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Introduction

In this paper random dynamical systems are studied under the following as-
sumptions on space and time: the evolution is supposed to develop in the space
of reals and to proceed in discrete time starting at zero. Thus the process is
given by a sequence (X, ),>¢ satisfying the recursion

X, =H,(X, 1) for neN,

where X is a real-valued random variable and H,,n € N are random trans-
formations from R to R. To obtain the Markov property the variables Xj,
H,,H,,... are supposed to be independent, to obtain a stationary transition
kernel the variables Hq, H,,... are supposed to be identically distributed. If
their common distribution v is carried by a finite family of transformations,
this results in an “iterated function system”, made popular during the past
decade by Barnsley, Elton and others (see e.g. [2, 3, 8, 9]). On the other
hand, it is shown, for instance, by Kifer in Theorem 1.1 of [18] that, without
restricting the support of v, the model above provides just another possibility
to introduce any Markov chain with state space R.

In applications, such a representation arises often quite naturally as is
exhibited by the following examples (see also [1, 24, 25]):
(1) The simplest queuing process is given by

Xn=(Xp1+U,)" for neN

with i.i.d. variables U,,n € N. Here, X,,_; denotes the waiting time of
customer n— 1 and U, = S,,_1 — (T, — T,_1) is the balance between his service
time and the arrival times of customers n — 1 and n.

(2) A “savings process” is defined by

X, =U,X,_1+V, for neN

with ii.d. variables (U,,V,),n € N. Here, X,,_; denotes the balance of a
savings account at time n — 1, U,, the interest /inflation rate during period n
and V,, the deposit made at time n (this and a survey of other affine recursions
in biology, economics, physics etc. can be found in Vervaat [29]).

(3) An “exchange process” is defined by

Xn=Xn1-U,)VV, for neN

with i.i.d. variables (U,,V,),n € N. Here, X, is the utility of some equip-
ment in use at time n — 1, U, its loss in utility during period n, and V,, the
utility of a new equipment available at time n (for this and related examples
see, for instance, Helland and Nilsen [13]).

The first example differs from the second and the third one by a particular
characteristic: the state 0 is a regeneration point, and thus the queuing process
fits into the Doeblin-Harris theory for not necessarily discrete Markov chains.



Since the dominating measure, whose existence is postulated in this theory,
fails to exist in general, there are attempts, for instance by Rosenblatt [27]
or Tweedie [28], to classify Markov chains by stressing the topological struc-
ture of the state space. Even under continuity assumptions on the underlying
kernel, however, this results in a variety of notions of transience and null or
positive recurrence, being thus less convincing than the classical notions for
discrete Markov chains. The present paper, therefore, emphasizes the order
structure of the state space, motivated by two observations holding for various
applications. First, the transformations h: z — (z+u)*, h: £ — uzr + v, and
h:xz — (x —u) Vv appearing in the examples above are all order-preserving
(observing U, > 0 in (2)). Second, in these examples the proper state space
is Ry (observing V,, > 0 in (2) and (3)). As it turns out, accepting these two
restrictions presents an appropriate compromise in order to obtain a satisfying
theory as well as substantial applications.

While there exists an extensive literature based on the metric structure of
the state space by requiring, for instance, an “average contractivity” of the
underlying transformations, there are only a few papers with special emphasis
on the order structure. The earliest one dates back to Dubins and Freedman [7],
who limit, however, their investigations to the compact state space [0,1]. This
restriction is given up in Yahav [30], who studies concave increasing mappings
from R, to R,. Extending the state space further to R, Bhattacharaya and
Waymire in Section I1.14 of [4] take up a “splitting” condition from [7]. In
all this treatments the main interest concerns the existence and uniqueness of
stationary distributions. This holds as well for Brandt et al., who consider in
Section 1.3 of [5] order-preserving mappings in partially ordered Polish spaces
requiring, however, appropriate compactness and contraction properties.

To see fluctuation aspects to be as interesting as equilibrium results, con-
sider an exchange process with deterministic loss of utility, say U,, = 1. Then it
is easily established that a (unique) stationary distribution exists if and only if
the utility V,, of the substitute has a finite expectation. This fails, for instance,
if V,, has the density

file)=(@+1)? or folz)=2z(x+1)2 for 2>0.

Due to f1(z) < fo(z) < 2f1(x) for z > 1, in both cases V,, behaves similarly as
far as it concerns the existence of moments. Nevertheless, there is a significant
difference: while in the second case (X,)n>o escapes to infinity, the process
is uniformly distributed on R, in the first case (this example appears in the
context of (2.4), (6.3)—(6.4), (9.7)).

A detailed survey of the principal results of the present paper appears
dispensable, because the headings of the different sections provide a first in-
formation about the contents. Instead, the main feature will be summarized
as follows: the order-preserving random dynamical systems as considered here
represent one of the best suited models for extending discrete Markov chain
theory to an uncountable state space. That is because the fundamental criteria
for positive / null recurrence or transience — by means of the n-step transition



kernels resp. the potential kernel, by means of hitting probabilities resp. mean
passage times, or by means of a unique invariant measure — all find their coun-
terpart in the present paper (for a first orientation see the remarks following
(6.5), (9.8), (10.1) and preceding (11.4)).

Finally, a historical remark is in order. This work originated from a three-
part paper devoted to the special case of recursions

X, =U,X,_1+V, with U,,V,>0 for neN.

This affine model, which for constant U,, contains in particular first-order auto-
regressive processes, is of special importance, because it may serve to approx-
imate more complex situations by linearization. During the refereeing process
of [16], however, it became clear that most results rely on the topological and
order structure of the state space only and make no use of the linear struc-
ture. Moreover, it turned out that within a more general framework not only
several proofs could be simplified but also several theorems could be strength-
ened. This led to the decision to develop first the general theory in the present
paper and to deal with the special features of affine recursions in a subsequent
paper. As it is to be expected, there are, for instance, stronger criteria for
positive / null recurrence or transience, if the underlying mappings are com-
patible with the linear structure. To state just one of the main results of [17],
let (Sy)n>0 be the random walk with increments log U, (> —o0). Then, under
a weak boundedness condition on V, (and excluding the degenerate case of
a common fixed point of the underlying mappings), the following trichotomy
holds: the process (X,,)n>0 is positive recurrent resp. null recurrent resp. tran-
sient, if the associated random walk (S, )n>o diverges to —oo resp. oscillates
between —oco and +oo resp. diverges to +oo.

Preliminaries

Throughout the paper the state space E is a subinterval of R satisfying
min F = 0 and endowed with its Borel o-algebra B(F). As usual, C(F) de-
notes the space of bounded continuous functions f : £ — R and KC(E) the
subspace consisting of functions with compact support. Employing the order
structure, R(F) denotes the space of (“regular”) functions f : F — R having
limits within R from the right and from the left everywhere (including sup F)
and V(F) the subspace consisting of functions of bounded variation.

Let the space of continuous mappings from E to E be endowed with the
compact open topology. Then the closed subspace H[E| of order-preserving
mappings inherits a Polish topology, which is also the initial topology with
respect to the evaluation maps h — h(z), x € E. Since H[FE] is stable with
respect to composition and composition is continuous, H[E] is a topological
semigroup. Since E can be embedded into H[E], the mapping (z, h) — h(z)
is continuous, too.

M(E) denotes the class of locally finite measures on E and M;(FE) the
subclass consisting of probability measures. If pf denotes the p—integral
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of a function f, then M(E) is endowed with the vague (weak*) topology,
i.e. the initial topology with respect to the mappings p — uf, f € K(E);
the corresponding convergence is denoted by —>. On the subspace M;(FE)
this induces the weak (narrow) topology, i.e. the initial topology with re-
spect to the mappings p — uf, f € C(F); the corresponding convergence is
denoted by .

The main object of this paper is the space N[E] of distributions v on H[FE].
The semigroup structure of H[E] induces a convolution in N[E] and makes
this space a topological semigroup itself. Corresponding powers are simply
denoted by v", i.e.

/f(h(x))z/"(dh) :/.../f(h1o...ohn(:r))z/(dhl)...z/(dhn)

forz € E, f € C(E) and n € N, while v° is the unit measure &, with h being
the identity map. Since H[E] is again a Polish space, in particular the support
N is well-defined for v € N[E].

Now the stochastic model can be precisely introduced. Let be given, on
some probability space (2, A, P),

(1) asequence of independent random variables H,, : 2 — H[E] with identical
distribution v € N[E],

(2) a random variable X, : 2 — E that is independent of (Hp,)neN-

This defines an “order-preserving random dynamical system” by
Xn =v(Xpo1, Hy)  with  ¢(z,h) = h(z),
which in the sequel will be briefly written as
X, =H,(X,,-1) for neN.

Thus the distribution of (X},),>0 is completely determined by v € N[E] and
the initial law pug = £(Xy). Here, the primary component is v, and all notions
to be defined will depend on that distribution. This dependence will, however,
be suppressed in the related notations, because v is supposed to be fixed.

As usual, the initial law is largely of secondary importance only. If in
particular X, = z, this will be expressed by the notation (X7),>o, i.e.

X?=H,o...oH(z) for x€ E and n>0.
Thus for general iy conditional probabilities are given by
P*((X,,n>0) € B)=P((X;,n >0) € B)

with an anologous equation for conditional expectations.

Clearly, (X5)n>o0 is a homogeneous Markov process. Its transition kernel,
always denoted by P, transforms a function f on E into Pf given by

Pf(z) = /H [ [ vidn) for e B
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and a measure g on E into uP given by
uP(B) = / v(h(z) € B) u(dz) for B e B(E),
E
which for a o—finite measure p by Fubini equals

uP(B) = /H Jy Hh(@) € BYv(dh) for B € B(E).

The kernel P belongs to the class P[E] of Markov kernels from E to F
satisfying the following two conditions:

(1) P transforms C(F) into itself,
(2) P transforms bounded increasing functions into functions of the same type.

It has to be mentioned here that the mapping v — P from N[E] to P[E] is
neither injective nor surjective.

Finally, it has to be pointed out that, in contrast to topology and order,
the algebraic structure of the state space is not taken into account. Thus
distributions v € N[E| and v/ € N[E'] are called “conjugate” and have to
be classified in the same way, if there is an order-preserving homeomorphism
g : E' — E such that v/ is the image of v under the mapping h — g 'ohog.

For an example in the case £ = Ry = FE’ let hy € H[FE] be strictly
increasing with h, (z) > z for all x € E and define h . € H[E] by h_(z) = 0 for
z < hy(0) and h_(z) = h;'(z) otherwise. Then a distribution v € N[E] with
support N = {h_, h,} is conjugate to the distribution ' € N[E’] belonging
to the queuing process

X, =(X,1+U,)" for neN
with independent variables U,,n € N, satisfying
PU,=-1)=v({h_}) and P(U,=+1) =v({hy}).

Indeed, it is easily checked that any strictly increasing function g € C([0, 1])
with ¢(0) = 0 and g(1) = h,(0) can be extended to an appropriate homeo-
morphism by the definition

g(x+n) =~ (g9(z)) for 0<z<1 and neN.

1. Lower and upper limit

As in discrete Markov chain theory, the first question to be settled concerns
the appropriate decomposition of the state space E. For some t € E it may
split into two intervals E; = [0,¢[ and Ey, = FE \ E such that h[E;] C E; for
v—almost all h € H[E] and i = 1,2. With 0 = min E as reference state the
corresponding “class” can be characterized explitely as well as implicitly:



(1.1) Proposition For v € N[E] the set

Ey:=J {z€E:P(X]>2z) >0}
neN

s the smallest subinterval I of E satisfying the conditions

(a) 0el,
(b) v(h[I]CcI)=1.

Proof. 1. Since any — open or closed — interval [ in E containing 0 can
be represented as a countable union of intervals [0, zg], the subset of H[E]
occurring in (b) is apparently of type G4 (or even closed) and thus in particular
measurable. Since this representation applies to I = Ej itself, in establishing
(b) it suffices to show that, x = z being fixed, h(z) € E; for v—almost all
h € H[E].

