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1 Intuition

Think of the set of natural numbers as it is inductively defined by the zero and
the successor; it looks like this:

{0, S0, S20, . . .}

View now the naturals as “atomic pieces of information” (‘atomic’ to distin-
guish them from subsets): if one is given 5, he is informed that “the successor
operator has been applied to zero five times”. It is fair enough to say that the
set {0, S0, S20, . . .} is exceptionally precise in this sense. Since it feels natural
to want to deal with “not enough information” as well, we add a “least info”
element ∗ to the set of naturals, to mean “atomic information which, if com-
pleted, could provide the number n”. In this way we have just added the notion
of partiality to the natural numbers: indeed, ∗ can be thought of as a “partial
number”, or, more appropriately, as an “approximation of a natural number”.
The initial set has become

{∗, 0, S0, S20, . . .}

Furthermore though, we want to have different degrees of “incomplete infor-
mation”, to signify different size of information needed: to obtain 2, one has
to apply the successor operator twice to 0, whereas 1 is obtained only by one
such application. It feels now natural to add different elements ∗n to the set of
natural numbers, of different degrees of “information incompleteness”, one for
every “full info element” n, and in such a way that the set will remain inductive.
To do this we let ∗n := Sn∗, and our already overabused set of natural numbers
looks now like that:

{∗, 0, S∗, S0, S2∗, S20, . . .}

Notice that every n = Sn is approximated by as many as n + 1 “incomplete
atomic info” elements, namely by ∗, S∗, . . . , Sn∗. One could try now to imagine
how an “arithmetical function containing incomplete info” would look like. It’s
not particularly straightforward, but this is the very central general idea: to
approximate (infinite) partial functionals over natural numbers using proper
finite “approximations”, ie, “pieces of information”.

∗Prepared for the Proof Theory Seminar led by Prof. H. Schwichtenberg, during the winter
semester of 2006-7, at the Mathematics Institute of LMU.
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It turns out that the formalization of the central idea through ‘atomic co-
herent information systems’ (to be defined below), makes it indeed possible to
control functionals in terms of finite approximations. What we restrict our at-
tention to here, is making these approximations as economic as possible, that
is, with no redundant information: the subset {S3∗, S∗} informs us that the
successor has been applied three times and that the successor has been applied
one time — clearly, the second information is redundant.

2 Acises and Function Spaces

An atomic coherent information system graph, or simplier an acis (graph), is
a triad α = (T,3,�), where T is the carrier, a non-empty countable set, the
elements of which are called atoms1, 3 is the consistency, a reflexive and sym-
metric binary relation on T and � is the entailment, a reflexive and transitive
binary relation on T , such that consistency propagates through entailment, ie

∀
a,b,c∈T

. a 3 b ∧ b � c → a 3 c

For U, V ⊆ T write U 3 a := ∀b∈U b 3 a, U 3 V := ∀a∈V U 3 a, U � a :=
∃b∈U b � a and U � V := ∀a∈V U � a. The class of finite approximations2 in α
is defined by

U ∈ Con :⇔ (U ⊆f T ) ∧ ( ∀
a,b∈U

a 3 b)

Lemma 1 (soundness of entailment). From reflexivity and propagation of
consistency, it follows that

1. ∀a,b∈T . a � b → a 3 b

2. ∀a,b,c∈T . (a � b ∧ a � c) → b 3 c

Let α = (Tα,3α,�α) and β = (Tβ ,3β ,�β) be two acises. Define the
function space α → β = (T,3,�) by

T := Conα × Tβ

(U, a) 3 (V, b) :⇔ U 3α V → a 3β b

(U, a) � (V, b) :⇔ V �α U ∧ a �β b

We will show that the function space α → β is an acis itself ([Sch05]).

