequence of restricting the state space to R, that
these limits are constants z and 7, independent of the initial law £(X;) (1.1).
Wherever starting, the sequence (X,),>o approaches the interval [z, Z] mono-
tonically (1.2). While the upper limit only depends on the support of the
joint law L(Y,, Z,), this in general fails for the lower limit. In fact, it is not
surprising that even in the simple example

(E) X, =Y, X,1+1 with Y,=2"1 or 27!
the asymptotic behaviour depends essentially on the probabilities
p =PY,=2" and p, =P(Y,=2%").

Provided, however, x and T are finite, a simple characterization by means of
the support is available (1.3).

Section 2. Clearly, (X, )n>0 has to be called “transient” in the case z = oo.
It is less clear — and one of the central questions in the sequel —, whether the
sequence may be called “recurrent” in the case x < oc. A first justification
is supplied by an equivalent characterization through the associated potential
kernel: the mean time spent in a bounded interval [0, ¢] is finite in the transient
case and infinite in the recurrent case, provided t > z (2.2). Examples for
both situations are easily established: the affine recursion is certainly recurrent
in the regenerative case P(Y,, = 0) > 0 (2.3), and it is transient whenever
the associated random walk (S,),>0 with increments log Y;, diverges to 400
(2.4). Though both conditions depend on the “primary” variable Y,, only, the
“secondary” variable Z, may be essential as well. In fact, however small Y}, is,
a sufficiently large Z,, yields transience (2.5).

Section 3. In the additive model a nearly complete characterization of
recurrence or transience by the asymptotic behaviour of ¢ P(log Z, > t) for
t — oo can be derived, which extends to the case where Y,, is bounded away
from 1 or 0 (3.1). The situation is less clear in the multiplicative model. It
is not surprising that in example (E) above p_ < p, implies transience and
p_— > py implies recurrence. It is a nontrivial problem, however, to decide the
balanced case p_ = p,. Clearly the related multiplicative random walk, where

Xo=1 and X, =Y, X,_1 for n € N,

oscillates through the values 2%, k € Z. But it requires Spitzer’s combinatorial
identity to prove the drift term +1 not to change recurrence into transience.
The relevant recurrence criterion settles the multiplicative model completely
and extends in fact to the case where Z, is only bounded (3.3). Assuming
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Y, and Z,, to be independent, even finiteness of the expectation of Z,, ensures
recurrence (3.4).

0. Preliminaries

Throughout the paper (X,,),>0 is a fixed affine recursion on R, given by the
stochastic difference equation (x) of the introduction. Thus the distribution of
(Xn)n>o is completely determined by the laws py = £(Xo) and v = L(Y, Z).
Here, Y and Z is briefly written instead of Y;, and Z,,, as will be done whenever
n € N plays no role.

The initial law g, as usual, is largely of only secondary significance. If
in particular pg is a unit measure €., this will be expressed by the notation
(X,,a;)nz(], i.e.

Xy =a1Ye. . Yo+ 2. Y, +...+ 7, for z€e R, and n > 0.
Thus conditional probability and expectation are simply given by

P*((X,,n>0) e B)=P((X:,n>0) € B),

E*(9(Xn,n 2 0)) = E(g(X7,n > 0)).

Roughly speaking, what follows is a theory of distributions v on R%r. Here
an essential role will be played by their support, for which the notation N will
be fixed. Since nothing new can be expected in the special cases Y = 1 resp.
Z = 0, for simplification

NO{(y,2) :y #1} #0# N {(y, 2) : 2 # 0}

is always assumed. The symbol A will throughout refer to the class of distri-
butions v on Ri that are admissible in this sense.

As is clear from the introduction, the ergodic behaviour of (Xj,),>¢ is inti-
mately related to the random walk

Sn = Z 1<m<n log Ym for n Z O,

generalized in the sense that it may attain the (absorbing) value —oo. Due to
P(Y = 1) < 1 there are only three possibilities for the asymptotic behaviour
of this random walk:

(1) S, — 400 as,
(2) Sp,— +o as,
3) S,— - as,
where the symbol in (2) serves as a short notation for

P(liminf, S, = —00, limsup 00 Sy, = +00) = 1.
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Another process closely related to (X,,),>o arises if, in the notation at the
beginning of the introduction, the random variables g,,0. . .0g;(Xj) are replaced
by g1 0...09¢,(Xo). Especially for X, = 0 this yields

Wy =Z1+Y1Zs+...+Y,...Y,_12, for n > 0.