2. To this end choose n € N with P(X? > z) > 0 and define

Hy:={h € H|E]: h(x) >t} for teF.
Then the independence of X? and H,,,, yields

{h € H[E]: h(z) € Ey} D {h e H[E]

[E]: P(Xp,, > h(z)) > 0}
D {heH[E]

[

[

P(X? >z, Hyyi(x) > h(x)) > 0}
P(Hp1(x)) > h(z)) > 0}
v(Hn() > 0}.

= {h € H[F]
= {h € H[F]

Due to h € Hp(,) this implies
{heH[E]:h(z) & Eov} C {h€H[E]: v(Hnw) = 0}

C U {%h(z) the H[E] with V(Hh(w)) = 0} .

Since the sets H; decrease for increasing ¢, this union can be replaced by a
countable one and is thus itself a null set with respect to v, as had to be
shown.

3. Finally, let the subinterval I of E satisfy (a) and (b). Then iteration
yields the equation v"(h[I] C I) =1 and thus in particular

P(X2el)=v*(h(0)eI)=1 forall neN.

For x € E satisfying the condition P(X? > z) > 0 this implies z € I, thus
proving Fjy to be minimal. O

The interval Fy can be an open or closed subset of F as it may happen
already in the following two trivial examples:
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(1) the “deterministic system” (E,h), where v = ¢, for some mapping
h € H[E], yielding deterministic variables X,,,n € N, whenever X is a con-
stant;
(2) the “independent system” (FE,u), where v is the image of some measure
€ Mi(E) with respect to the canonical injection j of E into H[FE], yielding
independent variables X,,,n € N, with distribution u.

If the interval Fj is a proper subset of E, its upper endpoint is easily iden-
tified:

(1.2) Proposition The supremum T of the set Ey defined by (1.1) is given by

Z=min{z € F : h(z) <z} whenever T€E.

Proof. For each © € E with h(xz) < x the interval I = [0,z] satisfies the

condition in (1.1) and thus contains E;, which implies T < z. On the other
hand, the definition of Ey yields h(z) < T for x < Z, which by the continu-

ity of h € H[F] implies h(Z) < T whenever the condition T € F is satisfied. O

The assumption T € F is no real restriction, because F being replaced by
E := E U {7} mappings h € H[E] have unique extensions h € H[E|, where
possibly oo has to be adjoined to R,. Moreover, if T € E and the support N
of v is finite, T clearly is a fixed point of some h € N.

The implicit description of Fy suggests the following notion:

(1.3) Definition The distribution v € N[E] is called “irreducible”, if the set
Ey defined by (1.1) coincides with the state space E.

Irreducibility apparently can always be achieved, replacing mappings
h € H[E] by their restrictions hy € H[Ep]. Moreover, since irreducibility
is clearly invariant under conjugation, it suffices in principle, neglecting the
trivial case F = {0}, to treat exclusively the two cases F = [0,1] and F = R,
— at the expense, however, of permanent repetitions.

The notion of irreducibility is also compatible with convolution powers:

(1.4) Proposition If v* € N[E] is irreducible for one k € N, this holds for
all k € N.

Proof. The assertion is an immediate consequence of the fact that, for arbitrary
z € E, the sequence (P(X} > z)),>¢ increases due to

P(X’>1z) = P(H,o...0H;(0)>x)
= P(Hio...0H,(0)>z). O

The following two theorems are of central importance in the sequel. Due
to the assumptions concerning the consistency with the order structure, lower
and upper limit of the process (X,),>o turn out to be constants, which in
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addition do not depend on the initial variable X,. The first result is easily
established:

(1.5) Theorem Ifv € N|E] is irreducible, the constant T = sup E satisfies

limsup X, =7 a.s.,
n—0oQ

regardless of the initial law.

Proof. For x € E there exists [ € N such that
P(HZOOHl(O) Z.’L‘) >0.
Then by monotonicity and independence

P (X, > z infinitely often) > P(limsup {Hy41y0...0 Hi(0) > z})

k—o00

> P(hm sup {‘H(k+1)l O...0 HkH_l(O) 2 .’L‘})

B k—o0

= 1.

Since x € F is arbitrary, limsup,_,., X, > T holds almost surely, while the
inverse inequality is obvious. O

The second result is less immediate:

(1.6) Theorem If v € N[E] is irreducible, there is a constant z < T satis-

fying

liminf X, =2z a.s.,
n—oo

regardless of the initial law.

Proof. 1. For x € FE and n > 0 define

X7 :=liminf Hy g o...0 Hy1(2).
k—o0

Then the inequality

58 = liminf H,,x0...0 Hn+1(X2)

k—00

> liminf H, z0...0 Hyp1(0) = X°

k—00 n
combined with the equation £(XJ) = £(X?) yields
X0=X" as. foral n>0,

hence X} is measurable with respect to the completed tail o-field of (Hy,)neN-
Thus there is a constant z satisfying

(1) X)=z as..



2. For fixed z € E choose n € N such that P(A4) > 0 for A := {X? > z}.
With the notation pu, := £(X?) it follows from (1) that

1 = P((X)<xz)
_ /E P(XY < ) pn(dy)

VAN
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< P(A)P(XE<z)+ P\ A).
In view of P(A) > 0 and the equation £(X{) = £(X7) this implies
(2) Xi<z as. forall z€F.
3. Together, (1) and (2) yield
g:xggﬁgg a.s. forall z € F,
and the assertion follows by applying Fubini. O

The preceding results suggest the following terminology:

(1.7) Definition If v € N[E] is irreducible, the constants z and T in (1.5)
and (1.6) are called “lower limit” and “upper limit” of v, respectively.

Now a counterpart of (1.2) can be derived:
(1.8) Proposition If v € N[E] is irreducible, its lower limit x is given by

z=max{z € E: h(z) >z} whenever z€F.

Proof. For each x € E with h(x) > x iteration yields X? > = a.s. for alln € N,

which by (1.6) implies £ > z. On the other hand, whenever z € E, choose
x > z in the case £ < 7 and x = z in the case z = 7. In both cases the hitting
times Ty < Ty < ... of [0, 2] by (X2),>0 are defined almost surely, where again
by (1.6)

&

= liminf X!

n—oQ
< liminf X711
< h,?iif}f Hrpo1(2) .
Since T, k € N, are stopping times with respect to (H,),eN, the variables
Hyp, 41,k € N, are again independent with distribution v. Thus Hp, 41(z) >
a.s., or equivalently, h(x) > z, which for z | z (if necessary) implies h(z) >z

v

by the continuity of h € H[E]. O

As stated for the upper limit, if z € E and the support N of v is finite,
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z clearly is a fixed point of some h € N.
The upper limit of an irreducible distribution v is always uniquely deter-
mined by its support N; indeed:

T =sup{h,o...0hi(0):n € Nandh; € N}.

A corresponding result for the lower limit fails to hold; in fact, even the alter-
native z € E or z ¢ E is not a question on N alone, but will lead to the basic
distinction between recurrence and transience of v.

Proper convergence of the process (X,)n>0, even if weakened to conver-
gence in probability, is limited to a degenerate case:

(1.9) Proposition If v € N[E] is irreducible, then for arbitrary initial law
the following assertions are equivalent:

(a) x=x=T forsomex€F,
(b) (Xn)n>o converges in E in probability,
(c) h(z) =z  for some x € E.

<

Proof. 1. The implication (a) = (b) is immediate from (1.5) and (1.6).
2. Assume now X,, — X in probability with u = £(X) € M;(E) and

let d be a bounded metric inducing the topology of E. Then integration over
Q x H[E] by P ® v yields

/ / d(X,h(X))dPdv < / / d(X, X,,) dP dv
+ / / (X, h( X)) dP dv
+ //d(h(Xn),h,(X))deu.

For n — oo the three summands on the right-hand side tend to 0: the first one
because of the assumption; the second one, because it equals E(d(X,,, X,11))
due to the independence of X,, and H,,,1; the third one, because h(X,) — h(X)
in probability due to the continuity of h € H[E]. Therefore

d(z,h(z)) =0 for u® v—almost all (z,h),
hence by applying Fubini
h(z) = x for p—almost all x € E.

3. The implication (c) = (a) is a consequence of (1.2), yielding T < x, and
(1.8), yielding z > z. O
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2. Recurrence and transience

Besides the proper convergence x = T € F considered in (1.9) there is an im-
proper convergence £ = T ¢ E, generalizing the almost sure divergence of the
process (X, )n>0 to 0o in the special case £ = R,. This is a first motivation
for the following notion, used similarly in [19] in related context:

(2.1) Definition Ifv € N|E] is irreducible, the distribution v (or the kernel
P or the process (Xp)n>0) is called

(a) “recurrent” if x € F,

(b) “transient” if x ¢ E.

To begin with the simplest example, a deterministic system (E, h) is easily
seen to be recurrent if and only if E' = [0, 7] with T being the maximum of the
increasing sequence (h™(0))n>0. Thus choosing E = [0,1] and h(z) = (z+1)/2
provides an example for transience due to z = 1 = Z. This appears only logical,
observing that the classification in (2.1) is clearly compatible with conjugacy
and (F,h) is conjugate to the deterministic process (E',h') with £/ = R,
and A'(z') = 2’ + 1. Indeed, an appropriate order-preserving homeomorphism
g: E' — Eis given by g(2') =1 — 277

By definition an irreducible distribution v € N[FE] is recurrent whenever
T € E. This is a special case of a more general sufficient condition that often
applies:

(2.2) Proposition Ifv € N[E] is irreducible and satisfies

v(sup h(z) € E) >0 ,
FASED)

then v is recurrent.

Proof. First, the subset of H[FE] occurring in the condition is apparently of
type F, and thus in particular measurable. To prove this condition to imply
recurrence, choose ¢t € E with v(sup ;. h(z) < t) > 0. Then for arbitrary
initial law by independence

P(X, <t infinitely often) > P(limsup {sup H,(z) <t}) =1

n—,oo rzelR
and thusz <te E. 0O

As a trivial example consider an independent system (FE,u), where by
definition sup ;. h(z) € E for v—almost all h € H[E]. To see that the
condition in (2.2) is far from being necessary, consider the queuing process

Xn=(Xp_1+U,)" for neN,

where the i.i.d. variables U,,n € N, are arbitrary. With state space £ = R,
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the corresponding distribution v is carried by the mappings h : x — (z 4+ u)™,
u € R, and thus irreducible whenever P(U,, > 0) > 0. In this case the con-
dition in (2.2) is not satisfied, while it is well-known that X,, — oo a.s. if and
only if the random walk with increments U,, does not diverge to + oco.

In the case of transience the process (X, ),>o diverges exponentially fast in
the following sense:

(2.3) Proposition If v € N[FE] is transient, the random cardinality
Z:=/{n>0:X, <t}
for arbitrary initial law and every t € E satisfies

E(exp(uZ)) < oo  for some u > 0.

Proof. Define recursively
To:=0 and Ty:=inf{n>T; 1:X, <t} (<00).
Then by transience

0 =P %X, <t infinitely often) = klim P(T, < 00),
—00

hence there exists [ € N such that 9 := P (T} < co) < 1. With the decreasing
function
g(z) =P%T, < o0) for z€F

the Markov property implies

PO(T(IH-l)l < OO) = A g(XTkl) dP°

= ﬁPO(Tkl<OO) for £>0.

This yields the bound
PO(Tkl < OO) < *

and thus by monotonicity

P(Z>kl) < P%Ty < o)

<
< 9F for k>0.
Partial integration shows that each u < —% log ¥ satisfies the assertion. O

It is a fundamental consequence of (2.3) that recurrence and transience can
be characterized by applying the potential kernel G := }°, -, P" to intervals
[0, ] with the right endpoints:
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(2.4) Theorem Ifv € NE] is irreducible, the following dichotomy holds for
arbitrary wnitial law:

(a) if v is recurrent, then

Y P(X,<t)=00 for t>z,

n>0
(b) if v is transient, then

Y P(X,<t)<oo for t<T.

n>0

Proof. Both assertions follow by taking the expectation of

Z =) lpg(Xa),

n>0

which in case (a) is almost surely infinite and in case (b) is integrable by
(2.3). O

For an application consider an exchange process with U, =1, i.e.
Xpn=Xp1—-1)VYV, for neN,
where the i.i.d. variables V,,, n € N, are nonnegative. With state space
E={z>0:P(V,>x) >0}

the corresponding distribution v is carried by the mappings h: x — (z—1)Vu,
v € E, and thus irreducible by (1.1). Moreover it is recurrent in the case
T < 00. Indeed, in this case

sup((z—1)Vov)=(x—-1)VveE for veFE
T€EE

and thus (2.2) applies. As already indicated in the introduction, recurrence
as well as transience can occur in the case T = oo. To exhibit appropriate
examples, denote by F' the common distribution function of V,,,n € N. Then
the explicit representation

X=WVi-(n=1)V...V(Vauy =1)VV, for neN

yields by independence

Now (2.4) applies:

t
(1) if V,,,n € N, have the common density f(z) = (z+1) 2, then F(t) = o]
implies
t
Y PX)<t)=) —— =00 forall t>0,
t+n

n>0 n>0

13



i.e. the process is recurrent;
(2) if the density is replaced by the function f(zr) = 2x(z + 1)73, then

t . .
F(t) = (t+—1)2’ and it follows similarly that the process is transient.

