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1 Introduction

e Dana Scott and Juri Ershov [late 60’s—70’s]: Scott—Ershov domains with Scott-
continuous functions provide an appropriate framework for higher-type com-
putability and semantics of programming languages.

e Gordon Plotkin [Plotkin 1977]: There are inherently nonsequential functionals
in Scott’s model:
X if g = tt,
peond(g,x,y) =< y if g = £f,
xny ifg=1.

e Gerard Berry [Berry1978]: If a functional is sequential, it has to be stable (that
is, preserve consistent infima).

e Guo-Qiang Zhang [Zhang 1989-1992]: In order to represent stable domains by
information systems, we have to require linearity (here, “atomicity”): if a formal
neighborhood entails a token, it must do so with a single witness.

e Stability and atomicity are quite relevant to classical [Girard ef al. 1989] and
intuitionistic linear logic [Bucciarelli ef al. 2009-10].

e Helmut Schwichtenberg and the Munich group [Schwichtenberg, Huber, B.,
Ranzi 2006—] working with nonflat base types, have shown among other things
density, preservation of values, adequacy, and definability, sometimes within
atomic systems alone, sometimes without.

e Why nonflat? (a) Trivially good reasons: injectivity of constructors and nonover-
lapping of their ranges. (b) Deeper good reasons: more degrees of freedom in
the model allow for stronger results.

e Why not nonflat? (a) Trivially good reasons: combinatorial chaos. (b) Deeper
good reasons: flat base types are atomic but nonflat aren’t. But: function spaces
preserve atomicity!



2 Domain representations and types

Information system A = (Tok, Con, |-)
{a}eCom
U<V AVeCon—UeCon,
UeConraclU — Ut a,
UFRVAVECc—>ULFc,
UeConAUtb—Uu{b} e Con.

Coherent information system

Y {a,da'} € Con— U € Con. (1)

a,d’ €U
Write a =< b for {a,b} € Con, and even U =V for U uV € Con.
Function space A — B

(U,by e Tok := U € Cony A b € Tokg,
W,by={U" b ):=U=pU" > b=ph,
W U,b):=WU -5 b,

where
beWU:= 9 (U byeWaUr,U').

U’eCony

Fact 1. The function space of two coherent information systems is itself a coher-
ent information system.

Atomic information system

Urb— 1 {a} b 2

acU

Fact 2. The function space of two atomic information systems is itself an atomic
information system.

Ideal x € Ide

VYV (UeConn Y (Urb—bex)).
Uc/lx beTok

Coherent domains (with countable bases) are algebraic bounded complete cpo’s,
where every set of compacts has a least upper bound exactly when each of its
pairs has a least upper bound.

Fact 3. Ler (Tok,Con,}-) be a coherent information system. Then (Ide, <, &)
is a coherent domain with compacts given by {U |U e Con}. Conversely, every
coherent domain can be represented by a coherent information system.

Approximable mapping r € Cony x Cong
(D, D)er
WU, Viy LU, Voyer—{U,ViuVayer,
UbpU AU VYeraV eV —>{U,Vyer



Fact 4. There is a bijective correspondence between the approximable map-
pings from p to o and the ideals of the function space p — ©; domains (with
Scott continuous functions) and information systems (with approximable map-
pings) are categorically equivalent [Scott 1982]. Moreover, the equivalence is
preserved if we restrict ourselves to the coherent case [B 2013].

Base types 1

B = {tt,ff},
N = {0,50,850,...},
D = {0,1,80,...,B01,...,BSOBO1,...},

and higher types p — ©.

Partiality at base types 1 is not a distinguished foken but a distinguished nullary
constructor %, the base types are already nonflat:

B = {,tt,£f},

N = {x,0,8%,50,88%,550,...},

D = {*,0,1,8%,50,...,B#1,...,BS%B01,...}.

The information system induced by D:

#,0,1 e Tok,
a € Tok — Sa € Tok,
a,b € Tok — Bab € Tok,

a=x*Ax%*=aq,

a=d —Sa=S3d,

a=d Ab=b"—Bab=Bd'b,

U=,

Ura— SU+ Sa, forU #
UranAVb—BUV I Bab, forU,V # (,
UI—b—>Uu{*}|—b,

where BUV := {Bab |acU,beV}.