The sequence (W,),>o is no longer a Markov process, however, due to the
exchangeability of (Y1, Z1), ..., (Yn, Z,), satisfies

LW,) =L(X%) for n>0,

an equation, which will be important later on.

The transition kernel of the Markov process (Xy),>o will always be denoted
byP. Thus the kernel P transforms a nonnegative function f into the function
Pf given by

(Pf)(x) = [ f(yz + 2) v(dy, dz)

and a measure y on the Borel o—algebra B(R.) into the measure uP given by

(uP)(B) = [ v({(y,2) : yx + 2 € B}) p(dx).

If i is ofinite, the last equation amounts to

(uP)(B) = (n®@v)({(z;y,2) : yz + z € B}).

In accordance with the notations Pf and pP the p—integral of a function f
sometimes is simply denoted by uf.

The kernel P enjoys two important properties. First it is clearly a Feller
kernel, transforming bounded continuous functions into the same type. More-
over, due to Y > 0, it is monotone in the sense that it transforms bounded
increasing functions into the same type, too.

If F is a locally compact space with a countable base, the following con-
cepts from topological measure theory will be used:

— C(F) denotes the space of bounded continuous functions f : £ — R and
IC(E) the subspace consisting of functions f € C(E) with compact support.
— If p is any measure on B(E), then C,(E) denotes the space of bounded
Borel-measurable functions f : F — R that are p—almost everywhere contin-
uous and /C,(E) the corresponding subspace.

— The class M(FE) of locally finite measures on E is endowed with the vague
(weak™) topology, i.e. the initial topology with respect to the mappings

n— uf, f€K(E).

In this topology convergence will be denoted by .
— The class M;(E) of probability measures on E is endowed with the weak
(narrow) topology, i.e. the initial topology with respect to the mappings

pw— uf, feC(E).

In this topology convergence will be denoted by .
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Finally it has to be emphasized that statements concerning random vari-
ables in case of doubt are always understood modulo P—null sets. Thus the
supplement “almost surely”, as in the trichotomy concerning (Sy)n>0, will fre-
quently be deleted.

1. Lower and upper limit

As outlined in the introduction, the following observation is of central impor-
tance throughout the paper:

(1.1) Theorem. The random variables
X :=liminf,_,, X, and X :=limsup 0o Xn,

are almost surely constant and independent of the initial value Xy, i.e. there
exist constants 0 < x < 7T < oo, depending only on v, such that

PX=z)=1 and PX=7)=1.
Proof. 1. The following fact will be needed:
(1) SUp >0 Sp = +00  implies sup,>q X, =00 a.s.
Indeed, since

SUD meN Zm > 0 as. and  supp>n, eIn~m = g a.s.,
the assertion is a consequence of

SUP 1,50 X > SUP meN (Zm SUP n>m e 5m),

2. Let X” and X~ be defined in analogy to X2. Then

X > liminf, o0 (ZnYimg1 -+ Yo+ oo+ Zign) = X2,

where £(X°) and £(X?,) are identical. This implies

10:121 a.s. for all m € N,

i.e. X" is measurable with respect to (the completion of) the tail-field of

(Y, Z)nen- Thus X° — and similarly X° - are almost surely constant. There-
fore it suffices to show that X% and X" are in fact independent of x € R,.
Here sup ,>¢ Sp, = +00 may be assumed, because otherwise

XP—XP=ze =0 as.
3. To treat the lower limit first, consider the random time

T :=inf{n >0: X >z},



which is finite almost surely by (1). Then
X > X0

Y4

lim 1nfn_)oo (Xr_(,)w YT—H . YT+n + ...+ ZT+n)

v

lim 1nfn_,oo (l‘ YT+1 e YT—i—n + ...+ ZT—i—n)

T
XT’

where £(X?®) and L£(X7) are identical, because 7" is a stopping time with
respect to (Y, Z,)nen- Thus, indeed

X*=X%as. forall z€R,.