More profound criteria for recurrence and transience can be derived by
linearization, i.e. comparing the underlying mappings with affine ones. As
already mentioned in the introduction, however, this topic is postponed to [17].

This section concludes with a consequence of (2.4) by which some proofs
can be simplified:

(2.5) Proposition If v¥ € N[E] is recurrent for one k € N, this holds for
all k € N. Moreover, the associated limits z;, and Ty are independent of k.

Proof. The case x = T is settled by (1.4), because X,, — X a.s. implies
Xgn — X as. and thus 2, = £ = T = Tx. To settle the case z < T, it is
sufficient to apply (2.4) with X = 0, because it follows as in the proof of (1.4)
that the sequence (P(X? < ¢))n>0 decreases. O

3. A fundamental inequality

The following result will play a key role in deriving the main results in Sections
4 and 6:

(3.1) Lemma If v € N[E] is irreducible, there exists an increasing function
c: E— R, such that

3 E(f(XE) — f(XD) < c(z) sup E(f(XY))

n>0 n>0
for each increasing function f : E — R, and every r € E.

Proof. First of all, the left-hand side is well-defined, because the differences
F(XZ) — f(XD) are nonnegative. Now, fix z € F and choose k € N such that

H' = {h' € H[E]: K'(0) > z}
satisfies the condition

yi=v"H)=P(X} >x)>0.
With the abbreviation H := H[E] this yields the bound

E(f(X7) - f(X3)) = | [f(h(@)) — f(h(0))] v"(dh)

H

- 1/’67{’/h,67-t T (dh) v (dh)
7 [ o (0)) — F(h(0))] v (dh) v ()

1/,6 [ v () v (an)
v E(f (X2+k) f(X7)) for n>0,

IN

IN
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where the first inequality follows from
f(hoh'(0)) > f(h(x)) for heH,h' € H
and the second one from
f(hoh'(0)) > f(h(0)) for he H,h' e H\H .

By summing up, cancelling on the right-hand side, and omitting the term
Y o<i<r f(X7P) > 0 this yields

Y. BE(f(XD) - (X)) < v X E(f(XD)

0<l<m m<l<m-+k

< ky'sup E(f(X?)) forall meN.

n>0

According to the choice of £ and the definition of ~, therefore,

1
c(x) == (sup EP(X,S >z))" for z€FE
keN

defines an increasing function as desired. 0O
The next result is an immediate consequence:

(3.2) Lemma If v € N[E] is irreducible, then for arbitrary initial law and
each increasing function f : E— R, the condition

sup E(f(X7)) < o0

implies
(a) X;O (f(Xn) = f(XR) <00 as.,
(b) (X)) — (XY =0 as..

Proof. The second assertion follows from the first one, which in turn follows
in the special case X, = z from (3.1), interchanging the order of summation
and integration, and in the general case by applying Fubini. 0O

Actually, the preceding results extend to larger classes of functions:

(3.3) Theorem Ifv € NIE] is irreducible, then for arbitrary initial law

(a) > () = f(X) <00 as. for feV(E),
(b) F(Xn) = F(X) =0 as. for fER(E).

15



Proof. (a) A function f € V(FE) has a representation f = f; — f, with increas-
ing and bounded functions f; : E — R, for which (3.2a) applies.

(b) The assertion follows for step functions f from (a) and for functions
f € R(E) by uniform approximation. 0O

By inspecting the proof it is easily noticed that in both statements the
convergence is uniform on compact subsets of E, i.e. for instance

sup |f(X®) — (XD =0 as. for fER(E) and te€E.

0<z<t

Assertion (b) cannot be extended to functions f € C(F), as is seen in the
transient case already by the deterministic system (E,h) with E = R, and
h(z) = = + 1, which is obviously irreducible: if f(x) denotes the euclidean
distance of z from the set {0,2,4, ...}, then | f(X}) — f(X?)| = 1 for all n > 0.

To exhibit a counterexample in the recurrent case, a more elaborate con-
struction is required. To this end consider the autoregressive process

1

Xn:§ n1+ Vs, for neN,

where the i.i.d. variables V,,,n € N, attain the values 0 and % each with

probability 7. With E = [0, 1[ as state space the corresponding distribution v
is supported by the two mappings hg : ¢ — /2 and hy : x — (z +1)/2. Tt
is clearly irreducible and by (2.2) recurrent, where z = 0 by (1.8). Denote by
(tk)k>0 a strictly increasing sequence in E with sup ;o tx = 1, to be specified
later, and define -

T, :=inf{n >0: X2 >} for k>0.
Since these random times are almost surely finite, there exist n, € N such that

(1) limsup P(T, < mny) =1.

k—o00

Moreover, since the support N of v is finite, there exist finite sets By C [tg, 1]
such that

Finally, since the mappings h; leave the set D of dyadic numbers in E and its
complement invariant, for fixed x € E '\ D there exist finite sets Cy C [tx, 1]
such that

(3) P(Tk S le,ijwk ¢ Ck) =0 for k Z 0,

satisfying in addition By N Cy = (. Now, starting with ¢y = 0, choose the levels
tr recursively under the constraints ¢, > max Cy_; for £ € N. Then the finite
sets By, and C}, are disjoint subsets of the successive intervals [t, tx41[, & > 0,
with union E. Thus there exists a function f € C(E) with 0 < f < 1, satisfying
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fly) =0for y € Uyso Br and f(y) =1 for y € Uy>o Cr- By (2) and (3) this
implies
limsup {7} < ng} C {limsup |f(X*) — f(X?)| =1}
n—0o0

k—00

almost surely, which by (1) yields
limsup |f(X7) — f(Xp)| =1 as.,

n—oo
providing the desired counterexample.

As a corollary assertion (b) of (3.3) yields a result on functions f that are
regular with respect to P, i.e. satisfy 0 < f = Pf: in the irreducible case such
a function, provided it is contained in R(F), has to be constant. Indeed, the
equation P"f = f for n > 0 and the boundedness of f combine by (3.3b) to

fz)=f(0) = E(f(X)) - E(f(X})
= E(f(X3) - f(X2)
— 0 forall z € F.

To see that outside R(E) there may exist regular functions that are bounded
and not constant, consider the autoregressive process from above. Since in this
case the requirement f = Pf amounts to the equation

1 T z+1

f@) =5 (FG) + F(—

)) for e FE,

for instance f = 1p with D again denoting the set of dyadic numbers in F is
a solution that is not constant.

This section is concluded by a technical result that will be important in
the sequel. It implies in particular for intervals I C F, visited from 0 infinitely
often almost surely, and compact subsets K of E the existence of n € N such
that for z € K the hitting probabilities P(XZ € I) are bounded away from 0.
Actually, this result can be strengthened and extended to functions:

(3.4) Lemma Let v € N[E] be irreducible and f € V(FE) satisfy

f>0 and Y E(f(Xy)=oo.

n>0
Then for every t € E there exists m € N such that

E( inf f(X%))>0.

0<z<t

Proof. First, measurability is ensured, because it suffices to extend the infimum
over a countable dense subset of [0, ¢], containing the countably many points of
discontinuity of f. A representation f = f; — fo with increasing and bounded
functions f; : £ — R yields the estimate

E( inf f(X7)) > E(fi(X2) — E(f2(X3)) =: dn -

0<z<t
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Now the identity
o = B(f(X0) — (E(fe(Xy)) — E(f2(X3)))

ensures the existence of some m € N with d,, > 0, because otherwise by (3.1)

> E(f(X7) < X (E(f2(X7)) — E(f2(X7))) < o0,

n>0 n>0

contradicting the assumption on f. O

4. Existence and uniqueness of invariant measures

To deal with not necessarily finite invariant measures, the following “localiza-
tion” is essential:

(4.1) Definition Let v € N|E] be recurrent and fir t € E with t > z or
t=7. Then:

(a) P denotes the “hitting kernel” belonging to v and [0,t], i.e
'P(x;B) =P* Xy € B) for z€[0,t] and B € B([0,t]),

where
T:=inf{n e N: X, €[0,t]};

(b) for arbitrary initial law (*X,,)n>0 denotes the “embedded process” belonging
to (Xp)n>o and [0,1], i.e.

Xn = Xp, for n>0,
where Ty <Ty < ... are the random times when (X,),>0 s in [0,1].

To include the case t = T € E, where ‘P = P and no localization is
necessary, is convenient for a unified treatment. To assume T}, < oo in (b) is
no real restriction.

For easy reference the required facts from probabilistic potential theory are
stated explicitly:

(4.2) Lemma Let v € N[E] be recurrent and p € M(E) be excessive with
respect to P. If 'w denotes the restriction of u to [0,t], then

(a) ' is invariant with respect to 'P fort € E witht > z ort =T,
(b) w is invariant with respect to P.
Proof. (a) If I, for A € B(E) denotes the kernel
Ii(z;-) :=14(z) e, for z€ F,
the crucial point is the inequality

pla D (PIg\a)"P < pP
n>0
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for excessive measures, which follows as the dual result for excessive functions
(see e.g. Proposition 2.2.6 in [26]). Applied to A = [0,¢] this inequality
concerns ‘P and implies

(+) (u'P)(B) < (uP)(B) for B e B([0,1]).

Therefore pP < p yields P < 'u proving (a), because u is a finite measure
and ‘P is a stochastic kernel.

(b) For 0 < f € K(FE) choose t € E witht > z or t =T and supp f C [0, ]
and denote the restriction of f to [0,¢] by ’f. Then (a) and () together imply

pf="u'f=(uP)f < (uP)f.
By varying f this yields the inequality u < pP required for (b). O

Now the existence of an invariant measure for v (i.e. for P) can be es-
tablished as in [10], under some simplification due to the monotonicity. More
generally, the following version will be needed in Section 6:

(4.3) Proposition Let v € N[E] be recurrent and fixr t € E with t > x or
t =Z. Then for arbitrary initial law the measures

on(B):== 3 P(Xn,€B)/ ¥ P(X,<t) for BeB(E),

0<m<n 0<m<n
defined for n > ny according to (2.4a), satisfy:
(a) {on : n > ng} is a sequentially compact subset of M(E),

(b) each limit point p € M(E) of the sequence (0n)n>n, 1S a nontrivial invari-
ant measure for v.

Proof. (a) For arbitrary s € F choose | € N such that ¥ := P(X] < t) > 0,
which is possible due to the assumption on t. With p, := £(X,,) this implies
by monotonicity

P(Xpu<t) > [ PO <t) pn(d)
z<s
> [ P(X{ <1) plda)
z<s
= IP(X,,<s) for m>0.
With the norming constants

= Y, PXn,<t) for n>0

0<m<n

this provides the estimate

Y PXn<s) < 00 Y PXpu<t)

0<m<n 0<m<n

< 9t (rp+1).
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Since r, — oo by (2.4a), this yields

limsup 0,([0,s]) <Y < o0.
n—oo

This being true for all s € E, the measures g,,n > ng, are uniformly locally
finite. The asserted compactness follows by considering the associated linear
functionals on IC(E) and applying the Riesz representation theorem.

(b) The assumption g,, > p yields u # 0, because

v

([0, 7]) > lizrisoljp on, ([0,7]) = 1.