Lemma 2. Let α = (Tα,3,�) be an acis. Then

1. U � V1 ∧ U � V2 → V1 3 V2

2. U 3 V ∧ V � W → U 3 W

1Also called tokens.
2Also called consistent sets and formal neighborhoods (as in [Sch05]).
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Proof. For the first clause: Suppose that U � V1 and U � V2; this unfolds to
∀b1∈V1 ∃a1∈U . a1�b1 and ∀b2∈V2 ∃a2∈U . a2�b2; since a2 3 a1, by propagation
we have ∀b1∈V1 ∀b2∈V2 ∃a2∈U . a2 3 b1 ∧ a2 � b2; since b1 3 a2, by propagation
of consistency again, we obtain ∀b1∈V1 ∀b2∈V2 . b1 3 b2, that is, V1 3 V2.

For the second clause: Let U 3 V and V � W ; we have U ∪ V � U and
U ∪ V � W , so by the previous clause we take U 3 W .

Proposition 3. The function space between two acises is again an acis.

Proof. The axioms of 3 and � are easy to check. For the axiom of propagation:
Suppose that (U, a) 3 (V, b) and (V, b)� (W, c); by definition of consistency and
entailment in the function space we have U 3α V → a 3β b and W �αV ∧b�β c;
we want to show that (U, a) 3 (W, c), or equivalently that U 3α W → a 3β c;
let U 3α W ; by the second clause of lemma 2, since U 3α W ∧W �α V , we have
U 3α V → a 3β b∧b�β c and U 3α V ; by modus ponens we get a 3β b∧b�β c;
propagation in β yields a 3β c; so we have proven that U 3α W → a 3β c,
that is (U, a) 3 (W, c).

Define the (finite) application on finite approximations · : Conα→β×Conα →
Conβ , by

{(Ui, ai)}i∈I · U :=β {ai | U �α Ui}
Lemma 4. For the application operation the following hold:

1. It is well-defined, that is

{(Ui, ai)}iU ∈ Conβ

2. For all U ∈ Conα, it is

{(Ui, ai)}i �α→β {(Vj , bj)}j ↔ {(Ui, ai)}i · U �β {(Vj , bj)}j · U

3. For all {(Ui, ai)}i ∈ Conα→β it is

U �α V → {(Ui, ai)}i · U �β {(Ui, ai)}i · V

Proof. For the first clause: Let {(Ui, ai)}iU = {ai | U �α Ui}; we want
to show that ∀i1,i2∈I ai1 3β ai2 ; since {(Ui, ai)}i∈I ∈ Conα→β , it is
∀i1,i2∈I(Ui1 , ai1) 3α→β (Ui2 , ai2), or, equivalently, ∀i1,i2∈I(Ui1 3α Ui2 →
ai1 3β ai2); by lemma 2 (modus ponens) we have what we wanted.3

For the second clause: For the right direction, let {(Ui, ai)}i∈I �α→β

{(Vj , bj)}j∈J , which by definition is ∀j∈J ∃i∈I(Vj �α Ui ∧ ai �β bj); we want to
show that {(Ui, ai)}i·U�β{(Vj , bj)}j ·U , which by definition is {ai | U �α Ui}�β

{bj | U �α Vj}, which is provided by the assumption. For the other way round,
let {(Ui, ai)}i · U �β {(Vj , bj)}j · U , or {ai | U �α Ui} �β {bj | U �α Vj}; we
have to show that {(Ui, ai)}i∈I �α→β {(Vj , bj)}j∈J , which by definition is
∀j∈J ∃i∈I(Vj �α Ui ∧ ai �β bj); for every l ∈ J we may put U := Vl and
the assumption then yields {ai | Vl �α Ui} �β {bj | Vl �α Vj}; since Vl �α Vi,
there is a k ∈ I so that Vl �α Uk and ak �β bl.

For the third clause: Let U �α V ; due to transitivity of entailment we have
∀i . V �α Ui → U �α Ui, which proves what we need.