The corresponding result for the upper limit is another consequence of (1),
which yields

X'>X'=cc as. forallzeR,. O

The notation z and T will be used in the sequel without further reference.
The interval defined by these limits attracts the sequence (X,),>o in a strong
sense:

(1.2) Proposition. Whenever finite, the constants x and T are determined
by the equivalences

(a) z<z ifandonlyif PYz+7>z)=1,
(by z>7 ifandonlyif PYz+Z<z)=1;

moreover the “if-part” holds without the finiteness assumption.

Proof. 1. The implication from right to left is an immediate consequence of
(1.1), because e.g. the assumption

Yo+ 27 >z as.
obviously implies
{Xn—1 >z} C{X, > 2} as,
which in turn yields
z = liminf, , X, >inf, >0 X, > z.

2. To prove the converse, consider first assertion (a). Fix an arbitrary
x' € |z,00[ and let T} < T,... denote the hitting times of [0,z'] by the
sequence (X?),>o (being defined with probability 1). Since Ty, k € N, are
stopping times with respect to (Y, Z,)nenN, the random variables

(Y;cl’ lec) = (YTk-f-laZTk +1) for ke N



are again independent and distributed according to v. Therefore
z < liminf, X%c 41
= liminfy o (Y7, 1X3, + Z1y 41)
< liminf,,o (Yi2'+ Z})
< yx'+z for (y,2) €N,

because (Y}, Z;)ren visits each neighborhood of (y, z) infinitely often with
probability 1. Letting x’ tend to z leads to

(1) z<yz+z for (y,z) € N.
This inequality holds as well with 0 replacing x, hence
(2) zxz<yzr+z for (y,z) € N and z <z,
which is equivalent to the assertion

z<Yzr+Z as. for z < z.

3. The corresponding proof for T requires only minor changes: choose now
x' € [0,Z[, which is possible due to

(3) T > limsup 00 Zn > 0,

replace the interval [0, 2'] by [2’, 00[, and use T > 0 once more for the passage
between (the counterparts of) (1) and (2). O

From (1.2) it is easily deduced that for finite values z and
XNz < X,<X,_1VT as. for all n € N.

Now the constants z and T — except for a crucial ambiguity — can be
evaluated explicitly, using a decomposition of the support N by its contractive
and expansive part. With an asymmetry due to the different roles of 0 and oo,
the following holds:

(1.3) Proposition. With the notations

Ne:={(y,2) e N:y <1},
N.:={(y,2) e N:y>1 and (y,2) # (1,0)}

the constants x and T satisfy



1 —

or T = 00,

(0)  T=sup{;= () NG if Ne=0,
and T =00 otherwise.

Proof. (a) If z is finite, according to (1.2a) it is the largest value z such that
z<yr+z forall (y,z) € N.

Since this inequality is trivially satisfied for y > 1, it amounts indeed to

x < % for (y,z) € N..

(b) If T is finite, according to (1.2b) it satisfies
Z>7Ty+z forall (y,2z) € N.

In view of T > 0 (see (3) in the proof of (1.2)) this yields N, = (. Since
(y,2z) = (1,0) can be disregarded, T is the smallest value x such that

x>xzy+z for (y,z) € N.. O

It is a trivial consequence of this result that X,, — oo a.s. whenever N, is
empty. Otherwise z — unlike T — may depend on the distribution v not only
through its support N. If, however, z resp. T is finite, it can be obtained
graphically: (0,z) resp. (0,T) is that point where the lower resp. upper
tangent from (1,0) to NNV, intersects the z—axis. This implies in particular that
the infimum or supremum in (1.3) need not be attained.

In contrast to the possibility X,, — oo a.s., convergence of (X,,),>o within
R, can occur only in a degenerate case, even if weakened to convergence in
probability:

(1.4) Proposition. The following assertions are equivalent:
(a) z=7=T with 0<7y< oo,

(b)  the sequence (Xy)n>o converges in probability to a finite-valued random
variable X,

(¢c) Y<1 and Z=~v(1-Y) with 0<vy<oo.