With g := £(Xp), moreover,

gnkf:T;kl Y wPTf for 0< feK(E).

0<m<ny,
By approximation of Pf € C(E) from below this yields
wPf < liminf g, Pf
k—o00
= liminf r;kl > wP"f

k—00

0<m<ny
T -1 m
= hggg}lf T > wP™f
0<m<ny

= uf for 0< feKK(F),

because r,, — oo and poP™f is bounded by max f. Therefore u is excessive
and thus invariant by (4.2b). O

The following property of the support of invariant measures will be required
before its thorough study in Section 7:

(4.4) Theorem Let v € N[E] be recurrent and p € M(E) be a nontrivial
inwvariant measure for v. Then M := supp p satisfies

infM =x and supM=7.

Proof. 1. Since p = pP™ by assumption, m := inf M satisfies

0=pu(l0.m]) = [ P(X7 <m) u(da),

which for fixed n > 0 implies
P(X;>m)=1 for p—almostall z € E.
For any x satisfying this equation simultaneously for all n > 0, by (1.6)

z = liminf X7 > m (as.).
n—o0
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2. To prove the inverse inequality, observe first
P(X; <z)=v"(h(z)<z)=0 for >z and neN

according to (2.5) and (1.8). Therefore

u.) = [ v ) p(dz)

E

- /K <t)pu(dz) for t<uz.

|i~i

Since y is locally finite, the dual form of Fatou’s lemma applies and leads to

p(l0,) = (imsup) [ P(X3 < 1) (do)

n—o0

< / limsup P(X? < t) u(dz)

<xr mn—o0

< [ P(imsup{X; < 1}) u(da)
<z n—00

< / P(liminf X? < ¢) u(dx)
<z n—00

= 0 for t<zx.

For ¢ 1 z this implies m > z.

3. The inequality @ > T for m := sup M follows as in part 1 of the proof,
replacing (1.6) by (1.5), while the inverse inequality holds by the definition
ofz. 0O

Now uniqueness of the invariant measure can be established. At the first
step (3.3) is crucial:

(4.5) Lemma Let v € N[E] be recurrent and fix t € E witht > x ort =T.
For f € V(E) with supp f C [0,t] and g = 14 define

Qif.9):= Y X)) X ¢(Xi) for x€E.

0<m<n 0<m<n

Then there exist constants q(f, g) and G(f, g) such that

liminf Q7(f,9) = qa(f,9) as and
limsup QF(f,9) = G(f,g9) a.s. for everyx € FE.

n—oo

Proof. 1. The limits on the left-hand side are well-defined according to the
choice of t. Moreover, they are independent of z. Indeed:
(1) In the denominator z may be replaced by 0, because the quotient

ooz /Y ax)=1+( X @XL-9X)/ > 9(X3)

0<m<n 0<m<n 0<m<n 0<m<n
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tends to 1 almost surely by (3.3a) and the assumption on ¢.
(2) In the nominator z may be replaced by 0, because the difference

oL/ Y exh) - X XN/ Y g(xh)

0<m<n 0<m<n 0<m<n 0<m<n
= ¥ (@ -rx) /) X exn)
0<m<n 0<m<n

tends to 0 almost surely for the same reason.

2. Since the summands with m = 0 may be neglected, using the ab-
breviation
[...] == Hpyo...0Hy(Hy(0)),
the lower limit equals
liminf Q0(f,9) = liminf > f([..])/ X a(-]).
1<m<n 1<m<n

Therefore by part 1 of the proof, applying Fubini, the arguments [...] of f and
g can be replaced by H,, 0...0 H(0) up to a set of probability 0. Continuing,
it follows that the lower limit is measurable with respect to the completed tail
o-field of (Hy,),en- Thus it is almost surely a constant — and the same holds
for the upper limit. O

At the next step the pointwise ergodic theorem enters:

(4.6) Lemma Let v € NIE] be recurrent and p € M(E) be a nontrivial
invariant measure for v. Then, in continuation of (4.5),

a(f.9) = [ fdu/u(0.) =a(f9).

Proof. Since p([0,¢]) is finite and by (4.4) strictly positive, the restriction u
of u to [0,¢] may be assumed to be normalized, hence by (4.2a) to be a sta-
tionary distribution for P. If now Xj is distributed according to (the trivial
extension of) %, then (“X,,),>o is a stationary process. Since f is bounded, the
classical ergodic theorem therefore ensures that

QUf.0) = lim ~ 3 f(X)

n—00
n 0<m<n

exists almost surely. Now on {X, = x} the sequence (QZ(f,g))n>0 arises
from the successive means of (f(*X,))n>o through “extension to the right by
constancy” in an evident sense. Therefore by (4.5), applying once more Fubini,

Again the stationarity of (%,)uso and the boundedness of £ imply

B(QU,9) = [ fdu,

and the assertion follows. 0O
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Now one of the principal results can be established:

(4.7) Theorem For each recurrent distribution v € N[E]| there exists a
nontrivial invariant measure p € M(E) such that every ercessive measure
w' € M(E) is a multiple of p.

Proof. Choose p according to (4.3) and let 4/ € M(E) be another nontrivial
excessive, hence by (4.2b) invariant, measure. Then for ¢t and f, g satisfying
the assumptions of (4.5), according to (4.6),

[ fdif o, = [ £/ u(0,1)
Specialized to f = 14,5 < ¢, this provides a constant -; such that
p'(B) =y pu(B) for BeB([0,t]),
where in fact 7y, due to p/([0,¢]) # 0, is independent of t. O

The measure g that this theorem assigns to a recurrent distribution v
actually stands for a one-dimensional family. Nevertheless it will be called
“the invariant measure” in the sequel.

At this point it has to be emphasized that the uniqueness statement in (4.7)
concerns locally finite measures only. To exhibit an example, choose E = [0, 1]
and let v assign mass % to the two mappings defined by

ha () = %(Qx—i- ) e ho(e) = jov(2r-1).

Then v is clearly irreducible and the uniform distribution x on E is eas-
ily seen to be a finite invariant measure. With y as initial law the series
> oo P(X, < t) diverges for all ¢ > 0 and thus v is recurrent by (2.4b). On
the other hand, it is not hard to check that

p=Y ze, with D:=FE N Q
€D

defines another invariant measure, which, however, is o-finite only.

Finally, it has to be mentioned that — as in discrete Markov chain theory —
neither existence nor uniqueness of nontrivial locally finite invariant measures
carry over to the transient case.

5. The regenerative case

Clearly, a process (X,),>o transient according to (2.1) cannot be recurrent in
the sense of Harris, due to X,, —» T ¢ E a.s.. The counterexample at the end
of the preceding section implies, on the other hand, that a process (X, )n>0
recurrent according to (2.1) need not be recurrent in the restricted sense, be-
cause in this case there is always an — up to a constant factor — unique o-finite
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invariant measure (see e.g. [23, 26]). There is, however, a particular situation
that fits into this framework and will be needed in the following section. This
“regenerative case” makes no use of the topological structure and arises, if the
invariant measure contains atoms. The crucial consequence of this assumption
is the following fact:

(5.1) Lemma Let v € N[E] be recurrent with invariant measure p. Then
u({z}) > 0 implies for arbitrary initial law

P(X,, = z infinitely often) = 1.

Proof. An application of (4.5) and (4.6) to t = z and f = 1y, yields

S 12/ Y g(x2) = u{zh)/u(0,2]) as.

0<m<n 0<m<n

for every x € E, which verifies the assertion by applying Fubini. O

A question left aside in the preceding section is how to determine the
invariant measure p for a recurrent distribution v. There is, in general, no
chance to solve the integral equation

u(B) = /E u(h(z) € B)v(dh) for B e B(E)

explicitly. An exception, however, is provided by the regenerative case as can
be deduced from the Harris theory. Since in the order context the proof of the
relevant result is especially simple, it is carried out:

(5.2) Theorem Let v € N[E] be recurrent with invariant measure p. Then
u({z}) > 0 implies

uB) = u({z}) B*( X 1a(Xa)) for BeB(E),

0<n<T,
where T, denotes the hitting time of z by (Xp)n>o0.

Proof. 1. To establish first the invariance of the measure ' defined by the
expectation on the right-hand side, choose f = 1y with ¢ € E. Since T, by
(5.1) is almost surely finite, the condition Xy = z yields

WPf = EB( ¥ (X))

0<n<T;

= E( Y f(Xa)

0<n<T,

= B( X f(Xu) = WS

0<n<T,

Since t € E is arbitrary, this implies p'P = p'. In view of (4.7) and p/(B) =1
for B = {z} it remains to show u' to be locally finite.
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2. To this end consider the function f = 1;,; and observe that by (5.1) the
condition 3,5, E(f(Xp)) = oo in (3.4) is satisfied. Thus for z <t € E there
exists n € N such that

Y:= inf P(X} =2)>0.

0<z<t

By the Markov property this implies

u'([O,t]) = Ez(z 1{T;>n}1[0,t] (Xn))

n>0

= > P*(Xy#zfor0<k<n)

n>0

< m Y PHXy # zfor 0 <k <Im)
1>0

< mY P Xpm £ 2for0< k<)
1>0

< md (1-9) < o,
1>0

i.e. the measure y' is locally finite. O
In the regenerative case the initial law disappears in a strong sense:

(5.3) Proposition Let v € N[E| be recurrent with invariant measure .
Then u({z}) > 0 implies for arbitrary initial law

P(X, = X? eventually) = 1.

Proof. Application of (3.3b) to f = 1y, yields
P(l{z}(Xn) = 1{z}(X0) eventually) = 1.

n

Combined with (5.1) this implies that the random time
T:=inf{[n e N: X, = X? = 2}
is almost surely finite, where clearly X,, = X9 forn > 7. O

A first consequence of this result concerns the tail events:

(5.4) Proposition Let v € N[E] be recurrent with invariant measure yu and
p({z}) > 0. Then for arbitrary initial law the tail o-field of (Xp)n>o s trivial.

Proof. Let B be a Borel subset of [[,,5, £, not depending on any finite number
of coordinates. Then an application of (5.3) to n € N as starting time shows
that the two events

A= {(Xo, X1,...) € B} = {(Xo, .-, Xp, Hns1(Xp),...) € B}
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and
A= {(0,...,0,H,+1(0),...) € B}

agree almost surely, hence A is contained in the completed tail o-field of
(Hp)nen as well and thus has probability 0 or 1. O

Another consequence of (3.4) is the following aperiodicity:

(5.5) Proposition Let v € N[E| be recurrent with invariant measure pu and
w({z}) > 0. Then there exists ny € N such that

P(X;=2)>0 for n>ng.

Proof. As in the proof of (5.2) choose m € N satisfying

v:= inf P(X. =2)>0.

0<z<2

With py := L£(XF) it follows that

P(X;=2) > [_ PG =2 m(d)
> 9P(X7<z) > 0,

because P(X? < z) = 0 by iteration would lead to X? > z for all n € N
almost surely, contradicting (5.1). From P(X? = z) > 0 forn = m,m + 1 it
follows, combining k£ periods of length m and [ periods of length m + 1, that

P(X;=2)>0 for n=km+I(m+1),
hence ng = (m — 1)m satisfies the assertion. O

This result implies in particular that z is a fixed point of some h in the
semigroup generated by the support N of v. While this property is clearly not
sufficient for p({z}) > 0, the following criterion holds:

(5.6) Proposition Let v € N[E] be recurrent with invariant measure fu.
Then fort € E witht > x or t =T the following assertions are equivalent:

(a) p({z}) >0,

(b) P(X)=zfor0<z<t)>0 for somené&N.

n

Proof. 1. If (a) is satisfied, combination of (5.1) and (5.3) provides n € N
such that
P(X°=2=X!)>0,

n

which by monotonicity agrees with the probability in (b).
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2. If (b) is satisfied, then the estimate

=) = [ POX;=2)pde)
> P(XJ=zfor0 <z <t)u(0,t])
yields p({z}) > 0, because u([0,t]) > 0 by (4.4). O

It is a consequence of this equivalence that T € E implies u({z}) > 0.
Indeed, in this case v is recurrent and by definition there exists n € N such
that P(X? = 7) > 0, hence due to X? < X? < 7 for all z € F condition (b)
is satisfied.