Fact 5. Let 1 be an algebra given by constructors. The triple (Tok,,Cony, ) is
a coherent information system.

Our technical motivation draws from the following.

Inconvenience 6. The systems B and N are atomic but D is not: {BO*,Bx1} |-
BO1 but {BO=} £ BO1 and {B=1} I/ BO1.

Inconvenience 7. Ar base types antisymmetry holds for tokens, but neither for
neighborhoods (e.g., {BO*,B*l} ~ {BOl} and {SO,S*} ~ {SO}) nor, conse-
quently, at higher types.



3 Neighborhood mappings

e Let p, o be types. A mapping f : Conp, — Cong is compatible, monotone, and
consistent if

Ui ~p Uz — f(Uh) ~6 f(U2),
Ui p Uy — f(Ur) o f(Ua),
Ui =p Uz — f(Uh) =¢ f(U2),

respectively.
Lemma 8. Let f: Conp, — Cong be a neighborhood mapping.

1. It is monotone if and only if it is compatible with equientailment and f(U; U
Us) o f(Ur) v f(Ua) for every Uy, Us € Conp with Uy =p Us.

2. Ifit is monotone, then it is also consistent.

e The idealization f of a neighborhood mapping f : Con, — Cong is the token set

fi= {(U,b>€Tokag|U . (Ui—p UUjAUf(Uj)I—Gb)}~
j=1 j=1

15-+-,Un€Conp

Proposition 9. Let p, ¢ be types, and f be a neighborhood mapping at type
p — ©. Then f is an ideal if and only if f is consistent.

e Not all ideals are induced by neighborhood mappings: e.g., at type N — N take
{(O, S")|n=0,1,.. } Neighborhood mappings are those approximable maps
r for which r(U) is covered by a finite collection Vi,...,V,, € Cong for every
U € Conyp.

4 Normal forms at base types

e Let p be a type. A neighborhood-mapping f : Con, — Con, is a normal form
mapping (at type p) if it preserves information and identifies equivalent neigh-
borhoods, that is,

f(U) ~p Ua
Up ~p Uy — f(Ur) = f(U2).

Every normal form mapping is monotone (so by Lemma 8 also compatible and
consistent).

e Deductive closure. Define
U:={beTok|U + b}.

The mapping U — U is a normal form mapping at base types.



o Supremum. For a,b € Toky, define sup(a,b) by

Sllp((l, *) = sup(*,a) =da,
sup(Sa,Sa’) = Ssup(a,d’),
sup(Bab,Ba’'b’) = Bsup(a,a’)sup(b,b’).

For a neighborhood U € Conyy define sup(U) € Tok by

sup() =+,

sup({ai,...,am}) :=sup(---sup(ar,az) -+ ,am).

The neighborhood mapping U +— {sup(U)} is a normal form mapping at base
types.

e Path reduced neighborhood. Define the paths in D, Tokﬁ;, by

#,0,1 € Tokf),
a € Tokf) — Sa € Tok?,
a,b € Tokh) — Bax,Bxb € TokD.

Lemma 10. Let 1 be a base type.
1. Comparability: If a € Tok? and by,b, € Tok,, then
at,byrnat, by > by, byvby, by.
2. Downward closure: If a € Tok? and b € Tok,, then
al,b— beTok?.
3. Atomicity: If U € Con,\(, and b € Tok!, then

Ut b— 3 {a} b
aelU

A path reduced neighborhood is an inhabited neighborhood whose every token
is maximal and a path.

Proposition 11 (Path normal form). There exists a normal form mapping nf? :
Con, — Cony, such that nff (U) is path reduced for every U € Con,.

S Normal forms at higher types

e Some notation. Let W = {(Uy,b1),...,{Up,bm)} € Conp_,q. Let

LWw):=|JUi={acti|i=1,...,m},
i=1

RW):={bi|i=1,...,m}.
These finite sets are not necessarily consistent! Also, write

W,v):={U,by|beV}.