Proof. 1. The implication (a) = (b) is trivial.
2. Assume now (b) and let d be a bounded metric on R. Then (yX,+2),>0
converges in probability to y X + z, hence

(1) Ed@yX.+zyX+2)—0 foral (y,2) € R%.
Since X,, and (Y41, Z,.1) are independent, moreover

[ E(d(yX, +2,X,)) dv = E (d (Xni1, X)) — 0.
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Thus there is a subsequence (X, x>0 such that
(2)  E(d(yXn, +2X,,)) =0 for v-almost all (y,2) € R’.

When combined with the restriction of (1) to this subsequence, applied to
(y,z) as well as to (1,0), (2) yields

E(d(yX +2,X))=0 for v-almost all (y, 2) € R2.
With p := £(X) this implies

yr+zE£2  for v-almost all (y, 2) € R%;
therefore, by Fubini,

yr+z=x  for p-almost all z € R,.
Thus there exists indeed v € R such that

Z=9(1-Y),

where v # 0 (since otherwise Z = 0) and Y <1 (because of Z > 0).
3. The implication (c) = (a) is immediate from (1.2). O

Clearly, the constant 7 is a common fixed point of the underlying affine
maps almost surely.

2. Recurrence and transience

In view of X,, > 0 the first classification is very natural:

(2.1) Definition. The distribution v (or the kernel P or the process (X, )n>0)
is called

(a)  “recurrent” if z < oo,
(b)  “transient” if z = oo.

Both cases can be distinguished as well by the associated potential kernel
G := ) >0 P", independently of the initial law:

(2.2) Theorem. The following dichotomy holds:

(a)  if v is recurrent, then

Yo P(X, <t) =00  fort>z;
(b)  if v is transient, then

YasoP(X, <t)<oo  fort< oo
Proof. (a) This is an immediate consequence of

P(X, <t infinitely often) = 1.
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(b) Define recursively

To:=0 and Ty:=inf{n>T, ,:X, <t} (< ).
Then in particular

0 = P°(X,, <t infinitely often) = lim _,o, P°(T} < 00),
hence there exists [ € N such that

9 :=P%T; < 0) < 1.
With the decreasing function

9(z) :==P*(T; < 0)
this implies

P (Tig11)1 < 0) = [ (1y<o0} 9(X13,) dP°

< [ (Tu<ooy 9(0) dP°

I P (T < ).

Therefore
PO(Ty < 00) <% forall k>0,
and again by monotonicity this yields
Yo P(Xn <t) < Lo PUX, < 1)
= E'({n>0: X, <t}])

|

Y ix0 PO(T; < 00)

IN

l ZkZO PO(Tkl < OO)
< lzkzo’lgk <oo. 0O

The next result is a simple consequence of (2.2) (and needed before a
stronger version will be available):

(2.3) Proposition. v is recurrent whenever P(Y = 0) > 0.

Proof. For any t < oo satisfying
PY=0,Z2<t)>0
the assertion follows from (2.2a) in view of
Y0 P(Xn <1) 2 XnenP(Ya=0,7, <1). O

Equally simple is the following counterpart:
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(2.4) Proposition. v is transient whenever S,, — +oc.

Proof. Since
T:=inf{n e N: Z, > 0}

defines an (almost surely finite) stopping time with respect to (Z,),eN, by the
hypothesis

S, — St — o0 a.s.
Thus the assertion is a consequence of
X,, > ZpeSn ST for n>T. O

That the converse of (2.4) does not hold in general can be demonstrated by
a somewhat surprising result. However small the primary variable Y, in view
of (2.3) only supposed to be strictly positive, may be, the secondary variable
Z can be made large enough for transience, even if in addition independence
of Y and Z is postulated. More precisely, in terms of distributions:

(2.5) Proposition. For anyv, € M;(Ry) with v,({0}) =0 and v, ({1}) # 1
there exists v, € Mi(R,) with v,({0}) # 1 such that v = v, @ v, is transient.