For the boundary values the criterion (5.6) simplifies:

(5.7) Proposition Let v € N[E] be recurrent with invariant measure p and
assume x < T. Then

(a) u({z}) >0 if and only if v(h(z)=2x) >0 for somez >z ,
() p({z}) >0 if and only if v(h(z) =T) >0 for somez <7T .
Proof. (a) The function

g(z) :=v(h(z)=z) for x€E

decreases for © > x, because h(z) > x by (1.8), and satisfies g(z) < 1, because
otherwise £ = Z by (1.9). Moreover, by (4.4)

u{z) = [ o) uld).

Thus p({z}) > 0 implies g(z) > 0 for some = > z, while u({z}) = 0 implies
g(z) = 0 for p—almost all z > z, hence for all z > z by (4.4).

(b) Under each condition Z belongs to E, because v(h(z) = Z) > 0 for
some z < T implies T € E by (1.1). Therefore — with obvious modifications —
the proof of (a) carries over to (b). O

A typical example for (a) is the queuing process, where in case of recurrence
always £ = 0 and p({z}) > 0.
6. Ratio ergodic theorems

To derive ergodic theorems that are not restricted to continuous functions of
the process (X,)n>0, some preparations are necessary:

(6.1) Lemma If v € N[E] is recurrent, then for x < t € E and arbitrary

wnatial law
> PXn<t)/ Y PXL<t) - 1.

0<m<n 0<m<n
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Proof. 1. With the notations g := 1jp4 and f := 1 — g the assertion holds in
the case X, = s, because

> P <t/ Y P, <)

=1 - (T ®UE)-BE)/ X P0G <),

where the last quotient tends to 0 by (3.1) and (2.4a).
2. For arbitrary po := £(Xp) and s € E the estimate

E(9(Xp)) > E(9(Xm)) > E(g9(X;),)) ([0, s])

holds, because the function g decreases. Summation over 0 < m < n and
division yields for the ratios r, under consideration the bounds

(1) limsup r, <1,
n—oo
@) liminf r, > po([0,5)).

where (1) uses part 1 of the proof. The assertion now follows for s 1 T
(ors=7). O

The next step relies on results for the regenerative case:

(6.2) Lemma Let v € N[E] be recurrent with invariant measure pn and
w({z}) > 0. Then for x <t € E and arbitrary initial law

X Py =) / X PWn <0 = u{z)/u(0.4).

Proof. 1. It suffices to consider the case Xy = z. Indeed:

(1) In the nominator X,, may be replaced by X7 in view of (6.1).

(2) To extend this to the denominator, introduce the hitting time 7, of z by
(Xn)n>o and define

pr:=P(X;=2) for £>0.

Conditioning with respect to {Xy # z} shows that P(X, = z) = 0 may be
assumed. Then decomposition according to the first stay in z yields

> PXm=2)/ Y P(Xi=2)

0<m<n 0<m<n
= > ( > P(Tz:m_k)pk)/ > D
0<m<n 0<k<m 0<k<n
= Y wP@<n-k/ Y n
0<k<n 0<k<n
— lim P(T,<n) = 1,

because 3 ;5 pr = 00 and P(T, < 0o) =1 by (5.1).
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2. To verify the assertion in the case Xy = z, define
g :=P(X; <tandT,>k) for k>0.

Then decomposition according to the last stay in z yields

> P(L<t)/ ¥ P, =2

0<m<n 0<m<n

= Z Z Dk Qm—k/ Z Dk
0<m<n 0<k<m 0<k<n

= Y mE( X X))/ X m
0<k<n 0<I<T,N(n—k) 0<k<n

—  lim EZ( > Ljo,1 (Xl))

n—oo
0<I<T: A(n—k)

= Ez( > 1[0,t](Xl))a

0<I<T,

again due to Y- ;5o pr = 00, and the assertion follows by (5.2). O

Now a first information on the fluctuation of a recurrent process (Xy)n>0
by means of its invariant measure can be obtained. In its general form it con-
cerns one sequence (H,),en, but two possibly different initial variables:

(6.3) Theorem Let v € N[E] be recurrent with invariant measure p and
denote by (X )n>0 a copy of (Xy)n>0 with X§ replacing Xo. Then for functions
f,9 € R(E) with compact support

> E(f(Xn)/ > E(g(X})) — uf/ug,

0<m<n 0<m<n
provided pf # 0 or ug # 0.

Proof. 1. By comparing both the denominator and the nominator with the
corresponding sum for 1y 4 the situation can be simplified to the case g = 1joy,
where ¢t € E with ¢ > z or t = T. Moreover, p({t}) = 0 may be supposed
unless t = T. Finally, the assumption X = X, means no real restriction in
view of (6.1).

2. Now consider the measures p,, defined in (4.3). If g, -> 0 € M(FE) is any
convergent subsequence, (4.3b) and the uniqueness of the invariant measure
imply o = v u. Since g is p—almost continuous, the constant ~ satisfies

u(0,1) = Jim g, (0.6) =1,
hence is independent of the subsequence, and thus by (4.3b)

onf — of = pf/ug forall feK(E).

3. For a,b € E with a < b, approximating by IC(F) from below and above,
part 2 of the proof yields

(1) lim inf ¢y (Ja, b[) > o(]a, b)) ,
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(2) limsup gn([a,b]) < o([a,b]) .

n—o0

In particular, (2) implies that the convergence g,({z}) — o({z}), established
in (6.2) for the case u({z}) > 0, extends to the case u({z}) = 0. Together
with (1) this leads to

liminf g,([a,b]) = liminf(g,(Ja,b]) + en({a}) + 0n({0}))
= liminf g, (Ja, b) + o({a}) + o({0})
> 0(la, b)) + o({a}) + o({0}),

hence to
(3) liminf o, ([, b)) > o([a, ).
4. Combined, equations (2) and (3) yield

onf = of =pf/pg forall f=1,, € R(E).

Therefore the assertion holds for all step functions f with compact support.
Thus, approximating a function f € R(FE) with compact support by such
functions from below and above, the proof is completed. O

As a first application of this ergodic theorem consider the exchange process
(Xn)n>o studied in Section 2. If it is recurrent (which can be tested by (2.4))
and t > z (which can be determined by (1.8)), then the sequence of ratios

P(X)<s)/P(X)<t)= ][ F(s+m)/F(t+m)

0<m<n

converges for every s € E to a limit G(s) < oo, because the right-hand side
decreases for s <t and increases for s > t. Then even more

> P(X3<s)/ > P(XI<t) = Gls),

hence by (6.3) the function G is finite and the invariant measure y is given by

pw((0,s]) =[[ F(s+n)/F(t+n) forall seE.

n>0

t
Applied in particular to the recurrent case (1) with F(¢) = et it turns out

that £ = 0 and p is simply the Lebesgue measure on R, .

In stating the pointwise analogue of the mean version (6.3) more care has
to be taken of (X, X{):

(6.4) Theorem Let the assumptions of (6.3) be satisfied and in addition
(X0, X{) and (Hyp)nen be independent. Then for functions f,g € R(E) with
compact support

> X)) Y 9(X)) = pf/eg as.,

0<m<n 0<m<n
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provided pf # 0 or pug # 0.

Proof. By applying Fubini it follows that X, and Xj may be assumed to be
constant. Moreover, as in the proof of (6.3), the situation can be simplified to
the case g = 1jo 4, where ¢ € E' with ¢ > z or t = Z. Since in a self-explanatory

notation
S(f,z) _ 5(f,2) S(g,2) 5(9,0)
S(g,y)  S(g,2) S(9,0) S(g,y)’
only the following two assertions have to be verified:

(1) > Xz > 9(XE) — uf/ug as.

0<m<n 0<m<n
(2) > g(XE) / dYoog(X)) = 1 as..
0<m<n 0<m<n

Concerning (1), this follows from (4.5) and (4.6) in the case of step functions f
and by approximation from below and above in the case f € R(E). Concern-
ing (2), this in fact has been derived already in part 1 of the proof of (4.5). O

Applied to the exchange process preceding this theorem, with A denoting
the Lebesgue measure, it follows for subintervals I, of R of positive and finite
length that

> (Xn)/ Y 16(Xn) = AL)/AD) as.,

0<m<n 0<m<n

regardless of the initial law.

The next result concerns the orbits of the process themselves. In view of
(4.4) it provides a simultaneous generalization of (1.5) and (1.6):

(6.5) Theorem Let v € N[E] be recurrent with invariant measure u and
define the random set

L(w) :={x € E : z is limit point of (X, (w))n>0} -

Then with probability 1
L(w) = supp t,

regardless of the initial law.

Proof. 1. Let I,k € N, be a countable base for E consisting of bounded open
subintervals of E. Then the inclusion L(w) D supp g holds if and only if

> 15, (X, (w)) = oo whenever p(I;) > 0.
n>0

Applying (6.4) to f = 15, and g = 1oy, where t € E with ¢ > z or t = 7,
shows that this holds indeed with probability 1.
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2. To prove the inverse inclusion, denote by L;(w) the analogue of L(w) for
the process (“X,,),>0. Moreover, let D consist of T in the case T € E and of a
countable subset of {t € E : t > z} with sup D = T otherwise. Then clearly

Lw) = Li(w),

teD

hence it suffices to verify that with probability 1
Liy(w) Csuppp for t€ D.

To this end let X first be distributed according to (the trivial extension of)
the normalized restriction of y to [0,¢]. Then (*X,,),>o is stationary by (4.2a)
and thus

(%) P(*X, ¢ I, eventually) =1 whenever I; N suppu =0,

as desired. Finally, an application of (3.3b) to f = 1;, shows that the distri-
bution of Xj in fact is irrelevant for (x). O

Together, (2.4) and (6.5) imply that the two familiar criteria for recur-
rence / transience from discrete Markov chain theory carry over to the present
setting in the following form:

(1) If v is recurrent, then for = € supp p always
P *(X,, € G infinitely often) =1,

hence
E*({n >0: X, € G}|) = 0,

provided G is an open neighborhood of z.
(2) If v is transient, then for x € E always

E*({n>0: X, € K}|) < o0,

hence
P*(X, € K infinitely often) = 0,

provided K is a compact subset of F.
The final result of this section is related to (5.5) and (5.6):

(6.6) Proposition Let v € N[E] be recurrent with invariant measure L.
Then for each open subset G of E satisfying u(G) > 0 and every t € E there
exists ng € N such that

PX;eG for0<z<t)>0 for n>nyg.

Proof. Since G may be assumed to be a bounded interval, f = 15 in view of
(6.3) satisfies all conditions in (3.4). Accordingly there exists m € N such that
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V:=P(X) e€Gfor 0<z<t)>0,

where the assumption ¢ > z or t = T means no loss of generality. By applying
Fubini it follows that

PXim€Glor 02 <t) = /[]P(Xr’;‘“eaforongt)ul(dh)
HIE
> 9vi(h(t) <t) for €N,

because x < t and h(t) < ¢ imply h(z) < t. Now v!(h(t) < t) > 0 follows from
(2.5) and (1.8) in the case ¢t > z and is trivial in the case ¢ = Z. Therefore
no = m satisfies the assertion. 0O

7. Properties of the attractor

While in the transient case Z attracts the process (X, )n>0, in the recurrent
case (6.5) suggests the following terminology:

(7.1) Definition If v € N[E] is recurrent with invariant measure i, the set
M := supp u is called the “attractor” of v.

As a first information (4.4) yields
infM =2 and supM =7,

where x € M in any case, while T € M only in the case T € F.

Similarly to (1.1), there is an implicit characterization:

(7.2) Theorem Ifv € NIE] is recurrent, its attractor is the smallest non-
empty closed subset F' of E satisfying the condition

(a) v(hFIC F)=1,
or, equivalently, the condition

(b) hl[F]|CF forall he N.

Proof. 1. Since the set of mappings h € H[E] with h[F] C F is closed, both
conditions are clearly equivalent. Moreover, any nonempty closed set F' C E
satisfying (a) satisfies the corresponding condition with respect to v" as well.
For any x € F this implies P(XZ € F') =1 for all n > 0, and thus the process
(X7)n>0 with probability 1 has all its limit points in F'. Therefore the inclusion
M C F is a consequence of (6.5).