3That finite application is indeed a function, ie, it maps a pair of approximations to a
unique approximation, is easy to see.
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3 Algebraic acises

Let A = {C1, . . . , Ck} be an algebra (given by constructors) and ∗ be a ground-
type atom meaning “least info”; here, each constructor comes with a type of
finite arity. We define the algebraic preacis on A to be the triad Ã∗ = (TA∗ ,3A∗

,�A∗) where

a ∈ TA∗ :⇔ a = ∗ ∨ (∃
i

a = Ci~a ∧∀
j

aj ∈ TA∗)

a 3A∗ b :⇔ a = ∗ ∨ b = ∗ ∨ ((∃
i

. a = Ci~a ∧ b = Ci
~b) ∧∀

j
aj 3A∗ bj)

a �A∗ b :⇔ b = ∗ ∨ ((∃
i

. a = Ci~a ∧ b = Ci
~b) ∧∀

j
aj �A∗ bj)

Define the algebraic acis on A4 to be the triad Ã = (TA,3A,�A) by restricting
Ã∗ as follows:

TA := TA∗ − {∗}
3A := 3A∗ −{(a, ∗), (∗, a) | a ∈ TA∗}
�A := �A∗ − {(a, ∗) | a ∈ TA∗}

Call the elements of TA∗ preatoms to distinguish them from the atoms in TA.5

The algebra B = {tt, ff} of boolean numbers defines the preacis

b ∈ TB̃∗
:⇔ b = ∗ ∨ b = tt ∨ b = ff

b1 3B̃∗
b2 :⇔ b1 = ∗ ∨ b2 = ∗ ∨ b1 = b2 = tt ∨ b1 = b2 = ff

b1 �B̃∗
b2 :⇔ b2 = ∗ ∨ b1 = b2 = tt ∨ b1 = b2 = ff

and the parametric algebra L(π) = {Nilπ,Consπ} of lists of objects belonging
to an arbitrary acis π, defines the preacis

l ∈ TL̃∗(π) :⇔ l = ∗ ∨ l = Nilπ

∨(l = Consπ(a, l′) ∧ a ∈ Tπ ∧ l′ ∈ TL̃∗(π))

l1 3L̃∗(π) l2 :⇔ l1 = ∗ ∨ l2 = ∗ ∨ l1 = l2 = Nilπ

∨(l1 = Consπ(a1, l′1) ∧ l2 = Consπ(a2, l′2) ∧ a1 3π a2 ∧ l′1 3L̃∗(π) l′2)

l1 �L̃∗(π) l2 :⇔ l2 = ∗

∨(l1 = Consπ(a1, l′1) ∧ l2 = Consπ(a2, l′2) ∧ a1 �π a2 ∧ l′1 �L̃∗(π) l′2)

The most important example of an algebraic acis though is the acis of natural
numbers. Consider the algebra of natural numbers N = {0, S}, where 0 is the
zero constructor and S is the successor constructor. The preacis Ñ∗ and acis Ñ

4Also referred to as algerba A with approximations in [Sch05].
5Notice that all preatoms are atoms except for ∗. Furthermore, equality =A∗ is defined by

a =A∗ b :⇔ a = b = ∗ ∨ ((∃
i

. a = Ci~a ∧ b = Ci
~b) ∧∀

j
aj =A∗ bj)

and naturally =A := =A∗ − {(∗, ∗)}. Equality for finite approximations then U = V , should
be understood as set equality. For simplicity’s sake though, we keep this implicit in what
follows.
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are defined as explained before. In particular, the preacis is defined by

a ∈ TÑ∗
:⇔ a = ∗ ∨ a = 0 ∨ (a = Sa′ ∧ a′ ∈ TÑ∗

)

a 3Ñ∗
b :⇔ a = ∗ ∨ b = ∗ ∨ a = b = 0 ∨ (a = Sa′ ∧ b = Sb′ ∧ a′ 3Ñ∗

b′)

a �Ñ∗
b :⇔ b = ∗ ∨ a = b = 0 ∨ (a = Sa′ ∧ b = Sb′ ∧ a′ �Ñ∗

b′)

For brevity, write ι for Ñ, Sn for S · · ·S︸ ︷︷ ︸
n

and n for Sn0.