Proof. Let Y, n € N, be independent with distribution v, and assume without
loss of generality Y < 1. Then choose a sequence (c,)n>o satisfying

(1) O0<e<e¢<...—1,

2) > n>0Cl...Cp < OO

e.g. ¢n = (7%)? for n € N) and a sequence (e, )nen satisfying
3) 1>e1>e9>... 20,

4) by, =P(Y;...Y,1<eg,) < 2"¢i...cp for n € N,

where the assumption P(Y = 0) = 0 enters. Independently of Y,,, n € N, let
Zn, n € N, be independent with a distribution v, such that

P(Z=0)=¢ and P(Z=1/e,)=cy—c, 1 for néeN,
hence in particular
P(Z<1/e,) =¢, for neN.
With the dual sequence (W),),,>0, defined in Section 0, consider now the events
Ay = W, <1},
B, = {M1...Y, 1 <&},
C, = {Z,<1/en},
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which obviously satisfy
A, C A, 1N(B,UC,) C (A, 1NC)UB, for neN.
With the notation a, := P(A,) this yields by independence the inequality
an < Qp_1Cp + by, for n € N,
which by induction, using (4), leads to
an <(14+...42")¢1...0q for n > 0.
By (2), therefore
Yo P(X)<1) = Y ,0PW,<1)

< Qanocl...Cn<OO.

According to (1.3a) the lower limit z, due to P(Y < 1,Z = 0) > 0, can only
take the values 0 or co. But the first possibility is ruled out by (2.2a), and
thus v = vy, @ v, is transient. O

The final result of this section is a consequence of the monotonicity and
will be crucial in Sections 5 and 7:

(2.6) Lemma. If f € K(R,), then
f(Xn) = f(X2) =0 as.  forall x € Ry.

Proof. 1. 1t suffices to prove the assertion under the hypothesis Xo = 2o € R,
because its general validity then follows by integration. Comparing f(X?2°)
and f(X?) with f(X?) shows that in fact zo = 0 may be assumed. Since
the assertion is obviously true in the transient case, moreover recurrence will
be assumed in the sequel. According to (2.4) the random walk (S,),>o then
hits the interval [—oo, —v] infinitely often with probability 1, where v will be
chosen at the end of the proof. If T} <75 < ... are the corresponding hitting
times, the random variables

(Y;cla lec) = (YTk+17ZTk +1) for ke N

are again independent and distributed according to v.
2. Next, in view of

0<P(Z>0)=1lim 0Py <mZ2)

there exists [ € N such that
V=P <1Z)>0.

Therefore, by part 1 of the proof, the random time
T :=inf{T} : Yy, 11 <1 Zp 11}
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may be assumed to be finite for all w € 2.
3. Now for fixed w € Q and n > T'(w) obviously

X:f((,U) - Xr(z(w) =T H 0<m<T(w) Ym(w) HT(w)<m§n Ym(w),
where the two products []1 and [][2 can be estimated by

.= e57(w) (@) <e,

M2 <1 Zrw)+1(W) I 1)+1<men Ym(w) < 1X7D(w).
Together this yields
(1) 0< X%w) - X2(w) <we It  whenever X2(w) < t.
4. Finally, fix ¢ satisfying the requirement
supp f C [0, 1]
and, given an arbitrary € > 0, choose § > 0 such that
|[f(t1) — f(t2)| <e  for |t; — o] < 0.
This yields
FXR W) = f(Xp(w) =0  for Xj(w) >t,
in view of X?(w) > X%(w), and
[f(XRW)) = f(Xpw)) <& for Xp(w) <t,
if in addition
X2(w) - X0(w)| < 4.