2. It remains to verify that (b) is satisfied for F' = M. To this end consider
x = ho(xy) with 2o € M and hy € N, and let G C E be any open neigborhood
of z. Then, due to the continuity of the mapping (z, h) — h(z), there are open
sets Gy C E and Hy C H[E] such that

(o, ho) € Go X Hy and  h(z) € G for z € Gy,h € H,y.
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By the invariance of y this yields

wG) = (pev){(z,h): hz) € G}
> (M@V)(GQXH()) > 0.

Therefore x has to be contained in the support of . O

It is a consequence of (b) that the attractor of a recurrent distribution v
depends on it only through its support N.

In the following two propositions B denotes the closure of a subset B of E.
Then M and N are related by an equation that is basic in the context of self-
similar sets (see e.g. [12, 14]):

(7.3) Proposition If v € N[E] is recurrent, its attractor M satisfies

M = J h[M].

heN

Proof. If F denotes the set on the right-hand side, the inclusion ¥ C M follows
from . Conversely, the continuity of h € H[F)] yields

RFTChl U WM,

h'eN

where for b’ € N, again by (7.2), h'[M] C M. Therefore

h[F]C h[M] C F forall he N,

and the inclusion M C F follows, once more from (7.2). O

Whenever both M and N are compact, due to the continuity of the mapping
(z,h) — h(z), this result holds without taking the closure. To see that,
without assuming M to be compact, this may fail even if /V is finite, consider
the autoregressive process

1
anan_l—l-Vn for ne€ N,

where the i.i.d. variables V,,,n € N, attain the values 0 and % with proba-
bility % With E = [0,1] as state space the corresponding distribution v is
supported by the two mappings hy : x — z/3 and hy : z — (x +2)/3. It is
clearly irreducible and by (2.2) recurrent. In view of sup M =1 by (7.2) also

5 = sup hy[M] € M, while on the other hand 3 ¢ hi[E] U hy[E].

Next, M will be described by means of the semigroup N* generated by N:

(7.4) Proposition If v € N[E] is recurrent, its attractor M satisfies

M = {h(x): h € N*} for every x € M.
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Proof. If F' denotes the set on the right-hand side, the inclusion F' C M follows
from (7.2). Conversely, as in the proof of (7.3),

hlF| {hoh(x):h € N*}
{h"(z) : W' € N*}

= F forall he N,

C
C

and the inclusion M C F follows again from (7.2). O

The assumption x € M is clearly essential for the inclusion F' C M, while
the proof shows that the inclusion M C F' holds for any = € E.

The most explicit characterization of M uses the closure N** of N*:

(7.5) Theorem If v € N[E] is recurrent, its attractor M satisfies
x €M ifand onlyif j(x) € N*™,
where j is the canonical injection of E into H[FE].

Proof. 1. To prove the condition to be necessary, consider hy = j(xo) with
xog € M. By definition of the topology in #H[E] it has to be shown that

{he N*":h(zx) € Gy for 0 <z <t}#0

for arbitrary ¢ € F and open sets Gy C E containing zy. Since zy € M implies
1(Go) > 0 for these sets, (6.6) applies and provides n € N with

P(XJeGy for 0<z<t)>0.
Thus there exist hq,...,h, € N such that
hpo...ohi(z) € Gy for 0<z<t,

as had to be shown.

2. To prove the converse, let h, € N* converge to hg = j(xo) and apply
(7.4) to z = z € M, leading to

xo = ho(z) = nh_)rglo ho(z) e M. O
It is a consequence of this result, that the fixed points of the mappings
h € N* are dense in M. Indeed, since this is trivial for x = 7, assume
MnNls,t[# 0 with z<s<t<T.

Then any h € N* with s < h(z) <t for 0 < x < ¢ satisfies s < h(s) < h(t) <t
and thus by its continuity h(z) = z for some z €]s, t[.
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On the other hand, fixed points of mappings in N* need not belong to M.
This is seen, for instance, replacing v by v/ = (v + 14)/2, where v; is con-
centrated on the identity map; for it is obvious that, passing from v to v/,
neither recurrence nor invariant measure are concerned. It is, however, true
that a fixed point x of a mapping h € N* belongs to M, if it is minimal under
the condition > z. Indeed, in this case the increasing sequence (h"(z))n>0
converges to = and (7.4) applies.

The rest of this section concerns conditions under which the attractor is an
interval. The first one is quite natural:

(7.6) Proposition If v € N[E] is recurrent, its attractor M is connected
whenever N is connected.

Proof. Fix some y € M and assume z <y <y < 7. Then, according to (4.4)
and (6.6), there exists n € N such that

P(X!<y)>0 and P(X!>7)>0.

Thus the set
B:={hyo...0hi(y): hy,...h, € N}

is a subset of M by (7.2) and contains elements x < y and = > 7. Moreover
it is connected, because in H[E] composition and evaluation are continuous.
Therefore [y, 7] C M, as had to be shown. O

The connectedness of N is by no means necessary for that of M as is seen,
for instance, by the autoregressive process following (3.3), where the invariant
measure is the uniform distribution on [0,1].

To exhibit a nontrivial example with disconnected attractor, choose
E =[0,1[ and let N consist of the two mappings defined by

T 2 2 T+2

hl(x):§v(ac—g) and h2($)2($+g)/\ 5

satisfying the symmetry condition hy(1 — ) = 1 — hy(x). The corresponding
distribution v is recurrent by (2.2) with £ = 0 by (1.8), and a simple sketch
shows that the open set G =]}, 2[U]2, £ satisfies h;[E\G] C E\G fori=1,2.
By (7.2) this implies M C E \ G, hence M is disconnected, even though the
mappings h; are nonexpansive and the images hi[E] and hy[E] cover E.

The final result of this section is related to (2.2) and of interest in Section 9:

(7.7) Proposition If v € N[E] is recurrent, its attractor M is connected
whenever the following two conditions are satisfied:

(a) v(suphe E) =0,

(b) M > \t, T for somet € E.
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Proof. 1. The crucial point is the implication
(%) [s,t] C M if s <t satisfies v(h(t) < s)>0.

To derive it, consider a nonempty open subset G of |s,¢[. Then condition (a)
and the assumption v(h(t) < s) > 0 yield

v(Hs) >0 for Hy:={he€H[E]:h(t) <s<t<suph}.

For h € H,, due to the continuity, A~![G] is a nonempty open subset of |t, T |,
hence the invariant measure satisfies u(h~![G]) > 0. Therefore

ue) = [ y A(a) € G) v(dh)

> [ uh G w(dn) > 0,

8

as had to be shown.
2. Now let ¢ in condition (b) be chosen minimal. Then by (*)

v(h(t) <s)=0 for s<t,
hence s 1t yields h(t) > ¢, which by (1.8) implies ¢t < z. O
To see condition (a) to be essential for this result, consider the independent
system (F, i), where the invariant measure coincides with p.
8. Properties of the invariant measure

Since an explicit determination of the invariant measure in general is out of
reach, at least a qualitative description is desirable. Some basic facts concern-
ing the case £ = [0,1] can be found in [7]. A rather general result can be
derived from the mean ergodic theorem:

(8.1) Theorem Let v € N[E] be recurrent with invariant measure p and
exclude the case E = {0}. Then p is nonatomic whenever

(%) v(h(z1) =2z =h(x2)) =0 for z;,z € E withz < .
Proof. 1. If D is a countable dense subset of E, application of (x) to all pairs
1 < x9 with z; € D yields

IR {z}]| <1 for v—almost all h € H[E].

Consequently, the kernel P transforms nonatomic measures o € M;(E) into
measures of the same type, because

oP({z) = [ o(h(z) = 2) v(dh),

HIE]
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where the integrand vanishes for v—almost all h € H[E].

2. Starting with any nonatomic initial law ug on E # {0}, it follows
from part 1 of the proof that p, := £(X,) is nonatomic for all n € N. An
application of (6.3) to f = 1,3 and an admissible function g with pg # 0
under X, = X| yields

p({z)/ng = lim Y p({2}) ) Y g

n—00
0<m<n 0<m<n

and thus p({z}) =0forallz€ E. O

Since condition (x) is apparently satisfied whenever the underlying map-
pings h are injective, the regenerative case may rightly be considered as an
exception. This holds even more, as (%) is not a necessary condition. To see
this, consider the example following (7.6), where the invariant measure p is
nonatomic by (8.1). A slight modification of the mappings h; on the set G due
to u(G) = 0 does not affect the equation defining p.

The next result is of interest primarily for affine recursions, the distin-
guished measure being the Lebesgue measure. In its simplest form the argu-
ment can be traced back to [15]. Since Lebesgue null sets are not invariant
under conjugation, the proper version is as follows:

(8.2) Proposition Let v € N[E] be recurrent with invariant measure u and
let o € M[E] satisfy (h(o) denoting the image of o under h)

v( h(p) absolutely continuous with respect to p) = 1.

Then p s either absolutely continuous or singular with respect to p.

Proof. 1. First, measurability of the set
Ho :={h € H[E] : h(0) < o}

has to be settled, where the symbol “<” stands for absolute continuity and o
may be assumed to be a finite measure. Using the ¢, §—criterion for h(p) < o
and approximating B € B(F) from outside by open sets and h~'[B] from inside
by compact sets, it is no problem to verify the representation

HIE]\ Ho = UN Q\I U {h € H[E]: h[K] C G},

where the inner union is extended over all pairs of compact sets K with
o(K) > 1/k and open sets G with o(G) < 1/, hence is an open subset of
‘H[E]. Therefore H, itself is of type F .

2. Let now p be decomposed into its absolutely continuous part pu. and its
singular part us, with respect to p. Then the equation

peP(B) = [ peh™ (B v(dh) for B e B(E)
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implies p.P < o, hence the equation

peP + ps P = puP = p1 = pe + ps

implies p.P < .. By the uniqueness of the invariant measure, therefore,
Me = Vet With some constant ., hence pu; = 7y, with some constant ,. Now
e N s = 0 implies 7. A s = 0 and proves the assertion. 0O

In general, there is no further information available about the alternative
in this proposition. An obvious exception is the case, where the common dis-
tribution of the variables H,(z),n € N, is absolutely continuous with respect
to o for all x € E, because in this case the equation

u(B) = /E P(H,(z) € B) u(dz) for B € B(E)

implies u < p.
The rest of this section is devoted to stability results. This requires some
preparation:

(8.3) Lemma If vy, v € N[E] and py, p € M(E) satisfy

(a) Wi 18 excessive for vy,
(b) vk Vooand g 5 i,

then p is excessive for v.
Proof. Let g € K(E) satisfy 0 < g < 1 and define g, 0 € M(E) by

dor/du, = g = do/dp.

Since f € C(E) implies fg € IC(E), the vague convergence in (b) yields g = 0.
Together with the weak convergence in (b) this leads to

Ok Q Uk 3 0QV,

because the multiplication of measures is continuous in the weak topology.
Now for 0 < f € K(E) the mapping (z, h) — f(h(z)) is continuous, hence

/. / (o) p(do) v(dn) = Jim [ / (z) p(de) v (dh)

k—o00
< 11m1nf// x)) px(dx) v (dh)
< liminf | fdu

k—00 E

= [ fan,

where the second inequality uses (a). By letting g increase to 1, therefore
uPf<uf for 0< feK(E),

as had to be shown. O
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If v, v € N[E] satisfy v - v, all that can be said about their restrictions
in the sense of (1.1) is the inequality
liminf 7, > T
k—o0
for the respective upper limits. For simplicity, therefore, in the sequel all oc-

curring distributions will be assumed to be irreducible with respect to the same
state space. Then the following stability criterion holds:

(8.4) Theorem Let vy, v € NE| be recurrent with invariant measures i, ji
and denote the respective lower limits by x,x. Then the convergence vy o v
implies the existence of norming constants v, with ygux 5> 1 if and only if

(%) limsup z;, < z.
k—o00

Proof. 1. In verifying the condition (*) to be necessary £ < T may be assumed,
because otherwise z;, < z for all £ € N. For any ¢t € F with ¢t > z the
convergence g/ - ¢ yields

lim inf ([0, ¢]) > p([0,¢]) > 0,

hence z; <t for almost all £ € N by (4.4), as had to be shown.