An eigen-neighborhood of W is a neighborhood H = (U, V), where U € Cony ()
(a subset of L(W) which is consistent) and furthermore

U=UnLW)AV=WUnRW).
Write H € Eigw. The eigenform of W is given by the neighborhood mapping
eigW):= |J <(OnLW)WUARW)),

UECOHL<W>

that is, it is the union | JEigw of its eigen-neighborhoods.
Proposition 12 (Eigenform). Let p and & be types, and W, W;,W, € Con,_,¢.
1. The eigenform mapping is information preserving, that is, W ~p_,s
eig(W), and idempotent, that is eig(eig(W)) = eig(W).
2. Itis

Wi }_pac W < \V/ El H, |_pﬁo Hy,
HzEEigW2 H; EEing

W =p—0 W, & \V/ \V/ H, =p—0 H.
H EEigwl HzEEigW2

(At base types we let eig(U) := U by convention.)
The mapping eig is not a normal form mapping!

Write Eig%, for the inhabited eigen-neighborhoods of W. Call W € Con, .o
eigen-maximal if W = eig(W), and each H € Eigy is either empty or maximal,
that is, if H € Eig‘(,)v, then for all H' € Eigw with H' -y, H,itis H ~p_,5 H.

An eigen-maximal neighborhood is “flat”, in the sense that the inclusion diagram
of its eigen-neighborhoods forms a flat tree.

Lemma 13. Let p, 0 be types. There exists a neighborhood mapping emax such
that for every W € Conp_, the neighborhood emax(W) is eigen-maximal and
W ~p_ emax(W).

The mapping emax is (again) not a normal form mapping!

Write Fin, for all (not necessarily consistent) finite token sets at type p. If
f : Conp — Conp and g : Cong — Cong, define their eigenproduct (f,g) :
Conp_,s — Finp_,5 by

FoW)= | (LH),gRH).
HeEig),

Proposition 14. Let f and g be normal form mappings at types p and © respec-
tively. Then their eigenproduct is a normal form mapping at type p — ©, when
restricted to eigen-maximal neighborhoods.

As a corollary we obtain the following.

Theorem 15 (Inductive normal forms). Let f and g be normal form mappings
at types p and © respectively. Then the mapping {f,g) o emax is a normal form
mapping at type p — O.



6 Linearity

e There are two ways to work atomically in our setting, the implicit and the explicit
way. Both are facilitated by the use of normal forms.

o [mplicit atomicity. Call a type implicitly atomic when every neighborhood has
an equivalent one which is atomic.
All base types are implicitly atomic, since there are normal forms for every
neighborhood which are atomic, like the closure and the supremum.

Theorem 16. Let p be an arbitrary type. There exists a neighborhood mapping
atp : Con, — Cony, such that at, (U) is atomic and equivalent to U for all U €
Cony.

Witness. aty_,q(W) := (id,ats) (W). O

e Explicit atomicity. Fact 2 bluntly suggests the following strategy: render your
base type information systems in an atomic manner and you’re done. The prob-
lem is that in restricting ourselves to atomic base types, we want to obtain essen-
tially the same ideals.

e Write p =~ o if the ideals of p and the ideals of ¢ are in a bijective correspon-
dence.

Theorem 17. Let 1 be a finitary base type. There exists an atomic-coherent
information system 1, such that M = 1.

Proofsketch. Given a finitary base type t, define the path subsystem of 1, 17, by
letting

Tok,» := Tok?,
Conp := Con, n Zf(Tokyr ),
=t N (Conypr x Tokyp).

The triple 1” is a coherent information system and it is 1” =~ 1.

To see that it is atomic, let U € Con,p and b € Tok;» be such that U \;» b. Since
b is a path, by Proposition 10.3 there is an a € U with {a} . b. Butais itself a
path, so {a} e b. O

7 Outlook

e Further applications of neighborhood mappings: study of Fin, finite density, de-
finability etc.

e What is “atomicity” in formal topological parlance? =~ What are “eigen-
neighborhoods”?

e What are the consequences of working on the basis of Theorem 17? For example,
do we obtain naturally a model for linear logic?