By (1) this condition is satisfied for ze~7 1t < ¢, i.e. if y is chosen sufficiently
large. O

3. Recurrence criteria

The sufficient conditions for recurrence and transience, given in (2.3) and (2.4),
apply only to extreme cases. To deal with concrete situations stronger criteria
are necessary. The first relevant result concerns essentially the additive model.
A slight generalization yields:

(3.1) Theorem. For 0 < < 1 the following dichotomy holds:

(a) v is transient, if

1
Y>v and liminf;,tP(logZ > t) > log—,
Y
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(b) v is recurrent, if
Y<v and limsup;,.tP(logZ >1t) <log %
Proof. (a) Clearly, Y = v may be assumed. By the hypothesis
liminf, , tP(logZ > s+ t) > log% for all s >0,
which for fixed s implies the existence of @ > 1 and [ € N such that
mloglP(logZ>$—|-m10gl)Zozlogl for m > 1.
v Y Y
Therefore, by independence,
P(X, <¢€) < P(Nicman {7 Zn-m < €’})
= I 1<m<n P(log Z < s+ mlog %)

(67

—)

1
S H I<m<n (1 - _)a
m

IN

H I<m<n (1 -

= (i__ll)a for n > [,

where the last inequality makes use of o > 1, implying
1-2z)*>1—az for 0<z<1.
Summation over n yields

1
Yo P(Xn <€) < (14+1) + (1= 1) Lzt 2 <00,

and the transience follows from (2.2a), because s is arbitrary.

(b) Again, Y = v may be assumed. In addition Z may be replaced by 0 on
the set {Z < z} for fixed z < 0o, because this is irrelevant for the hypothesis
and changes the values of X, by z/(1 — ) at most. By an appropriate choice
of @ < 1 and z < oo, therefore, the following conditions can be satisfied (in

the given order):

1
(1) tP(logZ >t) < alog — for all ¢ > 0,
Y

(2) P(Z=0)>0:=7""
With the abbreviation

1
my, :=logn/log— + 2 for ne N
Y
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this yields by independence

1
P(X;z) S 1) 2 P(ﬂ 0<m<n {’VmZn—m S ﬁ})

1 —-m
> I 0<m<mp, P(Z = 0) I1 mn<m<nP(Z < 57 )

In view of (2) and (1) the two products []1 and []» can be estimated by

Hl > 5mn+1:53na71’

1
HZ = Hmn<m<n (1 - P(lOgZ > [mlog; - logn]))

1 1
> Hmn<m<n (1 - alog— / [mlog— - logn]),
v v
because for m > m,, the difference [...] satisfies the conditions
1
[[..]>0 and alog—/[..]<L
v

The estimation of [], can be continued by

H2 > Hmn<m<n (1 _a’/(m_ (mn_Q)))

(04
> Tlo<icn (1 — l+—1)
1 (87
Z H0<l<n (1 - H—l)
— nia’

where the last inequality makes use of 0 < o < 1, implying
1-2)*<1l—az for 0<z<1.

Together the bounds for [T, and []» yield
> n>0 P(X)<1)> Y ,end’n* 'n® = o0,

and the recurrence follows from (2.2b). O

Two comments on this result are in order:
— The sufficient condition for transience is strictly stronger than the condition
E(log, Z) = oo, while the sufficient condition for recurrence is strictly stronger
than the condition E((log, Z)' ) < oo for all € > 0.
— If tP(log Z > t) — oo, then the sequence (X,),>¢ is transient whenever
Y =7v>0;if tP(logZ > t) — 0, then it is recurrent whenever ¥ = < 1.
The rest of this section is devoted to recurrence criteria for the case that the
underlying affine maps are not necessarily contractions. Here the possibility
Sn — 400 is ruled out by (2.4), i.e. inf,>;S, = —oo has to be assumed.

16



Then the following auxiliary result can be obtained by a partition into random
blocks:

(3.2) Lemma. If inf,>qS, = —oco and
E(X}) <oo for T:=inf{neN:S, <0},
then v 1s recurrent.

Proof. 1. In view of (2.3) the hypothesis P(Y = 0) = 0 can be used in the
sequel. Set 1o :=0and let T'=T; <15 < ... denote the strictly descending
ladder indices of the random walk (S, )n>0 (being defined with probability 1).
Moreover, define

Y}cl = YTk_1+1...YTk,
lec = ZTk,l—f—lYTk,l—i—Q---YTk+---+ZTk-

Since (Tj)r>0 is a process with independent and identically distributed incre-
ments, the random variables (Y}, Z;), k € N, are independent with a distribu-
tion v/ € N such that

y = E(Y)) =B(e) <1,
§ = E(Z,) =E(X?) < oco.