The function space ι → ι is defined by

({ai}i, a) ∈ Tι→ι :⇔ ∀
i
∀
i′

ai 3ι ai′ ∧ a ∈ Tι

({ai}i, a) 3ι→ι ({bj}j , b) :⇔ ∀
i
∀
j

ai 3ι bj → a 3ι b

({ai}i, a) �ι→ι ({bj}j , b) :⇔ ∀
i
∃
j

bj �ι ai ∧ a �ι b

The function space (ι → ι) → ι is defined by

({({aki}ki , ai)}i, a) ∈ T(ι→ι)→ι

:⇔
(
∀
i
∀
i′

. ∀
ki

∀
ki′

aki
3ι aki′ → ai 3ι ai′

)
∧ a 3ι b

({({aki
}ki

, ai)}i, a) 3(ι→ι)→ι ({({bkj
}kj

, bj)}j , b)

:⇔
(
∀
i
∀
j

. ∀
ki

∀
kj

aki
3ι bkj

→ ai 3ι bj

)
→ a 3ι b

({({aki}ki , ai)}i, a) �(ι→ι)→ι ({({bkj}kj , bj)}j , b)

:⇔
(
∀
i
∃
j

. ∀
kj

∃
ki

aki
�ι bkj

∧ bj �ι ai

)
∧ a �ι b

The function space ι → (ι → ι) is defined by

({ai1}i1 , {ai2}i2 , a) ∈ Tι→(ι→ι)

:⇔ ∀
i1
∀
i′1

ai1 3ι ai′1
∧∀

i2
∀
i′2

ai2 3ι ai′2
∧ a ∈ Tι

({ai1}i1 , {ai2}i2 , a) 3ι→(ι→ι) ({bj1}j1 , {bj2}j2 , b)

:⇔ ∀
i1
∀
j1

ai1 3ι bj1 → ∀
i2
∀
j2

ai2 3ι bj2 → a 3ι b

({ai1}i1 , {ai2}i2 , a) �ι→(ι→ι) ({bj1}j1 , {bj2}j2 , b)

:⇔ ∀
i1
∃
j1

bj1 �ι ai1 ∧∀
i2
∃
j2

bj2 �ι ai2 ∧ a �ι b

where we write (U1, U2, a) for (U1, (U2, a)).
One should notice how the notions of consistency and entailment between

atoms of higher types breaks down to consistency and entailment between atoms
of ground type. Dub ι and its function spaces arithmetical acises.
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4 Normal Form of Algebraic Approximations

By the very definition of entailment in an abstract acis, we have non-
antisymmetricity, ie, we can have two different atoms entailing one another.
An acis where antisymmetricity for entailment holds will be called antisymmet-
rical acis. By induction on the formation of atoms one can prove that

Lemma 5. All algebraic acises are antisymmetrical.6

Even in the case of an antisymmetrical acis though, non-antisymmetricity
may appear in its finite approximations as well as in atoms and approximations
of its function spaces. For an acis α, define the following equivalence on Conα:

U ∼α V :⇔ U �α V ∧ V �α U

Non-trivial examples of equivalent finite approximations in arithmetical acises
are the following:

{S2∗} ∼ι {S2∗, S∗}
{({S2∗}, S2∗)} ∼ι→ι {({S2∗}, S2∗), ({2}, S∗)}

{({({0}, S∗)}, 0)} ∼(ι→ι)→ι {({({0}, S∗)}, 0) , ({({0}, S∗), ({0}, 1)}, 0)}
{({S2∗}, {S2∗}, S∗)} ∼ι→(ι→ι) {({S2∗, S∗}, {S2∗, S∗}, S∗)}

We would like to have a notion of “normal form” for approximations, such
that every approximation would have a normal form and two approximations
in normal form would be equivalent if and only if they were equal. This turns
out to be easily feasible for algebraic acises and their function spaces, as we now
show.7

The definition of the set NFα of finite approximations in normal form, for
acises α built on algebraic acises, is inductive on the formation of the acis:

• For an algebraic acis α, a finite approximation U ∈ Conα is in normal
form if it contains no entailments, ie, if none of its elements entails some
other:

{ai}i ∈ NFα :⇔ ∀
i
∀

j 6=i
ai 6 �αaj

• For function spaces α, β built on algebraic acises, a finite approximation
{(Ui, bi)}i ∈ Conα→β is in normal form if all its lower-type objects are
either already in normal form or else atoms and if it contains no entail-
ments:

{(Ui, ai)}i ∈ NFα→β :⇔

∀
i

. Ui ∈ NFα ∧ ai ∈ NFβ ∪ Tβ ∧ ∀
j 6=i

(Ui, ai) 6 �α→β(Uj , aj)

Proposition 6. For all acises α built on algebraic acises the following hold:

6A parametric algebraic acis, like L̃(π), is antisymmetric if the parameter acis π is an-
tisymmetric (it doesn’t even need to be algebraic). For simplicity’s sake, we focus here on
non-parametrical algebraic acises.

7Normal forms for finite approximations in flat information systems were treated twenty
years ago in [Sch86].
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1. For all U ∈ Conα there is a U ′ ∈ NFα so that U ∼α U ′.

2. For all U, V ∈ NFα it is U ∼α V ↔ U = V .

Proof. We prove the more general step cases. For the first clause: Let
{(Ui, ai)}i∈I ∈ Conα→β with Ui ∈ NFα, ai ∈ NFβ ∪ Tβ , for every i; suppose
that there are k, l ∈ I such that (Uk, ak) �α→β (Ul, al); set I ′ := I − {l}; it is
easy to see that {(Ui, ai)}i∈I ∼α→β {(U ′

i , a
′
i)}i′∈I′ .

The left direction of the second clause is obvious. For the right direc-
tion let {(Ui, ai)}i∈I , {(Vj , bj)}j∈J ∈ NFα→β be such that {(Ui, ai)}i∈I ∼α→β

{(Vj , bj)}j∈J ; this unfolds to

∀
j
∃

i(j)
(Ui(j), ai(j)) �α→β (Vj , bj) ∧∀

i
∃

j(i)
(Vj(i), bj(i)) �α→β (Ui, ai)

which is equivalent to ∀j ∃i(Vj , bj) ∼α→β (Ui, ai); by definition we get
∀j ∃i . Vj ∼α Ui ∧ bj ∼β ai, which, by assumption and induction hypothe-
sis, yields ∀j ∃i(Vj , bj) = (Ui, ai); similarly we have ∀i∃j(Ui, ai) = (Vj , bj),
which concludes the proof.

Corollary 7. For all acises α built on algebraic acises it is Conα/ ∼α
∼= NFα.

We close with two remarks. First, notice that arithmetical approximations
have fairly simple normal forms, since they are built on singletons of Tι. Namely,
normal forms in the arithmetical acises we introduced in the previous section,
follow the patterns shown below:

NFι : a

NFι→ι : {(a1
i , a

2
i )}i

NF(ι→ι)→ι : {({(a1
ji

, a2
ji

)}ji
, a3

i )}i

NFι→(ι→ι) : {(a1
i , (a

2
i , a

3
i ))}i

where curly brackets of singletons have been omitted.
Secondly, application between finite algebraic approximations in normal form

does not necessarily yield an approximation in normal form. A counter-example
for arithmetical acises, is the application of {({S∗}, S∗), ({S2∗}, S2∗)} ∈ NFι→ι

to {2} ∈ NFι, which yields {S2∗, S∗} 6∈ NFι.

References
[Sch86] Helmut Schwichtenberg. Eine Normalform für endliche Approximationen von par-

tiellen stetigen Funktionalen. In J. Diller, editor, Logik und Grundlagenforschung,
Festkolloquium zum 100. Geburtstag von Heinrich Scholz, pages 89–95, 1986.

[Sch05] Helmut Schwichtenberg. Recursion on the partial continuous functionals. To appear
in the proceedings of Logic Colloquium ’05, 2005.

7