2. To prove sufficiency, choose t € F with ¢ > z or t = T and assume
pu({t}) = 0 unless t = Z. Then (4.4) and the inequality (x) yield u([0,t¢]) > 0
and ([0, t]) > 0 for almost all & € N. Therefore it means no loss of generality
to assume

(1) wi([0,t]) = p([0,¢])) =1 forall ke N.
From this it will be derived in part 3 of the proof that

(2) sup px([0,s]) < oo forall seF,
keN

i.e. the measures g,k € N, are uniformly locally finite. It follows as in the
proof of (4.3) that {y : £ € N} is a sequentially compact subset of M(E). If
(1), )keN is any convergent subsequence, its limit by (8.3) is excessive and thus
by (4.7) is of the form yu. Since 1}y is p—almost continuous, the constant -y
satisfies by (1)

v =7p(0,1]) = lim 45([0,2]) =1.

Thus the sequence (ug)ren itself satisfies py —> p.

3. Since (2) is implied by (1) in the case ¢ = T, in the sequel ¢ > z may
be assumed. Thus there exists n € N with v"(h(s) < ¢t) > 0. Since v, - v
implies vj} > V™, therefore

lilgn inf v (h(s) <t) >v"(h(s) <t)>0,
— 00
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and thus it is no real restriction to assume

Y= kléllg vi(h(s) <t)>0.

Since py is invariant for v} as well, this yields

([0, 8]) < 97 ([0, 8]) v (R(s) < 1)
< 07 (e vy) ({(, ) : h(z) < t})
= ﬁ_lﬂk([oﬂt[)
< 9! forall keN,

and the proof is completed. O

As an example violating the condition (%) consider on F = [0, 1[ the map-
pings defined by

hi(z) =~ (2 +1), hole) =2 A~ and hE(@)=(1— S)z A~
2 2 k 2
If v, and v assign mass % to hy, h% and hy, hy, respectively, then clearly vy — v.
Moreover, v, and v are recurrent by (2.2), their lower limits, however, are
2, =0and z = % by (1.8).
For an application of (8.4) let vy be concentrated on the constant mapping
h = 0 and approximate a recurrent distribution v by
_ 1 1 ‘ N
Vk'_(l_E)U+EVO or n€N.
For the same reasons as above these distributions are recurrent with x, = 0,
hence the corresponding invariant measures, suitably normalized, satisfy
e - . In this case pk({0}) > 0 by (5.6) or (5.7), and thus p; has a
representation according to (5.2).

Finally, the special case T € E has to be mentioned, where the invariant
measures can be normalized to ug, u € M;(F). Since in this case vague and
weak convergence coincide, the constants v are needless and thus p; - p.
That this convergence in the case T ¢ E and py, p € M1 (F) may fail, will be
seen in the next section.

9. Positive recurrence and null recurrence

The following classification is adopted from the discrete situation:

(9.1) Definition If veN[E] is recurrent with invariant measure u, the dis-
tribution v (or the kernel P or the process (X, )n>0) is called

(a) “positive recurrent” if u(E) < oo,

(b) “null recurrent”  if u(E) = oo.
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As the alternative recurrent / transient, considered in (2.5), this classifica-
tion is invariant under a passage from v to v™, because this does not affect the
invariant measure.

The following criterion, where again v is identified with the corresponding
kernel P, includes the transient case:

(9.2) Proposition The irreducible distribution v € N[E| is positive recur-
rent if and only if there exists a stationary distribution p € My(E) for v.

Proof. 1t suffices to deduce recurrence of v, if y is stationary for v. Otherwise,
with g as initial law, (2.4b) would yield

> ou(0,t) => P(X,<t)<oo forall t<T,

n>0 n>0
hence u([0,¢]) =0, implying T € E and contradicting transience by (2.2). O
Next, the result of (2.2) can be strengthened:

(9.3) Proposition Ifv € N[E| is irreducible and satisfies

v(sup h(z) € E) >0,
B D)

then v is positive recurrent.

Proof. Let u be the invariant measure for v that is ensured by (2.2) and choose
t € F satisfying
¥ :=v(sup h(z) <t)>0.

zeE

Then the invariance of p implies

u(0,]) = [ v(h(@) <) pldz) > 9 u(E).
Since the left-hand side is finite, the assertion follows. O

That the sufficient condition in this proposition fails to be necessary is seen
by the queuing process. It is well-known to possess a stationary distribution
if and only if the associated random walk diverges to —oo.

At this point it can be clarified what measures p € M(F) arise as invariant
measure of some recurrent distribution v € N[E]. The independent system
(E, 1) shows that the only condition to be satisfied in the case of a measure
w € My (FE) is given by

p{reE:x>t}) >0 forall teFE.

In the case of an infinite measure p, however, this condition fails to be sufficient,
because for a null recurrent distribution v—almost all h € H[E] are unbounded
in E by (9.3) and thus (7.7) applies.
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In the sequel — suggested by ideas from queuing theory (see e.g. [21, 22]) —
the “dual process” (Hjo...o0 H,(0)),en will be investigated. Though it fails,
in general, to be a Markov process, it is of particular interest for distinguishing
positive and null recurrence. To this end an improper random variable taking
its values in the (possibly) enlarged state space E = E U {Z} has to be intro-
duced:

(9.4) Definition For irreducible v € N[E] the random variable

Y :=sup Hyo...0 H,(0)
neN

is called the “dual limit” of v.
Often, Y can be given in an explicit form, for instance

(1) if (X,)n>0 is the queuing process, then

Y=sup(U+...+U,),

n>0
(2) if (Xp)n>o is an exchange process with U, = 1, then

Y =sup (V, — (n—1)),
neN

(3) if (Xp)n>o is an affine recursion as in the introduction, then

Y: Z Ul...Un_an.
neN

By means of the results in Section 3 the terminology in (9.4) can be
justified:

(9.5) Proposition If v € N[E] is irreducible, the sequence

YP:=Hjo...oH,(z) for neN

satisfies
(a) Y'1Y as. for x=0,
(b) YP—>Y as. foreveryx€FE.

Proof. (a) This is immediate from the monotonicity of h € H[E].

(b) Since the distributions of Y, and X7Z agree, the fundamental inequality
(3.1) implies as well

ST E(f(YP) - f(YP) < oo

n>0

for each bounded increasing function f : F — R, . In complete analogy to the
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derivation of (3.3b) this leads to
(Y= 1;(Y2) =0 as.

for every subinterval I of E. If I runs through a countable base of E, therefore,
(b) is a consequence of (a). O

The uniform convergence on compact sets carries over from Section 3, i.e.

sup [f(Y")—f(YD)| =0 as. for fER(E) and t€E.

0<z<t

If 7 € E, moreover, (a) can be complemented by Y,* | YV a.s. for z = 7.

There is a zero-one law for the (possibly) improper random variable Y

(9.6) Proposition Ifv € NE] is irreducible, its dual limit satisfies

PYe€FE)=0orl.

Proof. 1. Consider first the case that

P(sup H,(z) <t) >0 forsometeE.
Tz€EE

Then the random time

T :=inf{n > 1:sup H,(z) < t}
TEE

is almost surely finite and satisfies
YSHlo...OHT_l(t) e F as..
2. Otherwise H; is almost surely unbounded in E, hence

{sup Hi(Hyo...0 H,(0)) € E} ={sup Hyo...0 H,(0) € E} as..
neN n>1

Continuing, it follows that the event {Y € E} is contained in the completed
tail o-field of (H,)nen and thus has probability 0 or 1. O

Now the dual limit can be shown to play the same role in singling out
positive recurrence as the lower limit does for recurrence. The first result is
related to a “principle” in [20]:

(9.7) Theorem The irreducible distribution v € N[E] is positive recurrent
if and only if P(Y € E) = 1. In this case

(a) p:= L(Y) is the unique stationary distribution,
(b) L(X,) 7 1 for arbitrary initial law.
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Proof. 1. If v is positive recurrent with stationary distribution p, then

p(0,4) = (iminf) [ P(X: <) p(da)

n—oo

< liminf EP(Xg < t) u(dx)
= liminf P(Y? <)

= P(Y <t

< P(YeE) foral teFE

by (9.5a). Thus t 1 T (or t = T) implies P(Y € E) = 1.
2. If conversely Y € E almost surely, then

Y =H(Y') as. with Y':=sup Hyo...0H,(0),
n>1
where H; and Y’ are independent and in addition Y and Y’ have the same

distribution. Thus p = L(Y) is a stationary distribution, hence v is positive
recurrent by (9.2), and (a) is established.

3. Finally, if po := L£(Xy) is arbitrary, then

E(f(X) = [ B(f(X)) polda)

_ /E E(f(Y;")) po(d)
— B(f(Y)) forall feC(E)

by (9.5b), and (b) is established. O

As a simple application consider the exchange process studied in Sections
2 and 6. The representation following (9.4) implies P(Y € E) =1 in the case
T < 00, because then the supremum is in fact a maximum. In the case T = oo
choose any t satisfying F'(t) > 0 for the underlying distribution function. Then

PY<t)y=]] Ft+n)>0

n>0

if and only if the series 3 - (1 — F'(t +n)) converges. Therefore the process
(Xn)nso is positive recurrent if and only if the variables V,,,n € N, have a
finite expectation (for extensions see [13]).

Instead of presenting further examples (as can be found in [6, 11, 20]), the
fractal character of stationary distributions and their support will briefly be
discussed. To this end choose E = [0, 1] and let the support of v € N[E] con-
sist of two injective, but not necessarily contractive, mappings hg, h; € H|[E]|
satisfying

ho(z) <z < hi(z) for 0<z <1 and sup ho(z) < hi(0).
el
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Then v is positive recurrent by (9.3) with £ =0 (and T = 1). Now endow the
space J := {0, 1} with the product topology and define

¢ : (Jn)neN — sup hy, o...ohy,(0).
neN
It follows that ¢ is an embedding of J into [0,1] (see e.g. [12, 14]). Moreover,
the stationary distribution p is the image under ¢ of the product measure g
with factors v({ho})eo + v({h1}) 1. Since supp ¢ = J, the support M of u
equals ¢[J] N E and is thus, as J, totally disconnected. Finally, since the
measures o belonging to different v are pairwise orthogonal, this holds for the
corresponding distributions p as well.
Before establishing the counterpart of (9.7) the stability problem mentioned
at the end of the preceding section will be settled. To this end choose £ = R,
and let v correspond to a positive recurrent exchange process as above, satisfy-
ing P(V;, = 0) > 0 and thus z = 0. Now consider the perturbed distributions
_ 1 1, ‘
l/k.Z(l—E)I/-i-El/k or k€N,
where v, is concentrated on the constant mapping hy = k. Then v, is again
positive recurrent by (9.3), with lower limit 0 by (1.8). Thus (8.4) applies,
i.e. the corresponding stationary distributions yu; and p satisfy ~y,u, > p for

suitable constants . If Py refers to vy, however, h(z) > z — 1 for v—almost
all h € H[E] implies

P.(sup Hio...0H,(0) <1) < Pu(Hp, #hyforl <m<k*>—1)
neN

1,2
— (1 D)k
)

— 0 forall leN,
hence uy - ez on E = E U {Z} by (9.7).
This improper convergence appears again in the following criterion:

(9.8) Theorem The irreducible distribution v € N[E| is null recurrent or
transient if and only if P(Y € E) = 0. In this case for arbitrary initial law

L(X,) ez on E=FU{x}.

Proof. The asserted equivalence is immediate from (9.6) and (9.7). The as-
serted convergence follows from

limsup P(X, <t) < limsup P(X? <)

n—oo n—oo

= limsup P(Y,? < 1)

n—od n
= P(Y <t
0 forall teEF. O
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The results concerning the classification can now be summarized as follows:

(1) if v is positive recurrent, then

lim inf Xg € Fas. and lim Y,? € F as.,

n—oo n—oo

(2) if v is null recurrent, then

lim inf X’ceFas. and lim Y'¢FE as.,

n—00

(3) if v is transient, then

liminf X’ ¢ F as. and lim Y’ ¢ F as..
n—00 n—00

10. Further ergodic theorems
The convergence in (9.7) is unnecessarily restricted to functions f € C(E):

(10.1) Theorem Let v € N[E] be positive recurrent with stationary distri-
bution u. Then the convergence

pnf — pf  with g = L(X,)
holds in each of the following cases:

(a) [ € R(E),
(b) f: E — R, increasing and supp po compact.