2. Let now (X})x>o denote the sequence associated with (Y}, Z;)ren, and
the initial value Xj = 0. Then, clearly

X, =X3  for k>0,
and this implies by Fatou

z = E(liminf, . X?)

IN

E(liminf,_, X})

IN

liminf ;o E(X})

liminf ;o (071 + ... +6)
= 0/(l—7v)<o0. O
Now the two main recurrence criteria can be derived simultaneously:

(3.3) Theorem. If inf, (S, = —oo, then v is recurrent in each of the
following cases:

(a) E(Z|Y)<~y for somey< oo,



Proof. 1. In view of (2.3) the hypothesis P(Y = 0) = 0 can be used in both
cases. Moreover, the assumptions v < 1 1in (a) and E(Z/Y) < 1 in (b) are
admissible simplifications, because a scalar multiplication has the same effect
on X, n>0,ason Z,, ne€N.

2. Consider now first case (a). Then, with 7" as in (3.2),

E(LgnZnYmi1 ... Y,) = EE(..|Y,...,Y,))
= E(lgenYms1 - Yo B(Zn | V)
S E(l{T:n}Ym+1 Ce Yn) for 1 S m S n,

where the last equation uses that {T" = n} is measurable with respect to
Yi,...,Y, and (Y, Z,,) is independent of Y}, | # m. In view of V;...Y,, <1
on {T = n} this yields

E(X%) = > neN X 1<m<n E(l{T:n}ZmYm+1 .. .Yn)

S Z meN Z n>m E(l{T:n}Ym+1 e Yn) +1

1 1
S Zm Zn m]E1 =n}xr """\, +1
eN > ({T }}/1 Ym)
1 1
= Yo B(Liram— - - —),
> m>o B(Lyr> Y, Ym)

where the summand 1 stands first for - ,en E(1jr=n}) and then for E(1;7s0}).
The final result can be rewritten as

(1) E(XD) <E(Z o<mer 7).
3. This inequality extends to case (b). Indeed, here
Zm
E(X’El)’) = X meN > n>m E(l{T:n}Y— Ym A Yn)

1 1 Z,
< ZmENEanE(l{T:n}?l...Y ly—

)

1 1 Z.
= ZmEN E(l{T>m—1}?1 e Y 1) E<—)

1 1

< Xm0 E(l{T>m}?1 e Y_)’

where the last equation uses that {T" > m — 1} is measurable with respect to
Yi,..., Y1 and Z,,/Y,, is independent of Vi, ..., Y, 1.

4. Now the proof can be jointly completed. The essential tool is Spitzer’s
identity, which will be applied in its real form (see e.g. [28], p.395). Letting
there t 1 1 leads to

1
() E(Zocmer e™™") = exp (X nen n E(1(s,>00¢ "))

18



Moreover, a result by Rosén [36] provides 6 < oo such that

3) Plx<<S,<z+1)<$ for all n € N and z € R.

Si-

Combination of (1) — (3) yields
1
logE(X2) < Y ,eN - Yo Pk < S, <k+1)e®

< 0 penn? > k>0 e F < o0
and, in view of (3.2), establishes the assertion. 0O

The main application of (3.3a) concerns the multiplicative model. More
generally: if only (S,,),>0 does not converge to 400, boundedness of Z ensures
recurrence. Version (3.3b) is better adapted to a model where the role of
multiplication and addition is interchanged, i.e. to the recursion

X, =Y (X, ,+Z2,) forneN;

in obvious notation: if only (S},),>o does not converge to +oo, the existence
of E(Z') already ensures recurrence (the additional hypothesis P(Y' =0) =0
is no real restriction because of (2.3)).

It is an open problem, however, whether the conditional expectation in
(3.3a) may be replaced simply by E(Z). Only a partial answer is possible:

(3.4) Proposition. If inf,>qS, = —oo and E(Z) < oo, then v is recurrent
in each of the following cases:

(a) Y and Z independent,
(b) Y >+ for some~y > 0.

Proof. Both assertions are immediate consequences of their counterparts in
(3.3). O
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