Proof. (a) Since f is bounded, application of (3.3b) with initial variables
Xy = zy resp. Xy = x yields

pnf = uf = [ [ BUG) = FOX) po(do) plda) — 0.
(b) Application of (a) to f A k with £ — oo leads to
liminf pnf > pf,
establishing the case pf = oo. Otherwise, (9.5a) and (9.7) imply
() B(f(X0) = B(f(Y)) < uf < oo forall n>0.
If t € F satisfies supp po C [0, t], therefore

mf < E(f(X3))
< uf+ E((X) —E(f(Xp)-

In view of (x) the fundamental inequality (3.1) yields

limsup pnf < pf. O
n—00
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To see the regularity condition in case (a) to be essential, consider the
autoregressive process following (3.3). It is positive recurrent with the uni-
form distribution on [0,1] as stationary distribution. Here, the convergence
unf — pf fails, for instance, if Xg = zo € D and f = 1 with D denoting the
set of dyadic numbers in F.

The compactness condition in case (b) is essential as well. Indeed, consider
an exchange process with £ = R, and E(V},) < oo, proved to be positive
recurrent by (9.7). Assume in addition [,z dp < oo for its stationary distri-
bution 2 — a condition that can be checked to amount to [],., (F(n))" > 0
for the underlying distribution function. Then E(X;) = oo by X,, > X,,_;—1
implies E(X,,) = oo for all n € N.

Application of (10.1) yields in particular pointwise convergence of the asso-
ciated distribution functions. Together with (2.4) this implies that the familiar
classification from discrete Markov chain theory for z < ¢t € E carries over in
the following form:

(1) v positive recurrent < lim P(X, <t)>0,

n—oo

(2) v null recurrent & lim P(X, <t)=0 and ) P(X, <t) = o0,

n—o0
n>0

while in the transient case » P(X, <t)<oco forallte E.
n>0
To prove a law of large numbers not restricted to functions f € C(E),
ergodicity will be established first. More generally the following holds:

(10.2) Theorem Let v € N[E] be positive recurrent with stationary distri-
bution p. Then the process (Xp)n>o with L(Xo) = p is mizing.

Proof. 1. Extending H,,,n € N, let H,,n € Z, be independent variables with
distribution v. Then by (9.7)

X! :=sup Hyo...0H,(0) € E as.

m<n
and, moreover, £L(X]) = p for n € Z. The continuity of h € H[E] yields
X, =H,(X] ;) as. for neN.

Since X is independent of (H,),eN, the processes (X,),>0 and (X} ),>0 have
the same distribution, and it suffices to prove the assertion for (X],),>o.

2. Denote by o resp. o' the shift in W :=] .z H[E] resp. W' :=1[,5, E
with E = E U {Z} and consider the (measurable) mapping

7 (hp)nez — (sup hpo...o hm(O))

m<n n20

from W to W'. It is compatible with o and o', i.e. 700 = ¢’ o 7. Therefore
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the mixing property of ¢ with respect to the product measure @,z v carries
over to o' with respect to its image by 7. Since this apparently is the distri-
bution of (X} )n>o, the assertion follows. O

In contrast to the result of (5.4), in general the tail o-field of (X,,)n>o0,
even under stationarity, need not be trivial. A counterexample is provided by
any distribution v € N[E], whose support consists of two injective mappings
ho, h1 € H[E] with disjoint images h;[E], as considered in Section 9. Since
in this case X,_; can be reconstructed from X, with probability 1, the tail
o-field of (X,,)n>0 coincides with the full o-field generated by the process up
to sets of probability 0.

If the underlying mappings h € H[E] satisfy a Lipschitz condition, laws
of large numbers regarding functions f € C(F) can be found in [3, 9]. In the
order context more general results are available:

(10.3) Theorem Let v € NE] be positive recurrent with stationary distri-
bution p. Then for arbitrary initial law the convergence

LS fx) ot as

n 0<m<n

holds in each of the following cases:
(a) f € R(E),
(b) f: E — R, increasing.

Proof. (a) Let (X )n>0 be a copy of (X,)n>0 as in (6.3) and assume L(X{) = p.
Then the process (X])n>o is ergodic by (10.2), hence

1 Y f(Xy,) = uf as..

n 0<m<n

This convergence carries over to (X,),>0, because f(X,) — f(X]) = 0 a.s. by
(3.3b).

(b) It follows from (a) as in the proof of (10.1b) that it is no real restriction
to assume pf < oo. In this case it follows, again as in the proof of (10.1b),
that sup 5o E(f(X?)) < occ. Therefore, (3.2b) can replace (3.3b) to continue
the proof as in (a). O

Case (b) implies in particular the classical law of large numbers
1
- > X,- / z p(dr) a.s.,
n 0<m<n E

holding regardless of initial law and proper existence of the integral.
Case (a) cannot dispense with the regularity condition on f as follows by
the same counterexample as considered for (10.1a). Moreover, even under
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continuity, boundedness of f cannot be replaced by integrability with respect to
the stationary distribution. To exhibit an appropriate counterexample requires
a recursive construction as in the context of (3.3). Choose E = R, and let
the support of v consist of the two mappings defined by hi(z) = z + 1 and
ho(z) = z/(x + 1). Then v is positive recurrent by (9.3) with z = 0 (and
T = o0). For Xy = 0 consider the random times

Ty :=inf{n>0:X, >k} for £k>0.

Due to X,, < X,,;11—1 they satisfy Ty < 77 < ... almost surely. As in Section 3
choose now n; € N such that

(1) limsup P(T < mng) =1

k—00

and finite subsets By of [k, k + 1[ such that
(2) P(Tk < nk,XTk ¢ Bk) =0 for k >0.

Since the stationary distribution yx is nonatomic by (8.1), a continuous function
f: Ry — R, can be found satisfying the conditions

(3) f(z) > kny for z € By,

(4) / fdu<2* for keN.
[k, k1]

Then the sequence

satisfies

P(limsup Z, = 0c0) > P(limsup{Zp, > k})

n—00 k—o00

> P(limsup {7 < ng}),

B k—00

where the last inequality holds, because (2) and (3) yield
1
Zr, > Tf(XTk) >k as. for T, <ny.
k

In view of (1) this implies

limsup Z, =00 a.s.,
n—oo

while in view of (4) on the other hand pf < 1.
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11. Mean passage times

In accordance with the order structure of the state space the hitting times for
regions above or below some level are of special interest. The first result in
this direction follows from (2.3) in the transient case, but holds as well in the
recurrent case:

(11.1) Theorem Letv € N[E] be irreducible and firt € E. Then the hitting
time T" of {x € E : x >t} by (Xy)n>0 satisfies:

E%(exp(uT")) < 0o for some u >0,

hence in particular E°(T?) < oc.

Proof. Choose | € N such that 9 := P(X} > ¢) > 0. Then monotonicity and
independence imply

PUT"'>kl) < P(Hgipo...0Hyy1(0) <tfor0<i<k)
= (1=9)% forall k>0.

Partial integration shows that each u < —%log(l — ¥) satisfies the asser-
tion. O

The following counterpart of (11.1) separates the two kinds of recurrence:

(11.2) Theorem Let v € N[E] be recurrent and fix t € E with t > x. Then
the hitting time T, of {x € E : © <t} by (X,)n>0 satisfies

(a) E*(T};) < oo for all x € E whenever v is positive recurrent,

(b) E*(T};) = oo fort <z € E whenever v is null recurrent.

Proof. (a) Clearly, the process (X,),>o may be assumed to be stationary.
Moreover, the assumption x > ¢ means no loss of generality, because the
assertion is trivial in the case t = Z. Since P(Xy < t) > 0 by (4.4), any n € N
with P(X? > z) > 0 satisfies

(+) P(X, <t,X, >1)>0.
If n is chosen minimal with respect to (), then
PXo<t,Xn,<t,X,>z2)=0 for 0<m<n,

because otherwise by stationarity n — m would satisfy (x) as well. Thus
P(A) > 0 for the event

A={Xo<t, X1 >t,...., X1 >t,X, >2x} C{T; >n}.
With the increasing function

g(y) =E¥(T;) for ye E
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the recurrence theorem by Kac and the Markov property imply
P(T, < ) = / T, dP
{Xo<t}
> [ 1,ap
A
= [ (n+g(X.) P
> P(A)(n+g(z)).

Therefore g(z) < oo, as had to be shown.
(b) If u is the invariant measure and ¢t < y € E, then

p(B) = (u([0,y])"'u(B) for B € B([0,y])

by (4.2a) and (4.4) defines a stationary distribution with respect to YP. Now
let X be distributed according to (the trivial extension of) p’ and let 7] denote
the hitting time of [0,¢] by (“X,)n>0. Then it is obvious that 7] < T}, and it
follows, again from the recurrence theorem by Kac, that

P(T] < 00) = /{yX TP
(U

I

E™(T}) ' (dzo)

zo<t

E™(T}) 1 (dzo)

zo<t

< w0, ) ENT).

IN

Since 77} is almost surely finite, therefore

([0, 9]) < w([0,¢]) EXNT,).

Letting y increase to T in view of u([0,¢]) < oo yields E*(T;) = oc, hence
E*(T;) =occforallz € E withzx >¢t. O

Since PY(T; < oo) = 1 clearly implies z < ¢, in the transient case the
equation E*(T;) = oo holds for all ¢t € E.

Next, the topological structure of the state space is taken into account:

(11.3) Proposition Let v € N[E] be positive recurrent with stationary dis-
tribution u. Then for each open subset G of E satisfying u(G) > 0 and every
t € E the stopping time

T:=inf{neN: X, €G for0<z <t}
has a finite expectation.
Proof. 1. By (6.6) there exists n € N such that

V:=P(XJeGfor0<z<t)>0.
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If T" denotes the analogous stopping time with respect to v/ = v™, then ap-
parently 7" < nT”’, hence n = 1 may be assumed in view of (2.5).

2. Moreover, t > x or t = T means no loss of generality. Then
So:=0 and Slc+1 = mf{n >S,:H,o0...0 H5k+1(t) < t}

are almost surely finite stopping times with respect to (H,)zen, which by
(11.2a) satisfy

(1) E(Sy — Sk—1) =EYT}) < oo for keN.
Finally, the events

Ap:={Hg, +1(z) e Gfor 0 <z < t}
by the assumption n = 1 satisfy
(2) P(Ay) =9>0 for k>0.

3. By construction the variables 14,,...,14,_,, Sk+1 — Sk are independent
for each k£ > 0. Moreover, the estimate

T<1+ Y [0 -14)(Seri - S

k>0 i<k

holds, because the right-hand side for fixed w € 2 equals Si(w) + 1, if k is
the first index with w € Ay, and is infinite, if there is no such index. If for
each k the factor with ¢ = k is cancelled, the bound for T is increased and the
summands are composed of independent factors. By (1) and (2) this yields

ET)<1+9'E((T}) <oco. O

If in particular T € E, this result implies sup ,.y E*(T¢) < oo, where T
denotes the hitting time of G by (X,)n>0. With this notation the familiar
criterion for positive / null recurrence by mean passage times carries over from
discrete Markov chain theory in the following form:

(11.4) Theorem Let v € N[E] be recurrent with attractor M and fiz x € M.
Then v s positive recurrent if and only if

E*(Tg) < oo for all open subsets G of E containing x.

Proof. According to (11.3) only the sufficiency of the condition has to be es-
tablished. To this end assume v to be null recurrent. Then T ¢ E by (9.3),
hence x < 7 and thus v(h(z) > z) > 0 by (1.1). This implies the existence
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of t € F with t > x such that ¥ := v(h(z) > t) > 0. With the notation
w1 == L(X7T) an application of (11.2b) yields

EY(Ty) = (1-9)+ | (1+EYT}))m(dy)

y>t
> / EY(T3) pa (dy)
y>t
= YEYT}) = oo,

i.e. the condition is violated for G = [0,¢{[> z. O
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